summaryrefslogtreecommitdiffstats
path: root/src/backend/utils/adt/selfuncs.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/utils/adt/selfuncs.c')
-rw-r--r--src/backend/utils/adt/selfuncs.c7947
1 files changed, 7947 insertions, 0 deletions
diff --git a/src/backend/utils/adt/selfuncs.c b/src/backend/utils/adt/selfuncs.c
new file mode 100644
index 0000000..962dec6
--- /dev/null
+++ b/src/backend/utils/adt/selfuncs.c
@@ -0,0 +1,7947 @@
+/*-------------------------------------------------------------------------
+ *
+ * selfuncs.c
+ * Selectivity functions and index cost estimation functions for
+ * standard operators and index access methods.
+ *
+ * Selectivity routines are registered in the pg_operator catalog
+ * in the "oprrest" and "oprjoin" attributes.
+ *
+ * Index cost functions are located via the index AM's API struct,
+ * which is obtained from the handler function registered in pg_am.
+ *
+ * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/utils/adt/selfuncs.c
+ *
+ *-------------------------------------------------------------------------
+ */
+
+/*----------
+ * Operator selectivity estimation functions are called to estimate the
+ * selectivity of WHERE clauses whose top-level operator is their operator.
+ * We divide the problem into two cases:
+ * Restriction clause estimation: the clause involves vars of just
+ * one relation.
+ * Join clause estimation: the clause involves vars of multiple rels.
+ * Join selectivity estimation is far more difficult and usually less accurate
+ * than restriction estimation.
+ *
+ * When dealing with the inner scan of a nestloop join, we consider the
+ * join's joinclauses as restriction clauses for the inner relation, and
+ * treat vars of the outer relation as parameters (a/k/a constants of unknown
+ * values). So, restriction estimators need to be able to accept an argument
+ * telling which relation is to be treated as the variable.
+ *
+ * The call convention for a restriction estimator (oprrest function) is
+ *
+ * Selectivity oprrest (PlannerInfo *root,
+ * Oid operator,
+ * List *args,
+ * int varRelid);
+ *
+ * root: general information about the query (rtable and RelOptInfo lists
+ * are particularly important for the estimator).
+ * operator: OID of the specific operator in question.
+ * args: argument list from the operator clause.
+ * varRelid: if not zero, the relid (rtable index) of the relation to
+ * be treated as the variable relation. May be zero if the args list
+ * is known to contain vars of only one relation.
+ *
+ * This is represented at the SQL level (in pg_proc) as
+ *
+ * float8 oprrest (internal, oid, internal, int4);
+ *
+ * The result is a selectivity, that is, a fraction (0 to 1) of the rows
+ * of the relation that are expected to produce a TRUE result for the
+ * given operator.
+ *
+ * The call convention for a join estimator (oprjoin function) is similar
+ * except that varRelid is not needed, and instead join information is
+ * supplied:
+ *
+ * Selectivity oprjoin (PlannerInfo *root,
+ * Oid operator,
+ * List *args,
+ * JoinType jointype,
+ * SpecialJoinInfo *sjinfo);
+ *
+ * float8 oprjoin (internal, oid, internal, int2, internal);
+ *
+ * (Before Postgres 8.4, join estimators had only the first four of these
+ * parameters. That signature is still allowed, but deprecated.) The
+ * relationship between jointype and sjinfo is explained in the comments for
+ * clause_selectivity() --- the short version is that jointype is usually
+ * best ignored in favor of examining sjinfo.
+ *
+ * Join selectivity for regular inner and outer joins is defined as the
+ * fraction (0 to 1) of the cross product of the relations that is expected
+ * to produce a TRUE result for the given operator. For both semi and anti
+ * joins, however, the selectivity is defined as the fraction of the left-hand
+ * side relation's rows that are expected to have a match (ie, at least one
+ * row with a TRUE result) in the right-hand side.
+ *
+ * For both oprrest and oprjoin functions, the operator's input collation OID
+ * (if any) is passed using the standard fmgr mechanism, so that the estimator
+ * function can fetch it with PG_GET_COLLATION(). Note, however, that all
+ * statistics in pg_statistic are currently built using the relevant column's
+ * collation.
+ *----------
+ */
+
+#include "postgres.h"
+
+#include <ctype.h>
+#include <math.h>
+
+#include "access/brin.h"
+#include "access/brin_page.h"
+#include "access/gin.h"
+#include "access/table.h"
+#include "access/tableam.h"
+#include "access/visibilitymap.h"
+#include "catalog/pg_am.h"
+#include "catalog/pg_collation.h"
+#include "catalog/pg_operator.h"
+#include "catalog/pg_statistic.h"
+#include "catalog/pg_statistic_ext.h"
+#include "executor/nodeAgg.h"
+#include "miscadmin.h"
+#include "nodes/makefuncs.h"
+#include "nodes/nodeFuncs.h"
+#include "optimizer/clauses.h"
+#include "optimizer/cost.h"
+#include "optimizer/optimizer.h"
+#include "optimizer/pathnode.h"
+#include "optimizer/paths.h"
+#include "optimizer/plancat.h"
+#include "parser/parse_clause.h"
+#include "parser/parsetree.h"
+#include "statistics/statistics.h"
+#include "storage/bufmgr.h"
+#include "utils/acl.h"
+#include "utils/builtins.h"
+#include "utils/date.h"
+#include "utils/datum.h"
+#include "utils/fmgroids.h"
+#include "utils/index_selfuncs.h"
+#include "utils/lsyscache.h"
+#include "utils/memutils.h"
+#include "utils/pg_locale.h"
+#include "utils/rel.h"
+#include "utils/selfuncs.h"
+#include "utils/snapmgr.h"
+#include "utils/spccache.h"
+#include "utils/syscache.h"
+#include "utils/timestamp.h"
+#include "utils/typcache.h"
+
+
+/* Hooks for plugins to get control when we ask for stats */
+get_relation_stats_hook_type get_relation_stats_hook = NULL;
+get_index_stats_hook_type get_index_stats_hook = NULL;
+
+static double eqsel_internal(PG_FUNCTION_ARGS, bool negate);
+static double eqjoinsel_inner(Oid opfuncoid, Oid collation,
+ VariableStatData *vardata1, VariableStatData *vardata2,
+ double nd1, double nd2,
+ bool isdefault1, bool isdefault2,
+ AttStatsSlot *sslot1, AttStatsSlot *sslot2,
+ Form_pg_statistic stats1, Form_pg_statistic stats2,
+ bool have_mcvs1, bool have_mcvs2);
+static double eqjoinsel_semi(Oid opfuncoid, Oid collation,
+ VariableStatData *vardata1, VariableStatData *vardata2,
+ double nd1, double nd2,
+ bool isdefault1, bool isdefault2,
+ AttStatsSlot *sslot1, AttStatsSlot *sslot2,
+ Form_pg_statistic stats1, Form_pg_statistic stats2,
+ bool have_mcvs1, bool have_mcvs2,
+ RelOptInfo *inner_rel);
+static bool estimate_multivariate_ndistinct(PlannerInfo *root,
+ RelOptInfo *rel, List **varinfos, double *ndistinct);
+static bool convert_to_scalar(Datum value, Oid valuetypid, Oid collid,
+ double *scaledvalue,
+ Datum lobound, Datum hibound, Oid boundstypid,
+ double *scaledlobound, double *scaledhibound);
+static double convert_numeric_to_scalar(Datum value, Oid typid, bool *failure);
+static void convert_string_to_scalar(char *value,
+ double *scaledvalue,
+ char *lobound,
+ double *scaledlobound,
+ char *hibound,
+ double *scaledhibound);
+static void convert_bytea_to_scalar(Datum value,
+ double *scaledvalue,
+ Datum lobound,
+ double *scaledlobound,
+ Datum hibound,
+ double *scaledhibound);
+static double convert_one_string_to_scalar(char *value,
+ int rangelo, int rangehi);
+static double convert_one_bytea_to_scalar(unsigned char *value, int valuelen,
+ int rangelo, int rangehi);
+static char *convert_string_datum(Datum value, Oid typid, Oid collid,
+ bool *failure);
+static double convert_timevalue_to_scalar(Datum value, Oid typid,
+ bool *failure);
+static void examine_simple_variable(PlannerInfo *root, Var *var,
+ VariableStatData *vardata);
+static bool get_variable_range(PlannerInfo *root, VariableStatData *vardata,
+ Oid sortop, Oid collation,
+ Datum *min, Datum *max);
+static void get_stats_slot_range(AttStatsSlot *sslot,
+ Oid opfuncoid, FmgrInfo *opproc,
+ Oid collation, int16 typLen, bool typByVal,
+ Datum *min, Datum *max, bool *p_have_data);
+static bool get_actual_variable_range(PlannerInfo *root,
+ VariableStatData *vardata,
+ Oid sortop, Oid collation,
+ Datum *min, Datum *max);
+static bool get_actual_variable_endpoint(Relation heapRel,
+ Relation indexRel,
+ ScanDirection indexscandir,
+ ScanKey scankeys,
+ int16 typLen,
+ bool typByVal,
+ TupleTableSlot *tableslot,
+ MemoryContext outercontext,
+ Datum *endpointDatum);
+static RelOptInfo *find_join_input_rel(PlannerInfo *root, Relids relids);
+
+
+/*
+ * eqsel - Selectivity of "=" for any data types.
+ *
+ * Note: this routine is also used to estimate selectivity for some
+ * operators that are not "=" but have comparable selectivity behavior,
+ * such as "~=" (geometric approximate-match). Even for "=", we must
+ * keep in mind that the left and right datatypes may differ.
+ */
+Datum
+eqsel(PG_FUNCTION_ARGS)
+{
+ PG_RETURN_FLOAT8((float8) eqsel_internal(fcinfo, false));
+}
+
+/*
+ * Common code for eqsel() and neqsel()
+ */
+static double
+eqsel_internal(PG_FUNCTION_ARGS, bool negate)
+{
+ PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
+ Oid operator = PG_GETARG_OID(1);
+ List *args = (List *) PG_GETARG_POINTER(2);
+ int varRelid = PG_GETARG_INT32(3);
+ Oid collation = PG_GET_COLLATION();
+ VariableStatData vardata;
+ Node *other;
+ bool varonleft;
+ double selec;
+
+ /*
+ * When asked about <>, we do the estimation using the corresponding =
+ * operator, then convert to <> via "1.0 - eq_selectivity - nullfrac".
+ */
+ if (negate)
+ {
+ operator = get_negator(operator);
+ if (!OidIsValid(operator))
+ {
+ /* Use default selectivity (should we raise an error instead?) */
+ return 1.0 - DEFAULT_EQ_SEL;
+ }
+ }
+
+ /*
+ * If expression is not variable = something or something = variable, then
+ * punt and return a default estimate.
+ */
+ if (!get_restriction_variable(root, args, varRelid,
+ &vardata, &other, &varonleft))
+ return negate ? (1.0 - DEFAULT_EQ_SEL) : DEFAULT_EQ_SEL;
+
+ /*
+ * We can do a lot better if the something is a constant. (Note: the
+ * Const might result from estimation rather than being a simple constant
+ * in the query.)
+ */
+ if (IsA(other, Const))
+ selec = var_eq_const(&vardata, operator, collation,
+ ((Const *) other)->constvalue,
+ ((Const *) other)->constisnull,
+ varonleft, negate);
+ else
+ selec = var_eq_non_const(&vardata, operator, collation, other,
+ varonleft, negate);
+
+ ReleaseVariableStats(vardata);
+
+ return selec;
+}
+
+/*
+ * var_eq_const --- eqsel for var = const case
+ *
+ * This is exported so that some other estimation functions can use it.
+ */
+double
+var_eq_const(VariableStatData *vardata, Oid operator, Oid collation,
+ Datum constval, bool constisnull,
+ bool varonleft, bool negate)
+{
+ double selec;
+ double nullfrac = 0.0;
+ bool isdefault;
+ Oid opfuncoid;
+
+ /*
+ * If the constant is NULL, assume operator is strict and return zero, ie,
+ * operator will never return TRUE. (It's zero even for a negator op.)
+ */
+ if (constisnull)
+ return 0.0;
+
+ /*
+ * Grab the nullfrac for use below. Note we allow use of nullfrac
+ * regardless of security check.
+ */
+ if (HeapTupleIsValid(vardata->statsTuple))
+ {
+ Form_pg_statistic stats;
+
+ stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
+ nullfrac = stats->stanullfrac;
+ }
+
+ /*
+ * If we matched the var to a unique index or DISTINCT clause, assume
+ * there is exactly one match regardless of anything else. (This is
+ * slightly bogus, since the index or clause's equality operator might be
+ * different from ours, but it's much more likely to be right than
+ * ignoring the information.)
+ */
+ if (vardata->isunique && vardata->rel && vardata->rel->tuples >= 1.0)
+ {
+ selec = 1.0 / vardata->rel->tuples;
+ }
+ else if (HeapTupleIsValid(vardata->statsTuple) &&
+ statistic_proc_security_check(vardata,
+ (opfuncoid = get_opcode(operator))))
+ {
+ AttStatsSlot sslot;
+ bool match = false;
+ int i;
+
+ /*
+ * Is the constant "=" to any of the column's most common values?
+ * (Although the given operator may not really be "=", we will assume
+ * that seeing whether it returns TRUE is an appropriate test. If you
+ * don't like this, maybe you shouldn't be using eqsel for your
+ * operator...)
+ */
+ if (get_attstatsslot(&sslot, vardata->statsTuple,
+ STATISTIC_KIND_MCV, InvalidOid,
+ ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
+ {
+ LOCAL_FCINFO(fcinfo, 2);
+ FmgrInfo eqproc;
+
+ fmgr_info(opfuncoid, &eqproc);
+
+ /*
+ * Save a few cycles by setting up the fcinfo struct just once.
+ * Using FunctionCallInvoke directly also avoids failure if the
+ * eqproc returns NULL, though really equality functions should
+ * never do that.
+ */
+ InitFunctionCallInfoData(*fcinfo, &eqproc, 2, collation,
+ NULL, NULL);
+ fcinfo->args[0].isnull = false;
+ fcinfo->args[1].isnull = false;
+ /* be careful to apply operator right way 'round */
+ if (varonleft)
+ fcinfo->args[1].value = constval;
+ else
+ fcinfo->args[0].value = constval;
+
+ for (i = 0; i < sslot.nvalues; i++)
+ {
+ Datum fresult;
+
+ if (varonleft)
+ fcinfo->args[0].value = sslot.values[i];
+ else
+ fcinfo->args[1].value = sslot.values[i];
+ fcinfo->isnull = false;
+ fresult = FunctionCallInvoke(fcinfo);
+ if (!fcinfo->isnull && DatumGetBool(fresult))
+ {
+ match = true;
+ break;
+ }
+ }
+ }
+ else
+ {
+ /* no most-common-value info available */
+ i = 0; /* keep compiler quiet */
+ }
+
+ if (match)
+ {
+ /*
+ * Constant is "=" to this common value. We know selectivity
+ * exactly (or as exactly as ANALYZE could calculate it, anyway).
+ */
+ selec = sslot.numbers[i];
+ }
+ else
+ {
+ /*
+ * Comparison is against a constant that is neither NULL nor any
+ * of the common values. Its selectivity cannot be more than
+ * this:
+ */
+ double sumcommon = 0.0;
+ double otherdistinct;
+
+ for (i = 0; i < sslot.nnumbers; i++)
+ sumcommon += sslot.numbers[i];
+ selec = 1.0 - sumcommon - nullfrac;
+ CLAMP_PROBABILITY(selec);
+
+ /*
+ * and in fact it's probably a good deal less. We approximate that
+ * all the not-common values share this remaining fraction
+ * equally, so we divide by the number of other distinct values.
+ */
+ otherdistinct = get_variable_numdistinct(vardata, &isdefault) -
+ sslot.nnumbers;
+ if (otherdistinct > 1)
+ selec /= otherdistinct;
+
+ /*
+ * Another cross-check: selectivity shouldn't be estimated as more
+ * than the least common "most common value".
+ */
+ if (sslot.nnumbers > 0 && selec > sslot.numbers[sslot.nnumbers - 1])
+ selec = sslot.numbers[sslot.nnumbers - 1];
+ }
+
+ free_attstatsslot(&sslot);
+ }
+ else
+ {
+ /*
+ * No ANALYZE stats available, so make a guess using estimated number
+ * of distinct values and assuming they are equally common. (The guess
+ * is unlikely to be very good, but we do know a few special cases.)
+ */
+ selec = 1.0 / get_variable_numdistinct(vardata, &isdefault);
+ }
+
+ /* now adjust if we wanted <> rather than = */
+ if (negate)
+ selec = 1.0 - selec - nullfrac;
+
+ /* result should be in range, but make sure... */
+ CLAMP_PROBABILITY(selec);
+
+ return selec;
+}
+
+/*
+ * var_eq_non_const --- eqsel for var = something-other-than-const case
+ *
+ * This is exported so that some other estimation functions can use it.
+ */
+double
+var_eq_non_const(VariableStatData *vardata, Oid operator, Oid collation,
+ Node *other,
+ bool varonleft, bool negate)
+{
+ double selec;
+ double nullfrac = 0.0;
+ bool isdefault;
+
+ /*
+ * Grab the nullfrac for use below.
+ */
+ if (HeapTupleIsValid(vardata->statsTuple))
+ {
+ Form_pg_statistic stats;
+
+ stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
+ nullfrac = stats->stanullfrac;
+ }
+
+ /*
+ * If we matched the var to a unique index or DISTINCT clause, assume
+ * there is exactly one match regardless of anything else. (This is
+ * slightly bogus, since the index or clause's equality operator might be
+ * different from ours, but it's much more likely to be right than
+ * ignoring the information.)
+ */
+ if (vardata->isunique && vardata->rel && vardata->rel->tuples >= 1.0)
+ {
+ selec = 1.0 / vardata->rel->tuples;
+ }
+ else if (HeapTupleIsValid(vardata->statsTuple))
+ {
+ double ndistinct;
+ AttStatsSlot sslot;
+
+ /*
+ * Search is for a value that we do not know a priori, but we will
+ * assume it is not NULL. Estimate the selectivity as non-null
+ * fraction divided by number of distinct values, so that we get a
+ * result averaged over all possible values whether common or
+ * uncommon. (Essentially, we are assuming that the not-yet-known
+ * comparison value is equally likely to be any of the possible
+ * values, regardless of their frequency in the table. Is that a good
+ * idea?)
+ */
+ selec = 1.0 - nullfrac;
+ ndistinct = get_variable_numdistinct(vardata, &isdefault);
+ if (ndistinct > 1)
+ selec /= ndistinct;
+
+ /*
+ * Cross-check: selectivity should never be estimated as more than the
+ * most common value's.
+ */
+ if (get_attstatsslot(&sslot, vardata->statsTuple,
+ STATISTIC_KIND_MCV, InvalidOid,
+ ATTSTATSSLOT_NUMBERS))
+ {
+ if (sslot.nnumbers > 0 && selec > sslot.numbers[0])
+ selec = sslot.numbers[0];
+ free_attstatsslot(&sslot);
+ }
+ }
+ else
+ {
+ /*
+ * No ANALYZE stats available, so make a guess using estimated number
+ * of distinct values and assuming they are equally common. (The guess
+ * is unlikely to be very good, but we do know a few special cases.)
+ */
+ selec = 1.0 / get_variable_numdistinct(vardata, &isdefault);
+ }
+
+ /* now adjust if we wanted <> rather than = */
+ if (negate)
+ selec = 1.0 - selec - nullfrac;
+
+ /* result should be in range, but make sure... */
+ CLAMP_PROBABILITY(selec);
+
+ return selec;
+}
+
+/*
+ * neqsel - Selectivity of "!=" for any data types.
+ *
+ * This routine is also used for some operators that are not "!="
+ * but have comparable selectivity behavior. See above comments
+ * for eqsel().
+ */
+Datum
+neqsel(PG_FUNCTION_ARGS)
+{
+ PG_RETURN_FLOAT8((float8) eqsel_internal(fcinfo, true));
+}
+
+/*
+ * scalarineqsel - Selectivity of "<", "<=", ">", ">=" for scalars.
+ *
+ * This is the guts of scalarltsel/scalarlesel/scalargtsel/scalargesel.
+ * The isgt and iseq flags distinguish which of the four cases apply.
+ *
+ * The caller has commuted the clause, if necessary, so that we can treat
+ * the variable as being on the left. The caller must also make sure that
+ * the other side of the clause is a non-null Const, and dissect that into
+ * a value and datatype. (This definition simplifies some callers that
+ * want to estimate against a computed value instead of a Const node.)
+ *
+ * This routine works for any datatype (or pair of datatypes) known to
+ * convert_to_scalar(). If it is applied to some other datatype,
+ * it will return an approximate estimate based on assuming that the constant
+ * value falls in the middle of the bin identified by binary search.
+ */
+static double
+scalarineqsel(PlannerInfo *root, Oid operator, bool isgt, bool iseq,
+ Oid collation,
+ VariableStatData *vardata, Datum constval, Oid consttype)
+{
+ Form_pg_statistic stats;
+ FmgrInfo opproc;
+ double mcv_selec,
+ hist_selec,
+ sumcommon;
+ double selec;
+
+ if (!HeapTupleIsValid(vardata->statsTuple))
+ {
+ /*
+ * No stats are available. Typically this means we have to fall back
+ * on the default estimate; but if the variable is CTID then we can
+ * make an estimate based on comparing the constant to the table size.
+ */
+ if (vardata->var && IsA(vardata->var, Var) &&
+ ((Var *) vardata->var)->varattno == SelfItemPointerAttributeNumber)
+ {
+ ItemPointer itemptr;
+ double block;
+ double density;
+
+ /*
+ * If the relation's empty, we're going to include all of it.
+ * (This is mostly to avoid divide-by-zero below.)
+ */
+ if (vardata->rel->pages == 0)
+ return 1.0;
+
+ itemptr = (ItemPointer) DatumGetPointer(constval);
+ block = ItemPointerGetBlockNumberNoCheck(itemptr);
+
+ /*
+ * Determine the average number of tuples per page (density).
+ *
+ * Since the last page will, on average, be only half full, we can
+ * estimate it to have half as many tuples as earlier pages. So
+ * give it half the weight of a regular page.
+ */
+ density = vardata->rel->tuples / (vardata->rel->pages - 0.5);
+
+ /* If target is the last page, use half the density. */
+ if (block >= vardata->rel->pages - 1)
+ density *= 0.5;
+
+ /*
+ * Using the average tuples per page, calculate how far into the
+ * page the itemptr is likely to be and adjust block accordingly,
+ * by adding that fraction of a whole block (but never more than a
+ * whole block, no matter how high the itemptr's offset is). Here
+ * we are ignoring the possibility of dead-tuple line pointers,
+ * which is fairly bogus, but we lack the info to do better.
+ */
+ if (density > 0.0)
+ {
+ OffsetNumber offset = ItemPointerGetOffsetNumberNoCheck(itemptr);
+
+ block += Min(offset / density, 1.0);
+ }
+
+ /*
+ * Convert relative block number to selectivity. Again, the last
+ * page has only half weight.
+ */
+ selec = block / (vardata->rel->pages - 0.5);
+
+ /*
+ * The calculation so far gave us a selectivity for the "<=" case.
+ * We'll have one fewer tuple for "<" and one additional tuple for
+ * ">=", the latter of which we'll reverse the selectivity for
+ * below, so we can simply subtract one tuple for both cases. The
+ * cases that need this adjustment can be identified by iseq being
+ * equal to isgt.
+ */
+ if (iseq == isgt && vardata->rel->tuples >= 1.0)
+ selec -= (1.0 / vardata->rel->tuples);
+
+ /* Finally, reverse the selectivity for the ">", ">=" cases. */
+ if (isgt)
+ selec = 1.0 - selec;
+
+ CLAMP_PROBABILITY(selec);
+ return selec;
+ }
+
+ /* no stats available, so default result */
+ return DEFAULT_INEQ_SEL;
+ }
+ stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
+
+ fmgr_info(get_opcode(operator), &opproc);
+
+ /*
+ * If we have most-common-values info, add up the fractions of the MCV
+ * entries that satisfy MCV OP CONST. These fractions contribute directly
+ * to the result selectivity. Also add up the total fraction represented
+ * by MCV entries.
+ */
+ mcv_selec = mcv_selectivity(vardata, &opproc, collation, constval, true,
+ &sumcommon);
+
+ /*
+ * If there is a histogram, determine which bin the constant falls in, and
+ * compute the resulting contribution to selectivity.
+ */
+ hist_selec = ineq_histogram_selectivity(root, vardata,
+ operator, &opproc, isgt, iseq,
+ collation,
+ constval, consttype);
+
+ /*
+ * Now merge the results from the MCV and histogram calculations,
+ * realizing that the histogram covers only the non-null values that are
+ * not listed in MCV.
+ */
+ selec = 1.0 - stats->stanullfrac - sumcommon;
+
+ if (hist_selec >= 0.0)
+ selec *= hist_selec;
+ else
+ {
+ /*
+ * If no histogram but there are values not accounted for by MCV,
+ * arbitrarily assume half of them will match.
+ */
+ selec *= 0.5;
+ }
+
+ selec += mcv_selec;
+
+ /* result should be in range, but make sure... */
+ CLAMP_PROBABILITY(selec);
+
+ return selec;
+}
+
+/*
+ * mcv_selectivity - Examine the MCV list for selectivity estimates
+ *
+ * Determine the fraction of the variable's MCV population that satisfies
+ * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft. Also
+ * compute the fraction of the total column population represented by the MCV
+ * list. This code will work for any boolean-returning predicate operator.
+ *
+ * The function result is the MCV selectivity, and the fraction of the
+ * total population is returned into *sumcommonp. Zeroes are returned
+ * if there is no MCV list.
+ */
+double
+mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc, Oid collation,
+ Datum constval, bool varonleft,
+ double *sumcommonp)
+{
+ double mcv_selec,
+ sumcommon;
+ AttStatsSlot sslot;
+ int i;
+
+ mcv_selec = 0.0;
+ sumcommon = 0.0;
+
+ if (HeapTupleIsValid(vardata->statsTuple) &&
+ statistic_proc_security_check(vardata, opproc->fn_oid) &&
+ get_attstatsslot(&sslot, vardata->statsTuple,
+ STATISTIC_KIND_MCV, InvalidOid,
+ ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
+ {
+ LOCAL_FCINFO(fcinfo, 2);
+
+ /*
+ * We invoke the opproc "by hand" so that we won't fail on NULL
+ * results. Such cases won't arise for normal comparison functions,
+ * but generic_restriction_selectivity could perhaps be used with
+ * operators that can return NULL. A small side benefit is to not
+ * need to re-initialize the fcinfo struct from scratch each time.
+ */
+ InitFunctionCallInfoData(*fcinfo, opproc, 2, collation,
+ NULL, NULL);
+ fcinfo->args[0].isnull = false;
+ fcinfo->args[1].isnull = false;
+ /* be careful to apply operator right way 'round */
+ if (varonleft)
+ fcinfo->args[1].value = constval;
+ else
+ fcinfo->args[0].value = constval;
+
+ for (i = 0; i < sslot.nvalues; i++)
+ {
+ Datum fresult;
+
+ if (varonleft)
+ fcinfo->args[0].value = sslot.values[i];
+ else
+ fcinfo->args[1].value = sslot.values[i];
+ fcinfo->isnull = false;
+ fresult = FunctionCallInvoke(fcinfo);
+ if (!fcinfo->isnull && DatumGetBool(fresult))
+ mcv_selec += sslot.numbers[i];
+ sumcommon += sslot.numbers[i];
+ }
+ free_attstatsslot(&sslot);
+ }
+
+ *sumcommonp = sumcommon;
+ return mcv_selec;
+}
+
+/*
+ * histogram_selectivity - Examine the histogram for selectivity estimates
+ *
+ * Determine the fraction of the variable's histogram entries that satisfy
+ * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft.
