diff options
Diffstat (limited to 'src/backend/postmaster/checkpointer.c')
-rw-r--r-- | src/backend/postmaster/checkpointer.c | 1354 |
1 files changed, 1354 insertions, 0 deletions
diff --git a/src/backend/postmaster/checkpointer.c b/src/backend/postmaster/checkpointer.c new file mode 100644 index 0000000..8699675 --- /dev/null +++ b/src/backend/postmaster/checkpointer.c @@ -0,0 +1,1354 @@ +/*------------------------------------------------------------------------- + * + * checkpointer.c + * + * The checkpointer is new as of Postgres 9.2. It handles all checkpoints. + * Checkpoints are automatically dispatched after a certain amount of time has + * elapsed since the last one, and it can be signaled to perform requested + * checkpoints as well. (The GUC parameter that mandates a checkpoint every + * so many WAL segments is implemented by having backends signal when they + * fill WAL segments; the checkpointer itself doesn't watch for the + * condition.) + * + * The checkpointer is started by the postmaster as soon as the startup + * subprocess finishes, or as soon as recovery begins if we are doing archive + * recovery. It remains alive until the postmaster commands it to terminate. + * Normal termination is by SIGUSR2, which instructs the checkpointer to + * execute a shutdown checkpoint and then exit(0). (All backends must be + * stopped before SIGUSR2 is issued!) Emergency termination is by SIGQUIT; + * like any backend, the checkpointer will simply abort and exit on SIGQUIT. + * + * If the checkpointer exits unexpectedly, the postmaster treats that the same + * as a backend crash: shared memory may be corrupted, so remaining backends + * should be killed by SIGQUIT and then a recovery cycle started. (Even if + * shared memory isn't corrupted, we have lost information about which + * files need to be fsync'd for the next checkpoint, and so a system + * restart needs to be forced.) + * + * + * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group + * + * + * IDENTIFICATION + * src/backend/postmaster/checkpointer.c + * + *------------------------------------------------------------------------- + */ +#include "postgres.h" + +#include <sys/time.h> +#include <time.h> + +#include "access/xlog.h" +#include "access/xlog_internal.h" +#include "libpq/pqsignal.h" +#include "miscadmin.h" +#include "pgstat.h" +#include "postmaster/bgwriter.h" +#include "postmaster/interrupt.h" +#include "replication/syncrep.h" +#include "storage/bufmgr.h" +#include "storage/condition_variable.h" +#include "storage/fd.h" +#include "storage/ipc.h" +#include "storage/lwlock.h" +#include "storage/proc.h" +#include "storage/procsignal.h" +#include "storage/shmem.h" +#include "storage/smgr.h" +#include "storage/spin.h" +#include "utils/guc.h" +#include "utils/memutils.h" +#include "utils/resowner.h" + + +/*---------- + * Shared memory area for communication between checkpointer and backends + * + * The ckpt counters allow backends to watch for completion of a checkpoint + * request they send. Here's how it works: + * * At start of a checkpoint, checkpointer reads (and clears) the request + * flags and increments ckpt_started, while holding ckpt_lck. + * * On completion of a checkpoint, checkpointer sets ckpt_done to + * equal ckpt_started. + * * On failure of a checkpoint, checkpointer increments ckpt_failed + * and sets ckpt_done to equal ckpt_started. + * + * The algorithm for backends is: + * 1. Record current values of ckpt_failed and ckpt_started, and + * set request flags, while holding ckpt_lck. + * 2. Send signal to request checkpoint. + * 3. Sleep until ckpt_started changes. Now you know a checkpoint has + * begun since you started this algorithm (although *not* that it was + * specifically initiated by your signal), and that it is using your flags. + * 4. Record new value of ckpt_started. + * 5. Sleep until ckpt_done >= saved value of ckpt_started. (Use modulo + * arithmetic here in case counters wrap around.) Now you know a + * checkpoint has started and completed, but not whether it was + * successful. + * 6. If ckpt_failed is different from the originally saved value, + * assume request failed; otherwise it was definitely successful. + * + * ckpt_flags holds the OR of the checkpoint request flags sent by all + * requesting backends since the last checkpoint start. The flags are + * chosen so that OR'ing is the correct way to combine multiple requests. + * + * num_backend_writes is used to count the number of buffer writes performed + * by user backend processes. This counter should be wide enough that it + * can't overflow during a single processing cycle. num_backend_fsync + * counts the subset of those writes that also had to do their own fsync, + * because the checkpointer failed to absorb their request. + * + * The requests array holds fsync requests sent by backends and not yet + * absorbed by the checkpointer. + * + * Unlike the checkpoint fields, num_backend_writes, num_backend_fsync, and + * the requests fields are protected by CheckpointerCommLock. + *---------- + */ +typedef struct +{ + SyncRequestType type; /* request type */ + FileTag ftag; /* file identifier */ +} CheckpointerRequest; + +typedef struct +{ + pid_t checkpointer_pid; /* PID (0 if not started) */ + + slock_t ckpt_lck; /* protects all the ckpt_* fields */ + + int ckpt_started; /* advances when checkpoint starts */ + int