+ *
+ * This code will work for any boolean-returning predicate operator, whether
+ * or not it has anything to do with the histogram sort operator. We are
+ * essentially using the histogram just as a representative sample. However,
+ * small histograms are unlikely to be all that representative, so the caller
+ * should be prepared to fall back on some other estimation approach when the
+ * histogram is missing or very small. It may also be prudent to combine this
+ * approach with another one when the histogram is small.
+ *
+ * If the actual histogram size is not at least min_hist_size, we won't bother
+ * to do the calculation at all. Also, if the n_skip parameter is > 0, we
+ * ignore the first and last n_skip histogram elements, on the grounds that
+ * they are outliers and hence not very representative. Typical values for
+ * these parameters are 10 and 1.
+ *
+ * The function result is the selectivity, or -1 if there is no histogram
+ * or it's smaller than min_hist_size.
+ *
+ * The output parameter *hist_size receives the actual histogram size,
+ * or zero if no histogram. Callers may use this number to decide how
+ * much faith to put in the function result.
+ *
+ * Note that the result disregards both the most-common-values (if any) and
+ * null entries. The caller is expected to combine this result with
+ * statistics for those portions of the column population. It may also be
+ * prudent to clamp the result range, ie, disbelieve exact 0 or 1 outputs.
+ */
+double
+histogram_selectivity(VariableStatData *vardata,
+ FmgrInfo *opproc, Oid collation,
+ Datum constval, bool varonleft,
+ int min_hist_size, int n_skip,
+ int *hist_size)
+{
+ double result;
+ AttStatsSlot sslot;
+
+ /* check sanity of parameters */
+ Assert(n_skip >= 0);
+ Assert(min_hist_size > 2 * n_skip);
+
+ if (HeapTupleIsValid(vardata->statsTuple) &&
+ statistic_proc_security_check(vardata, opproc->fn_oid) &&
+ get_attstatsslot(&sslot, vardata->statsTuple,
+ STATISTIC_KIND_HISTOGRAM, InvalidOid,
+ ATTSTATSSLOT_VALUES))
+ {
+ *hist_size = sslot.nvalues;
+ if (sslot.nvalues >= min_hist_size)
+ {
+ LOCAL_FCINFO(fcinfo, 2);
+ int nmatch = 0;
+ int i;
+
+ /*
+ * We invoke the opproc "by hand" so that we won't fail on NULL
+ * results. Such cases won't arise for normal comparison
+ * functions, but generic_restriction_selectivity could perhaps be
+ * used with operators that can return NULL. A small side benefit
+ * is to not need to re-initialize the fcinfo struct from scratch
+ * each time.
+ */
+ InitFunctionCallInfoData(*fcinfo, opproc, 2, collation,
+ NULL, NULL);
+ fcinfo->args[0].isnull = false;
+ fcinfo->args[1].isnull = false;
+ /* be careful to apply operator right way 'round */
+ if (varonleft)
+ fcinfo->args[1].value = constval;
+ else
+ fcinfo->args[0].value = constval;
+
+ for (i = n_skip; i < sslot.nvalues - n_skip; i++)
+ {
+ Datum fresult;
+
+ if (varonleft)
+ fcinfo->args[0].value = sslot.values[i];
+ else
+ fcinfo->args[1].value = sslot.values[i];
+ fcinfo->isnull = false;
+ fresult = FunctionCallInvoke(fcinfo);
+ if (!fcinfo->isnull && DatumGetBool(fresult))
+ nmatch++;
+ }
+ result = ((double) nmatch) / ((double) (sslot.nvalues - 2 * n_skip));
+ }
+ else
+ result = -1;
+ free_attstatsslot(&sslot);
+ }
+ else
+ {
+ *hist_size = 0;
+ result = -1;
+ }
+
+ return result;
+}
+
+/*
+ * generic_restriction_selectivity - Selectivity for almost anything
+ *
+ * This function estimates selectivity for operators that we don't have any
+ * special knowledge about, but are on data types that we collect standard
+ * MCV and/or histogram statistics for. (Additional assumptions are that
+ * the operator is strict and immutable, or at least stable.)
+ *
+ * If we have "VAR OP CONST" or "CONST OP VAR", selectivity is estimated by
+ * applying the operator to each element of the column's MCV and/or histogram
+ * stats, and merging the results using the assumption that the histogram is
+ * a reasonable random sample of the column's non-MCV population. Note that
+ * if the operator's semantics are related to the histogram ordering, this
+ * might not be such a great assumption; other functions such as
+ * scalarineqsel() are probably a better match in such cases.
+ *
+ * Otherwise, fall back to the default selectivity provided by the caller.
+ */
+double
+generic_restriction_selectivity(PlannerInfo *root, Oid oproid, Oid collation,
+ List *args, int varRelid,
+ double default_selectivity)
+{
+ double selec;
+ VariableStatData vardata;
+ Node *other;
+ bool varonleft;
+
+ /*
+ * If expression is not variable OP something or something OP variable,
+ * then punt and return the default estimate.
+ */
+ if (!get_restriction_variable(root, args, varRelid,
+ &vardata, &other, &varonleft))
+ return default_selectivity;
+
+ /*
+ * If the something is a NULL constant, assume operator is strict and
+ * return zero, ie, operator will never return TRUE.
+ */
+ if (IsA(other, Const) &&
+ ((Const *) other)->constisnull)
+ {
+ ReleaseVariableStats(vardata);
+ return 0.0;
+ }
+
+ if (IsA(other, Const))
+ {
+ /* Variable is being compared to a known non-null constant */
+ Datum constval = ((Const *) other)->constvalue;
+ FmgrInfo opproc;
+ double mcvsum;
+ double mcvsel;
+ double nullfrac;
+ int hist_size;
+
+ fmgr_info(get_opcode(oproid), &opproc);
+
+ /*
+ * Calculate the selectivity for the column's most common values.
+ */
+ mcvsel = mcv_selectivity(&vardata, &opproc, collation,
+ constval, varonleft,
+ &mcvsum);
+
+ /*
+ * If the histogram is large enough, see what fraction of it matches
+ * the query, and assume that's representative of the non-MCV
+ * population. Otherwise use the default selectivity for the non-MCV
+ * population.
+ */
+ selec = histogram_selectivity(&vardata, &opproc, collation,
+ constval, varonleft,
+ 10, 1, &hist_size);
+ if (selec < 0)
+ {
+ /* Nope, fall back on default */
+ selec = default_selectivity;
+ }
+ else if (hist_size < 100)
+ {
+ /*
+ * For histogram sizes from 10 to 100, we combine the histogram
+ * and default selectivities, putting increasingly more trust in
+ * the histogram for larger sizes.
+ */
+ double hist_weight = hist_size / 100.0;
+
+ selec = selec * hist_weight +
+ default_selectivity * (1.0 - hist_weight);
+ }
+
+ /* In any case, don't believe extremely small or large estimates. */
+ if (selec < 0.0001)
+ selec = 0.0001;
+ else if (selec > 0.9999)
+ selec = 0.9999;
+
+ /* Don't forget to account for nulls. */
+ if (HeapTupleIsValid(vardata.statsTuple))
+ nullfrac = ((Form_pg_statistic) GETSTRUCT(vardata.statsTuple))->stanullfrac;
+ else
+ nullfrac = 0.0;
+
+ /*
+ * Now merge the results from the MCV and histogram calculations,
+ * realizing that the histogram covers only the non-null values that
+ * are not listed in MCV.
+ */
+ selec *= 1.0 - nullfrac - mcvsum;
+ selec += mcvsel;
+ }
+ else
+ {
+ /* Comparison value is not constant, so we can't do anything */
+ selec = default_selectivity;
+ }
+
+ ReleaseVariableStats(vardata);
+
+ /* result should be in range, but make sure... */
+ CLAMP_PROBABILITY(selec);
+
+ return selec;
+}
+
+/*
+ * ineq_histogram_selectivity - Examine the histogram for scalarineqsel
+ *
+ * Determine the fraction of the variable's histogram population that
+ * satisfies the inequality condition, ie, VAR < (or <=, >, >=) CONST.
+ * The isgt and iseq flags distinguish which of the four cases apply.
+ *
+ * While opproc could be looked up from the operator OID, common callers
+ * also need to call it separately, so we make the caller pass both.
+ *
+ * Returns -1 if there is no histogram (valid results will always be >= 0).
+ *
+ * Note that the result disregards both the most-common-values (if any) and
+ * null entries. The caller is expected to combine this result with
+ * statistics for those portions of the column population.
+ *
+ * This is exported so that some other estimation functions can use it.
+ */
+double
+ineq_histogram_selectivity(PlannerInfo *root,
+ VariableStatData *vardata,
+ Oid opoid, FmgrInfo *opproc, bool isgt, bool iseq,
+ Oid collation,
+ Datum constval, Oid consttype)
+{
+ double hist_selec;
+ AttStatsSlot sslot;
+
+ hist_selec = -1.0;
+
+ /*
+ * Someday, ANALYZE might store more than one histogram per rel/att,
+ * corresponding to more than one possible sort ordering defined for the
+ * column type. Right now, we know there is only one, so just grab it and
+ * see if it matches the query.
+ *
+ * Note that we can't use opoid as search argument; the staop appearing in
+ * pg_statistic will be for the relevant '<' operator, but what we have
+ * might be some other inequality operator such as '>='. (Even if opoid
+ * is a '<' operator, it could be cross-type.) Hence we must use
+ * comparison_ops_are_compatible() to see if the operators match.
+ */
+ if (HeapTupleIsValid(vardata->statsTuple) &&
+ statistic_proc_security_check(vardata, opproc->fn_oid) &&
+ get_attstatsslot(&sslot, vardata->statsTuple,
+ STATISTIC_KIND_HISTOGRAM, InvalidOid,
+ ATTSTATSSLOT_VALUES))
+ {
+ if (sslot.nvalues > 1 &&
+ sslot.stacoll == collation &&
+ comparison_ops_are_compatible(sslot.staop, opoid))
+ {
+ /*
+ * Use binary search to find the desired location, namely the
+ * right end of the histogram bin containing the comparison value,
+ * which is the leftmost entry for which the comparison operator
+ * succeeds (if isgt) or fails (if !isgt).
+ *
+ * In this loop, we pay no attention to whether the operator iseq
+ * or not; that detail will be mopped up below. (We cannot tell,
+ * anyway, whether the operator thinks the values are equal.)
+ *
+ * If the binary search accesses the first or last histogram
+ * entry, we try to replace that endpoint with the true column min
+ * or max as found by get_actual_variable_range(). This
+ * ameliorates misestimates when the min or max is moving as a
+ * result of changes since the last ANALYZE. Note that this could
+ * result in effectively including MCVs into the histogram that
+ * weren't there before, but we don't try to correct for that.
+ */
+ double histfrac;
+ int lobound = 0; /* first possible slot to search */
+ int hibound = sslot.nvalues; /* last+1 slot to search */
+ bool have_end = false;
+
+ /*
+ * If there are only two histogram entries, we'll want up-to-date
+ * values for both. (If there are more than two, we need at most
+ * one of them to be updated, so we deal with that within the
+ * loop.)
+ */
+ if (sslot.nvalues == 2)
+ have_end = get_actual_variable_range(root,
+ vardata,
+ sslot.staop,
+ collation,
+ &sslot.values[0],
+ &sslot.values[1]);
+
+ while (lobound < hibound)
+ {
+ int probe = (lobound + hibound) / 2;
+ bool ltcmp;
+
+ /*
+ * If we find ourselves about to compare to the first or last
+ * histogram entry, first try to replace it with the actual
+ * current min or max (unless we already did so above).
+ */
+ if (probe == 0 && sslot.nvalues > 2)
+ have_end = get_actual_variable_range(root,
+ vardata,
+ sslot.staop,
+ collation,
+ &sslot.values[0],
+ NULL);
+ else if (probe == sslot.nvalues - 1 && sslot.nvalues > 2)
+ have_end = get_actual_variable_range(root,
+ vardata,
+ sslot.staop,
+ collation,
+ NULL,
+ &sslot.values[probe]);
+
+ ltcmp = DatumGetBool(FunctionCall2Coll(opproc,
+ collation,
+ sslot.values[probe],
+ constval));
+ if (isgt)
+ ltcmp = !ltcmp;
+ if (ltcmp)
+ lobound = probe + 1;
+ else
+ hibound = probe;
+ }
+
+ if (lobound <= 0)
+ {
+ /*
+ * Constant is below lower histogram boundary. More
+ * precisely, we have found that no entry in the histogram
+ * satisfies the inequality clause (if !isgt) or they all do
+ * (if isgt). We estimate that that's true of the entire
+ * table, so set histfrac to 0.0 (which we'll flip to 1.0
+ * below, if isgt).
+ */
+ histfrac = 0.0;
+ }
+ else if (lobound >= sslot.nvalues)
+ {
+ /*
+ * Inverse case: constant is above upper histogram boundary.
+ */
+ histfrac = 1.0;
+ }
+ else
+ {
+ /* We have values[i-1] <= constant <= values[i]. */
+ int i = lobound;
+ double eq_selec = 0;
+ double val,
+ high,
+ low;
+ double binfrac;
+
+ /*
+ * In the cases where we'll need it below, obtain an estimate
+ * of the selectivity of "x = constval". We use a calculation
+ * similar to what var_eq_const() does for a non-MCV constant,
+ * ie, estimate that all distinct non-MCV values occur equally
+ * often. But multiplication by "1.0 - sumcommon - nullfrac"
+ * will be done by our caller, so we shouldn't do that here.
+ * Therefore we can't try to clamp the estimate by reference
+ * to the least common MCV; the result would be too small.
+ *
+ * Note: since this is effectively assuming that constval
+ * isn't an MCV, it's logically dubious if constval in fact is
+ * one. But we have to apply *some* correction for equality,
+ * and anyway we cannot tell if constval is an MCV, since we
+ * don't have a suitable equality operator at hand.
+ */
+ if (i == 1 || isgt == iseq)
+ {
+ double otherdistinct;
+ bool isdefault;
+ AttStatsSlot mcvslot;
+
+ /* Get estimated number of distinct values */
+ otherdistinct = get_variable_numdistinct(vardata,
+ &isdefault);
+
+ /* Subtract off the number of known MCVs */
+ if (get_attstatsslot(&mcvslot, vardata->statsTuple,
+ STATISTIC_KIND_MCV, InvalidOid,
+ ATTSTATSSLOT_NUMBERS))
+ {
+ otherdistinct -= mcvslot.nnumbers;
+ free_attstatsslot(&mcvslot);
+ }
+
+ /* If result doesn't seem sane, leave eq_selec at 0 */
+ if (otherdistinct > 1)
+ eq_selec = 1.0 / otherdistinct;
+ }
+
+ /*
+ * Convert the constant and the two nearest bin boundary
+ * values to a uniform comparison scale, and do a linear
+ * interpolation within this bin.
+ */
+ if (convert_to_scalar(constval, consttype, collation,
+ &val,
+ sslot.values[i - 1], sslot.values[i],
+ vardata->vartype,
+ &low, &high))
+ {
+ if (high <= low)
+ {
+ /* cope if bin boundaries appear identical */
+ binfrac = 0.5;
+ }
+ else if (val <= low)
+ binfrac = 0.0;
+ else if (val >= high)
+ binfrac = 1.0;
+ else
+ {
+ binfrac = (val - low) / (high - low);
+
+ /*
+ * Watch out for the possibility that we got a NaN or
+ * Infinity from the division. This can happen
+ * despite the previous checks, if for example "low"
+ * is -Infinity.
+ */
+ if (isnan(binfrac) ||
+ binfrac < 0.0 || binfrac > 1.0)
+ binfrac = 0.5;
+ }
+ }
+ else
+ {
+ /*
+ * Ideally we'd produce an error here, on the grounds that
+ * the given operator shouldn't have scalarXXsel
+ * registered as its selectivity func unless we can deal
+ * with its operand types. But currently, all manner of
+ * stuff is invoking scalarXXsel, so give a default
+ * estimate until that can be fixed.
+ */
+ binfrac = 0.5;
+ }
+
+ /*
+ * Now, compute the overall selectivity across the values
+ * represented by the histogram. We have i-1 full bins and
+ * binfrac partial bin below the constant.
+ */
+ histfrac = (double) (i - 1) + binfrac;
+ histfrac /= (double) (sslot.nvalues - 1);
+
+ /*
+ * At this point, histfrac is an estimate of the fraction of
+ * the population represented by the histogram that satisfies
+ * "x <= constval". Somewhat remarkably, this statement is
+ * true regardless of which operator we were doing the probes
+ * with, so long as convert_to_scalar() delivers reasonable
+ * results. If the probe constant is equal to some histogram
+ * entry, we would have considered the bin to the left of that
+ * entry if probing with "<" or ">=", or the bin to the right
+ * if probing with "<=" or ">"; but binfrac would have come
+ * out as 1.0 in the first case and 0.0 in the second, leading
+ * to the same histfrac in either case. For probe constants
+ * between histogram entries, we find the same bin and get the
+ * same estimate with any operator.
+ *
+ * The fact that the estimate corresponds to "x <= constval"
+ * and not "x < constval" is because of the way that ANALYZE
+ * constructs the histogram: each entry is, effectively, the
+ * rightmost value in its sample bucket. So selectivity
+ * values that are exact multiples of 1/(histogram_size-1)
+ * should be understood as estimates including a histogram
+ * entry plus everything to its left.
+ *
+ * However, that breaks down for the first histogram entry,
+ * which necessarily is the leftmost value in its sample
+ * bucket. That means the first histogram bin is slightly
+ * narrower than the rest, by an amount equal to eq_selec.
+ * Another way to say that is that we want "x <= leftmost" to
+ * be estimated as eq_selec not zero. So, if we're dealing
+ * with the first bin (i==1), rescale to make that true while
+ * adjusting the rest of that bin linearly.
+ */
+ if (i == 1)
+ histfrac += eq_selec * (1.0 - binfrac);
+
+ /*
+ * "x <= constval" is good if we want an estimate for "<=" or
+ * ">", but if we are estimating for "<" or ">=", we now need
+ * to decrease the estimate by eq_selec.
+ */
+ if (isgt == iseq)
+ histfrac -= eq_selec;
+ }
+
+ /*
+ * Now the estimate is finished for "<" and "<=" cases. If we are
+ * estimating for ">" or ">=", flip it.
+ */
+ hist_selec = isgt ? (1.0 - histfrac) : histfrac;
+
+ /*
+ * The histogram boundaries are only approximate to begin with,
+ * and may well be out of date anyway. Therefore, don't believe
+ * extremely small or large selectivity estimates --- unless we
+ * got actual current endpoint values from the table, in which
+ * case just do the usual sanity clamp. Somewhat arbitrarily, we
+ * set the cutoff for other cases at a hundredth of the histogram
+ * resolution.
+ */
+ if (have_end)
+ CLAMP_PROBABILITY(hist_selec);
+ else
+ {
+ double cutoff = 0.01 / (double) (sslot.nvalues - 1);
+
+ if (hist_selec < cutoff)
+ hist_selec = cutoff;
+ else if (hist_selec > 1.0 - cutoff)
+ hist_selec = 1.0 - cutoff;
+ }
+ }
+ else if (sslot.nvalues > 1)
+ {
+ /*
+ * If we get here, we have a histogram but it's not sorted the way
+ * we want. Do a brute-force search to see how many of the
+ * entries satisfy the comparison condition, and take that
+ * fraction as our estimate. (This is identical to the inner loop
+ * of histogram_selectivity; maybe share code?)
+ */
+ LOCAL_FCINFO(fcinfo, 2);
+ int nmatch = 0;
+
+ InitFunctionCallInfoData(*fcinfo, opproc, 2, collation,
+ NULL, NULL);
+ fcinfo->args[0].isnull = false;
+ fcinfo->args[1].isnull = false;
+ fcinfo->args[1].value = constval;
+ for (int i = 0; i < sslot.nvalues; i++)
+ {
+ Datum fresult;
+
+ fcinfo->args[0].value = sslot.values[i];
+ fcinfo->isnull = false;
+ fresult = FunctionCallInvoke(fcinfo);
+ if (!fcinfo->isnull && DatumGetBool(fresult))
+ nmatch++;
+ }
+ hist_selec = ((double) nmatch) / ((double) sslot.nvalues);
+
+ /*
+ * As above, clamp to a hundredth of the histogram resolution.
+ * This case is surely even less trustworthy than the normal one,
+ * so we shouldn't believe exact 0 or 1 selectivity. (Maybe the
+ * clamp should be more restrictive in this case?)
+ */
+ {
+ double cutoff = 0.01 / (double) (sslot.nvalues - 1);
+
+ if (hist_selec < cutoff)
+ hist_selec = cutoff;
+ else if (hist_selec > 1.0 - cutoff)
+ hist_selec = 1.0 - cutoff;
+ }
+ }
+
+ free_attstatsslot(&sslot);
+ }
+
+ return hist_selec;
+}
+
+/*
+ * Common wrapper function for the selectivity estimators that simply
+ * invoke scalarineqsel().
+ */
+static Datum
+scalarineqsel_wrapper(PG_FUNCTION_ARGS, bool isgt, bool iseq)
+{
+ PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
+ Oid operator = PG_GETARG_OID(1);
+ List *args = (List *) PG_GETARG_POINTER(2);
+ int varRelid = PG_GETARG_INT32(3);
+ Oid collation = PG_GET_COLLATION();
+ VariableStatData vardata;
+ Node *other;
+ bool varonleft;
+ Datum constval;
+ Oid consttype;
+ double selec;
+
+ /*
+ * If expression is not variable op something or something op variable,
+ * then punt and return a default estimate.
+ */
+ if (!get_restriction_variable(root, args, varRelid,
+ &vardata, &other, &varonleft))
+ PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
+
+ /*
+ * Can't do anything useful if the something is not a constant, either.
+ */
+ if (!IsA(other, Const))
+ {
+ ReleaseVariableStats(vardata);
+ PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
+ }
+
+ /*
+ * If the constant is NULL, assume operator is strict and return zero, ie,
+ * operator will never return TRUE.
+ */
+ if (((Const *) other)->constisnull)
+ {
+ ReleaseVariableStats(vardata);
+ PG_RETURN_FLOAT8(0.0);
+ }
+ constval = ((Const *) other)->constvalue;
+ consttype = ((Const *) other)->consttype;
+
+ /*
+ * Force the var to be on the left to simplify logic in scalarineqsel.
+ */
+ if (!varonleft)
+ {
+ operator = get_commutator(operator);
+ if (!operator)
+ {
+ /* Use default selectivity (should we raise an error instead?) */
+ ReleaseVariableStats(vardata);
+ PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
+ }
+ isgt = !isgt;
+ }
+
+ /* The rest of the work is done by scalarineqsel(). */
+ selec = scalarineqsel(root, operator, isgt, iseq, collation,
+ &vardata, constval, consttype);
+
+ ReleaseVariableStats(vardata);
+
+ PG_RETURN_FLOAT8((float8) selec);
+}
+
+/*
+ * scalarltsel - Selectivity of "<" for scalars.
+ */
+Datum
+scalarltsel(PG_FUNCTION_ARGS)
+{
+ return scalarineqsel_wrapper(fcinfo, false, false);
+}
+
+/*
+ * scalarlesel - Selectivity of "<=" for scalars.
+ */
+Datum
+scalarlesel(PG_FUNCTION_ARGS)
+{
+ return scalarineqsel_wrapper(fcinfo, false, true);
+}
+
+/*
+ * scalargtsel - Selectivity of ">" for scalars.
+ */
+Datum
+scalargtsel(PG_FUNCTION_ARGS)
+{
+ return scalarineqsel_wrapper(fcinfo, true, false);
+}
+
+/*
+ * scalargesel - Selectivity of ">=" for scalars.
+ */
+Datum
+scalargesel(PG_FUNCTION_ARGS)
+{
+ return scalarineqsel_wrapper(fcinfo, true, true);
+}
+
+/*
+ * boolvarsel - Selectivity of Boolean variable.
+ *
+ * This can actually be called on any boolean-valued expression. If it
+ * involves only Vars of the specified relation, and if there are statistics
+ * about the Var or expression (the latter is possible if it's indexed) then
+ * we'll produce a real estimate; otherwise it's just a default.
+ */
+Selectivity
+boolvarsel(PlannerInfo *root, Node *arg, int varRelid)
+{
+ VariableStatData vardata;
+ double selec;
+
+ examine_variable(root, arg, varRelid, &vardata);
+ if (HeapTupleIsValid(vardata.statsTuple))
+ {
+ /*
+ * A boolean variable V is equivalent to the clause V = 't', so we
+ * compute the selectivity as if that is what we have.
+ */
+ selec = var_eq_const(&vardata, BooleanEqualOperator, InvalidOid,
+ BoolGetDatum(true), false, true, false);
+ }
+ else
+ {
+ /* Otherwise, the default estimate is 0.5 */
+ selec = 0.5;
+ }
+ ReleaseVariableStats(vardata);
+ return selec;
+}
+
+/*
+ * booltestsel - Selectivity of BooleanTest Node.
+ */
+Selectivity
+booltestsel(PlannerInfo *root, BoolTestType booltesttype, Node *arg,
+ int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
+{
+ VariableStatData vardata;
+ double selec;
+
+ examine_variable(root, arg, varRelid, &vardata);
+
+ if (HeapTupleIsValid(vardata.statsTuple))
+ {
+ Form_pg_statistic stats;
+ double freq_null;
+ AttStatsSlot sslot;
+
+ stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
+ freq_null = stats->stanullfrac;
+
+ if (get_attstatsslot(&sslot, vardata.statsTuple,
+ STATISTIC_KIND_MCV, InvalidOid,
+ ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)
+ && sslot.nnumbers > 0)
+ {
+ double freq_true;
+ double freq_false;
+
+ /*
+ * Get first MCV frequency and derive frequency for true.
+ */
+ if (DatumGetBool(sslot.values[0]))
+ freq_true = sslot.numbers[0];
+ else
+ freq_true = 1.0 - sslot.numbers[0] - freq_null;
+
+ /*
+ * Next derive frequency for false. Then use these as appropriate
+ * to derive frequency for each case.
+ */
+ freq_false = 1.0 - freq_true - freq_null;
+
+ switch (booltesttype)
+ {
+ case IS_UNKNOWN:
+ /* select only NULL values */
+ selec = freq_null;
+ break;
+ case IS_NOT_UNKNOWN:
+ /* select non-NULL values */
+ selec = 1.0 - freq_null;
+ break;
+ case IS_TRUE:
+ /* select only TRUE values */
+ selec = freq_true;
+ break;
+ case IS_NOT_TRUE:
+ /* select non-TRUE values */
+ selec = 1.0 - freq_true;
+ break;
+ case IS_FALSE:
+ /* select only FALSE values */
+ selec = freq_false;
+ break;
+ case IS_NOT_FALSE:
+ /* select non-FALSE values */
+ selec = 1.0 - freq_false;
+ break;
+ default:
+ elog(ERROR, "unrecognized booltesttype: %d",
+ (int) booltesttype);
+ selec = 0.0; /* Keep compiler quiet */
+ break;
+ }
+
+ free_attstatsslot(&sslot);
+ }
+ else
+ {
+ /*
+ * No most-common-value info available. Still have null fraction
+ * information, so use it for IS [NOT] UNKNOWN. Otherwise adjust
+ * for null fraction and assume a 50-50 split of TRUE and FALSE.