ckpt_done; /* advances when checkpoint done */ + int ckpt_failed; /* advances when checkpoint fails */ + + int ckpt_flags; /* checkpoint flags, as defined in xlog.h */ + + ConditionVariable start_cv; /* signaled when ckpt_started advances */ + ConditionVariable done_cv; /* signaled when ckpt_done advances */ + + uint32 num_backend_writes; /* counts user backend buffer writes */ + uint32 num_backend_fsync; /* counts user backend fsync calls */ + + int num_requests; /* current # of requests */ + int max_requests; /* allocated array size */ + CheckpointerRequest requests[FLEXIBLE_ARRAY_MEMBER]; +} CheckpointerShmemStruct; + +static CheckpointerShmemStruct *CheckpointerShmem; + +/* interval for calling AbsorbSyncRequests in CheckpointWriteDelay */ +#define WRITES_PER_ABSORB 1000 + +/* + * GUC parameters + */ +int CheckPointTimeout = 300; +int CheckPointWarning = 30; +double CheckPointCompletionTarget = 0.9; + +/* + * Private state + */ +static bool ckpt_active = false; + +/* these values are valid when ckpt_active is true: */ +static pg_time_t ckpt_start_time; +static XLogRecPtr ckpt_start_recptr; +static double ckpt_cached_elapsed; + +static pg_time_t last_checkpoint_time; +static pg_time_t last_xlog_switch_time; + +/* Prototypes for private functions */ + +static void HandleCheckpointerInterrupts(void); +static void CheckArchiveTimeout(void); +static bool IsCheckpointOnSchedule(double progress); +static bool ImmediateCheckpointRequested(void); +static bool CompactCheckpointerRequestQueue(void); +static void UpdateSharedMemoryConfig(void); + +/* Signal handlers */ +static void ReqCheckpointHandler(SIGNAL_ARGS); + + +/* + * Main entry point for checkpointer process + * + * This is invoked from AuxiliaryProcessMain, which has already created the + * basic execution environment, but not enabled signals yet. + */ +void +CheckpointerMain(void) +{ + sigjmp_buf local_sigjmp_buf; + MemoryContext checkpointer_context; + + CheckpointerShmem->checkpointer_pid = MyProcPid; + + /* + * Properly accept or ignore signals the postmaster might send us + * + * Note: we deliberately ignore SIGTERM, because during a standard Unix + * system shutdown cycle, init will SIGTERM all processes at once. We + * want to wait for the backends to exit, whereupon the postmaster will + * tell us it's okay to shut down (via SIGUSR2). + */ + pqsignal(SIGHUP, SignalHandlerForConfigReload); + pqsignal(SIGINT, ReqCheckpointHandler); /* request checkpoint */ + pqsignal(SIGTERM, SIG_IGN); /* ignore SIGTERM */ + /* SIGQUIT handler was already set up by InitPostmasterChild */ + pqsignal(SIGALRM, SIG_IGN); + pqsignal(SIGPIPE, SIG_IGN); + pqsignal(SIGUSR1, procsignal_sigusr1_handler); + pqsignal(SIGUSR2, SignalHandlerForShutdownRequest); + + /* + * Reset some signals that are accepted by postmaster but not here + */ + pqsignal(SIGCHLD, SIG_DFL); + + /* + * Initialize so that first time-driven event happens at the correct time. + */ + last_checkpoint_time = last_xlog_switch_time = (pg_time_t) time(NULL); + + /* + * Create a memory context that we will do all our work in. We do this so + * that we can reset the context during error recovery and thereby avoid + * possible memory leaks. Formerly this code just ran in + * TopMemoryContext, but resetting that would be a really bad idea. + */ + checkpointer_context = AllocSetContextCreate(TopMemoryContext, + "Checkpointer", + ALLOCSET_DEFAULT_SIZES); + MemoryContextSwitchTo(checkpointer_context); + + /* + * If an exception is encountered, processing resumes here. + * + * You might wonder why this isn't coded as an infinite loop around a + * PG_TRY construct. The reason is that this is the bottom of the + * exception stack, and so with PG_TRY there would be no exception handler + * in force at all during the CATCH part. By leaving the outermost setjmp + * always active, we have at least some chance of recovering from an error + * during error recovery. (If we get into an infinite loop thereby, it + * will soon be stopped by overflow of elog.c's internal state stack.) + * + * Note that we use sigsetjmp(..., 1), so that the prevailing signal mask + * (to wit, BlockSig) will be restored when longjmp'ing to here. Thus, + * signals other than SIGQUIT will be blocked until we complete error + * recovery. It might seem that this policy makes the HOLD_INTERRUPTS() + * call redundant, but it is not since InterruptPending might be set + * already. + */ + if (sigsetjmp(local_sigjmp_buf, 1) != 0) + { + /* Since not using PG_TRY, must reset error stack by hand */ + error_context_stack = NULL; + + /* Prevent interrupts while cleaning up */ + HOLD_INTERRUPTS(); + + /* Report the error to the server log */ + EmitErrorReport(); + + /* + * These operations are really just a minimal subset of + * AbortTransaction(). We don't have very many resources to worry + * about in checkpointer, but we do have LWLocks, buffers, and temp + * files. + */ + LWLockReleaseAll(); + ConditionVariableCancelSleep(); + pgstat_report_wait_end(); + AbortBufferIO(); + UnlockBuffers(); + ReleaseAuxProcessResources(false); + AtEOXact_Buffers(false); + AtEOXact_SMgr(); + AtEOXact_Files(false); + AtEOXact_HashTables(false); + + /* Warn any waiting backends that the checkpoint failed. */ + if (ckpt_active) + { + SpinLockAcquire(&CheckpointerShmem->ckpt_lck); + CheckpointerShmem->ckpt_failed++; + CheckpointerShmem->ckpt_done = CheckpointerShmem->ckpt_started; + SpinLockRelease(&CheckpointerShmem->ckpt_lck); + + ConditionVariableBroadcast(&CheckpointerShmem->done_cv); + + ckpt_active = false; + } + + /* + * Now return to normal top-level context and clear ErrorContext for + * next time. + */ + MemoryContextSwitchTo(checkpointer_context); + FlushErrorState(); + + /* Flush any leaked data in the top-level context */ + MemoryContextResetAndDeleteChildren(checkpointer_context); + + /* Now we can allow interrupts again */ + RESUME_INTERRUPTS(); + + /* + * Sleep at least 1 second after any error. A write error is likely + * to be repeated, and we don't want to be filling the error logs as + * fast as we can. + */ + pg_usleep(1000000L); + + /* + * Close all open files after any error. This is helpful on Windows, + * where holding deleted files open causes various strange errors. + * It's not clear we need it elsewhere, but shouldn't hurt. + */ + smgrcloseall(); + } + + /* We can now handle ereport(ERROR) */ + PG_exception_stack = &local_sigjmp_buf; + + /* + * Unblock signals (they were blocked when the postmaster forked us) + */ + PG_SETMASK(&UnBlockSig); + + /* + * Ensure all shared memory values are set correctly for the config. Doing + * this here ensures no race conditions from other concurrent updaters. + */ + UpdateSharedMemoryConfig(); + + /* + * Advertise our latch that backends can use to wake us up while we're + * sleeping. + */ + ProcGlobal->checkpointerLatch = &MyProc->procLatch; + + /* + * Loop forever + */ + for (;;) + { + bool do_checkpoint = false; + int flags = 0; + pg_time_t now; + int elapsed_secs; + int cur_timeout; + + /* Clear any already-pending wakeups */ + ResetLatch(MyLatch); + + /* + * Process any requests or signals received recently. + */ + AbsorbSyncRequests(); + HandleCheckpointerInterrupts(); + + /* + * Detect a pending checkpoint request by checking whether the flags + * word in shared memory is nonzero. We shouldn't need to acquire the + * ckpt_lck for this. + */ + if (((volatile CheckpointerShmemStruct *) CheckpointerShmem)->ckpt_flags) + { + do_checkpoint = true; + BgWriterStats.m_requested_checkpoints++; + } + + /* + * Force a checkpoint if too much time has elapsed since the last one. + * Note that we count a timed checkpoint in stats only when this + * occurs without an external request, but we set the CAUSE_TIME flag + * bit even if there is also an external request. + */ + now = (pg_time_t) time(NULL); + elapsed_secs = now - last_checkpoint_time; + if (elapsed_secs >= CheckPointTimeout) + { + if (!do_checkpoint) + BgWriterStats.m_timed_checkpoints++; + do_checkpoint = true; + flags |= CHECKPOINT_CAUSE_TIME; + } + + /* + * Do a checkpoint if requested. + */ + if (do_checkpoint) + { + bool ckpt_performed = false; + bool do_restartpoint; + + /* + * Check if we should perform a checkpoint or a restartpoint. As a + * side-effect, RecoveryInProgress() initializes TimeLineID if + * it's not set yet. + */ + do_restartpoint = RecoveryInProgress(); + + /* + * Atomically fetch the request flags to figure out what kind of a + * checkpoint we should perform, and increase the started-counter + * to acknowledge that we've started a new checkpoint. + */ + SpinLockAcquire(&CheckpointerShmem->ckpt_lck); + flags |= CheckpointerShmem->ckpt_flags; + CheckpointerShmem->ckpt_flags = 0; + CheckpointerShmem->ckpt_started++; + SpinLockRelease(&CheckpointerShmem->ckpt_lck); + + ConditionVariableBroadcast(&CheckpointerShmem->start_cv); + + /* + * The end-of-recovery checkpoint is a real checkpoint that's + * performed while we're still in recovery. + */ + if (flags & CHECKPOINT_END_OF_RECOVERY) + do_restartpoint = false; + + /* + * We will warn if (a) too soon since last checkpoint (whatever + * caused it) and (b) somebody set the CHECKPOINT_CAUSE_XLOG flag + * since the last checkpoint start. Note in particular that this + * implementation will not generate warnings caused by + * CheckPointTimeout < CheckPointWarning. + */ + if (!do_restartpoint && + (flags & CHECKPOINT_CAUSE_XLOG) && + elapsed_secs < CheckPointWarning) + ereport(LOG, + (errmsg_plural("checkpoints are occurring too frequently (%d second apart)", + "checkpoints are occurring too frequently (%d seconds apart)", + elapsed_secs, + elapsed_secs), + errhint("Consider increasing the configuration parameter \"max_wal_size\"."))); + + /* + * Initialize checkpointer-private variables used during + * checkpoint. + */ + ckpt_active = true; + if (do_restartpoint) + ckpt_start_recptr = GetXLogReplayRecPtr(NULL); + else + ckpt_start_recptr = GetInsertRecPtr(); + ckpt_start_time = now; + ckpt_cached_elapsed = 0; + + /* + * Do the checkpoint. + */ + if (!do_restartpoint) + { + CreateCheckPoint(flags); + ckpt_performed = true; + } + else + ckpt_performed = CreateRestartPoint(flags); + + /* + * After any checkpoint, close all smgr files. This is so we + * won't hang onto smgr references to deleted files indefinitely. + */ + smgrcloseall(); + + /* + * Indicate checkpoint completion to any waiting backends. + */ + SpinLockAcquire(&CheckpointerShmem->ckpt_lck); + CheckpointerShmem->ckpt_done = CheckpointerShmem->ckpt_started; + SpinLockRelease(&CheckpointerShmem->ckpt_lck); + + ConditionVariableBroadcast(&CheckpointerShmem->done_cv); + + if (ckpt_performed) + { + /* + * Note we record the checkpoint start time not end time as + * last_checkpoint_time. This