+ */
+ switch (booltesttype)
+ {
+ case IS_UNKNOWN:
+ /* select only NULL values */
+ selec = freq_null;
+ break;
+ case IS_NOT_UNKNOWN:
+ /* select non-NULL values */
+ selec = 1.0 - freq_null;
+ break;
+ case IS_TRUE:
+ case IS_FALSE:
+ /* Assume we select half of the non-NULL values */
+ selec = (1.0 - freq_null) / 2.0;
+ break;
+ case IS_NOT_TRUE:
+ case IS_NOT_FALSE:
+ /* Assume we select NULLs plus half of the non-NULLs */
+ /* equiv. to freq_null + (1.0 - freq_null) / 2.0 */
+ selec = (freq_null + 1.0) / 2.0;
+ break;
+ default:
+ elog(ERROR, "unrecognized booltesttype: %d",
+ (int) booltesttype);
+ selec = 0.0; /* Keep compiler quiet */
+ break;
+ }
+ }
+ }
+ else
+ {
+ /*
+ * If we can't get variable statistics for the argument, perhaps
+ * clause_selectivity can do something with it. We ignore the
+ * possibility of a NULL value when using clause_selectivity, and just
+ * assume the value is either TRUE or FALSE.
+ */
+ switch (booltesttype)
+ {
+ case IS_UNKNOWN:
+ selec = DEFAULT_UNK_SEL;
+ break;
+ case IS_NOT_UNKNOWN:
+ selec = DEFAULT_NOT_UNK_SEL;
+ break;
+ case IS_TRUE:
+ case IS_NOT_FALSE:
+ selec = (double) clause_selectivity(root, arg,
+ varRelid,
+ jointype, sjinfo);
+ break;
+ case IS_FALSE:
+ case IS_NOT_TRUE:
+ selec = 1.0 - (double) clause_selectivity(root, arg,
+ varRelid,
+ jointype, sjinfo);
+ break;
+ default:
+ elog(ERROR, "unrecognized booltesttype: %d",
+ (int) booltesttype);
+ selec = 0.0; /* Keep compiler quiet */
+ break;
+ }
+ }
+
+ ReleaseVariableStats(vardata);
+
+ /* result should be in range, but make sure... */
+ CLAMP_PROBABILITY(selec);
+
+ return (Selectivity) selec;
+}
+
+/*
+ * nulltestsel - Selectivity of NullTest Node.
+ */
+Selectivity
+nulltestsel(PlannerInfo *root, NullTestType nulltesttype, Node *arg,
+ int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
+{
+ VariableStatData vardata;
+ double selec;
+
+ examine_variable(root, arg, varRelid, &vardata);
+
+ if (HeapTupleIsValid(vardata.statsTuple))
+ {
+ Form_pg_statistic stats;
+ double freq_null;
+
+ stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
+ freq_null = stats->stanullfrac;
+
+ switch (nulltesttype)
+ {
+ case IS_NULL:
+
+ /*
+ * Use freq_null directly.
+ */
+ selec = freq_null;
+ break;
+ case IS_NOT_NULL:
+
+ /*
+ * Select not unknown (not null) values. Calculate from
+ * freq_null.
+ */
+ selec = 1.0 - freq_null;
+ break;
+ default:
+ elog(ERROR, "unrecognized nulltesttype: %d",
+ (int) nulltesttype);
+ return (Selectivity) 0; /* keep compiler quiet */
+ }
+ }
+ else if (vardata.var && IsA(vardata.var, Var) &&
+ ((Var *) vardata.var)->varattno < 0)
+ {
+ /*
+ * There are no stats for system columns, but we know they are never
+ * NULL.
+ */
+ selec = (nulltesttype == IS_NULL) ? 0.0 : 1.0;
+ }
+ else
+ {
+ /*
+ * No ANALYZE stats available, so make a guess
+ */
+ switch (nulltesttype)
+ {
+ case IS_NULL:
+ selec = DEFAULT_UNK_SEL;
+ break;
+ case IS_NOT_NULL:
+ selec = DEFAULT_NOT_UNK_SEL;
+ break;
+ default:
+ elog(ERROR, "unrecognized nulltesttype: %d",
+ (int) nulltesttype);
+ return (Selectivity) 0; /* keep compiler quiet */
+ }
+ }
+
+ ReleaseVariableStats(vardata);
+
+ /* result should be in range, but make sure... */
+ CLAMP_PROBABILITY(selec);
+
+ return (Selectivity) selec;
+}
+
+/*
+ * strip_array_coercion - strip binary-compatible relabeling from an array expr
+ *
+ * For array values, the parser normally generates ArrayCoerceExpr conversions,
+ * but it seems possible that RelabelType might show up. Also, the planner
+ * is not currently tense about collapsing stacked ArrayCoerceExpr nodes,
+ * so we need to be ready to deal with more than one level.
+ */
+static Node *
+strip_array_coercion(Node *node)
+{
+ for (;;)
+ {
+ if (node && IsA(node, ArrayCoerceExpr))
+ {
+ ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
+
+ /*
+ * If the per-element expression is just a RelabelType on top of
+ * CaseTestExpr, then we know it's a binary-compatible relabeling.
+ */
+ if (IsA(acoerce->elemexpr, RelabelType) &&
+ IsA(((RelabelType *) acoerce->elemexpr)->arg, CaseTestExpr))
+ node = (Node *) acoerce->arg;
+ else
+ break;
+ }
+ else if (node && IsA(node, RelabelType))
+ {
+ /* We don't really expect this case, but may as well cope */
+ node = (Node *) ((RelabelType *) node)->arg;
+ }
+ else
+ break;
+ }
+ return node;
+}
+
+/*
+ * scalararraysel - Selectivity of ScalarArrayOpExpr Node.
+ */
+Selectivity
+scalararraysel(PlannerInfo *root,
+ ScalarArrayOpExpr *clause,
+ bool is_join_clause,
+ int varRelid,
+ JoinType jointype,
+ SpecialJoinInfo *sjinfo)
+{
+ Oid operator = clause->opno;
+ bool useOr = clause->useOr;
+ bool isEquality = false;
+ bool isInequality = false;
+ Node *leftop;
+ Node *rightop;
+ Oid nominal_element_type;
+ Oid nominal_element_collation;
+ TypeCacheEntry *typentry;
+ RegProcedure oprsel;
+ FmgrInfo oprselproc;
+ Selectivity s1;
+ Selectivity s1disjoint;
+
+ /* First, deconstruct the expression */
+ Assert(list_length(clause->args) == 2);
+ leftop = (Node *) linitial(clause->args);
+ rightop = (Node *) lsecond(clause->args);
+
+ /* aggressively reduce both sides to constants */
+ leftop = estimate_expression_value(root, leftop);
+ rightop = estimate_expression_value(root, rightop);
+
+ /* get nominal (after relabeling) element type of rightop */
+ nominal_element_type = get_base_element_type(exprType(rightop));
+ if (!OidIsValid(nominal_element_type))
+ return (Selectivity) 0.5; /* probably shouldn't happen */
+ /* get nominal collation, too, for generating constants */
+ nominal_element_collation = exprCollation(rightop);
+
+ /* look through any binary-compatible relabeling of rightop */
+ rightop = strip_array_coercion(rightop);
+
+ /*
+ * Detect whether the operator is the default equality or inequality
+ * operator of the array element type.
+ */
+ typentry = lookup_type_cache(nominal_element_type, TYPECACHE_EQ_OPR);
+ if (OidIsValid(typentry->eq_opr))
+ {
+ if (operator == typentry->eq_opr)
+ isEquality = true;
+ else if (get_negator(operator) == typentry->eq_opr)
+ isInequality = true;
+ }
+
+ /*
+ * If it is equality or inequality, we might be able to estimate this as a
+ * form of array containment; for instance "const = ANY(column)" can be
+ * treated as "ARRAY[const] <@ column". scalararraysel_containment tries
+ * that, and returns the selectivity estimate if successful, or -1 if not.
+ */
+ if ((isEquality || isInequality) && !is_join_clause)
+ {
+ s1 = scalararraysel_containment(root, leftop, rightop,
+ nominal_element_type,
+ isEquality, useOr, varRelid);
+ if (s1 >= 0.0)
+ return s1;
+ }
+
+ /*
+ * Look up the underlying operator's selectivity estimator. Punt if it
+ * hasn't got one.
+ */
+ if (is_join_clause)
+ oprsel = get_oprjoin(operator);
+ else
+ oprsel = get_oprrest(operator);
+ if (!oprsel)
+ return (Selectivity) 0.5;
+ fmgr_info(oprsel, &oprselproc);
+
+ /*
+ * In the array-containment check above, we must only believe that an
+ * operator is equality or inequality if it is the default btree equality
+ * operator (or its negator) for the element type, since those are the
+ * operators that array containment will use. But in what follows, we can
+ * be a little laxer, and also believe that any operators using eqsel() or
+ * neqsel() as selectivity estimator act like equality or inequality.
+ */
+ if (oprsel == F_EQSEL || oprsel == F_EQJOINSEL)
+ isEquality = true;
+ else if (oprsel == F_NEQSEL || oprsel == F_NEQJOINSEL)
+ isInequality = true;
+
+ /*
+ * We consider three cases:
+ *
+ * 1. rightop is an Array constant: deconstruct the array, apply the
+ * operator's selectivity function for each array element, and merge the
+ * results in the same way that clausesel.c does for AND/OR combinations.
+ *
+ * 2. rightop is an ARRAY[] construct: apply the operator's selectivity
+ * function for each element of the ARRAY[] construct, and merge.
+ *
+ * 3. otherwise, make a guess ...
+ */
+ if (rightop && IsA(rightop, Const))
+ {
+ Datum arraydatum = ((Const *) rightop)->constvalue;
+ bool arrayisnull = ((Const *) rightop)->constisnull;
+ ArrayType *arrayval;
+ int16 elmlen;
+ bool elmbyval;
+ char elmalign;
+ int num_elems;
+ Datum *elem_values;
+ bool *elem_nulls;
+ int i;
+
+ if (arrayisnull) /* qual can't succeed if null array */
+ return (Selectivity) 0.0;
+ arrayval = DatumGetArrayTypeP(arraydatum);
+ get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
+ &elmlen, &elmbyval, &elmalign);
+ deconstruct_array(arrayval,
+ ARR_ELEMTYPE(arrayval),
+ elmlen, elmbyval, elmalign,
+ &elem_values, &elem_nulls, &num_elems);
+
+ /*
+ * For generic operators, we assume the probability of success is
+ * independent for each array element. But for "= ANY" or "<> ALL",
+ * if the array elements are distinct (which'd typically be the case)
+ * then the probabilities are disjoint, and we should just sum them.
+ *
+ * If we were being really tense we would try to confirm that the
+ * elements are all distinct, but that would be expensive and it
+ * doesn't seem to be worth the cycles; it would amount to penalizing
+ * well-written queries in favor of poorly-written ones. However, we
+ * do protect ourselves a little bit by checking whether the
+ * disjointness assumption leads to an impossible (out of range)
+ * probability; if so, we fall back to the normal calculation.
+ */
+ s1 = s1disjoint = (useOr ? 0.0 : 1.0);
+
+ for (i = 0; i < num_elems; i++)
+ {
+ List *args;
+ Selectivity s2;
+
+ args = list_make2(leftop,
+ makeConst(nominal_element_type,
+ -1,
+ nominal_element_collation,
+ elmlen,
+ elem_values[i],
+ elem_nulls[i],
+ elmbyval));
+ if (is_join_clause)
+ s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
+ clause->inputcollid,
+ PointerGetDatum(root),
+ ObjectIdGetDatum(operator),
+ PointerGetDatum(args),
+ Int16GetDatum(jointype),
+ PointerGetDatum(sjinfo)));
+ else
+ s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
+ clause->inputcollid,
+ PointerGetDatum(root),
+ ObjectIdGetDatum(operator),
+ PointerGetDatum(args),
+ Int32GetDatum(varRelid)));
+
+ if (useOr)
+ {
+ s1 = s1 + s2 - s1 * s2;
+ if (isEquality)
+ s1disjoint += s2;
+ }
+ else
+ {
+ s1 = s1 * s2;
+ if (isInequality)
+ s1disjoint += s2 - 1.0;
+ }
+ }
+
+ /* accept disjoint-probability estimate if in range */
+ if ((useOr ? isEquality : isInequality) &&
+ s1disjoint >= 0.0 && s1disjoint <= 1.0)
+ s1 = s1disjoint;
+ }
+ else if (rightop && IsA(rightop, ArrayExpr) &&
+ !((ArrayExpr *) rightop)->multidims)
+ {
+ ArrayExpr *arrayexpr = (ArrayExpr *) rightop;
+ int16 elmlen;
+ bool elmbyval;
+ ListCell *l;
+
+ get_typlenbyval(arrayexpr->element_typeid,
+ &elmlen, &elmbyval);
+
+ /*
+ * We use the assumption of disjoint probabilities here too, although
+ * the odds of equal array elements are rather higher if the elements
+ * are not all constants (which they won't be, else constant folding
+ * would have reduced the ArrayExpr to a Const). In this path it's
+ * critical to have the sanity check on the s1disjoint estimate.
+ */
+ s1 = s1disjoint = (useOr ? 0.0 : 1.0);
+
+ foreach(l, arrayexpr->elements)
+ {
+ Node *elem = (Node *) lfirst(l);
+ List *args;
+ Selectivity s2;
+
+ /*
+ * Theoretically, if elem isn't of nominal_element_type we should
+ * insert a RelabelType, but it seems unlikely that any operator
+ * estimation function would really care ...
+ */
+ args = list_make2(leftop, elem);
+ if (is_join_clause)
+ s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
+ clause->inputcollid,
+ PointerGetDatum(root),
+ ObjectIdGetDatum(operator),
+ PointerGetDatum(args),
+ Int16GetDatum(jointype),
+ PointerGetDatum(sjinfo)));
+ else
+ s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
+ clause->inputcollid,
+ PointerGetDatum(root),
+ ObjectIdGetDatum(operator),
+ PointerGetDatum(args),
+ Int32GetDatum(varRelid)));
+
+ if (useOr)
+ {
+ s1 = s1 + s2 - s1 * s2;
+ if (isEquality)
+ s1disjoint += s2;
+ }
+ else
+ {
+ s1 = s1 * s2;
+ if (isInequality)
+ s1disjoint += s2 - 1.0;
+ }
+ }
+
+ /* accept disjoint-probability estimate if in range */
+ if ((useOr ? isEquality : isInequality) &&
+ s1disjoint >= 0.0 && s1disjoint <= 1.0)
+ s1 = s1disjoint;
+ }
+ else
+ {
+ CaseTestExpr *dummyexpr;
+ List *args;
+ Selectivity s2;
+ int i;
+
+ /*
+ * We need a dummy rightop to pass to the operator selectivity
+ * routine. It can be pretty much anything that doesn't look like a
+ * constant; CaseTestExpr is a convenient choice.
+ */
+ dummyexpr = makeNode(CaseTestExpr);
+ dummyexpr->typeId = nominal_element_type;
+ dummyexpr->typeMod = -1;
+ dummyexpr->collation = clause->inputcollid;
+ args = list_make2(leftop, dummyexpr);
+ if (is_join_clause)
+ s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
+ clause->inputcollid,
+ PointerGetDatum(root),
+ ObjectIdGetDatum(operator),
+ PointerGetDatum(args),
+ Int16GetDatum(jointype),
+ PointerGetDatum(sjinfo)));
+ else
+ s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
+ clause->inputcollid,
+ PointerGetDatum(root),
+ ObjectIdGetDatum(operator),
+ PointerGetDatum(args),
+ Int32GetDatum(varRelid)));
+ s1 = useOr ? 0.0 : 1.0;
+
+ /*
+ * Arbitrarily assume 10 elements in the eventual array value (see
+ * also estimate_array_length). We don't risk an assumption of
+ * disjoint probabilities here.
+ */
+ for (i = 0; i < 10; i++)
+ {
+ if (useOr)
+ s1 = s1 + s2 - s1 * s2;
+ else
+ s1 = s1 * s2;
+ }
+ }
+
+ /* result should be in range, but make sure... */
+ CLAMP_PROBABILITY(s1);
+
+ return s1;
+}
+
+/*
+ * Estimate number of elements in the array yielded by an expression.
+ *
+ * It's important that this agree with scalararraysel.
+ */
+int
+estimate_array_length(Node *arrayexpr)
+{
+ /* look through any binary-compatible relabeling of arrayexpr */
+ arrayexpr = strip_array_coercion(arrayexpr);
+
+ if (arrayexpr && IsA(arrayexpr, Const))
+ {
+ Datum arraydatum = ((Const *) arrayexpr)->constvalue;
+ bool arrayisnull = ((Const *) arrayexpr)->constisnull;
+ ArrayType *arrayval;
+
+ if (arrayisnull)
+ return 0;
+ arrayval = DatumGetArrayTypeP(arraydatum);
+ return ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval));
+ }
+ else if (arrayexpr && IsA(arrayexpr, ArrayExpr) &&
+ !((ArrayExpr *) arrayexpr)->multidims)
+ {
+ return list_length(((ArrayExpr *) arrayexpr)->elements);
+ }
+ else
+ {
+ /* default guess --- see also scalararraysel */
+ return 10;
+ }
+}
+
+/*
+ * rowcomparesel - Selectivity of RowCompareExpr Node.
+ *
+ * We estimate RowCompare selectivity by considering just the first (high
+ * order) columns, which makes it equivalent to an ordinary OpExpr. While
+ * this estimate could be refined by considering additional columns, it
+ * seems unlikely that we could do a lot better without multi-column
+ * statistics.
+ */
+Selectivity
+rowcomparesel(PlannerInfo *root,
+ RowCompareExpr *clause,
+ int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
+{
+ Selectivity s1;
+ Oid opno = linitial_oid(clause->opnos);
+ Oid inputcollid = linitial_oid(clause->inputcollids);
+ List *opargs;
+ bool is_join_clause;
+
+ /* Build equivalent arg list for single operator */
+ opargs = list_make2(linitial(clause->largs), linitial(clause->rargs));
+
+ /*
+ * Decide if it's a join clause. This should match clausesel.c's
+ * treat_as_join_clause(), except that we intentionally consider only the
+ * leading columns and not the rest of the clause.
+ */
+ if (varRelid != 0)
+ {
+ /*
+ * Caller is forcing restriction mode (eg, because we are examining an
+ * inner indexscan qual).
+ */
+ is_join_clause = false;
+ }
+ else if (sjinfo == NULL)
+ {
+ /*
+ * It must be a restriction clause, since it's being evaluated at a
+ * scan node.
+ */
+ is_join_clause = false;
+ }
+ else
+ {
+ /*
+ * Otherwise, it's a join if there's more than one relation used.
+ */
+ is_join_clause = (NumRelids(root, (Node *) opargs) > 1);
+ }
+
+ if (is_join_clause)
+ {
+ /* Estimate selectivity for a join clause. */
+ s1 = join_selectivity(root, opno,
+ opargs,
+ inputcollid,
+ jointype,
+ sjinfo);
+ }
+ else
+ {
+ /* Estimate selectivity for a restriction clause. */
+ s1 = restriction_selectivity(root, opno,
+ opargs,
+ inputcollid,
+ varRelid);
+ }
+
+ return s1;
+}
+
+/*
+ * eqjoinsel - Join selectivity of "="
+ */
+Datum
+eqjoinsel(PG_FUNCTION_ARGS)
+{
+ PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
+ Oid operator = PG_GETARG_OID(1);
+ List *args = (List *) PG_GETARG_POINTER(2);
+
+#ifdef NOT_USED
+ JoinType jointype = (JoinType) PG_GETARG_INT16(3);
+#endif
+ SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) PG_GETARG_POINTER(4);
+ Oid collation = PG_GET_COLLATION();
+ double selec;
+ double selec_inner;
+ VariableStatData vardata1;
+ VariableStatData vardata2;
+ double nd1;
+ double nd2;
+ bool isdefault1;
+ bool isdefault2;
+ Oid opfuncoid;
+ AttStatsSlot sslot1;
+ AttStatsSlot sslot2;
+ Form_pg_statistic stats1 = NULL;
+ Form_pg_statistic stats2 = NULL;
+ bool have_mcvs1 = false;
+ bool have_mcvs2 = false;
+ bool join_is_reversed;
+ RelOptInfo *inner_rel;
+
+ get_join_variables(root, args, sjinfo,
+ &vardata1, &vardata2, &join_is_reversed);
+
+ nd1 = get_variable_numdistinct(&vardata1, &isdefault1);
+ nd2 = get_variable_numdistinct(&vardata2, &isdefault2);
+
+ opfuncoid = get_opcode(operator);
+
+ memset(&sslot1, 0, sizeof(sslot1));
+ memset(&sslot2, 0, sizeof(sslot2));
+
+ if (HeapTupleIsValid(vardata1.statsTuple))
+ {
+ /* note we allow use of nullfrac regardless of security check */
+ stats1 = (Form_pg_statistic) GETSTRUCT(vardata1.statsTuple);
+ if (statistic_proc_security_check(&vardata1, opfuncoid))
+ have_mcvs1 = get_attstatsslot(&sslot1, vardata1.statsTuple,
+ STATISTIC_KIND_MCV, InvalidOid,
+ ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS);
+ }
+
+ if (HeapTupleIsValid(vardata2.statsTuple))
+ {
+ /* note we allow use of nullfrac regardless of security check */
+ stats2 = (Form_pg_statistic) GETSTRUCT(vardata2.statsTuple);
+ if (statistic_proc_security_check(&vardata2, opfuncoid))
+ have_mcvs2 = get_attstatsslot(&sslot2, vardata2.statsTuple,
+ STATISTIC_KIND_MCV, InvalidOid,
+ ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS);
+ }
+
+ /* We need to compute the inner-join selectivity in all cases */
+ selec_inner = eqjoinsel_inner(opfuncoid, collation,
+ &vardata1, &vardata2,
+ nd1, nd2,
+ isdefault1, isdefault2,
+ &sslot1, &sslot2,
+ stats1, stats2,
+ have_mcvs1, have_mcvs2);
+
+ switch (sjinfo->jointype)
+ {
+ case JOIN_INNER:
+ case JOIN_LEFT:
+ case JOIN_FULL:
+ selec = selec_inner;
+ break;
+ case JOIN_SEMI:
+ case JOIN_ANTI:
+
+ /*
+ * Look up the join's inner relation. min_righthand is sufficient
+ * information because neither SEMI nor ANTI joins permit any
+ * reassociation into or out of their RHS, so the righthand will
+ * always be exactly that set of rels.
+ */
+ inner_rel = find_join_input_rel(root, sjinfo->min_righthand);
+
+ if (!join_is_reversed)
+ selec = eqjoinsel_semi(opfuncoid, collation,
+ &vardata1, &vardata2,
+ nd1, nd2,
+ isdefault1, isdefault2,
+ &sslot1, &sslot2,
+ stats1, stats2,
+ have_mcvs1, have_mcvs2,
+ inner_rel);
+ else
+ {
+ Oid commop = get_commutator(operator);
+ Oid commopfuncoid = OidIsValid(commop) ? get_opcode(commop) : InvalidOid;
+
+ selec = eqjoinsel_semi(commopfuncoid, collation,
+ &vardata2, &vardata1,
+ nd2, nd1,
+ isdefault2, isdefault1,
+ &sslot2, &sslot1,
+ stats2, stats1,
+ have_mcvs2, have_mcvs1,
+ inner_rel);
+ }
+
+ /*
+ * We should never estimate the output of a semijoin to be more
+ * rows than we estimate for an inner join with the same input
+ * rels and join condition; it's obviously impossible for that to
+ * happen. The former estimate is N1 * Ssemi while the latter is
+ * N1 * N2 * Sinner, so we may clamp Ssemi <= N2 * Sinner. Doing
+ * this is worthwhile because of the shakier estimation rules we
+ * use in eqjoinsel_semi, particularly in cases where it has to
+ * punt entirely.
+ */
+ selec = Min(selec, inner_rel->rows * selec_inner);
+ break;
+ default:
+ /* other values not expected here */
+ elog(ERROR, "unrecognized join type: %d",
+ (int) sjinfo->jointype);
+ selec = 0; /* keep compiler quiet */
+ break;
+ }
+
+ free_attstatsslot(&sslot1);
+ free_attstatsslot(&sslot2);
+
+ ReleaseVariableStats(vardata1);
+ ReleaseVariableStats(vardata2);
+
+ CLAMP_PROBABILITY(selec);
+
+ PG_RETURN_FLOAT8((float8) selec);
+}
+
+/*
+ * eqjoinsel_inner --- eqjoinsel for normal inner join
+ *
+ * We also use this for LEFT/FULL outer joins; it's not presently clear
+ * that it's worth trying to distinguish them here.
+ */
+static double
+eqjoinsel_inner(Oid opfuncoid, Oid collation,
+ VariableStatData *vardata1, VariableStatData *vardata2,
+ double nd1, double nd2,
+ bool isdefault1, bool isdefault2,
+ AttStatsSlot *sslot1, AttStatsSlot *sslot2,
+ Form_pg_statistic stats1, Form_pg_statistic stats2,
+ bool have_mcvs1, bool have_mcvs2)
+{
+ double selec;
+
+ if (have_mcvs1 && have_mcvs2)
+ {
+ /*
+ * We have most-common-value lists for both relations. Run through
+ * the lists to see which MCVs actually join to each other with the
+ * given operator. This allows us to determine the exact join
+ * selectivity for the portion of the relations represented by the MCV
+ * lists. We still have to estimate for the remaining population, but
+ * in a skewed distribution this gives us a big leg up in accuracy.
+ * For motivation see the analysis in Y. Ioannidis and S.
+ * Christodoulakis, "On the propagation of errors in the size of join
+ * results", Technical Report 1018, Computer Science Dept., University
+ * of Wisconsin, Madison, March 1991 (available from ftp.cs.wisc.edu).
+ */
+ LOCAL_FCINFO(fcinfo, 2);
+ FmgrInfo eqproc;
+ bool *hasmatch1;
+ bool *hasmatch2;
+ double nullfrac1 = stats1->stanullfrac;
+ double nullfrac2 = stats2->stanullfrac;
+ double matchprodfreq,
+ matchfreq1,
+ matchfreq2,
+ unmatchfreq1,
+ unmatchfreq2,
+ otherfreq1,
+ otherfreq2,
+ totalsel1,
+ totalsel2;
+ int i,
+ nmatches;
+
+ fmgr_info(opfuncoid, &eqproc);
+
+ /*
+ * Save a few cycles by setting up the fcinfo struct just once. Using
+ * FunctionCallInvoke directly also avoids failure if the eqproc
+ * returns NULL, though really equality functions should never do
+ * that.
+ */
+ InitFunctionCallInfoData(*fcinfo, &eqproc, 2, collation,
+ NULL, NULL);
+ fcinfo->args[0].isnull = false;
+ fcinfo->args[1].isnull = false;
+
+ hasmatch1 = (bool *) palloc0(sslot1->nvalues * sizeof(bool));
+ hasmatch2 = (bool *) palloc0(sslot2->nvalues * sizeof(bool));
+
+ /*
+ * Note we assume that each MCV will match at most one member of the
+ * other MCV list. If the operator isn't really equality, there could
+ * be multiple matches --- but we don't look for them, both for speed
+ * and because the math wouldn't add up...
+ */
+ matchprodfreq = 0.0;
+ nmatches = 0;
+ for (i = 0; i < sslot1->nvalues; i++)
+ {
+ int j;
+
+ fcinfo->args[0].value = sslot1->values[i];
+
+ for (j = 0; j < sslot2->nvalues; j++)
+ {
+ Datum fresult;
+
+ if (hasmatch2[j])
+ continue;
+ fcinfo->args[1].value = sslot2->values[j];
+ fcinfo->isnull = false;
+ fresult = FunctionCallInvoke(fcinfo);
+ if (!fcinfo->isnull && DatumGetBool(fresult))
+ {
+ hasmatch1[i] = hasmatch2[j] = true;
+ matchprodfreq += sslot1->numbers[i] * sslot2->numbers[j];
+ nmatches++;
+ break;
+ }
+ }
+ }
+ CLAMP_PROBABILITY(matchprodfreq);
+ /* Sum up frequencies of matched and unmatched MCVs */
+ matchfreq1 = unmatchfreq1 = 0.0;
+ for (i = 0; i < sslot1->nvalues; i++)
+ {
+ if (hasmatch1[i])
+ matchfreq1 += sslot1->numbers[i];
+ else
+ unmatchfreq1 += sslot1->numbers[i];
+ }
+ CLAMP_PROBABILITY(matchfreq1);
+ CLAMP_PROBABILITY(unmatchfreq1);
+ matchfreq2 = unmatchfreq2 = 0.0;
+ for (i = 0; i < sslot2->nvalues; i++)
+ {
+ if (hasmatch2[i])
+ matchfreq2 += sslot2->numbers[i];
+ else
+ unmatchfreq2 += sslot2->numbers[i];
+ }
+ CLAMP_PROBABILITY(matchfreq2);
+ CLAMP_PROBABILITY(unmatchfreq2);
+ pfree(hasmatch1);
+ pfree(hasmatch2);
+
+ /*
+ * Compute total frequency of non-null values that are not in the MCV
+ * lists.
+ */
+ otherfreq1 = 1.0 - nullfrac1 - matchfreq1 - unmatchfreq1;
+ otherfreq2 = 1.0 - nullfrac2 - matchfreq2 - unmatchfreq2;
+ CLAMP_PROBABILITY(otherfreq1);
+ CLAMP_PROBABILITY(otherfreq2);
+
+ /*
+ * We can estimate the total selectivity from the point of view of
+ * relation 1 as: the known selectivity for matched MCVs, plus
+ * unmatched MCVs that are assumed to match against random members of
+ * relation 2's non-MCV population, plus non-MCV values that are
+ * assumed to match against random members of relation 2's unmatched
+ * MCVs plus non-MCV values.
+ */
+ totalsel1 = matchprodfreq;
+ if (nd2 > sslot2->nvalues)
+ totalsel1 += unmatchfreq1 * otherfreq2 / (nd2 - sslot2->nvalues);
+ if (nd2 > nmatches)
+ totalsel1 += otherfreq1 * (otherfreq2 + unmatchfreq2) /
+ (nd2 - nmatches);
+ /* Same estimate from the point of view of relation 2. */
+ totalsel2 = matchprodfreq;
+ if (nd1 > sslot1->nvalues)
+ totalsel2 += unmatchfreq2 * otherfreq1 / (nd1 - sslot1->nvalues);
+ if (nd1 > nmatches)
+ totalsel2 += otherfreq2 * (otherfreq1 + unmatchfreq1) /
+ (nd1 - nmatches);
+
+ /*
+ * Use the smaller of the two estimates. This can be justified in
+ * essentially the same terms as given below for the no-stats case: to
+ * a first approximation, we are estimating from the point of view of
+ * the relation with smaller nd.
+ */
+ selec = (totalsel1 < totalsel2) ? totalsel1 : totalsel2;
+ }
+ else
+ {
+ /*
+ * We do not have MCV lists for both sides. Estimate the join
+ * selectivity as MIN(1/nd1,1/nd2)*(1-nullfrac1)*(1-nullfrac2). This
+ * is plausible if we assume that the join operator is strict and the
+ * non-null values are about equally distributed: a given non-null
+ * tuple of rel1 will join to either zero or N2*(1-nullfrac2)/nd2 rows
+ * of rel2, so total join rows are at most
+ * N1*(1-nullfrac1)*N2*(1-nullfrac2)/nd2 giving a join selectivity of
+ * not more than (1-nullfrac1)*(1-nullfrac2)/nd2. By the same logic it
+ * is not more than (1-nullfrac1)*(1-nullfrac2)/nd1, so the expression
+ * with MIN() is an upper bound. Using the MIN() means we estimate
+ * from the point of view of the relation with smaller nd (since the
+ * larger nd is determining the MIN). It is reasonable to assume that
+ * most tuples in this rel will have join partners, so the bound is
+ * probably reasonably tight and should be taken as-is.
+ *
+ * XXX Can we be smarter if we have an MCV list for just one side? It
+ * seems that if we assume equal distribution for the other side, we
+ * end up with the same answer anyway.
+ */
+ double nullfrac1 = stats1 ? stats1->stanullfrac : 0.0;
+ double nullfrac2 = stats2 ? stats2->stanullfrac : 0.0;
+
+ selec = (1.0 - nullfrac1) * (1.0 - nullfrac2);
+ if (nd1 > nd2)
+ selec /= nd1;
+ else
+ selec /= nd2;
+ }
+
+ return selec;
+}
+
+/*
+ * eqjoinsel_semi --- eqjoinsel for semi join
+ *
+ * (Also used for anti join, which we are supposed to estimate the same way.)
+ * Caller has ensured that vardata1 is the LHS variable.
+ * Unlike eqjoinsel_inner, we have to cope with opfuncoid being InvalidOid.
+ */
+static double
+eqjoinsel_semi(Oid opfuncoid, Oid collation,
+ VariableStatData *vardata1, VariableStatData *vardata2,
+ double nd1, double nd2,
+ bool isdefault1, bool isdefault2,
+ AttStatsSlot *sslot1, AttStatsSlot *sslot2,
+ Form_pg_statistic stats1, Form_pg_statistic stats2,
+ bool have_mcvs1, bool have_mcvs2,
+ RelOptInfo *inner_rel)
+{
+ double selec;
+
+ /*
+ * We clamp nd2 to be not more than what we estimate the inner relation's
+ * size to be. This is intuitively somewhat reasonable since obviously
+ * there can't be more than that many distinct values coming from the
+ * inner rel. The reason for the asymmetry (ie, that we don't clamp nd1
+ * likewise) is that this is the only pathway by which restriction clauses
+ * applied to the inner rel will affect the join result size estimate,
+ * since set_joinrel_size_estimates will multiply SEMI/ANTI selectivity by
+ * only the outer rel's size. If we clamped nd1 we'd be double-counting
+ * the selectivity of outer-rel restrictions.
+ *
+ * We can apply this clamping both with respect to the base relation from
+ * which the join variable comes (if there is just one), and to the
+ * immediate inner input relation of the current join.
+ *
+ * If we clamp, we can treat nd2 as being a non-default estimate; it's not
+ * great, maybe, but it didn't come out of nowhere either. This is most
+ * helpful when the inner relation is empty and consequently has no stats.
+ */
+ if (vardata2->rel)
+ {
+ if (nd2 >= vardata2->rel->rows)
+ {
+ nd2 = vardata2->rel->rows;
+ isdefault2 = false;
+ }
+ }
+ if (nd2 >= inner_rel->rows)
+ {
+ nd2 = inner_rel->rows;
+ isdefault2 = false;
+ }
+
+ if (have_mcvs1 && have_mcvs2 && OidIsValid(opfuncoid))
+ {
+ /*
+ * We have most-common-value lists for both relations. Run through
+ * the lists to see which MCVs actually join to each other with the
+ * given operator. This allows us to determine the exact join
+ * selectivity for the portion of the relations represented by the MCV
+ * lists. We still have to estimate for the remaining population, but
+ * in a skewed distribution this gives us a big leg up in accuracy.
+ */
+ LOCAL_FCINFO(fcinfo, 2);
+ FmgrInfo eqproc;
+ bool *hasmatch1;
+ bool *hasmatch2;
+ double nullfrac1 = stats1->stanullfrac;
+ double matchfreq1,
+ uncertainfrac,
+ uncertain;
+ int i,
+ nmatches,
+ clamped_nvalues2;
+
+ /*
+ * The clamping above could have resulted in nd2 being less than
+ * sslot2->nvalues; in which case, we assume that precisely the nd2
+ * most common values in the relation will appear in the join input,
+ * and so compare to only the first nd2 members of the MCV list. Of
+ * course this is frequently wrong, but it's the best bet we can make.
+ */
+ clamped_nvalues2 = Min(sslot2->nvalues, nd2);
+
+ fmgr_info(opfuncoid, &eqproc);
+
+ /*
+ * Save a few cycles by setting up the fcinfo struct just once. Using
+ * FunctionCallInvoke directly also avoids failure if the eqproc
+ * returns NULL, though really equality functions should never do
+ * that.
+ */
+ InitFunctionCallInfoData(*fcinfo, &eqproc, 2, collation,
+ NULL, NULL);
+ fcinfo->args[0].isnull = false;
+ fcinfo->args[1].isnull = false;
+
+ hasmatch1 = (bool *) palloc0(sslot1->nvalues * sizeof(bool));
+ hasmatch2 = (bool *) palloc0(clamped_nvalues2 * sizeof(bool));
+
+ /*
+ * Note we assume that each MCV will match at most one member of the
+ * other MCV list. If the operator isn't really equality, there could
+ * be multiple matches --- but we don't look for them, both for speed
+ * and because the math wouldn't add up...
+ */
+ nmatches = 0;
+ for (i = 0; i < sslot1->nvalues; i++)
+ {
+ int j;
+
+ fcinfo->args[0].value = sslot1->values[i];
+
+ for (j = 0; j < clamped_nvalues2; j++)
+ {
+ Datum fresult;
+
+ if (hasmatch2[j])
+ continue;
+ fcinfo->args[1].value = sslot2->values[j];
+ fcinfo->isnull = false;
+ fresult = FunctionCallInvoke(fcinfo);
+ if (!fcinfo->isnull && DatumGetBool(fresult))
+ {
+ hasmatch1[i] = hasmatch2[j] = true;
+ nmatches++;
+ break;
+ }
+ }
+ }
+ /* Sum up frequencies of matched MCVs */
+ matchfreq1 = 0.0;
+ for (i = 0; i < sslot1->nvalues; i++)
+ {
+ if (hasmatch1[i])
+ matchfreq1 += sslot1->numbers[i];
+ }
+ CLAMP_PROBABILITY(matchfreq1);
+ pfree(hasmatch1);
+ pfree(hasmatch2);
+
+ /*
+ * Now we need to estimate the fraction of relation 1 that has at
+ * least one join partner. We know for certain that the matched MCVs
+ * do, so that gives us a lower bound, but we're really in the dark
+ * about everything else. Our crude approach is: if nd1 <= nd2 then
+ * assume all non-null rel1 rows have join partners, else assume for
+ * the uncertain rows that a fraction nd2/nd1 have join partners. We
+ * can discount the known-matched MCVs from the distinct-values counts
+ * before doing the division.
+ *
+ * Crude as the above is, it's completely useless if we don't have
+ * reliable ndistinct values for both sides. Hence, if either nd1 or
+ * nd2 is default, punt and assume half of the uncertain rows have
+ * join partners.
+ */
+ if (!isdefault1 && !isdefault2)
+ {
+ nd1 -= nmatches;
+ nd2 -= nmatches;
+ if (nd1 <= nd2 || nd2 < 0)
+ uncertainfrac = 1.0;
+ else
+ uncertainfrac = nd2 / nd1;
+ }
+ else
+ uncertainfrac = 0.5;
+ uncertain = 1.0 - matchfreq1 - nullfrac1;
+ CLAMP_PROBABILITY(uncertain);
+ selec = matchfreq1 + uncertainfrac * uncertain;
+ }
+ else
+ {
+ /*
+ * Without MCV lists for both sides, we can only use the heuristic
+ * about nd1 vs nd2.
+ */
+ double nullfrac1 = stats1 ? stats1->stanullfrac : 0.0;
+
+ if (!isdefault1 && !isdefault2)
+ {
+ if (nd1 <= nd2 || nd2 < 0)
+ selec = 1.0 - nullfrac1;
+ else
+ selec = (nd2 / nd1) * (1.0 - nullfrac1);
+ }
+ else
+ selec = 0.5 * (1.0 - nullfrac1);
+ }
+
+ return selec;
+}
+
+/*
+ * neqjoinsel - Join selectivity of "!="
+ */
+Datum
+neqjoinsel(PG_FUNCTION_ARGS)
+{
+ PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
+ Oid operator = PG_GETARG_OID(1);
+ List *args = (List *) PG_GETARG_POINTER(2);
+ JoinType jointype = (JoinType) PG_GETARG_INT16(3);
+ SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) PG_GETARG_POINTER(4);
+ Oid collation = PG_GET_COLLATION();
+ float8 result;
+
+ if (jointype == JOIN_SEMI || jointype == JOIN_ANTI)
+ {
+ /*
+ * For semi-joins, if there is more than one distinct value in the RHS
+ * relation then every non-null LHS row must find a row to join since
+ * it can only be equal to one of them. We'll assume that there is
+ * always more than one distinct RHS value for the sake of stability,
+ * though in theory we could have special cases for empty RHS
+ * (selectivity = 0) and single-distinct-value RHS (selectivity =
+ * fraction of LHS that has the same value as the single RHS value).
+ *
+ * For anti-joins, if we use the same assumption that there is more
+ * than one distinct key in the RHS relation, then every non-null LHS
+ * row must be suppressed by the anti-join.
+ *
+ * So either way, the selectivity estimate should be 1 - nullfrac.
+ */
+ VariableStatData leftvar;
+ VariableStatData rightvar;
+ bool reversed;
+ HeapTuple statsTuple;
+ double nullfrac;
+
+ get_join_variables(root, args, sjinfo, &leftvar, &rightvar, &reversed);
+ statsTuple = reversed ? rightvar.statsTuple : leftvar.statsTuple;
+ if (HeapTupleIsValid(statsTuple))
+ nullfrac = ((Form_pg_statistic) GETSTRUCT(statsTuple))->stanullfrac;
+ else
+ nullfrac = 0.0;
+ ReleaseVariableStats(leftvar);
+ ReleaseVariableStats(rightvar);
+
+ result = 1.0 - nullfrac;
+ }
+ else
+ {
+ /*
+ * We want 1 - eqjoinsel() where the equality operator is the one
+ * associated with this != operator, that is, its negator.
+ */
+ Oid eqop = get_negator(operator);
+
+ if (eqop)
+ {
+ result =
+ DatumGetFloat8(DirectFunctionCall5Coll(eqjoinsel,
+ collation,
+ PointerGetDatum(root),
+ ObjectIdGetDatum(eqop),
+ PointerGetDatum(args),
+ Int16GetDatum(jointype),
+ PointerGetDatum(sjinfo)));
+ }
+ else
+ {
+ /* Use default selectivity (should we raise an error instead?) */
+ result = DEFAULT_EQ_SEL;
+ }
+ result = 1.0 - result;
+ }
+
+ PG_RETURN_FLOAT8(result);
+}
+
+/*
+ * scalarltjoinsel - Join selectivity of "<" for scalars
+ */
+Datum
+scalarltjoinsel(PG_FUNCTION_ARGS)
+{
+ PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
+}
+
+/*
+ * scalarlejoinsel - Join selectivity of "<=" for scalars
+ */
+Datum
+scalarlejoinsel(PG_FUNCTION_ARGS)
+{
+ PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
+}
+
+/*
+ * scalargtjoinsel - Join selectivity of ">" for scalars
+ */
+Datum
+scalargtjoinsel(PG_FUNCTION_ARGS)
+{
+ PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
+}
+
+/*
+ * scalargejoinsel - Join selectivity of ">=" for scalars
+ */
+Datum
+scalargejoinsel(PG_FUNCTION_ARGS)
+{
+ PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
+}
+
+
+/*
+ * mergejoinscansel - Scan selectivity of merge join.
+ *
+ * A merge join will stop as soon as it exhausts either input stream.
+ * Therefore, if we can estimate the ranges of both input variables,
+ * we can estimate how much of the input will actually be read. This
+ * can have a considerable impact on the cost when using indexscans.
+ *
+ * Also, we can estimate how much of each input has to be read before the
+ * first join pair is found, which will affect the join's startup time.
+ *
+ * clause should be a clause already known to be mergejoinable. opfamily,
+ * strategy, and nulls_first specify the sort ordering being used.
+ *
+ * The outputs are:
+ * *leftstart is set to the fraction of the left-hand variable expected
+ * to be scanned before the first join pair is found (0 to 1).
+ * *leftend is set to the fraction of the left-hand variable expected
+ * to be scanned before the join terminates (0 to 1).
+ * *rightstart, *rightend similarly for the right-hand variable.
+ */
+void
+mergejoinscansel(PlannerInfo *root, Node *clause,
+ Oid opfamily, int strategy, bool nulls_first,
+ Selectivity *leftstart, Selectivity *leftend,
+ Selectivity *rightstart, Selectivity *rightend)
+{
+ Node *left,
+ *right;
+ VariableStatData leftvar,
+ rightvar;
+ int op_strategy;
+ Oid op_lefttype;
+ Oid op_righttype;
+ Oid opno,
+ collation,
+ lsortop,
+ rsortop,
+ lstatop,
+ rstatop,
+ ltop,
+ leop,
+ revltop,
+ revleop;
+ bool isgt;
+ Datum leftmin,
+ leftmax,
+ rightmin,
+ rightmax;
+ double selec;
+
+ /* Set default results if we can't figure anything out. */
+ /* XXX should default "start" fraction be a bit more than 0? */
+ *leftstart = *rightstart = 0.0;
+ *leftend = *rightend = 1.0;
+
+ /* Deconstruct the merge clause */
+ if (!is_opclause(clause))
+ return; /* shouldn't happen */
+ opno = ((OpExpr *) clause)->opno;
+ collation = ((OpExpr *) clause)->inputcollid;
+ left = get_leftop((Expr *) clause);
+ right = get_rightop((Expr *) clause);
+ if (!right)
+ return; /* shouldn't happen */
+
+ /* Look for stats for the inputs */
+ examine_variable(root, left, 0, &leftvar);
+ examine_variable(root, right, 0, &rightvar);
+
+ /* Extract the operator's declared left/right datatypes */
+ get_op_opfamily_properties(opno, opfamily, false,
+ &op_strategy,
+ &op_lefttype,
+ &op_righttype);
+ Assert(op_strategy == BTEqualStrategyNumber);
+
+ /*
+ * Look up the various operators we need. If we don't find them all, it
+ * probably means the opfamily is broken, but we just fail silently.
+ *
+ * Note: we expect that pg_statistic histograms will be sorted by the '<'
+ * operator, regardless of which sort direction we are considering.
+ */
+ switch (strategy)
+ {
+ case BTLessStrategyNumber:
+ isgt = false;
+ if (op_lefttype == op_righttype)
+ {
+ /* easy case */
+ ltop = get_opfamily_member(opfamily,
+ op_lefttype, op_righttype,
+ BTLessStrategyNumber);
+ leop = get_opfamily_member(opfamily,
+ op_lefttype, op_righttype,
+ BTLessEqualStrategyNumber);
+ lsortop = ltop;
+ rsortop = ltop;
+ lstatop = lsortop;
+ rstatop = rsortop;
+ revltop = ltop;
+ revleop = leop;
+ }
+ else
+ {
+ ltop = get_opfamily_member(opfamily,
+ op_lefttype, op_righttype,
+ BTLessStrategyNumber);
+ leop = get_opfamily_member(opfamily,
+ op_lefttype, op_righttype,
+ BTLessEqualStrategyNumber);
+ lsortop = get_opfamily_member(opfamily,
+ op_lefttype, op_lefttype,
+ BTLessStrategyNumber);
+ rsortop = get_opfamily_member(opfamily,
+ op_righttype, op_righttype,
+ BTLessStrategyNumber);
+ lstatop = lsortop;
+ rstatop = rsortop;
+ revltop = get_opfamily_member(opfamily,
+ op_righttype, op_lefttype,
+ BTLessStrategyNumber);
+ revleop = get_opfamily_member(opfamily,
+ op_righttype, op_lefttype,
+ BTLessEqualStrategyNumber);
+ }
+ break;
+ case BTGreaterStrategyNumber:
+ /* descending-order case */
+ isgt = true;
+ if (op_lefttype == op_righttype)
+ {
+ /* easy case */
+ ltop = get_opfamily_member(opfamily,
+ op_lefttype, op_righttype,
+ BTGreaterStrategyNumber);
+ leop = get_opfamily_member(opfamily,
+ op_lefttype, op_righttype,
+ BTGreaterEqualStrategyNumber);
+ lsortop = ltop;
+ rsortop = ltop;
+ lstatop = get_opfamily_member(opfamily,
+ op_lefttype, op_lefttype,
+ BTLessStrategyNumber);
+ rstatop = lstatop;
+ revltop = ltop;
+ revleop = leop;
+ }
+ else
+ {
+ ltop = get_opfamily_member(opfamily,
+ op_lefttype, op_righttype,
+ BTGreaterStrategyNumber);
+ leop = get_opfamily_member(opfamily,
+ op_lefttype, op_righttype,
+ BTGreaterEqualStrategyNumber);
+ lsortop = get_opfamily_member(opfamily,
+ op_lefttype, op_lefttype,
+ BTGreaterStrategyNumber);
+ rsortop = get_opfamily_member(opfamily,
+ op_righttype, op_righttype,
+ BTGreaterStrategyNumber);
+ lstatop = get_opfamily_member(opfamily,
+ op_lefttype, op_lefttype,
+ BTLessStrategyNumber);
+ rstatop = get_opfamily_member(opfamily,
+ op_righttype, op_righttype,
+ BTLessStrategyNumber);
+ revltop = get_opfamily_member(opfamily,
+ op_righttype, op_lefttype,
+ BTGreaterStrategyNumber);
+ revleop = get_opfamily_member(opfamily,
+ op_righttype, op_lefttype,
+ BTGreaterEqualStrategyNumber);
+ }
+ break;
+ default:
+ goto fail; /* shouldn't get here */
+ }
+
+ if (!OidIsValid(lsortop) ||
+ !OidIsValid(rsortop) ||
+ !OidIsValid(lstatop) ||
+ !OidIsValid(rstatop) ||
+ !OidIsValid(ltop) ||
+ !OidIsValid(leop) ||
+ !OidIsValid(revltop) ||
+ !OidIsValid(revleop))
+ goto fail; /* insufficient info in catalogs */
+
+ /* Try to get ranges of both inputs */
+ if (!isgt)
+ {
+ if (!get_variable_range(root, &leftvar, lstatop, collation,
+ &leftmin, &leftmax))
+ goto fail; /* no range available from stats */
+ if (!get_variable_range(root, &rightvar, rstatop, collation,
+ &rightmin, &rightmax))
+ goto fail; /* no range available from stats */
+ }
+ else
+ {
+ /* need to swap the max and min */
+ if (!get_variable_range(root, &leftvar, lstatop, collation,
+ &leftmax, &leftmin))
+ goto fail; /* no range available from stats */
+ if (!get_variable_range(root, &rightvar, rstatop, collation,
+ &rightmax, &rightmin))
+ goto fail; /* no range available from stats */
+ }
+
+ /*
+ * Now, the fraction of the left variable that will be scanned is the
+ * fraction that's <= the right-side maximum value. But only believe
+ * non-default estimates, else stick with our 1.0.
+ */
+ selec = scalarineqsel(root, leop, isgt, true, collation, &leftvar,
+ rightmax, op_righttype);
+ if (selec != DEFAULT_INEQ_SEL)
+ *leftend = selec;
+
+ /* And similarly for the right variable. */
+ selec = scalarineqsel(root, revleop, isgt, true, collation, &rightvar,
+ leftmax, op_lefttype);
+ if (selec != DEFAULT_INEQ_SEL)
+ *rightend = selec;
+
+ /*
+ * Only one of the two "end" fractions can really be less than 1.0;
+ * believe the smaller estimate and reset the other one to exactly 1.0. If
+ * we get exactly equal estimates (as can easily happen with self-joins),
+ * believe neither.
+ */
+ if (*leftend > *rightend)
+ *leftend = 1.0;
+ else if (*leftend < *rightend)
+ *rightend = 1.0;
+ else
+ *leftend = *rightend = 1.0;
+
+ /*
+ * Also, the fraction of the left variable that will be scanned before the
+ * first join pair is found is the fraction that's < the right-side
+ * minimum value. But only believe non-default estimates, else stick with
+ * our own default.
+ */
+ selec = scalarineqsel(root, ltop, isgt, false, collation, &leftvar,
+ rightmin, op_righttype);
+ if (selec != DEFAULT_INEQ_SEL)
+ *leftstart = selec;
+
+ /* And similarly for the right variable. */
+ selec = scalarineqsel(root, revltop, isgt, false, collation, &rightvar,
+ leftmin, op_lefttype);
+ if (selec != DEFAULT_INEQ_SEL)
+ *rightstart = selec;
+
+ /*
+ * Only one of the two "start" fractions can really be more than zero;
+ * believe the larger estimate and reset the other one to exactly 0.0. If
+ * we get exactly equal estimates (as can easily happen with self-joins),
+ * believe neither.
+ */
+ if (*leftstart < *rightstart)
+ *leftstart = 0.0;
+ else if (*leftstart > *rightstart)
+ *rightstart = 0.0;
+ else
+ *leftstart = *rightstart = 0.0;
+
+ /*
+ * If the sort order is nulls-first, we're going to have to skip over any
+ * nulls too. These would not have been counted by scalarineqsel, and we
+ * can safely add in this fraction regardless of whether we believe
+ * scalarineqsel's results or not. But be sure to clamp the sum to 1.0!
+ */
+ if (nulls_first)
+ {
+ Form_pg_statistic stats;
+
+ if (HeapTupleIsValid(leftvar.statsTuple))
+ {
+ stats = (Form_pg_statistic) GETSTRUCT(leftvar.statsTuple);
+ *leftstart += stats->stanullfrac;
+ CLAMP_PROBABILITY(*leftstart);
+ *leftend += stats->stanullfrac;
+ CLAMP_PROBABILITY(*leftend);
+ }
+ if (HeapTupleIsValid(rightvar.statsTuple))
+ {
+ stats = (Form_pg_statistic) GETSTRUCT(rightvar.statsTuple);
+ *rightstart += stats->stanullfrac;
+ CLAMP_PROBABILITY(*rightstart);
+ *rightend += stats->stanullfrac;
+ CLAMP_PROBABILITY(*rightend);
+ }
+ }
+
+ /* Disbelieve start >= end, just in case that can happen */
+ if (*leftstart >= *leftend)
+ {
+ *leftstart = 0.0;
+ *leftend = 1.0;
+ }
+ if (*rightstart >= *rightend)
+ {
+ *rightstart = 0.0;
+ *rightend = 1.0;
+ }
+
+fail:
+ ReleaseVariableStats(leftvar);
+ ReleaseVariableStats(rightvar);
+}
+
+
+/*
+ * matchingsel -- generic matching-operator selectivity support
+ *
+ * Use these for any operators that (a) are on data types for which we collect
+ * standard statistics, and (b) have behavior for which the default estimate
+ * (twice DEFAULT_EQ_SEL) is sane. Typically that is good for match-like
+ * operators.
+ */
+
+Datum
+matchingsel(PG_FUNCTION_ARGS)
+{
+ PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
+ Oid operator = PG_GETARG_OID(1);
+ List *args = (List *) PG_GETARG_POINTER(2);
+ int varRelid = PG_GETARG_INT32(3);
+ Oid collation = PG_GET_COLLATION();
+ double selec;
+
+ /* Use generic restriction selectivity logic. */
+ selec = generic_restriction_selectivity(root, operator, collation,
+ args, varRelid,
+ DEFAULT_MATCHING_SEL);
+
+ PG_RETURN_FLOAT8((float8) selec);
+}
+
+Datum
+matchingjoinsel(PG_FUNCTION_ARGS)
+{
+ /* Just punt, for the moment. */
+ PG_RETURN_FLOAT8(DEFAULT_MATCHING_SEL);
+}
+
+
+/*
+ * Helper routine for estimate_num_groups: add an item to a list of
+ * GroupVarInfos, but only if it's not known equal to any of the existing
+ * entries.