is so that time-driven + * checkpoints happen at a predictable spacing. + */ + last_checkpoint_time = now; + } + else + { + /* + * We were not able to perform the restartpoint (checkpoints + * throw an ERROR in case of error). Most likely because we + * have not received any new checkpoint WAL records since the + * last restartpoint. Try again in 15 s. + */ + last_checkpoint_time = now - CheckPointTimeout + 15; + } + + ckpt_active = false; + + /* We may have received an interrupt during the checkpoint. */ + HandleCheckpointerInterrupts(); + } + + /* Check for archive_timeout and switch xlog files if necessary. */ + CheckArchiveTimeout(); + + /* + * Send off activity statistics to the stats collector. (The reason + * why we re-use bgwriter-related code for this is that the bgwriter + * and checkpointer used to be just one process. It's probably not + * worth the trouble to split the stats support into two independent + * stats message types.) + */ + pgstat_send_bgwriter(); + + /* Send WAL statistics to the stats collector. */ + pgstat_send_wal(true); + + /* + * If any checkpoint flags have been set, redo the loop to handle the + * checkpoint without sleeping. + */ + if (((volatile CheckpointerShmemStruct *) CheckpointerShmem)->ckpt_flags) + continue; + + /* + * Sleep until we are signaled or it's time for another checkpoint or + * xlog file switch. + */ + now = (pg_time_t) time(NULL); + elapsed_secs = now - last_checkpoint_time; + if (elapsed_secs >= CheckPointTimeout) + continue; /* no sleep for us ... */ + cur_timeout = CheckPointTimeout - elapsed_secs; + if (XLogArchiveTimeout > 0 && !RecoveryInProgress()) + { + elapsed_secs = now - last_xlog_switch_time; + if (elapsed_secs >= XLogArchiveTimeout) + continue; /* no sleep for us ... */ + cur_timeout = Min(cur_timeout, XLogArchiveTimeout - elapsed_secs); + } + + (void) WaitLatch(MyLatch, + WL_LATCH_SET | WL_TIMEOUT | WL_EXIT_ON_PM_DEATH, + cur_timeout * 1000L /* convert to ms */ , + WAIT_EVENT_CHECKPOINTER_MAIN); + } +} + +/* + * Process any new interrupts. + */ +static void +HandleCheckpointerInterrupts(void) +{ + if (ProcSignalBarrierPending) + ProcessProcSignalBarrier(); + + if (ConfigReloadPending) + { + ConfigReloadPending = false; + ProcessConfigFile(PGC_SIGHUP); + + /* + * Checkpointer is the last process to shut down, so we ask it to hold + * the keys for a range of other tasks required most of which have + * nothing to do with checkpointing at all. + * + * For various reasons, some config values can change dynamically so + * the primary copy of them is held in shared memory to make sure all + * backends see the same value. We make Checkpointer responsible for + * updating the shared memory copy if the parameter setting changes + * because of SIGHUP. + */ + UpdateSharedMemoryConfig(); + } + if (ShutdownRequestPending) + { + /* + * From here on, elog(ERROR) should end with exit(1), not send control + * back to the sigsetjmp block above + */ + ExitOnAnyError = true; + + /* + * Close down the database. + * + * Since ShutdownXLOG() creates restartpoint or checkpoint, and + * updates the statistics, increment the checkpoint request and send + * the statistics to the stats collector. + */ + BgWriterStats.m_requested_checkpoints++; + ShutdownXLOG(0, 0); + pgstat_send_bgwriter(); + pgstat_send_wal(true); + + /* Normal exit from the checkpointer is here */ + proc_exit(0); /* done */ + } +} + +/* + * CheckArchiveTimeout -- check for archive_timeout and switch xlog files + * + * This will switch to a new WAL file and force an archive file write if + * meaningful activity is recorded in the current WAL file. This includes most + * writes, including just a single checkpoint record, but excludes WAL records + * that were inserted with the XLOG_MARK_UNIMPORTANT flag being set (like + * snapshots of running transactions). Such records, depending on + * configuration, occur on regular intervals and don't contain important + * information. This avoids generating archives with a few unimportant + * records. + */ +static void +CheckArchiveTimeout(void) +{ + pg_time_t now; + pg_time_t last_time; + XLogRecPtr last_switch_lsn; + + if (XLogArchiveTimeout <= 0 || RecoveryInProgress()) + return; + + now = (pg_time_t) time(NULL); + + /* First we do a quick check using possibly-stale local state. */ + if ((int) (now - last_xlog_switch_time) < XLogArchiveTimeout) + return; + + /* + * Update local state ... note that last_xlog_switch_time is the last time + * a switch was performed *or requested*. + */ + last_time = GetLastSegSwitchData(&last_switch_lsn); + + last_xlog_switch_time = Max(last_xlog_switch_time, last_time); + + /* Now we can do the real checks */ + if ((int) (now - last_xlog_switch_time) >= XLogArchiveTimeout) + { + /* + * Switch segment only when "important" WAL has been logged since the + * last segment switch (last_switch_lsn points to end of segment + * switch occurred in). + */ + if (GetLastImportantRecPtr() > last_switch_lsn) + { + XLogRecPtr switchpoint; + + /* mark switch as unimportant, avoids triggering checkpoints */ + switchpoint = RequestXLogSwitch(true); + + /* + * If the returned pointer points exactly to a segment boundary, + * assume nothing happened. + */ + if (XLogSegmentOffset(switchpoint, wal_segment_size) != 0) + elog(DEBUG1, "write-ahead log switch forced (archive_timeout=%d)", + XLogArchiveTimeout); + } + + /* + * Update