+ */
+typedef struct
+{
+ Node *var; /* might be an expression, not just a Var */
+ RelOptInfo *rel; /* relation it belongs to */
+ double ndistinct; /* # distinct values */
+ bool isdefault; /* true if DEFAULT_NUM_DISTINCT was used */
+} GroupVarInfo;
+
+static List *
+add_unique_group_var(PlannerInfo *root, List *varinfos,
+ Node *var, VariableStatData *vardata)
+{
+ GroupVarInfo *varinfo;
+ double ndistinct;
+ bool isdefault;
+ ListCell *lc;
+
+ ndistinct = get_variable_numdistinct(vardata, &isdefault);
+
+ foreach(lc, varinfos)
+ {
+ varinfo = (GroupVarInfo *) lfirst(lc);
+
+ /* Drop exact duplicates */
+ if (equal(var, varinfo->var))
+ return varinfos;
+
+ /*
+ * Drop known-equal vars, but only if they belong to different
+ * relations (see comments for estimate_num_groups)
+ */
+ if (vardata->rel != varinfo->rel &&
+ exprs_known_equal(root, var, varinfo->var))
+ {
+ if (varinfo->ndistinct <= ndistinct)
+ {
+ /* Keep older item, forget new one */
+ return varinfos;
+ }
+ else
+ {
+ /* Delete the older item */
+ varinfos = foreach_delete_current(varinfos, lc);
+ }
+ }
+ }
+
+ varinfo = (GroupVarInfo *) palloc(sizeof(GroupVarInfo));
+
+ varinfo->var = var;
+ varinfo->rel = vardata->rel;
+ varinfo->ndistinct = ndistinct;
+ varinfo->isdefault = isdefault;
+ varinfos = lappend(varinfos, varinfo);
+ return varinfos;
+}
+
+/*
+ * estimate_num_groups - Estimate number of groups in a grouped query
+ *
+ * Given a query having a GROUP BY clause, estimate how many groups there
+ * will be --- ie, the number of distinct combinations of the GROUP BY
+ * expressions.
+ *
+ * This routine is also used to estimate the number of rows emitted by
+ * a DISTINCT filtering step; that is an isomorphic problem. (Note:
+ * actually, we only use it for DISTINCT when there's no grouping or
+ * aggregation ahead of the DISTINCT.)
+ *
+ * Inputs:
+ * root - the query
+ * groupExprs - list of expressions being grouped by
+ * input_rows - number of rows estimated to arrive at the group/unique
+ * filter step
+ * pgset - NULL, or a List** pointing to a grouping set to filter the
+ * groupExprs against
+ *
+ * Outputs:
+ * estinfo - When passed as non-NULL, the function will set bits in the
+ * "flags" field in order to provide callers with additional information
+ * about the estimation. Currently, we only set the SELFLAG_USED_DEFAULT
+ * bit if we used any default values in the estimation.
+ *
+ * Given the lack of any cross-correlation statistics in the system, it's
+ * impossible to do anything really trustworthy with GROUP BY conditions
+ * involving multiple Vars. We should however avoid assuming the worst
+ * case (all possible cross-product terms actually appear as groups) since
+ * very often the grouped-by Vars are highly correlated. Our current approach
+ * is as follows:
+ * 1. Expressions yielding boolean are assumed to contribute two groups,
+ * independently of their content, and are ignored in the subsequent
+ * steps. This is mainly because tests like "col IS NULL" break the
+ * heuristic used in step 2 especially badly.
+ * 2. Reduce the given expressions to a list of unique Vars used. For
+ * example, GROUP BY a, a + b is treated the same as GROUP BY a, b.
+ * It is clearly correct not to count the same Var more than once.
+ * It is also reasonable to treat f(x) the same as x: f() cannot
+ * increase the number of distinct values (unless it is volatile,
+ * which we consider unlikely for grouping), but it probably won't
+ * reduce the number of distinct values much either.
+ * As a special case, if a GROUP BY expression can be matched to an
+ * expressional index for which we have statistics, then we treat the
+ * whole expression as though it were just a Var.
+ * 3. If the list contains Vars of different relations that are known equal
+ * due to equivalence classes, then drop all but one of the Vars from each
+ * known-equal set, keeping the one with smallest estimated # of values
+ * (since the extra values of the others can't appear in joined rows).
+ * Note the reason we only consider Vars of different relations is that
+ * if we considered ones of the same rel, we'd be double-counting the
+ * restriction selectivity of the equality in the next step.
+ * 4. For Vars within a single source rel, we multiply together the numbers
+ * of values, clamp to the number of rows in the rel (divided by 10 if
+ * more than one Var), and then multiply by a factor based on the
+ * selectivity of the restriction clauses for that rel. When there's
+ * more than one Var, the initial product is probably too high (it's the
+ * worst case) but clamping to a fraction of the rel's rows seems to be a
+ * helpful heuristic for not letting the estimate get out of hand. (The
+ * factor of 10 is derived from pre-Postgres-7.4 practice.) The factor
+ * we multiply by to adjust for the restriction selectivity assumes that
+ * the restriction clauses are independent of the grouping, which may not
+ * be a valid assumption, but it's hard to do better.
+ * 5. If there are Vars from multiple rels, we repeat step 4 for each such
+ * rel, and multiply the results together.
+ * Note that rels not containing grouped Vars are ignored completely, as are
+ * join clauses. Such rels cannot increase the number of groups, and we
+ * assume such clauses do not reduce the number either (somewhat bogus,
+ * but we don't have the info to do better).
+ */
+double
+estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows,
+ List **pgset, EstimationInfo *estinfo)
+{
+ List *varinfos = NIL;
+ double srf_multiplier = 1.0;
+ double numdistinct;
+ ListCell *l;
+ int i;
+
+ /* Zero the estinfo output parameter, if non-NULL */
+ if (estinfo != NULL)
+ memset(estinfo, 0, sizeof(EstimationInfo));
+
+ /*
+ * We don't ever want to return an estimate of zero groups, as that tends
+ * to lead to division-by-zero and other unpleasantness. The input_rows
+ * estimate is usually already at least 1, but clamp it just in case it
+ * isn't.
+ */
+ input_rows = clamp_row_est(input_rows);
+
+ /*
+ * If no grouping columns, there's exactly one group. (This can't happen
+ * for normal cases with GROUP BY or DISTINCT, but it is possible for
+ * corner cases with set operations.)
+ */
+ if (groupExprs == NIL || (pgset && list_length(*pgset) < 1))
+ return 1.0;
+
+ /*
+ * Count groups derived from boolean grouping expressions. For other
+ * expressions, find the unique Vars used, treating an expression as a Var
+ * if we can find stats for it. For each one, record the statistical
+ * estimate of number of distinct values (total in its table, without
+ * regard for filtering).
+ */
+ numdistinct = 1.0;
+
+ i = 0;
+ foreach(l, groupExprs)
+ {
+ Node *groupexpr = (Node *) lfirst(l);
+ double this_srf_multiplier;
+ VariableStatData vardata;
+ List *varshere;
+ ListCell *l2;
+
+ /* is expression in this grouping set? */
+ if (pgset && !list_member_int(*pgset, i++))
+ continue;
+
+ /*
+ * Set-returning functions in grouping columns are a bit problematic.
+ * The code below will effectively ignore their SRF nature and come up
+ * with a numdistinct estimate as though they were scalar functions.
+ * We compensate by scaling up the end result by the largest SRF
+ * rowcount estimate. (This will be an overestimate if the SRF
+ * produces multiple copies of any output value, but it seems best to
+ * assume the SRF's outputs are distinct. In any case, it's probably
+ * pointless to worry too much about this without much better
+ * estimates for SRF output rowcounts than we have today.)
+ */
+ this_srf_multiplier = expression_returns_set_rows(root, groupexpr);
+ if (srf_multiplier < this_srf_multiplier)
+ srf_multiplier = this_srf_multiplier;
+
+ /* Short-circuit for expressions returning boolean */
+ if (exprType(groupexpr) == BOOLOID)
+ {
+ numdistinct *= 2.0;
+ continue;
+ }
+
+ /*
+ * If examine_variable is able to deduce anything about the GROUP BY
+ * expression, treat it as a single variable even if it's really more
+ * complicated.
+ *
+ * XXX This has the consequence that if there's a statistics object on
+ * the expression, we don't split it into individual Vars. This
+ * affects our selection of statistics in
+ * estimate_multivariate_ndistinct, because it's probably better to
+ * use more accurate estimate for each expression and treat them as
+ * independent, than to combine estimates for the extracted variables
+ * when we don't know how that relates to the expressions.
+ */
+ examine_variable(root, groupexpr, 0, &vardata);
+ if (HeapTupleIsValid(vardata.statsTuple) || vardata.isunique)
+ {
+ varinfos = add_unique_group_var(root, varinfos,
+ groupexpr, &vardata);
+ ReleaseVariableStats(vardata);
+ continue;
+ }
+ ReleaseVariableStats(vardata);
+
+ /*
+ * Else pull out the component Vars. Handle PlaceHolderVars by
+ * recursing into their arguments (effectively assuming that the
+ * PlaceHolderVar doesn't change the number of groups, which boils
+ * down to ignoring the possible addition of nulls to the result set).
+ */
+ varshere = pull_var_clause(groupexpr,
+ PVC_RECURSE_AGGREGATES |
+ PVC_RECURSE_WINDOWFUNCS |
+ PVC_RECURSE_PLACEHOLDERS);
+
+ /*
+ * If we find any variable-free GROUP BY item, then either it is a
+ * constant (and we can ignore it) or it contains a volatile function;
+ * in the latter case we punt and assume that each input row will
+ * yield a distinct group.
+ */
+ if (varshere == NIL)
+ {
+ if (contain_volatile_functions(groupexpr))
+ return input_rows;
+ continue;
+ }
+
+ /*
+ * Else add variables to varinfos list
+ */
+ foreach(l2, varshere)
+ {
+ Node *var = (Node *) lfirst(l2);
+
+ examine_variable(root, var, 0, &vardata);
+ varinfos = add_unique_group_var(root, varinfos, var, &vardata);
+ ReleaseVariableStats(vardata);
+ }
+ }
+
+ /*
+ * If now no Vars, we must have an all-constant or all-boolean GROUP BY
+ * list.
+ */
+ if (varinfos == NIL)
+ {
+ /* Apply SRF multiplier as we would do in the long path */
+ numdistinct *= srf_multiplier;
+ /* Round off */
+ numdistinct = ceil(numdistinct);
+ /* Guard against out-of-range answers */
+ if (numdistinct > input_rows)
+ numdistinct = input_rows;
+ if (numdistinct < 1.0)
+ numdistinct = 1.0;
+ return numdistinct;
+ }
+
+ /*
+ * Group Vars by relation and estimate total numdistinct.
+ *
+ * For each iteration of the outer loop, we process the frontmost Var in
+ * varinfos, plus all other Vars in the same relation. We remove these
+ * Vars from the newvarinfos list for the next iteration. This is the
+ * easiest way to group Vars of same rel together.
+ */
+ do
+ {
+ GroupVarInfo *varinfo1 = (GroupVarInfo *) linitial(varinfos);
+ RelOptInfo *rel = varinfo1->rel;
+ double reldistinct = 1;
+ double relmaxndistinct = reldistinct;
+ int relvarcount = 0;
+ List *newvarinfos = NIL;
+ List *relvarinfos = NIL;
+
+ /*
+ * Split the list of varinfos in two - one for the current rel, one
+ * for remaining Vars on other rels.
+ */
+ relvarinfos = lappend(relvarinfos, varinfo1);
+ for_each_from(l, varinfos, 1)
+ {
+ GroupVarInfo *varinfo2 = (GroupVarInfo *) lfirst(l);
+
+ if (varinfo2->rel == varinfo1->rel)
+ {
+ /* varinfos on current rel */
+ relvarinfos = lappend(relvarinfos, varinfo2);
+ }
+ else
+ {
+ /* not time to process varinfo2 yet */
+ newvarinfos = lappend(newvarinfos, varinfo2);
+ }
+ }
+
+ /*
+ * Get the numdistinct estimate for the Vars of this rel. We
+ * iteratively search for multivariate n-distinct with maximum number
+ * of vars; assuming that each var group is independent of the others,
+ * we multiply them together. Any remaining relvarinfos after no more
+ * multivariate matches are found are assumed independent too, so
+ * their individual ndistinct estimates are multiplied also.
+ *
+ * While iterating, count how many separate numdistinct values we
+ * apply. We apply a fudge factor below, but only if we multiplied
+ * more than one such values.
+ */
+ while (relvarinfos)
+ {
+ double mvndistinct;
+
+ if (estimate_multivariate_ndistinct(root, rel, &relvarinfos,
+ &mvndistinct))
+ {
+ reldistinct *= mvndistinct;
+ if (relmaxndistinct < mvndistinct)
+ relmaxndistinct = mvndistinct;
+ relvarcount++;
+ }
+ else
+ {
+ foreach(l, relvarinfos)
+ {
+ GroupVarInfo *varinfo2 = (GroupVarInfo *) lfirst(l);
+
+ reldistinct *= varinfo2->ndistinct;
+ if (relmaxndistinct < varinfo2->ndistinct)
+ relmaxndistinct = varinfo2->ndistinct;
+ relvarcount++;
+
+ /*
+ * When varinfo2's isdefault is set then we'd better set
+ * the SELFLAG_USED_DEFAULT bit in the EstimationInfo.
+ */
+ if (estinfo != NULL && varinfo2->isdefault)
+ estinfo->flags |= SELFLAG_USED_DEFAULT;
+
+ }
+
+ /* we're done with this relation */
+ relvarinfos = NIL;
+ }
+ }
+
+ /*
+ * Sanity check --- don't divide by zero if empty relation.
+ */
+ Assert(IS_SIMPLE_REL(rel));
+ if (rel->tuples > 0)
+ {
+ /*
+ * Clamp to size of rel, or size of rel / 10 if multiple Vars. The
+ * fudge factor is because the Vars are probably correlated but we
+ * don't know by how much. We should never clamp to less than the
+ * largest ndistinct value for any of the Vars, though, since
+ * there will surely be at least that many groups.
+ */
+ double clamp = rel->tuples;
+
+ if (relvarcount > 1)
+ {
+ clamp *= 0.1;
+ if (clamp < relmaxndistinct)
+ {
+ clamp = relmaxndistinct;
+ /* for sanity in case some ndistinct is too large: */
+ if (clamp > rel->tuples)
+ clamp = rel->tuples;
+ }
+ }
+ if (reldistinct > clamp)
+ reldistinct = clamp;
+
+ /*
+ * Update the estimate based on the restriction selectivity,
+ * guarding against division by zero when reldistinct is zero.
+ * Also skip this if we know that we are returning all rows.
+ */
+ if (reldistinct > 0 && rel->rows < rel->tuples)
+ {
+ /*
+ * Given a table containing N rows with n distinct values in a
+ * uniform distribution, if we select p rows at random then
+ * the expected number of distinct values selected is
+ *
+ * n * (1 - product((N-N/n-i)/(N-i), i=0..p-1))
+ *
+ * = n * (1 - (N-N/n)! / (N-N/n-p)! * (N-p)! / N!)
+ *
+ * See "Approximating block accesses in database
+ * organizations", S. B. Yao, Communications of the ACM,
+ * Volume 20 Issue 4, April 1977 Pages 260-261.
+ *
+ * Alternatively, re-arranging the terms from the factorials,
+ * this may be written as
+ *
+ * n * (1 - product((N-p-i)/(N-i), i=0..N/n-1))
+ *
+ * This form of the formula is more efficient to compute in
+ * the common case where p is larger than N/n. Additionally,
+ * as pointed out by Dell'Era, if i << N for all terms in the
+ * product, it can be approximated by
+ *
+ * n * (1 - ((N-p)/N)^(N/n))
+ *
+ * See "Expected distinct values when selecting from a bag
+ * without replacement", Alberto Dell'Era,
+ * http://www.adellera.it/investigations/distinct_balls/.
+ *
+ * The condition i << N is equivalent to n >> 1, so this is a
+ * good approximation when the number of distinct values in
+ * the table is large. It turns out that this formula also
+ * works well even when n is small.
+ */
+ reldistinct *=
+ (1 - pow((rel->tuples - rel->rows) / rel->tuples,
+ rel->tuples / reldistinct));
+ }
+ reldistinct = clamp_row_est(reldistinct);
+
+ /*
+ * Update estimate of total distinct groups.
+ */
+ numdistinct *= reldistinct;
+ }
+
+ varinfos = newvarinfos;
+ } while (varinfos != NIL);
+
+ /* Now we can account for the effects of any SRFs */
+ numdistinct *= srf_multiplier;
+
+ /* Round off */
+ numdistinct = ceil(numdistinct);
+
+ /* Guard against out-of-range answers */
+ if (numdistinct > input_rows)
+ numdistinct = input_rows;
+ if (numdistinct < 1.0)
+ numdistinct = 1.0;
+
+ return numdistinct;
+}
+
+/*
+ * Estimate hash bucket statistics when the specified expression is used
+ * as a hash key for the given number of buckets.
+ *
+ * This attempts to determine two values:
+ *
+ * 1. The frequency of the most common value of the expression (returns
+ * zero into *mcv_freq if we can't get that).
+ *
+ * 2. The "bucketsize fraction", ie, average number of entries in a bucket
+ * divided by total tuples in relation.
+ *
+ * XXX This is really pretty bogus since we're effectively assuming that the
+ * distribution of hash keys will be the same after applying restriction
+ * clauses as it was in the underlying relation. However, we are not nearly
+ * smart enough to figure out how the restrict clauses might change the
+ * distribution, so this will have to do for now.
+ *
+ * We are passed the number of buckets the executor will use for the given
+ * input relation. If the data were perfectly distributed, with the same
+ * number of tuples going into each available bucket, then the bucketsize
+ * fraction would be 1/nbuckets. But this happy state of affairs will occur
+ * only if (a) there are at least nbuckets distinct data values, and (b)
+ * we have a not-too-skewed data distribution. Otherwise the buckets will
+ * be nonuniformly occupied. If the other relation in the join has a key
+ * distribution similar to this one's, then the most-loaded buckets are
+ * exactly those that will be probed most often. Therefore, the "average"
+ * bucket size for costing purposes should really be taken as something close
+ * to the "worst case" bucket size. We try to estimate this by adjusting the
+ * fraction if there are too few distinct data values, and then scaling up
+ * by the ratio of the most common value's frequency to the average frequency.
+ *
+ * If no statistics are available, use a default estimate of 0.1. This will
+ * discourage use of a hash rather strongly if the inner relation is large,
+ * which is what we want. We do not want to hash unless we know that the
+ * inner rel is well-dispersed (or the alternatives seem much worse).
+ *
+ * The caller should also check that the mcv_freq is not so large that the
+ * most common value would by itself require an impractically large bucket.
+ * In a hash join, the executor can split buckets if they get too big, but
+ * obviously that doesn't help for a bucket that contains many duplicates of
+ * the same value.
+ */
+void
+estimate_hash_bucket_stats(PlannerInfo *root, Node *hashkey, double nbuckets,
+ Selectivity *mcv_freq,
+ Selectivity *bucketsize_frac)
+{
+ VariableStatData vardata;
+ double estfract,
+ ndistinct,
+ stanullfrac,
+ avgfreq;
+ bool isdefault;
+ AttStatsSlot sslot;
+
+ examine_variable(root, hashkey, 0, &vardata);
+
+ /* Look up the frequency of the most common value, if available */
+ *mcv_freq = 0.0;
+
+ if (HeapTupleIsValid(vardata.statsTuple))
+ {
+ if (get_attstatsslot(&sslot, vardata.statsTuple,
+ STATISTIC_KIND_MCV, InvalidOid,
+ ATTSTATSSLOT_NUMBERS))
+ {
+ /*
+ * The first MCV stat is for the most common value.
+ */
+ if (sslot.nnumbers > 0)
+ *mcv_freq = sslot.numbers[0];
+ free_attstatsslot(&sslot);
+ }
+ }
+
+ /* Get number of distinct values */
+ ndistinct = get_variable_numdistinct(&vardata, &isdefault);
+
+ /*
+ * If ndistinct isn't real, punt. We normally return 0.1, but if the
+ * mcv_freq is known to be even higher than that, use it instead.
+ */
+ if (isdefault)
+ {
+ *bucketsize_frac = (Selectivity) Max(0.1, *mcv_freq);
+ ReleaseVariableStats(vardata);
+ return;
+ }
+
+ /* Get fraction that are null */
+ if (HeapTupleIsValid(vardata.statsTuple))
+ {
+ Form_pg_statistic stats;
+
+ stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
+ stanullfrac = stats->stanullfrac;
+ }
+ else
+ stanullfrac = 0.0;
+
+ /* Compute avg freq of all distinct data values in raw relation */
+ avgfreq = (1.0 - stanullfrac) / ndistinct;
+
+ /*
+ * Adjust ndistinct to account for restriction clauses. Observe we are
+ * assuming that the data distribution is affected uniformly by the
+ * restriction clauses!
+ *
+ * XXX Possibly better way, but much more expensive: multiply by
+ * selectivity of rel's restriction clauses that mention the target Var.
+ */
+ if (vardata.rel && vardata.rel->tuples > 0)
+ {
+ ndistinct *= vardata.rel->rows / vardata.rel->tuples;
+ ndistinct = clamp_row_est(ndistinct);
+ }
+
+ /*
+ * Initial estimate of bucketsize fraction is 1/nbuckets as long as the
+ * number of buckets is less than the expected number of distinct values;
+ * otherwise it is 1/ndistinct.
+ */
+ if (ndistinct > nbuckets)
+ estfract = 1.0 / nbuckets;
+ else
+ estfract = 1.0 / ndistinct;
+
+ /*
+ * Adjust estimated bucketsize upward to account for skewed distribution.
+ */
+ if (avgfreq > 0.0 && *mcv_freq > avgfreq)
+ estfract *= *mcv_freq / avgfreq;
+
+ /*
+ * Clamp bucketsize to sane range (the above adjustment could easily
+ * produce an out-of-range result). We set the lower bound a little above
+ * zero, since zero isn't a very sane result.
+ */
+ if (estfract < 1.0e-6)
+ estfract = 1.0e-6;
+ else if (estfract > 1.0)
+ estfract = 1.0;
+
+ *bucketsize_frac = (Selectivity) estfract;
+
+ ReleaseVariableStats(vardata);
+}
+
+/*
+ * estimate_hashagg_tablesize
+ * estimate the number of bytes that a hash aggregate hashtable will
+ * require based on the agg_costs, path width and number of groups.
+ *
+ * We return the result as "double" to forestall any possible overflow
+ * problem in the multiplication by dNumGroups.
+ *
+ * XXX this may be over-estimating the size now that hashagg knows to omit
+ * unneeded columns from the hashtable. Also for mixed-mode grouping sets,
+ * grouping columns not in the hashed set are counted here even though hashagg
+ * won't store them. Is this a problem?
+ */
+double
+estimate_hashagg_tablesize(PlannerInfo *root, Path *path,
+ const AggClauseCosts *agg_costs, double dNumGroups)
+{
+ Size hashentrysize;
+
+ hashentrysize = hash_agg_entry_size(list_length(root->aggtransinfos),
+ path->pathtarget->width,
+ agg_costs->transitionSpace);
+
+ /*
+ * Note that this disregards the effect of fill-factor and growth policy
+ * of the hash table. That's probably ok, given that the default
+ * fill-factor is relatively high. It'd be hard to meaningfully factor in
+ * "double-in-size" growth policies here.
+ */
+ return hashentrysize * dNumGroups;
+}
+
+
+/*-------------------------------------------------------------------------
+ *
+ * Support routines
+ *
+ *-------------------------------------------------------------------------
+ */
+
+/*
+ * Find applicable ndistinct statistics for the given list of VarInfos (which
+ * must all belong to the given rel), and update *ndistinct to the estimate of
+ * the MVNDistinctItem that best matches. If a match it found, *varinfos is
+ * updated to remove the list of matched varinfos.
+ *
+ * Varinfos that aren't for simple Vars are ignored.
+ *
+ * Return true if we're able to find a match, false otherwise.
+ */
+static bool
+estimate_multivariate_ndistinct(PlannerInfo *root, RelOptInfo *rel,
+ List **varinfos, double *ndistinct)
+{
+ ListCell *lc;
+ int nmatches_vars;
+ int nmatches_exprs;
+ Oid statOid = InvalidOid;
+ MVNDistinct *stats;
+ StatisticExtInfo *matched_info = NULL;
+ RangeTblEntry *rte;
+
+ /* bail out immediately if the table has no extended statistics */
+ if (!rel->statlist)
+ return false;
+
+ /*
+ * When dealing with regular inheritance trees, ignore extended stats
+ * (which were built without data from child rels, and thus do not
+ * represent them). For partitioned tables data there's no data in the
+ * non-leaf relations, so we build stats only for the inheritance tree.
+ * So for partitioned tables we do consider extended stats.
+ */
+ rte = planner_rt_fetch(rel->relid, root);
+ if (rte->inh && rte->relkind != RELKIND_PARTITIONED_TABLE)
+ return false;
+
+ /* look for the ndistinct statistics object matching the most vars */
+ nmatches_vars = 0; /* we require at least two matches */
+ nmatches_exprs = 0;
+ foreach(lc, rel->statlist)
+ {
+ ListCell *lc2;
+ StatisticExtInfo *info = (StatisticExtInfo *) lfirst(lc);
+ int nshared_vars = 0;
+ int nshared_exprs = 0;
+
+ /* skip statistics of other kinds */
+ if (info->kind != STATS_EXT_NDISTINCT)
+ continue;
+
+ /*
+ * Determine how many expressions (and variables in non-matched
+ * expressions) match. We'll then use these numbers to pick the
+ * statistics object that best matches the clauses.
+ */
+ foreach(lc2, *varinfos)
+ {
+ ListCell *lc3;
+ GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc2);
+ AttrNumber attnum;
+
+ Assert(varinfo->rel == rel);
+
+ /* simple Var, search in statistics keys directly */
+ if (IsA(varinfo->var, Var))
+ {
+ attnum = ((Var *) varinfo->var)->varattno;
+
+ /*
+ * Ignore system attributes - we don't support statistics on
+ * them, so can't match them (and it'd fail as the values are
+ * negative).
+ */
+ if (!AttrNumberIsForUserDefinedAttr(attnum))
+ continue;
+
+ if (bms_is_member(attnum, info->keys))
+ nshared_vars++;
+
+ continue;
+ }
+
+ /* expression - see if it's in the statistics object */
+ foreach(lc3, info->exprs)
+ {
+ Node *expr = (Node *) lfirst(lc3);
+
+ if (equal(varinfo->var, expr))
+ {
+ nshared_exprs++;
+ break;
+ }
+ }
+ }
+
+ if (nshared_vars + nshared_exprs < 2)
+ continue;
+
+ /*
+ * Does this statistics object match more columns than the currently
+ * best object? If so, use this one instead.
+ *
+ * XXX This should break ties using name of the object, or something
+ * like that, to make the outcome stable.
+ */
+ if ((nshared_exprs > nmatches_exprs) ||
+ (((nshared_exprs == nmatches_exprs)) && (nshared_vars > nmatches_vars)))
+ {
+ statOid = info->statOid;
+ nmatches_vars = nshared_vars;
+ nmatches_exprs = nshared_exprs;
+ matched_info = info;
+ }
+ }
+
+ /* No match? */
+ if (statOid == InvalidOid)
+ return false;
+
+ Assert(nmatches_vars + nmatches_exprs > 1);
+
+ stats = statext_ndistinct_load(statOid);
+
+ /*
+ * If we have a match, search it for the specific item that matches (there
+ * must be one), and construct the output values.
+ */
+ if (stats)
+ {
+ int i;
+ List *newlist = NIL;
+ MVNDistinctItem *item = NULL;
+ ListCell *lc2;
+ Bitmapset *matched = NULL;
+ AttrNumber attnum_offset;
+
+ /*
+ * How much we need to offset the attnums? If there are no
+ * expressions, no offset is needed. Otherwise offset enough to move
+ * the lowest one (which is equal to number of expressions) to 1.
+ */
+ if (matched_info->exprs)
+ attnum_offset = (list_length(matched_info->exprs) + 1);
+ else
+ attnum_offset = 0;
+
+ /* see what actually matched */
+ foreach(lc2, *varinfos)
+ {
+ ListCell *lc3;
+ int idx;
+ bool found = false;
+
+ GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc2);
+
+ /*
+ * Process a simple Var expression, by matching it to keys
+ * directly. If there's a matching expression, we'll try matching
+ * it later.
+ */
+ if (IsA(varinfo->var, Var))
+ {
+ AttrNumber attnum = ((Var *) varinfo->var)->varattno;
+
+ /*
+ * Ignore expressions on system attributes. Can't rely on the
+ * bms check for negative values.
+ */
+ if (!AttrNumberIsForUserDefinedAttr(attnum))
+ continue;
+
+ /* Is the variable covered by the statistics object? */
+ if (!bms_is_member(attnum, matched_info->keys))
+ continue;
+
+ attnum = attnum + attnum_offset;
+
+ /* ensure sufficient offset */
+ Assert(AttrNumberIsForUserDefinedAttr(attnum));
+
+ matched = bms_add_member(matched, attnum);
+
+ found = true;
+ }
+
+ /*
+ * XXX Maybe we should allow searching the expressions even if we
+ * found an attribute matching the expression? That would handle
+ * trivial expressions like "(a)" but it seems fairly useless.
+ */
+ if (found)
+ continue;
+
+ /* expression - see if it's in the statistics object */
+ idx = 0;
+ foreach(lc3, matched_info->exprs)
+ {
+ Node *expr = (Node *) lfirst(lc3);
+
+ if (equal(varinfo->var, expr))
+ {
+ AttrNumber attnum = -(idx + 1);
+
+ attnum = attnum + attnum_offset;
+
+ /* ensure sufficient offset */
+ Assert(AttrNumberIsForUserDefinedAttr(attnum));
+
+ matched = bms_add_member(matched, attnum);
+
+ /* there should be just one matching expression */
+ break;
+ }
+
+ idx++;
+ }
+ }
+
+ /* Find the specific item that exactly matches the combination */
+ for (i = 0; i < stats->nitems; i++)
+ {
+ int j;
+ MVNDistinctItem *tmpitem = &stats->items[i];
+
+ if (tmpitem->nattributes != bms_num_members(matched))
+ continue;
+
+ /* assume it's the right item */
+ item = tmpitem;
+
+ /* check that all item attributes/expressions fit the match */
+ for (j = 0; j < tmpitem->nattributes; j++)
+ {
+ AttrNumber attnum = tmpitem->attributes[j];
+
+ /*
+ * Thanks to how we constructed the matched bitmap above, we
+ * can just offset all attnums the same way.
+ */
+ attnum = attnum + attnum_offset;
+
+ if (!bms_is_member(attnum, matched))
+ {
+ /* nah, it's not this item */
+ item = NULL;
+ break;
+ }
+ }
+
+ /*
+ * If the item has all the matched attributes, we know it's the
+ * right one - there can't be a better one. matching more.
+ */
+ if (item)
+ break;
+ }
+
+ /*
+ * Make sure we found an item. There has to be one, because ndistinct
+ * statistics includes all combinations of attributes.
+ */
+ if (!item)
+ elog(ERROR, "corrupt MVNDistinct entry");
+
+ /* Form the output varinfo list, keeping only unmatched ones */
+ foreach(lc, *varinfos)
+ {
+ GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc);
+ ListCell *lc3;
+ bool found = false;
+
+ /*
+ * Let's look at plain variables first, because it's the most
+ * common case and the check is quite cheap. We can simply get the
+ * attnum and check (with an offset) matched bitmap.
+ */
+ if (IsA(varinfo->var, Var))
+ {
+ AttrNumber attnum = ((Var *) varinfo->var)->varattno;
+
+ /*
+ * If it's a system attribute, we're done. We don't support
+ * extended statistics on system attributes, so it's clearly
+ * not matched. Just keep the expression and continue.
+ */
+ if (!AttrNumberIsForUserDefinedAttr(attnum))
+ {
+ newlist = lappend(newlist, varinfo);
+ continue;
+ }
+
+ /* apply the same offset as above */
+ attnum += attnum_offset;
+
+ /* if it's not matched, keep the varinfo */
+ if (!bms_is_member(attnum, matched))
+ newlist = lappend(newlist, varinfo);
+
+ /* The rest of the loop deals with complex expressions. */
+ continue;
+ }
+
+ /*
+ * Process complex expressions, not just simple Vars.
+ *
+ * First, we search for an exact match of an expression. If we
+ * find one, we can just discard the whole GroupExprInfo, with all
+ * the variables we extracted from it.
+ *
+ * Otherwise we inspect the individual vars, and try matching it
+ * to variables in the item.
+ */
+ foreach(lc3, matched_info->exprs)
+ {
+ Node *expr = (Node *) lfirst(lc3);
+
+ if (equal(varinfo->var, expr))
+ {
+ found = true;
+ break;
+ }
+ }
+
+ /* found exact match, skip */
+ if (found)
+ continue;
+
+ newlist = lappend(newlist, varinfo);
+ }
+
+ *varinfos = newlist;
+ *ndistinct = item->ndistinct;
+ return true;
+ }
+
+ return false;
+}
+
+/*
+ * convert_to_scalar
+ * Convert non-NULL values of the indicated types to the comparison
+ * scale needed by scalarineqsel().
+ * Returns "true" if successful.
+ *
+ * XXX this routine is a hack: ideally we should look up the conversion
+ * subroutines in pg_type.
+ *
+ * All numeric datatypes are simply converted to their equivalent
+ * "double" values. (NUMERIC values that are outside the range of "double"
+ * are clamped to +/- HUGE_VAL.)
+ *
+ * String datatypes are converted by convert_string_to_scalar(),
+ * which is explained below. The reason why this routine deals with
+ * three values at a time, not just one, is that we need it for strings.
+ *
+ * The bytea datatype is just enough different from strings that it has
+ * to be treated separately.
+ *
+ * The several datatypes representing absolute times are all converted
+ * to Timestamp, which is actually an int64, and then we promote that to
+ * a double. Note this will give correct results even for the "special"
+ * values of Timestamp, since those are chosen to compare correctly;
+ * see timestamp_cmp.
+ *
+ * The several datatypes representing relative times (intervals) are all
+ * converted to measurements expressed in seconds.
+ */
+static bool
+convert_to_scalar(Datum value, Oid valuetypid, Oid collid, double *scaledvalue,
+ Datum lobound, Datum hibound, Oid boundstypid,
+ double *scaledlobound, double *scaledhibound)
+{
+ bool failure = false;
+
+ /*
+ * Both the valuetypid and the boundstypid should exactly match the
+ * declared input type(s) of the operator we are invoked for. However,
+ * extensions might try to use scalarineqsel as estimator for operators
+ * with input type(s) we don't handle here; in such cases, we want to
+ * return false, not fail. In any case, we mustn't assume that valuetypid
+ * and boundstypid are identical.
+ *
+ * XXX The histogram we are interpolating between points of could belong
+ * to a column that's only binary-compatible with the declared type. In
+ * essence we are assuming that the semantics of binary-compatible types
+ * are enough alike that we can use a histogram generated with one type's
+ * operators to estimate selectivity for the other's. This is outright
+ * wrong in some cases --- in particular signed versus unsigned
+ * interpretation could trip us up. But it's useful enough in the
+ * majority of cases that we do it anyway. Should think about more
+ * rigorous ways to do it.
+ */
+ switch (valuetypid)
+ {
+ /*
+ * Built-in numeric types
+ */
+ case BOOLOID:
+ case INT2OID:
+ case INT4OID:
+ case INT8OID:
+ case FLOAT4OID:
+ case FLOAT8OID:
+ case NUMERICOID:
+ case OIDOID:
+ case REGPROCOID:
+ case REGPROCEDUREOID:
+ case REGOPEROID:
+ case REGOPERATOROID:
+ case REGCLASSOID:
+ case REGTYPEOID:
+ case REGCOLLATIONOID:
+ case REGCONFIGOID:
+ case REGDICTIONARYOID:
+ case REGROLEOID:
+ case REGNAMESPACEOID:
+ *scaledvalue = convert_numeric_to_scalar(value, valuetypid,
+ &failure);
+ *scaledlobound = convert_numeric_to_scalar(lobound, boundstypid,
+ &failure);
+ *scaledhibound = convert_numeric_to_scalar(hibound, boundstypid,
+ &failure);
+ return !failure;
+
+ /*
+ * Built-in string types
+ */
+ case CHAROID:
+ case BPCHAROID:
+ case VARCHAROID:
+ case TEXTOID:
+ case NAMEOID:
+ {
+ char *valstr = convert_string_datum(value, valuetypid,
+ collid, &failure);
+ char *lostr = convert_string_datum(lobound, boundstypid,
+ collid, &failure);
+ char *histr = convert_string_datum(hibound, boundstypid,
+ collid, &failure);
+
+ /*
+ * Bail out if any of the values is not of string type. We
+ * might leak converted strings for the other value(s), but
+ * that's not worth troubling over.
+ */
+ if (failure)
+ return false;
+
+ convert_string_to_scalar(valstr, scaledvalue,
+ lostr, scaledlobound,
+ histr, scaledhibound);
+ pfree(valstr);
+ pfree(lostr);
+ pfree(histr);
+ return true;
+ }
+
+ /*
+ * Built-in bytea type
+ */
+ case BYTEAOID:
+ {
+ /* We only support bytea vs bytea comparison */
+ if (boundstypid != BYTEAOID)
+ return false;
+ convert_bytea_to_scalar(value, scaledvalue,
+ lobound, scaledlobound,
+ hibound, scaledhibound);
+ return true;
+ }
+
+ /*
+ * Built-in time types
+ */
+ case TIMESTAMPOID:
+ case TIMESTAMPTZOID:
+ case DATEOID:
+ case INTERVALOID:
+ case TIMEOID:
+ case TIMETZOID:
+ *scaledvalue = convert_timevalue_to_scalar(value, valuetypid,
+ &failure);
+ *scaledlobound = convert_timevalue_to_scalar(lobound, boundstypid,
+ &failure);
+ *scaledhibound = convert_timevalue_to_scalar(hibound, boundstypid,
+ &failure);
+ return !failure;
+
+ /*
+ * Built-in network types
+ */
+ case INETOID:
+ case CIDROID:
+ case MACADDROID:
+ case MACADDR8OID:
+ *scaledvalue = convert_network_to_scalar(value, valuetypid,
+ &failure);
+ *scaledlobound = convert_network_to_scalar(lobound, boundstypid,
+ &failure);
+ *scaledhibound = convert_network_to_scalar(hibound, boundstypid,
+ &failure);
+ return !failure;
+ }
+ /* Don't know how to convert */
+ *scaledvalue = *scaledlobound = *scaledhibound = 0;
+ return false;
+}
+
+/*
+ * Do convert_to_scalar()'s work for any numeric data type.
+ *
+ * On failure (e.g., unsupported typid), set *failure to true;
+ * otherwise, that variable is not changed.
+ */
+static double
+convert_numeric_to_scalar(Datum value, Oid typid, bool *failure)
+{
+ switch (typid)
+ {
+ case BOOLOID:
+ return (double) DatumGetBool(value);
+ case INT2OID:
+ return (double) DatumGetInt16(value);
+ case INT4OID:
+ return (double) DatumGetInt32(value);
+ case INT8OID:
+ return (double) DatumGetInt64(value);
+ case FLOAT4OID:
+ return (double) DatumGetFloat4(value);
+ case FLOAT8OID:
+ return (double) DatumGetFloat8(value);
+ case NUMERICOID:
+ /* Note: out-of-range values will be clamped to +-HUGE_VAL */
+ return (double)
+ DatumGetFloat8(DirectFunctionCall1(numeric_float8_no_overflow,
+ value));
+ case OIDOID:
+ case REGPROCOID:
+ case REGPROCEDUREOID:
+ case REGOPEROID:
+ case REGOPERATOROID:
+ case REGCLASSOID:
+ case REGTYPEOID:
+ case REGCOLLATIONOID:
+ case REGCONFIGOID:
+ case REGDICTIONARYOID:
+ case REGROLEOID:
+ case REGNAMESPACEOID:
+ /* we can treat OIDs as integers... */
+ return (double) DatumGetObjectId(value);
+ }
+
+ *failure = true;
+ return 0;
+}
+
+/*
+ * Do convert_to_scalar()'s work for any character-string data type.
+ *
+ * String datatypes are converted to a scale that ranges from 0 to 1,
+ * where we visualize the bytes of the string as fractional digits.
+ *
+ * We do not want the base to be 256, however, since that tends to
+ * generate inflated selectivity estimates; few databases will have
+ * occurrences of all 256 possible byte values at each position.
+ * Instead, use the smallest and largest byte values seen in the bounds
+ * as the estimated range for each byte, after some fudging to deal with
+ * the fact that we probably aren't going to see the full range that way.
+ *
+ * An additional refinement is that we discard any common prefix of the
+ * three strings before computing the scaled values. This allows us to
+ * "zoom in" when we encounter a narrow data range. An example is a phone
+ * number database where all the values begin with the same area code.
+ * (Actually, the bounds will be adjacent histogram-bin-boundary values,
+ * so this is more likely to happen than you might think.)
+ */
+static void
+convert_string_to_scalar(char *value,
+ double *scaledvalue,
+ char *lobound,
+ double *scaledlobound,
+ char *hibound,
+ double *scaledhibound)
+{
+ int rangelo,
+ rangehi;
+ char *sptr;
+
+ rangelo = rangehi = (unsigned char) hibound[0];
+ for (sptr = lobound; *sptr; sptr++)
+ {
+ if (rangelo > (unsigned char) *sptr)
+ rangelo = (unsigned char) *sptr;
+ if (rangehi < (unsigned char) *sptr)
+ rangehi = (unsigned char) *sptr;
+ }
+ for (sptr = hibound; *sptr; sptr++)
+ {
+ if (rangelo > (unsigned char) *sptr)
+ rangelo = (unsigned char) *sptr;
+ if (rangehi < (unsigned char) *sptr)
+ rangehi = (unsigned char) *sptr;
+ }
+ /* If range includes any upper-case ASCII chars, make it include all */
+ if (rangelo <= 'Z' && rangehi >= 'A')
+ {
+ if (rangelo > 'A')
+ rangelo = 'A';
+ if (rangehi < 'Z')
+ rangehi = 'Z';
+ }
+ /* Ditto lower-case */
+ if (rangelo <= 'z' && rangehi >= 'a')
+ {
+ if (rangelo > 'a')
+ rangelo = 'a';
+ if (rangehi < 'z')
+ rangehi = 'z';
+ }
+ /* Ditto digits */
+ if (rangelo <= '9' && rangehi >= '0')
+ {
+ if (rangelo > '0')
+ rangelo = '0';
+ if (rangehi < '9')
+ rangehi = '9';
+ }
+
+ /*
+ * If range includes less than 10 chars, assume we have not got enough
+ * data, and make it include regular ASCII set.
+ */
+ if (rangehi - rangelo < 9)
+ {
+ rangelo = ' ';
+ rangehi = 127;
+ }
+
+ /*
+ * Now strip any common prefix of the three strings.
+ */
+ while (*lobound)
+ {
+ if (*lobound != *hibound || *lobound != *value)
+ break;
+ lobound++, hibound++, value++;
+ }
+
+ /*
+ * Now we can do the conversions.
+ */
+ *scaledvalue = convert_one_string_to_scalar(value, rangelo, rangehi);
+ *scaledlobound = convert_one_string_to_scalar(lobound, rangelo, rangehi);
+ *scaledhibound = convert_one_string_to_scalar(hibound, rangelo, rangehi);
+}
+
+static double
+convert_one_string_to_scalar(char *value, int rangelo, int rangehi)
+{
+ int slen = strlen(value);
+ double num,
+ denom,
+ base;
+
+ if (slen <= 0)
+ return 0.0; /* empty string has scalar value 0 */
+
+ /*
+ * There seems little point in considering more than a dozen bytes from
+ * the string. Since base is at least 10, that will give us nominal
+ * resolution of at least 12 decimal digits, which is surely far more
+ * precision than this estimation technique has got anyway (especially in
+ * non-C locales). Also, even with the maximum possible base of 256, this
+ * ensures denom cannot grow larger than 256^13 = 2.03e31, which will not
+ * overflow on any known machine.
+ */
+ if (slen > 12)
+ slen = 12;
+
+ /* Convert initial characters to fraction */
+ base = rangehi - rangelo + 1;
+ num = 0.0;
+ denom = base;
+ while (slen-- > 0)
+ {
+ int ch = (unsigned char) *value++;
+
+ if (ch < rangelo)
+ ch = rangelo - 1;
+ else if (ch > rangehi)
+ ch = rangehi + 1;
+ num += ((double) (ch - rangelo)) / denom;
+ denom *= base;
+ }
+
+ return num;
+}
+
+/*
+ * Convert a string-type Datum into a palloc'd, null-terminated string.
+ *
+ * On failure (e.g., unsupported typid), set *failure to true;
+ * otherwise, that variable is not changed. (We'll return NULL on failure.)
+ *
+ * When using a non-C locale, we must pass the string through strxfrm()
+ * before continuing, so as to generate correct locale-specific results.
+ */
+static char *
+convert_string_datum(Datum value, Oid typid, Oid collid, bool *failure)
+{
+ char *val;
+
+ switch (typid)
+ {
+ case CHAROID:
+ val = (char *) palloc(2);
+ val[0] = DatumGetChar(value);
+ val[1] = '\0';
+ break;
+ case BPCHAROID:
+ case VARCHAROID:
+ case TEXTOID:
+ val = TextDatumGetCString(value);
+ break;
+ case NAMEOID:
+ {
+ NameData *nm = (NameData *) DatumGetPointer(value);
+
+ val = pstrdup(NameStr(*nm));
+ break;
+ }
+ default:
+ *failure = true;
+ return NULL;
+ }
+
+ if (!lc_collate_is_c(collid))
+ {
+ char *xfrmstr;
+ size_t xfrmlen;
+ size_t xfrmlen2 PG_USED_FOR_ASSERTS_ONLY;
+
+ /*
+ * XXX: We could guess at a suitable output buffer size and only call
+ * strxfrm twice if our guess is too small.
+ *
+ * XXX: strxfrm doesn't support UTF-8 encoding on Win32, it can return
+ * bogus data or set an error. This is not really a problem unless it
+ * crashes since it will only give an estimation error and nothing
+ * fatal.
+ */
+ xfrmlen = strxfrm(NULL, val, 0);
+#ifdef WIN32
+
+ /*
+ * On Windows, strxfrm returns INT_MAX when an error occurs. Instead
+ * of trying to allocate this much memory (and fail), just return the
+ * original string unmodified as if we were in the C locale.
+ */
+ if (xfrmlen == INT_MAX)
+ return val;
+#endif
+ xfrmstr = (char *) palloc(xfrmlen + 1);
+ xfrmlen2 = strxfrm(xfrmstr, val, xfrmlen + 1);
+
+ /*
+ * Some systems (e.g., glibc) can return a smaller value from the
+ * second call than the first; thus the Assert must be <= not ==.
+ */
+ Assert(xfrmlen2 <= xfrmlen);
+ pfree(val);
+ val = xfrmstr;
+ }
+
+ return val;
+}
+
+/*
+ * Do convert_to_scalar()'s work for any bytea data type.
+ *
+ * Very similar to convert_string_to_scalar except we can't assume
+ * null-termination and therefore pass explicit lengths around.
+ *
+ * Also, assumptions about likely "normal" ranges of characters have been
+ * removed - a data range of 0..255 is always used, for now. (Perhaps
+ * someday we will add information about actual byte data range to
+ * pg_statistic.)
+ */
+static void
+convert_bytea_to_scalar(Datum value,
+ double *scaledvalue,
+ Datum lobound,
+ double *scaledlobound,
+ Datum hibound,
+ double *scaledhibound)
+{
+ bytea *valuep = DatumGetByteaPP(value);
+ bytea *loboundp = DatumGetByteaPP(lobound);
+ bytea *hiboundp = DatumGetByteaPP(hibound);
+ int rangelo,
+ rangehi,
+ valuelen = VARSIZE_ANY_EXHDR(valuep),
+ loboundlen = VARSIZE_ANY_EXHDR(loboundp),
+ hiboundlen = VARSIZE_ANY_EXHDR(hiboundp),
+ i,
+ minlen;
+ unsigned char *valstr = (unsigned char *) VARDATA_ANY(valuep);
+ unsigned char *lostr = (unsigned char *) VARDATA_ANY(loboundp);
+ unsigned char *histr = (unsigned char *) VARDATA_ANY(hiboundp);
+
+ /*
+ * Assume bytea data is uniformly distributed across all byte values.
+ */
+ rangelo = 0;
+ rangehi = 255;
+
+ /*
+ * Now strip any common prefix of the three strings.
+ */
+ minlen = Min(Min(valuelen, loboundlen), hiboundlen);
+ for (i = 0; i < minlen; i++)
+ {
+ if (*lostr != *histr || *lostr != *valstr)
+ break;
+ lostr++, histr++, valstr++;
+ loboundlen--, hiboundlen--, valuelen--;
+ }
+
+ /*
+ * Now we can do the conversions.
+ */
+ *scaledvalue = convert_one_bytea_to_scalar(valstr, valuelen, rangelo, rangehi);
+ *scaledlobound = convert_one_bytea_to_scalar(lostr, loboundlen, rangelo, rangehi);
+ *scaledhibound = convert_one_bytea_to_scalar(histr, hiboundlen, rangelo, rangehi);
+}
+
+static double
+convert_one_bytea_to_scalar(unsigned char *value, int valuelen,
+ int rangelo, int rangehi)
+{
+ double num,
+ denom,
+ base;
+
+ if (valuelen <= 0)
+ return 0.0; /* empty string has scalar value 0 */
+
+ /*
+ * Since base is 256, need not consider more than about 10 chars (even
+ * this many seems like overkill)
+ */
+ if (valuelen > 10)
+ valuelen = 10;
+
+ /* Convert initial characters to fraction */
+ base = rangehi - rangelo + 1;
+ num = 0.0;
+ denom = base;
+ while (valuelen-- > 0)
+ {
+ int ch = *value++;
+
+ if (ch < rangelo)
+ ch = rangelo - 1;
+ else if (ch > rangehi)
+ ch = rangehi + 1;
+ num += ((double) (ch - rangelo)) / denom;
+ denom *= base;
+ }
+
+ return num;
+}
+
+/*
+ * Do convert_to_scalar()'s work for any timevalue data type.
+ *
+ * On failure (e.g., unsupported typid), set *failure to true;
+ * otherwise, that variable is not changed.
+ */
+static double
+convert_timevalue_to_scalar(Datum value, Oid typid, bool *failure)
+{
+ switch (typid)
+ {
+ case TIMESTAMPOID:
+ return DatumGetTimestamp(value);
+ case TIMESTAMPTZOID:
+ return DatumGetTimestampTz(value);
+ case DATEOID:
+ return date2timestamp_no_overflow(DatumGetDateADT(value));
+ case INTERVALOID:
+ {
+ Interval *interval = DatumGetIntervalP(value);
+
+ /*
+ * Convert the month part of Interval to days using assumed
+ * average month length of 365.25/12.0 days. Not too
+ * accurate, but plenty good enough for our purposes.
+ */
+ return interval->time + interval->day * (double) USECS_PER_DAY +
+ interval->month * ((DAYS_PER_YEAR / (double) MONTHS_PER_YEAR) * USECS_PER_DAY);
+ }
+ case TIMEOID:
+ return DatumGetTimeADT(value);
+ case TIMETZOID:
+ {
+ TimeTzADT *timetz = DatumGetTimeTzADTP(value);
+
+ /* use GMT-equivalent time */
+ return (double) (timetz->time + (timetz->zone * 1000000.0));
+ }
+ }
+
+ *failure = true;
+ return 0;
+}
+
+
+/*
+ * get_restriction_variable
+ * Examine the args of a restriction clause to see if it's of the
+ * form (variable op pseudoconstant) or (pseudoconstant op variable),
+ * where "variable" could be either a Var or an expression in vars of a
+ * single relation. If so, extract information about the variable,
+ * and also indicate which side it was on and the other argument.
+ *
+ * Inputs:
+ * root: the planner info
+ * args: clause argument list
+ * varRelid: see specs for restriction selectivity functions
+ *
+ * Outputs: (these are valid only if true is returned)
+ * *vardata: gets information about variable (see examine_variable)
+ * *other: gets other clause argument, aggressively reduced to a constant
+ * *varonleft: set true if variable is on the left, false if on the right
+ *
+ * Returns true if a variable is identified, otherwise false.
+ *
+ * Note: if there are Vars on both sides of the clause, we must fail, because
+ * callers are expecting that the other side will act like a pseudoconstant.
+ */
+bool
+get_restriction_variable(PlannerInfo *root, List *args, int varRelid,
+ VariableStatData *vardata, Node **other,
+ bool *varonleft)
+{
+ Node *left,
+ *right;
+ VariableStatData rdata;
+
+ /* Fail if not a binary opclause (probably shouldn't happen) */
+ if (list_length(args) != 2)
+ return false;
+
+ left = (Node *) linitial(args);
+ right = (Node *) lsecond(args);
+
+ /*
+ * Examine both sides. Note that when varRelid is nonzero, Vars of other
+ * relations will be treated as pseudoconstants.
+ */
+ examine_variable(root, left, varRelid, vardata);
+ examine_variable(root, right, varRelid, &rdata);
+
+ /*
+ * If one side is a variable and the other not, we win.
+ */
+ if (vardata->rel && rdata.rel == NULL)
+ {
+ *varonleft = true;
+ *other = estimate_expression_value(root, rdata.var);
+ /* Assume we need no ReleaseVariableStats(rdata) here */
+ return true;
+ }
+
+ if (vardata->rel == NULL && rdata.rel)
+ {
+ *varonleft = false;
+ *other = estimate_expression_value(root, vardata->var);
+ /* Assume we need no ReleaseVariableStats(*vardata) here */
+ *vardata = rdata;
+ return true;
+ }
+
+ /* Oops, clause has wrong structure (probably var op var) */
+ ReleaseVariableStats(*vardata);
+ ReleaseVariableStats(rdata);
+
+ return false;
+}
+
+/*
+ * get_join_variables
+ * Apply examine_variable() to each side of a join clause.
+ * Also, attempt to identify whether the join clause has the same
+ * or reversed sense compared to the SpecialJoinInfo.
+ *
+ * We consider the join clause "normal" if it is "lhs_var OP rhs_var",
+ * or "reversed" if it is "rhs_var OP lhs_var". In complicated cases
+ * where we can't tell for sure, we default to assuming it's normal.
+ */
+void
+get_join_variables(PlannerInfo *root, List *args, SpecialJoinInfo *sjinfo,
+ VariableStatData *vardata1, VariableStatData *vardata2,
+ bool *join_is_reversed)
+{
+ Node *left,
+ *right;
+
+ if (list_length(args) != 2)
+ elog(ERROR, "join operator should take two arguments");
+
+ left = (Node *) linitial(args);
+ right = (Node *) lsecond(args);
+
+ examine_variable(root, left, 0, vardata1);
+ examine_variable(root, right, 0, vardata2);
+
+ if (vardata1->rel &&
+ bms_is_subset(vardata1->rel->relids, sjinfo->syn_righthand))
+ *join_is_reversed = true; /* var1 is on RHS */
+ else if (vardata2->rel &&
+ bms_is_subset(vardata2->rel->relids, sjinfo->syn_lefthand))
+ *join_is_reversed = true; /* var2 is on LHS */
+ else
+ *join_is_reversed = false;
+}
+
+/* statext_expressions_load copies the tuple, so just pfree it. */
+static void
+ReleaseDummy(HeapTuple tuple)
+{
+ pfree(tuple);
+}
+
+/*
+ * examine_variable
+ * Try to look up statistical data about an expression.