state in any case, so we don't retry constantly when the + * system is idle. + */ + last_xlog_switch_time = now; + } +} + +/* + * Returns true if an immediate checkpoint request is pending. (Note that + * this does not check the *current* checkpoint's IMMEDIATE flag, but whether + * there is one pending behind it.) + */ +static bool +ImmediateCheckpointRequested(void) +{ + volatile CheckpointerShmemStruct *cps = CheckpointerShmem; + + /* + * We don't need to acquire the ckpt_lck in this case because we're only + * looking at a single flag bit. + */ + if (cps->ckpt_flags & CHECKPOINT_IMMEDIATE) + return true; + return false; +} + +/* + * CheckpointWriteDelay -- control rate of checkpoint + * + * This function is called after each page write performed by BufferSync(). + * It is responsible for throttling BufferSync()'s write rate to hit + * checkpoint_completion_target. + * + * The checkpoint request flags should be passed in; currently the only one + * examined is CHECKPOINT_IMMEDIATE, which disables delays between writes. + * + * 'progress' is an estimate of how much of the work has been done, as a + * fraction between 0.0 meaning none, and 1.0 meaning all done. + */ +void +CheckpointWriteDelay(int flags, double progress) +{ + static int absorb_counter = WRITES_PER_ABSORB; + + /* Do nothing if checkpoint is being executed by non-checkpointer process */ + if (!AmCheckpointerProcess()) + return; + + /* + * Perform the usual duties and take a nap, unless we're behind schedule, + * in which case we just try to catch up as quickly as possible. + */ + if (!(flags & CHECKPOINT_IMMEDIATE) && + !ShutdownRequestPending && + !ImmediateCheckpointRequested() && + IsCheckpointOnSchedule(progress)) + { + if (ConfigReloadPending) + { + ConfigReloadPending = false; + ProcessConfigFile(PGC_SIGHUP); + /* update shmem copies of config variables */ + UpdateSharedMemoryConfig(); + } + + AbsorbSyncRequests(); + absorb_counter = WRITES_PER_ABSORB; + + CheckArchiveTimeout(); + + /* + * Report interim activity statistics to the stats collector. + */ + pgstat_send_bgwriter(); + + /* + * This sleep used to be connected to bgwriter_delay, typically 200ms. + * That resulted in more frequent wakeups if not much work to do. + * Checkpointer and bgwriter are no longer related so take the Big + * Sleep. + */ + WaitLatch(MyLatch, WL_LATCH_SET | WL_EXIT_ON_PM_DEATH | WL_TIMEOUT, + 100, + WAIT_EVENT_CHECKPOINT_WRITE_DELAY); + ResetLatch(MyLatch); + } + else if (--absorb_counter <= 0) + { + /* + * Absorb pending fsync requests after each WRITES_PER_ABSORB write + * operations even when we don't sleep, to prevent overflow of the + * fsync request queue. + */ + AbsorbSyncRequests(); + absorb_counter = WRITES_PER_ABSORB; + } + + /* Check for barrier events. */ + if (ProcSignalBarrierPending) + ProcessProcSignalBarrier(); +} + +/* + * IsCheckpointOnSchedule -- are we on schedule to finish this checkpoint + * (or restartpoint) in time? + * + * Compares the current progress against the time/segments elapsed since last + * checkpoint, and returns true if the progress we've made this far is greater + * than the elapsed time/segments. + */ +static bool +IsCheckpointOnSchedule(double progress) +{ + XLogRecPtr recptr; + struct timeval now; + double elapsed_xlogs, + elapsed_time; + + Assert(ckpt_active); + + /* Scale progress according to checkpoint_completion_target. */ + progress *= CheckPointCompletionTarget; + + /* + * Check against the cached value first. Only do the more expensive + * calculations once we reach the target previously calculated. Since + * neither time or WAL insert pointer moves backwards, a freshly + * calculated value can only be greater than or equal to the cached value. + */ + if (progress < ckpt_cached_elapsed) + return false; + + /* + * Check progress against WAL segments written and CheckPointSegments. + * + * We compare the current WAL insert location against the location + * computed before calling CreateCheckPoint. The code in XLogInsert that + * actually triggers a checkpoint when CheckPointSegments is exceeded + * compares against RedoRecPtr, so this is not completely accurate. + * However, it's good enough for our purposes, we're only calculating an + * estimate anyway. + * + * During recovery, we compare last replayed WAL record's location with + * the location computed before calling CreateRestartPoint. That maintains + * the same pacing as we have during checkpoints in normal operation, but + * we might exceed max_wal_size by a fair amount. That's because there can + * be a large gap between a checkpoint's redo-pointer and the checkpoint + * record itself, and we only start the restartpoint after we've seen the + * checkpoint record. (The gap is typically up to CheckPointSegments * + * checkpoint_completion_target where checkpoint_completion_target is the + * value that was in effect when the WAL was generated). + */ + if (RecoveryInProgress()) + recptr = GetXLogReplayRecPtr(NULL); + else + recptr = GetInsertRecPtr(); + elapsed_xlogs = (((double) (recptr - ckpt_start_recptr)) / + wal_segment_size) / CheckPointSegments; + + if (progress < elapsed_xlogs) + { + ckpt_cached_elapsed = elapsed_xlogs; + return false; + } + + /* + * Check progress against time elapsed and checkpoint_timeout. + */ + gettimeofday(&now, NULL); + elapsed_time = ((double) ((pg_time_t) now.tv_sec - ckpt_start_time) + + now.tv_usec / 1000000.0) / CheckPointTimeout; + + if (progress < elapsed_time) + { + ckpt_cached_elapsed = elapsed_time; + return false; + } + + /* It looks like we're on schedule. */ + return true; +} + + +/* -------------------------------- + * signal handler routines + * -------------------------------- + */ + +/* SIGINT: set flag to run a normal checkpoint right away */ +static void +ReqCheckpointHandler(SIGNAL_ARGS) +{ + int save_errno = errno; + + /* + * The signaling process should have set ckpt_flags nonzero, so all we + * need do is ensure that our main loop gets kicked out of any wait. + */ + SetLatch(MyLatch); + + errno = save_errno; +} + + +/* -------------------------------- + * communication with backends + * -------------------------------- + */ + +/* + * CheckpointerShmemSize + * Compute space needed for checkpointer-related shared memory + */ +Size +CheckpointerShmemSize(void) +{ + Size size; + + /* + * Currently, the size of the requests[] array is arbitrarily set equal to + * NBuffers. This may prove too large or small ... + */ + size = offsetof(CheckpointerShmemStruct, requests); + size = add_size(size, mul_size(NBuffers, sizeof(CheckpointerRequest))); + + return size; +} + +/* + * CheckpointerShmemInit + * Allocate and initialize checkpointer-related shared memory + */ +void +CheckpointerShmemInit(void) +{ + Size size = CheckpointerShmemSize(); + bool found; + + CheckpointerShmem = (CheckpointerShmemStruct *) + ShmemInitStruct("Checkpointer Data", + size, + &found); + + if (!found) + { + /* + * First time through, so initialize. Note that we zero the whole + * requests array; this is so that CompactCheckpointerRequestQueue can + * assume that any pad bytes in the request structs are zeroes. + */ + MemSet(CheckpointerShmem, 0, size); + SpinLockInit(&CheckpointerShmem->ckpt_lck); + CheckpointerShmem->max_requests = NBuffers; + ConditionVariableInit(&CheckpointerShmem->start_cv); + ConditionVariableInit(&CheckpointerShmem->done_cv); + } +} + +/* + * RequestCheckpoint + * Called in backend processes to request a checkpoint + * + * flags is a bitwise OR of the following: + * CHECKPOINT_IS_SHUTDOWN: checkpoint is for database shutdown. + * CHECKPOINT_END_OF_RECOVERY: checkpoint is for end of WAL recovery. + * CHECKPOINT_IMMEDIATE: finish the checkpoint ASAP, + * ignoring checkpoint_completion_target parameter. + * CHECKPOINT_FORCE: force a checkpoint even if no XLOG activity has occurred + * since the last one (implied by CHECKPOINT_IS_SHUTDOWN or + * CHECKPOINT_END_OF_RECOVERY). + * CHECKPOINT_WAIT: wait for completion before returning (otherwise, + * just signal checkpointer to do it, and return). + * CHECKPOINT_CAUSE_XLOG: checkpoint is requested due to xlog filling. + * (This affects logging, and in particular enables CheckPointWarning.) + */ +void +RequestCheckpoint(int flags) +{ + int ntries; + int old_failed, + old_started; + + /* + * If in a standalone backend, just do it ourselves. + */ + if (!IsPostmasterEnvironment) + { + /* + * There's no point in doing slow checkpoints in a standalone backend, + * because there's no other backends the checkpoint could disrupt. + */ + CreateCheckPoint(flags | CHECKPOINT_IMMEDIATE); + + /* + * After any checkpoint, close all smgr files. This is so we won't + * hang onto smgr references to deleted files indefinitely. + */ + smgrcloseall(); + + return; + } + + /* + * Atomically set the request flags, and take a snapshot of the counters. + * When we see ckpt_started > old_started, we know the flags we set here + * have been seen by checkpointer. + * + * Note that we OR the flags with any existing flags, to avoid overriding + * a "stronger" request by another backend. The flag senses must be + * chosen to make this work! + */ + SpinLockAcquire(&CheckpointerShmem->ckpt_lck); + + old_failed = CheckpointerShmem->ckpt_failed; + old_started = CheckpointerShmem->ckpt_started; + CheckpointerShmem->ckpt_flags |= (flags | CHECKPOINT_REQUESTED); + + SpinLockRelease(&CheckpointerShmem->ckpt_lck); + + /* + * Send signal to request checkpoint. It's possible that the checkpointer + * hasn't started yet, or is in process of restarting, so we will retry a + * few times if needed. (Actually, more than a few times, since on slow + * or overloaded buildfarm machines, it's been observed that the + * checkpointer can take several seconds to start.) However, if not told + * to wait for the checkpoint to occur, we consider failure to send the + * signal to be nonfatal and merely LOG it. The checkpointer should see + * the request when it does start, with or without getting a signal. + */ +#define MAX_SIGNAL_TRIES 600 /* max wait 60.0 sec */ + for (ntries = 0;; ntries++) + { + if (CheckpointerShmem->checkpointer_pid == 0) + { + if (ntries >= MAX_SIGNAL_TRIES || !(flags & CHECKPOINT_WAIT)) + { + elog((flags & CHECKPOINT_WAIT) ? ERROR : LOG, + "could not signal for checkpoint: checkpointer is not running"); + break; + } + } + else if (kill(CheckpointerShmem->checkpointer_pid, SIGINT) != 0) + { + if (ntries >= MAX_SIGNAL_TRIES || !