+ * Fill in a VariableStatData struct to describe the expression.
+ *
+ * Inputs:
+ * root: the planner info
+ * node: the expression tree to examine
+ * varRelid: see specs for restriction selectivity functions
+ *
+ * Outputs: *vardata is filled as follows:
+ * var: the input expression (with any binary relabeling stripped, if
+ * it is or contains a variable; but otherwise the type is preserved)
+ * rel: RelOptInfo for relation containing variable; NULL if expression
+ * contains no Vars (NOTE this could point to a RelOptInfo of a
+ * subquery, not one in the current query).
+ * statsTuple: the pg_statistic entry for the variable, if one exists;
+ * otherwise NULL.
+ * freefunc: pointer to a function to release statsTuple with.
+ * vartype: exposed type of the expression; this should always match
+ * the declared input type of the operator we are estimating for.
+ * atttype, atttypmod: actual type/typmod of the "var" expression. This is
+ * commonly the same as the exposed type of the variable argument,
+ * but can be different in binary-compatible-type cases.
+ * isunique: true if we were able to match the var to a unique index or a
+ * single-column DISTINCT clause, implying its values are unique for
+ * this query. (Caution: this should be trusted for statistical
+ * purposes only, since we do not check indimmediate nor verify that
+ * the exact same definition of equality applies.)
+ * acl_ok: true if current user has permission to read the column(s)
+ * underlying the pg_statistic entry. This is consulted by
+ * statistic_proc_security_check().
+ *
+ * Caller is responsible for doing ReleaseVariableStats() before exiting.
+ */
+void
+examine_variable(PlannerInfo *root, Node *node, int varRelid,
+ VariableStatData *vardata)
+{
+ Node *basenode;
+ Relids varnos;
+ RelOptInfo *onerel;
+
+ /* Make sure we don't return dangling pointers in vardata */
+ MemSet(vardata, 0, sizeof(VariableStatData));
+
+ /* Save the exposed type of the expression */
+ vardata->vartype = exprType(node);
+
+ /* Look inside any binary-compatible relabeling */
+
+ if (IsA(node, RelabelType))
+ basenode = (Node *) ((RelabelType *) node)->arg;
+ else
+ basenode = node;
+
+ /* Fast path for a simple Var */
+
+ if (IsA(basenode, Var) &&
+ (varRelid == 0 || varRelid == ((Var *) basenode)->varno))
+ {
+ Var *var = (Var *) basenode;
+
+ /* Set up result fields other than the stats tuple */
+ vardata->var = basenode; /* return Var without relabeling */
+ vardata->rel = find_base_rel(root, var->varno);
+ vardata->atttype = var->vartype;
+ vardata->atttypmod = var->vartypmod;
+ vardata->isunique = has_unique_index(vardata->rel, var->varattno);
+
+ /* Try to locate some stats */
+ examine_simple_variable(root, var, vardata);
+
+ return;
+ }
+
+ /*
+ * Okay, it's a more complicated expression. Determine variable
+ * membership. Note that when varRelid isn't zero, only vars of that
+ * relation are considered "real" vars.
+ */
+ varnos = pull_varnos(root, basenode);
+
+ onerel = NULL;
+
+ switch (bms_membership(varnos))
+ {
+ case BMS_EMPTY_SET:
+ /* No Vars at all ... must be pseudo-constant clause */
+ break;
+ case BMS_SINGLETON:
+ if (varRelid == 0 || bms_is_member(varRelid, varnos))
+ {
+ onerel = find_base_rel(root,
+ (varRelid ? varRelid : bms_singleton_member(varnos)));
+ vardata->rel = onerel;
+ node = basenode; /* strip any relabeling */
+ }
+ /* else treat it as a constant */
+ break;
+ case BMS_MULTIPLE:
+ if (varRelid == 0)
+ {
+ /* treat it as a variable of a join relation */
+ vardata->rel = find_join_rel(root, varnos);
+ node = basenode; /* strip any relabeling */
+ }
+ else if (bms_is_member(varRelid, varnos))
+ {
+ /* ignore the vars belonging to other relations */
+ vardata->rel = find_base_rel(root, varRelid);
+ node = basenode; /* strip any relabeling */
+ /* note: no point in expressional-index search here */
+ }
+ /* else treat it as a constant */
+ break;
+ }
+
+ bms_free(varnos);
+
+ vardata->var = node;
+ vardata->atttype = exprType(node);
+ vardata->atttypmod = exprTypmod(node);
+
+ if (onerel)
+ {
+ /*
+ * We have an expression in vars of a single relation. Try to match
+ * it to expressional index columns, in hopes of finding some
+ * statistics.
+ *
+ * Note that we consider all index columns including INCLUDE columns,
+ * since there could be stats for such columns. But the test for
+ * uniqueness needs to be warier.
+ *
+ * XXX it's conceivable that there are multiple matches with different
+ * index opfamilies; if so, we need to pick one that matches the
+ * operator we are estimating for. FIXME later.
+ */
+ ListCell *ilist;
+ ListCell *slist;
+
+ foreach(ilist, onerel->indexlist)
+ {
+ IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
+ ListCell *indexpr_item;
+ int pos;
+
+ indexpr_item = list_head(index->indexprs);
+ if (indexpr_item == NULL)
+ continue; /* no expressions here... */
+
+ for (pos = 0; pos < index->ncolumns; pos++)
+ {
+ if (index->indexkeys[pos] == 0)
+ {
+ Node *indexkey;
+
+ if (indexpr_item == NULL)
+ elog(ERROR, "too few entries in indexprs list");
+ indexkey = (Node *) lfirst(indexpr_item);
+ if (indexkey && IsA(indexkey, RelabelType))
+ indexkey = (Node *) ((RelabelType *) indexkey)->arg;
+ if (equal(node, indexkey))
+ {
+ /*
+ * Found a match ... is it a unique index? Tests here
+ * should match has_unique_index().
+ */
+ if (index->unique &&
+ index->nkeycolumns == 1 &&
+ pos == 0 &&
+ (index->indpred == NIL || index->predOK))
+ vardata->isunique = true;
+
+ /*
+ * Has it got stats? We only consider stats for
+ * non-partial indexes, since partial indexes probably
+ * don't reflect whole-relation statistics; the above
+ * check for uniqueness is the only info we take from
+ * a partial index.
+ *
+ * An index stats hook, however, must make its own
+ * decisions about what to do with partial indexes.
+ */
+ if (get_index_stats_hook &&
+ (*get_index_stats_hook) (root, index->indexoid,
+ pos + 1, vardata))
+ {
+ /*
+ * The hook took control of acquiring a stats
+ * tuple. If it did supply a tuple, it'd better
+ * have supplied a freefunc.
+ */
+ if (HeapTupleIsValid(vardata->statsTuple) &&
+ !vardata->freefunc)
+ elog(ERROR, "no function provided to release variable stats with");
+ }
+ else if (index->indpred == NIL)
+ {
+ vardata->statsTuple =
+ SearchSysCache3(STATRELATTINH,
+ ObjectIdGetDatum(index->indexoid),
+ Int16GetDatum(pos + 1),
+ BoolGetDatum(false));
+ vardata->freefunc = ReleaseSysCache;
+
+ if (HeapTupleIsValid(vardata->statsTuple))
+ {
+ /* Get index's table for permission check */
+ RangeTblEntry *rte;
+ Oid userid;
+
+ rte = planner_rt_fetch(index->rel->relid, root);
+ Assert(rte->rtekind == RTE_RELATION);
+
+ /*
+ * Use checkAsUser if it's set, in case we're
+ * accessing the table via a view.
+ */
+ userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
+
+ /*
+ * For simplicity, we insist on the whole
+ * table being selectable, rather than trying
+ * to identify which column(s) the index
+ * depends on. Also require all rows to be
+ * selectable --- there must be no
+ * securityQuals from security barrier views
+ * or RLS policies.
+ */
+ vardata->acl_ok =
+ rte->securityQuals == NIL &&
+ (pg_class_aclcheck(rte->relid, userid,
+ ACL_SELECT) == ACLCHECK_OK);
+
+ /*
+ * If the user doesn't have permissions to
+ * access an inheritance child relation, check
+ * the permissions of the table actually
+ * mentioned in the query, since most likely
+ * the user does have that permission. Note
+ * that whole-table select privilege on the
+ * parent doesn't quite guarantee that the
+ * user could read all columns of the child.
+ * But in practice it's unlikely that any
+ * interesting security violation could result
+ * from allowing access to the expression
+ * index's stats, so we allow it anyway. See
+ * similar code in examine_simple_variable()
+ * for additional comments.
+ */
+ if (!vardata->acl_ok &&
+ root->append_rel_array != NULL)
+ {
+ AppendRelInfo *appinfo;
+ Index varno = index->rel->relid;
+
+ appinfo = root->append_rel_array[varno];
+ while (appinfo &&
+ planner_rt_fetch(appinfo->parent_relid,
+ root)->rtekind == RTE_RELATION)
+ {
+ varno = appinfo->parent_relid;
+ appinfo = root->append_rel_array[varno];
+ }
+ if (varno != index->rel->relid)
+ {
+ /* Repeat access check on this rel */
+ rte = planner_rt_fetch(varno, root);
+ Assert(rte->rtekind == RTE_RELATION);
+
+ userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
+
+ vardata->acl_ok =
+ rte->securityQuals == NIL &&
+ (pg_class_aclcheck(rte->relid,
+ userid,
+ ACL_SELECT) == ACLCHECK_OK);
+ }
+ }
+ }
+ else
+ {
+ /* suppress leakproofness checks later */
+ vardata->acl_ok = true;
+ }
+ }
+ if (vardata->statsTuple)
+ break;
+ }
+ indexpr_item = lnext(index->indexprs, indexpr_item);
+ }
+ }
+ if (vardata->statsTuple)
+ break;
+ }
+
+ /*
+ * Search extended statistics for one with a matching expression.
+ * There might be multiple ones, so just grab the first one. In the
+ * future, we might consider the statistics target (and pick the most
+ * accurate statistics) and maybe some other parameters.
+ */
+ foreach(slist, onerel->statlist)
+ {
+ StatisticExtInfo *info = (StatisticExtInfo *) lfirst(slist);
+ RangeTblEntry *rte = planner_rt_fetch(onerel->relid, root);
+ ListCell *expr_item;
+ int pos;
+
+ /*
+ * Stop once we've found statistics for the expression (either
+ * from extended stats, or for an index in the preceding loop).
+ */
+ if (vardata->statsTuple)
+ break;
+
+ /*
+ * When dealing with regular inheritance trees, ignore extended
+ * stats (which were built without data from child rels, and thus
+ * do not represent them). For partitioned tables data there's no
+ * data in the non-leaf relations, so we build stats only for the
+ * inheritance tree. So for partitioned tables we do consider
+ * extended stats.
+ */
+ if (rte->inh && rte->relkind != RELKIND_PARTITIONED_TABLE)
+ break;
+
+ /* skip stats without per-expression stats */
+ if (info->kind != STATS_EXT_EXPRESSIONS)
+ continue;
+
+ pos = 0;
+ foreach(expr_item, info->exprs)
+ {
+ Node *expr = (Node *) lfirst(expr_item);
+
+ Assert(expr);
+
+ /* strip RelabelType before comparing it */
+ if (expr && IsA(expr, RelabelType))
+ expr = (Node *) ((RelabelType *) expr)->arg;
+
+ /* found a match, see if we can extract pg_statistic row */
+ if (equal(node, expr))
+ {
+ HeapTuple t = statext_expressions_load(info->statOid, pos);
+
+ /* Get statistics object's table for permission check */
+ RangeTblEntry *rte;
+ Oid userid;
+
+ vardata->statsTuple = t;
+
+ /*
+ * XXX Not sure if we should cache the tuple somewhere.
+ * Now we just create a new copy every time.
+ */
+ vardata->freefunc = ReleaseDummy;
+
+ rte = planner_rt_fetch(onerel->relid, root);
+ Assert(rte->rtekind == RTE_RELATION);
+
+ /*
+ * Use checkAsUser if it's set, in case we're accessing
+ * the table via a view.
+ */
+ userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
+
+ /*
+ * For simplicity, we insist on the whole table being
+ * selectable, rather than trying to identify which
+ * column(s) the statistics object depends on. Also
+ * require all rows to be selectable --- there must be no
+ * securityQuals from security barrier views or RLS
+ * policies.
+ */
+ vardata->acl_ok =
+ rte->securityQuals == NIL &&
+ (pg_class_aclcheck(rte->relid, userid,
+ ACL_SELECT) == ACLCHECK_OK);
+
+ /*
+ * If the user doesn't have permissions to access an
+ * inheritance child relation, check the permissions of
+ * the table actually mentioned in the query, since most
+ * likely the user does have that permission. Note that
+ * whole-table select privilege on the parent doesn't
+ * quite guarantee that the user could read all columns of
+ * the child. But in practice it's unlikely that any
+ * interesting security violation could result from
+ * allowing access to the expression stats, so we allow it
+ * anyway. See similar code in examine_simple_variable()
+ * for additional comments.
+ */
+ if (!vardata->acl_ok &&
+ root->append_rel_array != NULL)
+ {
+ AppendRelInfo *appinfo;
+ Index varno = onerel->relid;
+
+ appinfo = root->append_rel_array[varno];
+ while (appinfo &&
+ planner_rt_fetch(appinfo->parent_relid,
+ root)->rtekind == RTE_RELATION)
+ {
+ varno = appinfo->parent_relid;
+ appinfo = root->append_rel_array[varno];
+ }
+ if (varno != onerel->relid)
+ {
+ /* Repeat access check on this rel */
+ rte = planner_rt_fetch(varno, root);
+ Assert(rte->rtekind == RTE_RELATION);
+
+ userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
+
+ vardata->acl_ok =
+ rte->securityQuals == NIL &&
+ (pg_class_aclcheck(rte->relid,
+ userid,
+ ACL_SELECT) == ACLCHECK_OK);
+ }
+ }
+
+ break;
+ }
+
+ pos++;
+ }
+ }
+ }
+}
+
+/*
+ * examine_simple_variable
+ * Handle a simple Var for examine_variable
+ *
+ * This is split out as a subroutine so that we can recurse to deal with
+ * Vars referencing subqueries.
+ *
+ * We already filled in all the fields of *vardata except for the stats tuple.
+ */
+static void
+examine_simple_variable(PlannerInfo *root, Var *var,
+ VariableStatData *vardata)
+{
+ RangeTblEntry *rte = root->simple_rte_array[var->varno];
+
+ Assert(IsA(rte, RangeTblEntry));
+
+ if (get_relation_stats_hook &&
+ (*get_relation_stats_hook) (root, rte, var->varattno, vardata))
+ {
+ /*
+ * The hook took control of acquiring a stats tuple. If it did supply
+ * a tuple, it'd better have supplied a freefunc.
+ */
+ if (HeapTupleIsValid(vardata->statsTuple) &&
+ !vardata->freefunc)
+ elog(ERROR, "no function provided to release variable stats with");
+ }
+ else if (rte->rtekind == RTE_RELATION)
+ {
+ /*
+ * Plain table or parent of an inheritance appendrel, so look up the
+ * column in pg_statistic
+ */
+ vardata->statsTuple = SearchSysCache3(STATRELATTINH,
+ ObjectIdGetDatum(rte->relid),
+ Int16GetDatum(var->varattno),
+ BoolGetDatum(rte->inh));
+ vardata->freefunc = ReleaseSysCache;
+
+ if (HeapTupleIsValid(vardata->statsTuple))
+ {
+ Oid userid;
+
+ /*
+ * Check if user has permission to read this column. We require
+ * all rows to be accessible, so there must be no securityQuals
+ * from security barrier views or RLS policies. Use checkAsUser
+ * if it's set, in case we're accessing the table via a view.
+ */
+ userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
+
+ vardata->acl_ok =
+ rte->securityQuals == NIL &&
+ ((pg_class_aclcheck(rte->relid, userid,
+ ACL_SELECT) == ACLCHECK_OK) ||
+ (pg_attribute_aclcheck(rte->relid, var->varattno, userid,
+ ACL_SELECT) == ACLCHECK_OK));
+
+ /*
+ * If the user doesn't have permissions to access an inheritance
+ * child relation or specifically this attribute, check the
+ * permissions of the table/column actually mentioned in the
+ * query, since most likely the user does have that permission
+ * (else the query will fail at runtime), and if the user can read
+ * the column there then he can get the values of the child table
+ * too. To do that, we must find out which of the root parent's
+ * attributes the child relation's attribute corresponds to.
+ */
+ if (!vardata->acl_ok && var->varattno > 0 &&
+ root->append_rel_array != NULL)
+ {
+ AppendRelInfo *appinfo;
+ Index varno = var->varno;
+ int varattno = var->varattno;
+ bool found = false;
+
+ appinfo = root->append_rel_array[varno];
+
+ /*
+ * Partitions are mapped to their immediate parent, not the
+ * root parent, so must be ready to walk up multiple
+ * AppendRelInfos. But stop if we hit a parent that is not
+ * RTE_RELATION --- that's a flattened UNION ALL subquery, not
+ * an inheritance parent.
+ */
+ while (appinfo &&
+ planner_rt_fetch(appinfo->parent_relid,
+ root)->rtekind == RTE_RELATION)
+ {
+ int parent_varattno;
+
+ found = false;
+ if (varattno <= 0 || varattno > appinfo->num_child_cols)
+ break; /* safety check */
+ parent_varattno = appinfo->parent_colnos[varattno - 1];
+ if (parent_varattno == 0)
+ break; /* Var is local to child */
+
+ varno = appinfo->parent_relid;
+ varattno = parent_varattno;
+ found = true;
+
+ /* If the parent is itself a child, continue up. */
+ appinfo = root->append_rel_array[varno];
+ }
+
+ /*
+ * In rare cases, the Var may be local to the child table, in
+ * which case, we've got to live with having no access to this
+ * column's stats.
+ */
+ if (!found)
+ return;
+
+ /* Repeat the access check on this parent rel & column */
+ rte = planner_rt_fetch(varno, root);
+ Assert(rte->rtekind == RTE_RELATION);
+
+ userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
+
+ vardata->acl_ok =
+ rte->securityQuals == NIL &&
+ ((pg_class_aclcheck(rte->relid, userid,
+ ACL_SELECT) == ACLCHECK_OK) ||
+ (pg_attribute_aclcheck(rte->relid, varattno, userid,
+ ACL_SELECT) == ACLCHECK_OK));
+ }
+ }
+ else
+ {
+ /* suppress any possible leakproofness checks later */
+ vardata->acl_ok = true;
+ }
+ }
+ else if (rte->rtekind == RTE_SUBQUERY && !rte->inh)
+ {
+ /*
+ * Plain subquery (not one that was converted to an appendrel).
+ */
+ Query *subquery = rte->subquery;
+ RelOptInfo *rel;
+ TargetEntry *ste;
+
+ /*
+ * Punt if it's a whole-row var rather than a plain column reference.
+ */
+ if (var->varattno == InvalidAttrNumber)
+ return;
+
+ /*
+ * Punt if subquery uses set operations or GROUP BY, as these will
+ * mash underlying columns' stats beyond recognition. (Set ops are
+ * particularly nasty; if we forged ahead, we would return stats
+ * relevant to only the leftmost subselect...) DISTINCT is also
+ * problematic, but we check that later because there is a possibility
+ * of learning something even with it.
+ */
+ if (subquery->setOperations ||
+ subquery->groupClause ||
+ subquery->groupingSets)
+ return;
+
+ /*
+ * OK, fetch RelOptInfo for subquery. Note that we don't change the
+ * rel returned in vardata, since caller expects it to be a rel of the
+ * caller's query level. Because we might already be recursing, we
+ * can't use that rel pointer either, but have to look up the Var's
+ * rel afresh.
+ */
+ rel = find_base_rel(root, var->varno);
+
+ /* If the subquery hasn't been planned yet, we have to punt */
+ if (rel->subroot == NULL)
+ return;
+ Assert(IsA(rel->subroot, PlannerInfo));
+
+ /*
+ * Switch our attention to the subquery as mangled by the planner. It
+ * was okay to look at the pre-planning version for the tests above,
+ * but now we need a Var that will refer to the subroot's live
+ * RelOptInfos. For instance, if any subquery pullup happened during
+ * planning, Vars in the targetlist might have gotten replaced, and we
+ * need to see the replacement expressions.
+ */
+ subquery = rel->subroot->parse;
+ Assert(IsA(subquery, Query));
+
+ /* Get the subquery output expression referenced by the upper Var */
+ ste = get_tle_by_resno(subquery->targetList, var->varattno);
+ if (ste == NULL || ste->resjunk)
+ elog(ERROR, "subquery %s does not have attribute %d",
+ rte->eref->aliasname, var->varattno);
+ var = (Var *) ste->expr;
+
+ /*
+ * If subquery uses DISTINCT, we can't make use of any stats for the
+ * variable ... but, if it's the only DISTINCT column, we are entitled
+ * to consider it unique. We do the test this way so that it works
+ * for cases involving DISTINCT ON.
+ */
+ if (subquery->distinctClause)
+ {
+ if (list_length(subquery->distinctClause) == 1 &&
+ targetIsInSortList(ste, InvalidOid, subquery->distinctClause))
+ vardata->isunique = true;
+ /* cannot go further */
+ return;
+ }
+
+ /*
+ * If the sub-query originated from a view with the security_barrier
+ * attribute, we must not look at the variable's statistics, though it
+ * seems all right to notice the existence of a DISTINCT clause. So
+ * stop here.
+ *
+ * This is probably a harsher restriction than necessary; it's
+ * certainly OK for the selectivity estimator (which is a C function,
+ * and therefore omnipotent anyway) to look at the statistics. But
+ * many selectivity estimators will happily *invoke the operator
+ * function* to try to work out a good estimate - and that's not OK.
+ * So for now, don't dig down for stats.
+ */
+ if (rte->security_barrier)
+ return;
+
+ /* Can only handle a simple Var of subquery's query level */
+ if (var && IsA(var, Var) &&
+ var->varlevelsup == 0)
+ {
+ /*
+ * OK, recurse into the subquery. Note that the original setting
+ * of vardata->isunique (which will surely be false) is left
+ * unchanged in this situation. That's what we want, since even
+ * if the underlying column is unique, the subquery may have
+ * joined to other tables in a way that creates duplicates.
+ */
+ examine_simple_variable(rel->subroot, var, vardata);
+ }
+ }
+ else
+ {
+ /*
+ * Otherwise, the Var comes from a FUNCTION, VALUES, or CTE RTE. (We
+ * won't see RTE_JOIN here because join alias Vars have already been
+ * flattened.) There's not much we can do with function outputs, but
+ * maybe someday try to be smarter about VALUES and/or CTEs.
+ */
+ }
+}
+
+/*
+ * Check whether it is permitted to call func_oid passing some of the
+ * pg_statistic data in vardata. We allow this either if the user has SELECT
+ * privileges on the table or column underlying the pg_statistic data or if
+ * the function is marked leak-proof.
+ */
+bool
+statistic_proc_security_check(VariableStatData *vardata, Oid func_oid)
+{
+ if (vardata->acl_ok)
+ return true;
+
+ if (!OidIsValid(func_oid))
+ return false;
+
+ if (get_func_leakproof(func_oid))
+ return true;
+
+ ereport(DEBUG2,
+ (errmsg_internal("not using statistics because function \"%s\" is not leak-proof",
+ get_func_name(func_oid))));
+ return false;
+}
+
+/*
+ * get_variable_numdistinct
+ * Estimate the number of distinct values of a variable.
+ *
+ * vardata: results of examine_variable
+ * *isdefault: set to true if the result is a default rather than based on
+ * anything meaningful.
+ *
+ * NB: be careful to produce a positive integral result, since callers may
+ * compare the result to exact integer counts, or might divide by it.
+ */
+double
+get_variable_numdistinct(VariableStatData *vardata, bool *isdefault)
+{
+ double stadistinct;
+ double stanullfrac = 0.0;
+ double ntuples;
+
+ *isdefault = false;
+
+ /*
+ * Determine the stadistinct value to use. There are cases where we can
+ * get an estimate even without a pg_statistic entry, or can get a better
+ * value than is in pg_statistic. Grab stanullfrac too if we can find it
+ * (otherwise, assume no nulls, for lack of any better idea).
+ */
+ if (HeapTupleIsValid(vardata->statsTuple))
+ {
+ /* Use the pg_statistic entry */
+ Form_pg_statistic stats;
+
+ stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
+ stadistinct = stats->stadistinct;
+ stanullfrac = stats->stanullfrac;
+ }
+ else if (vardata->vartype == BOOLOID)
+ {
+ /*
+ * Special-case boolean columns: presumably, two distinct values.
+ *
+ * Are there any other datatypes we should wire in special estimates
+ * for?
+ */
+ stadistinct = 2.0;
+ }
+ else if (vardata->rel && vardata->rel->rtekind == RTE_VALUES)
+ {
+ /*
+ * If the Var represents a column of a VALUES RTE, assume it's unique.
+ * This could of course be very wrong, but it should tend to be true
+ * in well-written queries. We could consider examining the VALUES'
+ * contents to get some real statistics; but that only works if the
+ * entries are all constants, and it would be pretty expensive anyway.
+ */
+ stadistinct = -1.0; /* unique (and all non null) */
+ }
+ else
+ {
+ /*
+ * We don't keep statistics for system columns, but in some cases we
+ * can infer distinctness anyway.
+ */
+ if (vardata->var && IsA(vardata->var, Var))
+ {
+ switch (((Var *) vardata->var)->varattno)
+ {
+ case SelfItemPointerAttributeNumber:
+ stadistinct = -1.0; /* unique (and all non null) */
+ break;
+ case TableOidAttributeNumber:
+ stadistinct = 1.0; /* only 1 value */
+ break;
+ default:
+ stadistinct = 0.0; /* means "unknown" */
+ break;
+ }
+ }
+ else
+ stadistinct = 0.0; /* means "unknown" */
+
+ /*
+ * XXX consider using estimate_num_groups on expressions?
+ */
+ }
+
+ /*
+ * If there is a unique index or DISTINCT clause for the variable, assume
+ * it is unique no matter what pg_statistic says; the statistics could be
+ * out of date, or we might have found a partial unique index that proves
+ * the var is unique for this query. However, we'd better still believe
+ * the null-fraction statistic.
+ */
+ if (vardata->isunique)
+ stadistinct = -1.0 * (1.0 - stanullfrac);
+
+ /*
+ * If we had an absolute estimate, use that.
+ */
+ if (stadistinct > 0.0)
+ return clamp_row_est(stadistinct);
+
+ /*
+ * Otherwise we need to get the relation size; punt if not available.
+ */
+ if (vardata->rel == NULL)
+ {
+ *isdefault = true;
+ return DEFAULT_NUM_DISTINCT;
+ }
+ ntuples = vardata->rel->tuples;
+ if (ntuples <= 0.0)
+ {
+ *isdefault = true;
+ return DEFAULT_NUM_DISTINCT;
+ }
+
+ /*
+ * If we had a relative estimate, use that.
+ */
+ if (stadistinct < 0.0)
+ return clamp_row_est(-stadistinct * ntuples);
+
+ /*
+ * With no data, estimate ndistinct = ntuples if the table is small, else
+ * use default. We use DEFAULT_NUM_DISTINCT as the cutoff for "small" so
+ * that the behavior isn't discontinuous.
+ */
+ if (ntuples < DEFAULT_NUM_DISTINCT)
+ return clamp_row_est(ntuples);
+
+ *isdefault = true;
+ return DEFAULT_NUM_DISTINCT;
+}
+
+/*
+ * get_variable_range
+ * Estimate the minimum and maximum value of the specified variable.