(flags & CHECKPOINT_WAIT)) + { + elog((flags & CHECKPOINT_WAIT) ? ERROR : LOG, + "could not signal for checkpoint: %m"); + break; + } + } + else + break; /* signal sent successfully */ + + CHECK_FOR_INTERRUPTS(); + pg_usleep(100000L); /* wait 0.1 sec, then retry */ + } + + /* + * If requested, wait for completion. We detect completion according to + * the algorithm given above. + */ + if (flags & CHECKPOINT_WAIT) + { + int new_started, + new_failed; + + /* Wait for a new checkpoint to start. */ + ConditionVariablePrepareToSleep(&CheckpointerShmem->start_cv); + for (;;) + { + SpinLockAcquire(&CheckpointerShmem->ckpt_lck); + new_started = CheckpointerShmem->ckpt_started; + SpinLockRelease(&CheckpointerShmem->ckpt_lck); + + if (new_started != old_started) + break; + + ConditionVariableSleep(&CheckpointerShmem->start_cv, + WAIT_EVENT_CHECKPOINT_START); + } + ConditionVariableCancelSleep(); + + /* + * We are waiting for ckpt_done >= new_started, in a modulo sense. + */ + ConditionVariablePrepareToSleep(&CheckpointerShmem->done_cv); + for (;;) + { + int new_done; + + SpinLockAcquire(&CheckpointerShmem->ckpt_lck); + new_done = CheckpointerShmem->ckpt_done; + new_failed = CheckpointerShmem->ckpt_failed; + SpinLockRelease(&CheckpointerShmem->ckpt_lck); + + if (new_done - new_started >= 0) + break; + + ConditionVariableSleep(&CheckpointerShmem->done_cv, + WAIT_EVENT_CHECKPOINT_DONE); + } + ConditionVariableCancelSleep(); + + if (new_failed != old_failed) + ereport(ERROR, + (errmsg("checkpoint request failed"), + errhint("Consult recent messages in the server log for details."))); + } +} + +/* + * ForwardSyncRequest + * Forward a file-fsync request from a backend to the checkpointer + * + * Whenever a backend is compelled to write directly to a relation + * (which should be seldom, if the background writer is getting its job done), + * the backend calls this routine to pass over knowledge that the relation + * is dirty and must be fsync'd before next checkpoint. We also use this + * opportunity to count such writes for statistical purposes. + * + * To avoid holding the lock for longer than necessary, we normally write + * to the requests[] queue without checking for duplicates. The checkpointer + * will have to eliminate dups internally anyway. However, if we discover + * that the queue is full, we make a pass over the entire queue to compact + * it. This is somewhat expensive, but the alternative is for the backend + * to perform its own fsync, which is far more expensive in practice. It + * is theoretically possible a backend fsync might still be necessary, if + * the queue is full and contains no duplicate entries. In that case, we + * let the backend know by returning false. + */ +bool +ForwardSyncRequest(const FileTag *ftag, SyncRequestType type) +{ + CheckpointerRequest *request; + bool too_full; + + if (!IsUnderPostmaster) + return false; /* probably shouldn't even get here */ + + if (AmCheckpointerProcess()) + elog(ERROR, "ForwardSyncRequest must not be called in checkpointer"); + + LWLockAcquire(CheckpointerCommLock, LW_EXCLUSIVE); + + /* Count all backend writes regardless of if they fit in the queue */ + if (!AmBackgroundWriterProcess()) + CheckpointerShmem->num_backend_writes++; + + /* + * If the checkpointer isn't running or the request queue is full, the + * backend will have to perform its own fsync request. But before forcing + * that to happen, we can try to compact the request queue. + */ + if (CheckpointerShmem->checkpointer_pid == 0 || + (CheckpointerShmem->num_requests >= CheckpointerShmem->max_requests && + !CompactCheckpointerRequestQueue())) + { + /* + * Count the subset of writes where backends have to do their own + * fsync + */ + if (!AmBackgroundWriterProcess()) + CheckpointerShmem->num_backend_fsync++; + LWLockRelease(CheckpointerCommLock); + return false; + } + + /* OK, insert request */ + request = &CheckpointerShmem->requests[CheckpointerShmem->num_requests++]; + request->ftag = *ftag; + request->type = type; + + /* If queue is more than half full, nudge the checkpointer to empty it */ + too_full = (CheckpointerShmem->num_requests >= + CheckpointerShmem->max_requests / 2); + + LWLockRelease(CheckpointerCommLock); + + /* ... but not till after we release the lock */ + if (too_full && ProcGlobal->checkpointerLatch) + SetLatch(ProcGlobal->checkpointerLatch); + + return true; +} + +/* + * CompactCheckpointerRequestQueue + * Remove duplicates from the request queue to avoid backend fsyncs. + * Returns "true" if any entries were removed. + * + * Although a full fsync request queue is not common, it can lead to severe + * performance problems when it does happen. So far, this situation has + * only been observed to occur when the system is under heavy write load, + * and especially during the "sync" phase of a checkpoint. Without this + * logic, each backend begins doing an fsync for every block written, which + * gets very expensive and can slow down the whole system. + * + * Trying to do this every time the queue is full could lose if there + * aren't any removable entries. But that should be vanishingly rare in + * practice: there's one queue entry per shared buffer. + */ +static bool +CompactCheckpointerRequestQueue(void) +{ + struct CheckpointerSlotMapping + { + CheckpointerRequest request; + int slot; + }; + + int n, + preserve_count; + int num_skipped = 0; + HASHCTL ctl; + HTAB *htab; + bool *skip_slot; + + /* must hold CheckpointerCommLock in exclusive mode */ + Assert(LWLockHeldByMe(CheckpointerCommLock)); + + /* Initialize skip_slot array */ + skip_slot = palloc0(sizeof(bool) * CheckpointerShmem->num_requests); + + /* Initialize temporary hash table */ + ctl.keysize = sizeof(CheckpointerRequest); + ctl.entrysize = sizeof(struct CheckpointerSlotMapping); + ctl.hcxt = CurrentMemoryContext; + + htab = hash_create("CompactCheckpointerRequestQueue", + CheckpointerShmem->num_requests, + &ctl, + HASH_ELEM | HASH_BLOBS | HASH_CONTEXT); + + /* + * The basic idea here is that a request can be skipped if it's followed + * by a later, identical request. It might seem more sensible to work + * backwards from the end of the queue and check whether a request is + * *preceded* by an earlier, identical request, in the hopes of doing less + * copying. But that might change the semantics, if there's an + * intervening SYNC_FORGET_REQUEST or SYNC_FILTER_REQUEST, so we do it + * this way. It would be possible to be even smarter if we made the code + * below understand the specific semantics of such requests (it could blow + * away preceding entries that would end up being canceled anyhow), but + * it's not clear that the extra complexity would buy us anything. + */ + for (n = 0; n < CheckpointerShmem->num_requests; n++) + { + CheckpointerRequest *request; + struct CheckpointerSlotMapping *slotmap; + bool found; + + /* + * We use the request struct directly as a hashtable key. This + * assumes that any padding bytes in the structs are consistently the + * same, which should be okay because we zeroed them in + * CheckpointerShmemInit. Note also that RelFileNode had better + * contain no pad bytes. + */ + request = &CheckpointerShmem->requests[n]; + slotmap = hash_search(htab, request, HASH_ENTER, &found); + if (found) + { + /* Duplicate, so mark the previous occurrence as skippable */ + skip_slot[slotmap->slot] = true; + num_skipped++; + } + /* Remember slot containing latest occurrence of this request value */ + slotmap->slot = n; + } + + /* Done with the hash table. */ + hash_destroy(htab); + + /* If no duplicates, we're out of luck. */ + if (!num_skipped) + { + pfree(skip_slot); + return false; + } + + /* We found some duplicates; remove them. */ + preserve_count = 0; + for (n = 0; n < CheckpointerShmem->num_requests; n++) + { + if (skip_slot[n]) + continue; + CheckpointerShmem->requests[preserve_count++] = CheckpointerShmem->requests[n]; + } + ereport(DEBUG1, + (errmsg_internal("compacted fsync request queue from %d entries to %d entries", + CheckpointerShmem->num_requests, preserve_count))); + CheckpointerShmem->num_requests = preserve_count; + + /* Cleanup. */ + pfree(skip_slot); + return true; +} + +/* + * AbsorbSyncRequests + * Retrieve queued sync requests and pass them to sync mechanism. + * + * This is exported because it must be called during CreateCheckPoint; + * we have to be sure we have accepted all pending requests just before + * we start fsync'ing. Since CreateCheckPoint sometimes runs in + * non-checkpointer processes, do nothing if not checkpointer. + */ +void +AbsorbSyncRequests(void) +{ + CheckpointerRequest *requests = NULL; + CheckpointerRequest *request; + int n; + + if (!AmCheckpointerProcess()) + return; + + LWLockAcquire(CheckpointerCommLock, LW_EXCLUSIVE); + + /* Transfer stats counts into pending pgstats message */ + BgWriterStats.m_buf_written_backend += CheckpointerShmem->num_backend_writes; + BgWriterStats.m_buf_fsync_backend += CheckpointerShmem->num_backend_fsync; + + CheckpointerShmem->num_backend_writes = 0; + CheckpointerShmem->num_backend_fsync = 0; + + /* + * We try to avoid holding the lock for a long time by copying the request + * array, and processing the requests after releasing the lock. + * + * Once we have cleared the requests from shared memory, we have to PANIC + * if we then fail to absorb them (eg, because our hashtable runs out of + * memory). This is because the system cannot run safely if we are unable + * to fsync what we have been told to fsync. Fortunately, the hashtable + * is so small that the problem is quite unlikely to arise in practice. + */ + n = CheckpointerShmem->num_requests; + if (n > 0) + { + requests = (CheckpointerRequest *) palloc(n * sizeof(CheckpointerRequest)); + memcpy(requests, CheckpointerShmem->requests, n * sizeof(CheckpointerRequest)); + } + + START_CRIT_SECTION(); + + CheckpointerShmem->num_requests = 0; + + LWLockRelease(CheckpointerCommLock); + + for (request = requests; n > 0; request++, n--) + RememberSyncRequest(&request->ftag, request->type); + + END_CRIT_SECTION(); + + if (requests) + pfree(requests); +} + +/* + * Update any shared memory configurations based on config parameters + */ +static void +UpdateSharedMemoryConfig(void) +{ + /* update global shmem state for sync rep */ + SyncRepUpdateSyncStandbysDefined(); + + /* + * If full_page_writes has been changed by SIGHUP, we update it in shared + * memory and write an XLOG_FPW_CHANGE record. + */ + UpdateFullPageWrites(); + + elog(DEBUG2, "checkpointer updated shared memory configuration values"); +} + +/* + * FirstCallSinceLastCheckpoint allows a process to take an action once + * per checkpoint cycle by asynchronously checking for checkpoint completion. + */ +bool +FirstCallSinceLastCheckpoint(void) +{ + static int ckpt_done = 0; + int new_done; + bool FirstCall = false; + + SpinLockAcquire(&CheckpointerShmem->ckpt_lck); + new_done = CheckpointerShmem->ckpt_done; + SpinLockRelease(&CheckpointerShmem->ckpt_lck); + + if (new_done != ckpt_done) + FirstCall = true; + + ckpt_done = new_done; + + return FirstCall; +} |