+ * If successful, store values in *min and *max, and return true.
+ * If no data available, return false.
+ *
+ * sortop is the "<" comparison operator to use. This should generally
+ * be "<" not ">", as only the former is likely to be found in pg_statistic.
+ * The collation must be specified too.
+ */
+static bool
+get_variable_range(PlannerInfo *root, VariableStatData *vardata,
+ Oid sortop, Oid collation,
+ Datum *min, Datum *max)
+{
+ Datum tmin = 0;
+ Datum tmax = 0;
+ bool have_data = false;
+ int16 typLen;
+ bool typByVal;
+ Oid opfuncoid;
+ FmgrInfo opproc;
+ AttStatsSlot sslot;
+
+ /*
+ * XXX It's very tempting to try to use the actual column min and max, if
+ * we can get them relatively-cheaply with an index probe. However, since
+ * this function is called many times during join planning, that could
+ * have unpleasant effects on planning speed. Need more investigation
+ * before enabling this.
+ */
+#ifdef NOT_USED
+ if (get_actual_variable_range(root, vardata, sortop, collation, min, max))
+ return true;
+#endif
+
+ if (!HeapTupleIsValid(vardata->statsTuple))
+ {
+ /* no stats available, so default result */
+ return false;
+ }
+
+ /*
+ * If we can't apply the sortop to the stats data, just fail. In
+ * principle, if there's a histogram and no MCVs, we could return the
+ * histogram endpoints without ever applying the sortop ... but it's
+ * probably not worth trying, because whatever the caller wants to do with
+ * the endpoints would likely fail the security check too.
+ */
+ if (!statistic_proc_security_check(vardata,
+ (opfuncoid = get_opcode(sortop))))
+ return false;
+
+ opproc.fn_oid = InvalidOid; /* mark this as not looked up yet */
+
+ get_typlenbyval(vardata->atttype, &typLen, &typByVal);
+
+ /*
+ * If there is a histogram with the ordering we want, grab the first and
+ * last values.
+ */
+ if (get_attstatsslot(&sslot, vardata->statsTuple,
+ STATISTIC_KIND_HISTOGRAM, sortop,
+ ATTSTATSSLOT_VALUES))
+ {
+ if (sslot.stacoll == collation && sslot.nvalues > 0)
+ {
+ tmin = datumCopy(sslot.values[0], typByVal, typLen);
+ tmax = datumCopy(sslot.values[sslot.nvalues - 1], typByVal, typLen);
+ have_data = true;
+ }
+ free_attstatsslot(&sslot);
+ }
+
+ /*
+ * Otherwise, if there is a histogram with some other ordering, scan it
+ * and get the min and max values according to the ordering we want. This
+ * of course may not find values that are really extremal according to our
+ * ordering, but it beats ignoring available data.
+ */
+ if (!have_data &&
+ get_attstatsslot(&sslot, vardata->statsTuple,
+ STATISTIC_KIND_HISTOGRAM, InvalidOid,
+ ATTSTATSSLOT_VALUES))
+ {
+ get_stats_slot_range(&sslot, opfuncoid, &opproc,
+ collation, typLen, typByVal,
+ &tmin, &tmax, &have_data);
+ free_attstatsslot(&sslot);
+ }
+
+ /*
+ * If we have most-common-values info, look for extreme MCVs. This is
+ * needed even if we also have a histogram, since the histogram excludes
+ * the MCVs. However, if we *only* have MCVs and no histogram, we should
+ * be pretty wary of deciding that that is a full representation of the
+ * data. Proceed only if the MCVs represent the whole table (to within
+ * roundoff error).
+ */
+ if (get_attstatsslot(&sslot, vardata->statsTuple,
+ STATISTIC_KIND_MCV, InvalidOid,
+ have_data ? ATTSTATSSLOT_VALUES :
+ (ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)))
+ {
+ bool use_mcvs = have_data;
+
+ if (!have_data)
+ {
+ double sumcommon = 0.0;
+ double nullfrac;
+ int i;
+
+ for (i = 0; i < sslot.nnumbers; i++)
+ sumcommon += sslot.numbers[i];
+ nullfrac = ((Form_pg_statistic) GETSTRUCT(vardata->statsTuple))->stanullfrac;
+ if (sumcommon + nullfrac > 0.99999)
+ use_mcvs = true;
+ }
+
+ if (use_mcvs)
+ get_stats_slot_range(&sslot, opfuncoid, &opproc,
+ collation, typLen, typByVal,
+ &tmin, &tmax, &have_data);
+ free_attstatsslot(&sslot);
+ }
+
+ *min = tmin;
+ *max = tmax;
+ return have_data;
+}
+
+/*
+ * get_stats_slot_range: scan sslot for min/max values
+ *
+ * Subroutine for get_variable_range: update min/max/have_data according
+ * to what we find in the statistics array.
+ */
+static void
+get_stats_slot_range(AttStatsSlot *sslot, Oid opfuncoid, FmgrInfo *opproc,
+ Oid collation, int16 typLen, bool typByVal,
+ Datum *min, Datum *max, bool *p_have_data)
+{
+ Datum tmin = *min;
+ Datum tmax = *max;
+ bool have_data = *p_have_data;
+ bool found_tmin = false;
+ bool found_tmax = false;
+
+ /* Look up the comparison function, if we didn't already do so */
+ if (opproc->fn_oid != opfuncoid)
+ fmgr_info(opfuncoid, opproc);
+
+ /* Scan all the slot's values */
+ for (int i = 0; i < sslot->nvalues; i++)
+ {
+ if (!have_data)
+ {
+ tmin = tmax = sslot->values[i];
+ found_tmin = found_tmax = true;
+ *p_have_data = have_data = true;
+ continue;
+ }
+ if (DatumGetBool(FunctionCall2Coll(opproc,
+ collation,
+ sslot->values[i], tmin)))
+ {
+ tmin = sslot->values[i];
+ found_tmin = true;
+ }
+ if (DatumGetBool(FunctionCall2Coll(opproc,
+ collation,
+ tmax, sslot->values[i])))
+ {
+ tmax = sslot->values[i];
+ found_tmax = true;
+ }
+ }
+
+ /*
+ * Copy the slot's values, if we found new extreme values.
+ */
+ if (found_tmin)
+ *min = datumCopy(tmin, typByVal, typLen);
+ if (found_tmax)
+ *max = datumCopy(tmax, typByVal, typLen);
+}
+
+
+/*
+ * get_actual_variable_range
+ * Attempt to identify the current *actual* minimum and/or maximum
+ * of the specified variable, by looking for a suitable btree index
+ * and fetching its low and/or high values.
+ * If successful, store values in *min and *max, and return true.
+ * (Either pointer can be NULL if that endpoint isn't needed.)
+ * If no data available, return false.
+ *
+ * sortop is the "<" comparison operator to use.
+ * collation is the required collation.
+ */
+static bool
+get_actual_variable_range(PlannerInfo *root, VariableStatData *vardata,
+ Oid sortop, Oid collation,
+ Datum *min, Datum *max)
+{
+ bool have_data = false;
+ RelOptInfo *rel = vardata->rel;
+ RangeTblEntry *rte;
+ ListCell *lc;
+
+ /* No hope if no relation or it doesn't have indexes */
+ if (rel == NULL || rel->indexlist == NIL)
+ return false;
+ /* If it has indexes it must be a plain relation */
+ rte = root->simple_rte_array[rel->relid];
+ Assert(rte->rtekind == RTE_RELATION);
+
+ /* Search through the indexes to see if any match our problem */
+ foreach(lc, rel->indexlist)
+ {
+ IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
+ ScanDirection indexscandir;
+
+ /* Ignore non-btree indexes */
+ if (index->relam != BTREE_AM_OID)
+ continue;
+
+ /*
+ * Ignore partial indexes --- we only want stats that cover the entire
+ * relation.
+ */
+ if (index->indpred != NIL)
+ continue;
+
+ /*
+ * The index list might include hypothetical indexes inserted by a
+ * get_relation_info hook --- don't try to access them.
+ */
+ if (index->hypothetical)
+ continue;
+
+ /*
+ * The first index column must match the desired variable, sortop, and
+ * collation --- but we can use a descending-order index.
+ */
+ if (collation != index->indexcollations[0])
+ continue; /* test first 'cause it's cheapest */
+ if (!match_index_to_operand(vardata->var, 0, index))
+ continue;
+ switch (get_op_opfamily_strategy(sortop, index->sortopfamily[0]))
+ {
+ case BTLessStrategyNumber:
+ if (index->reverse_sort[0])
+ indexscandir = BackwardScanDirection;
+ else
+ indexscandir = ForwardScanDirection;
+ break;
+ case BTGreaterStrategyNumber:
+ if (index->reverse_sort[0])
+ indexscandir = ForwardScanDirection;
+ else
+ indexscandir = BackwardScanDirection;
+ break;
+ default:
+ /* index doesn't match the sortop */
+ continue;
+ }
+
+ /*
+ * Found a suitable index to extract data from. Set up some data that
+ * can be used by both invocations of get_actual_variable_endpoint.
+ */
+ {
+ MemoryContext tmpcontext;
+ MemoryContext oldcontext;
+ Relation heapRel;
+ Relation indexRel;
+ TupleTableSlot *slot;
+ int16 typLen;
+ bool typByVal;
+ ScanKeyData scankeys[1];
+
+ /* Make sure any cruft gets recycled when we're done */
+ tmpcontext = AllocSetContextCreate(CurrentMemoryContext,
+ "get_actual_variable_range workspace",
+ ALLOCSET_DEFAULT_SIZES);
+ oldcontext = MemoryContextSwitchTo(tmpcontext);
+
+ /*
+ * Open the table and index so we can read from them. We should
+ * already have some type of lock on each.
+ */
+ heapRel = table_open(rte->relid, NoLock);
+ indexRel = index_open(index->indexoid, NoLock);
+
+ /* build some stuff needed for indexscan execution */
+ slot = table_slot_create(heapRel, NULL);
+ get_typlenbyval(vardata->atttype, &typLen, &typByVal);
+
+ /* set up an IS NOT NULL scan key so that we ignore nulls */
+ ScanKeyEntryInitialize(&scankeys[0],
+ SK_ISNULL | SK_SEARCHNOTNULL,
+ 1, /* index col to scan */
+ InvalidStrategy, /* no strategy */
+ InvalidOid, /* no strategy subtype */
+ InvalidOid, /* no collation */
+ InvalidOid, /* no reg proc for this */
+ (Datum) 0); /* constant */
+
+ /* If min is requested ... */
+ if (min)
+ {
+ have_data = get_actual_variable_endpoint(heapRel,
+ indexRel,
+ indexscandir,
+ scankeys,
+ typLen,
+ typByVal,
+ slot,
+ oldcontext,
+ min);
+ }
+ else
+ {
+ /* If min not requested, assume index is nonempty */
+ have_data = true;
+ }
+
+ /* If max is requested, and we didn't find the index is empty */
+ if (max && have_data)
+ {
+ /* scan in the opposite direction; all else is the same */
+ have_data = get_actual_variable_endpoint(heapRel,
+ indexRel,
+ -indexscandir,
+ scankeys,
+ typLen,
+ typByVal,
+ slot,
+ oldcontext,
+ max);
+ }
+
+ /* Clean everything up */
+ ExecDropSingleTupleTableSlot(slot);
+
+ index_close(indexRel, NoLock);
+ table_close(heapRel, NoLock);
+
+ MemoryContextSwitchTo(oldcontext);
+ MemoryContextDelete(tmpcontext);
+
+ /* And we're done */
+ break;
+ }
+ }
+
+ return have_data;
+}
+
+/*
+ * Get one endpoint datum (min or max depending on indexscandir) from the
+ * specified index. Return true if successful, false if index is empty.
+ * On success, endpoint value is stored to *endpointDatum (and copied into
+ * outercontext).
+ *
+ * scankeys is a 1-element scankey array set up to reject nulls.
+ * typLen/typByVal describe the datatype of the index's first column.
+ * tableslot is a slot suitable to hold table tuples, in case we need
+ * to probe the heap.
+ * (We could compute these values locally, but that would mean computing them
+ * twice when get_actual_variable_range needs both the min and the max.)
+ */
+static bool
+get_actual_variable_endpoint(Relation heapRel,
+ Relation indexRel,
+ ScanDirection indexscandir,
+ ScanKey scankeys,
+ int16 typLen,
+ bool typByVal,
+ TupleTableSlot *tableslot,
+ MemoryContext outercontext,
+ Datum *endpointDatum)
+{
+ bool have_data = false;
+ SnapshotData SnapshotNonVacuumable;
+ IndexScanDesc index_scan;
+ Buffer vmbuffer = InvalidBuffer;
+ ItemPointer tid;
+ Datum values[INDEX_MAX_KEYS];
+ bool isnull[INDEX_MAX_KEYS];
+ MemoryContext oldcontext;
+
+ /*
+ * We use the index-only-scan machinery for this. With mostly-static
+ * tables that's a win because it avoids a heap visit. It's also a win
+ * for dynamic data, but the reason is less obvious; read on for details.
+ *
+ * In principle, we should scan the index with our current active
+ * snapshot, which is the best approximation we've got to what the query
+ * will see when executed. But that won't be exact if a new snap is taken
+ * before running the query, and it can be very expensive if a lot of
+ * recently-dead or uncommitted rows exist at the beginning or end of the
+ * index (because we'll laboriously fetch each one and reject it).
+ * Instead, we use SnapshotNonVacuumable. That will accept recently-dead
+ * and uncommitted rows as well as normal visible rows. On the other
+ * hand, it will reject known-dead rows, and thus not give a bogus answer
+ * when the extreme value has been deleted (unless the deletion was quite
+ * recent); that case motivates not using SnapshotAny here.
+ *
+ * A crucial point here is that SnapshotNonVacuumable, with
+ * GlobalVisTestFor(heapRel) as horizon, yields the inverse of the
+ * condition that the indexscan will use to decide that index entries are
+ * killable (see heap_hot_search_buffer()). Therefore, if the snapshot
+ * rejects a tuple (or more precisely, all tuples of a HOT chain) and we
+ * have to continue scanning past it, we know that the indexscan will mark
+ * that index entry killed. That means that the next
+ * get_actual_variable_endpoint() call will not have to re-consider that
+ * index entry. In this way we avoid repetitive work when this function
+ * is used a lot during planning.
+ *
+ * But using SnapshotNonVacuumable creates a hazard of its own. In a
+ * recently-created index, some index entries may point at "broken" HOT
+ * chains in which not all the tuple versions contain data matching the
+ * index entry. The live tuple version(s) certainly do match the index,
+ * but SnapshotNonVacuumable can accept recently-dead tuple versions that
+ * don't match. Hence, if we took data from the selected heap tuple, we
+ * might get a bogus answer that's not close to the index extremal value,
+ * or could even be NULL. We avoid this hazard because we take the data
+ * from the index entry not the heap.
+ */
+ InitNonVacuumableSnapshot(SnapshotNonVacuumable,
+ GlobalVisTestFor(heapRel));
+
+ index_scan = index_beginscan(heapRel, indexRel,
+ &SnapshotNonVacuumable,
+ 1, 0);
+ /* Set it up for index-only scan */
+ index_scan->xs_want_itup = true;
+ index_rescan(index_scan, scankeys, 1, NULL, 0);
+
+ /* Fetch first/next tuple in specified direction */
+ while ((tid = index_getnext_tid(index_scan, indexscandir)) != NULL)
+ {
+ if (!VM_ALL_VISIBLE(heapRel,
+ ItemPointerGetBlockNumber(tid),
+ &vmbuffer))
+ {
+ /* Rats, we have to visit the heap to check visibility */
+ if (!index_fetch_heap(index_scan, tableslot))
+ continue; /* no visible tuple, try next index entry */
+
+ /* We don't actually need the heap tuple for anything */
+ ExecClearTuple(tableslot);
+
+ /*
+ * We don't care whether there's more than one visible tuple in
+ * the HOT chain; if any are visible, that's good enough.
+ */
+ }
+
+ /*
+ * We expect that btree will return data in IndexTuple not HeapTuple
+ * format. It's not lossy either.
+ */
+ if (!index_scan->xs_itup)
+ elog(ERROR, "no data returned for index-only scan");
+ if (index_scan->xs_recheck)
+ elog(ERROR, "unexpected recheck indication from btree");
+
+ /* OK to deconstruct the index tuple */
+ index_deform_tuple(index_scan->xs_itup,
+ index_scan->xs_itupdesc,
+ values, isnull);
+
+ /* Shouldn't have got a null, but be careful */
+ if (isnull[0])
+ elog(ERROR, "found unexpected null value in index \"%s\"",
+ RelationGetRelationName(indexRel));
+
+ /* Copy the index column value out to caller's context */
+ oldcontext = MemoryContextSwitchTo(outercontext);
+ *endpointDatum = datumCopy(values[0], typByVal, typLen);
+ MemoryContextSwitchTo(oldcontext);
+ have_data = true;
+ break;
+ }
+
+ if (vmbuffer != InvalidBuffer)
+ ReleaseBuffer(vmbuffer);
+ index_endscan(index_scan);
+
+ return have_data;
+}
+
+/*
+ * find_join_input_rel
+ * Look up the input relation for a join.
+ *
+ * We assume that the input relation's RelOptInfo must have been constructed
+ * already.
+ */
+static RelOptInfo *
+find_join_input_rel(PlannerInfo *root, Relids relids)
+{
+ RelOptInfo *rel = NULL;
+
+ switch (bms_membership(relids))
+ {
+ case BMS_EMPTY_SET:
+ /* should not happen */
+ break;
+ case BMS_SINGLETON:
+ rel = find_base_rel(root, bms_singleton_member(relids));
+ break;
+ case BMS_MULTIPLE:
+ rel = find_join_rel(root, relids);
+ break;
+ }
+
+ if (rel == NULL)
+ elog(ERROR, "could not find RelOptInfo for given relids");
+
+ return rel;
+}
+
+
+/*-------------------------------------------------------------------------
+ *
+ * Index cost estimation functions
+ *
+ *-------------------------------------------------------------------------
+ */
+
+/*
+ * Extract the actual indexquals (as RestrictInfos) from an IndexClause list
+ */
+List *
+get_quals_from_indexclauses(List *indexclauses)
+{
+ List *result = NIL;
+ ListCell *lc;
+
+ foreach(lc, indexclauses)
+ {
+ IndexClause *iclause = lfirst_node(IndexClause, lc);
+ ListCell *lc2;
+
+ foreach(lc2, iclause->indexquals)
+ {
+ RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
+
+ result = lappend(result, rinfo);
+ }
+ }
+ return result;
+}
+
+/*
+ * Compute the total evaluation cost of the comparison operands in a list
+ * of index qual expressions. Since we know these will be evaluated just
+ * once per scan, there's no need to distinguish startup from per-row cost.
+ *
+ * This can be used either on the result of get_quals_from_indexclauses(),
+ * or directly on an indexorderbys list. In both cases, we expect that the
+ * index key expression is on the left side of binary clauses.
+ */
+Cost
+index_other_operands_eval_cost(PlannerInfo *root, List *indexquals)
+{
+ Cost qual_arg_cost = 0;
+ ListCell *lc;
+
+ foreach(lc, indexquals)
+ {
+ Expr *clause = (Expr *) lfirst(lc);
+ Node *other_operand;
+ QualCost index_qual_cost;
+
+ /*
+ * Index quals will have RestrictInfos, indexorderbys won't. Look
+ * through RestrictInfo if present.
+ */
+ if (IsA(clause, RestrictInfo))
+ clause = ((RestrictInfo *) clause)->clause;
+
+ if (IsA(clause, OpExpr))
+ {
+ OpExpr *op = (OpExpr *) clause;
+
+ other_operand = (Node *) lsecond(op->args);
+ }
+ else if (IsA(clause, RowCompareExpr))
+ {
+ RowCompareExpr *rc = (RowCompareExpr *) clause;
+
+ other_operand = (Node *) rc->rargs;
+ }
+ else if (IsA(clause, ScalarArrayOpExpr))
+ {
+ ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
+
+ other_operand = (Node *) lsecond(saop->args);
+ }
+ else if (IsA(clause, NullTest))
+ {
+ other_operand = NULL;
+ }
+ else
+ {
+ elog(ERROR, "unsupported indexqual type: %d",
+ (int) nodeTag(clause));
+ other_operand = NULL; /* keep compiler quiet */
+ }
+
+ cost_qual_eval_node(&index_qual_cost, other_operand, root);
+ qual_arg_cost += index_qual_cost.startup + index_qual_cost.per_tuple;
+ }
+ return qual_arg_cost;
+}
+
+void
+genericcostestimate(PlannerInfo *root,
+ IndexPath *path,
+ double loop_count,
+ GenericCosts *costs)
+{
+ IndexOptInfo *index = path->indexinfo;
+ List *indexQuals = get_quals_from_indexclauses(path->indexclauses);
+ List *indexOrderBys = path->indexorderbys;
+ Cost indexStartupCost;
+ Cost indexTotalCost;
+ Selectivity indexSelectivity;
+ double indexCorrelation;
+ double numIndexPages;
+ double numIndexTuples;
+ double spc_random_page_cost;
+ double num_sa_scans;
+ double num_outer_scans;
+ double num_scans;
+ double qual_op_cost;
+ double qual_arg_cost;
+ List *selectivityQuals;
+ ListCell *l;
+
+ /*
+ * If the index is partial, AND the index predicate with the explicitly
+ * given indexquals to produce a more accurate idea of the index
+ * selectivity.
+ */
+ selectivityQuals = add_predicate_to_index_quals(index, indexQuals);
+
+ /*
+ * Check for ScalarArrayOpExpr index quals, and estimate the number of
+ * index scans that will be performed.
+ */
+ num_sa_scans = 1;
+ foreach(l, indexQuals)
+ {
+ RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
+
+ if (IsA(rinfo->clause, ScalarArrayOpExpr))
+ {
+ ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) rinfo->clause;
+ int alength = estimate_array_length(lsecond(saop->args));
+
+ if (alength > 1)
+ num_sa_scans *= alength;
+ }
+ }
+
+ /* Estimate the fraction of main-table tuples that will be visited */
+ indexSelectivity = clauselist_selectivity(root, selectivityQuals,
+ index->rel->relid,
+ JOIN_INNER,
+ NULL);
+
+ /*
+ * If caller didn't give us an estimate, estimate the number of index
+ * tuples that will be visited. We do it in this rather peculiar-looking
+ * way in order to get the right answer for partial indexes.
+ */
+ numIndexTuples = costs->numIndexTuples;
+ if (numIndexTuples <= 0.0)
+ {
+ numIndexTuples = indexSelectivity * index->rel->tuples;
+
+ /*
+ * The above calculation counts all the tuples visited across all
+ * scans induced by ScalarArrayOpExpr nodes. We want to consider the
+ * average per-indexscan number, so adjust. This is a handy place to
+ * round to integer, too. (If caller supplied tuple estimate, it's
+ * responsible for handling these considerations.)
+ */
+ numIndexTuples = rint(numIndexTuples / num_sa_scans);
+ }
+
+ /*
+ * We can bound the number of tuples by the index size in any case. Also,
+ * always estimate at least one tuple is touched, even when
+ * indexSelectivity estimate is tiny.
+ */
+ if (numIndexTuples > index->tuples)
+ numIndexTuples = index->tuples;
+ if (numIndexTuples < 1.0)
+ numIndexTuples = 1.0;
+
+ /*
+ * Estimate the number of index pages that will be retrieved.
+ *
+ * We use the simplistic method of taking a pro-rata fraction of the total
+ * number of index pages. In effect, this counts only leaf pages and not
+ * any overhead such as index metapage or upper tree levels.
+ *
+ * In practice access to upper index levels is often nearly free because
+ * those tend to stay in cache under load; moreover, the cost involved is
+ * highly dependent on index type. We therefore ignore such costs here
+ * and leave it to the caller to add a suitable charge if needed.
+ */
+ if (index->pages > 1 && index->tuples > 1)
+ numIndexPages = ceil(numIndexTuples * index->pages / index->tuples);
+ else
+ numIndexPages = 1.0;
+
+ /* fetch estimated page cost for tablespace containing index */
+ get_tablespace_page_costs(index->reltablespace,
+ &spc_random_page_cost,
+ NULL);
+
+ /*
+ * Now compute the disk access costs.
+ *
+ * The above calculations are all per-index-scan. However, if we are in a
+ * nestloop inner scan, we can expect the scan to be repeated (with
+ * different search keys) for each row of the outer relation. Likewise,
+ * ScalarArrayOpExpr quals result in multiple index scans. This creates
+ * the potential for cache effects to reduce the number of disk page
+ * fetches needed. We want to estimate the average per-scan I/O cost in
+ * the presence of caching.
+ *
+ * We use the Mackert-Lohman formula (see costsize.c for details) to
+ * estimate the total number of page fetches that occur. While this
+ * wasn't what it was designed for, it seems a reasonable model anyway.
+ * Note that we are counting pages not tuples anymore, so we take N = T =
+ * index size, as if there were one "tuple" per page.
+ */
+ num_outer_scans = loop_count;
+ num_scans = num_sa_scans * num_outer_scans;
+
+ if (num_scans > 1)
+ {
+ double pages_fetched;
+
+ /* total page fetches ignoring cache effects */
+ pages_fetched = numIndexPages * num_scans;
+
+ /* use Mackert and Lohman formula to adjust for cache effects */
+ pages_fetched = index_pages_fetched(pages_fetched,
+ index->pages,
+ (double) index->pages,
+ root);
+
+ /*
+ * Now compute the total disk access cost, and then report a pro-rated
+ * share for each outer scan. (Don't pro-rate for ScalarArrayOpExpr,
+ * since that's internal to the indexscan.)
+ */
+ indexTotalCost = (pages_fetched * spc_random_page_cost)
+ / num_outer_scans;
+ }
+ else
+ {
+ /*
+ * For a single index scan, we just charge spc_random_page_cost per
+ * page touched.
+ */
+ indexTotalCost = numIndexPages * spc_random_page_cost;
+ }
+
+ /*
+ * CPU cost: any complex expressions in the indexquals will need to be
+ * evaluated once at the start of the scan to reduce them to runtime keys
+ * to pass to the index AM (see nodeIndexscan.c). We model the per-tuple
+ * CPU costs as cpu_index_tuple_cost plus one cpu_operator_cost per
+ * indexqual operator. Because we have numIndexTuples as a per-scan
+ * number, we have to multiply by num_sa_scans to get the correct result
+ * for ScalarArrayOpExpr cases. Similarly add in costs for any index
+ * ORDER BY expressions.
+ *
+ * Note: this neglects the possible costs of rechecking lossy operators.
+ * Detecting that that might be needed seems more expensive than it's
+ * worth, though, considering all the other inaccuracies here ...
+ */
+ qual_arg_cost = index_other_operands_eval_cost(root, indexQuals) +
+ index_other_operands_eval_cost(root, indexOrderBys);
+ qual_op_cost = cpu_operator_cost *
+ (list_length(indexQuals) + list_length(indexOrderBys));
+
+ indexStartupCost = qual_arg_cost;
+ indexTotalCost += qual_arg_cost;
+ indexTotalCost += numIndexTuples * num_sa_scans * (cpu_index_tuple_cost + qual_op_cost);
+
+ /*
+ * Generic assumption about index correlation: there isn't any.
+ */
+ indexCorrelation = 0.0;
+
+ /*
+ * Return everything to caller.
+ */
+ costs->indexStartupCost = indexStartupCost;
+ costs->indexTotalCost = indexTotalCost;
+ costs->indexSelectivity = indexSelectivity;
+ costs->indexCorrelation = indexCorrelation;
+ costs->numIndexPages = numIndexPages;
+ costs->numIndexTuples = numIndexTuples;
+ costs->spc_random_page_cost = spc_random_page_cost;
+ costs->num_sa_scans = num_sa_scans;
+}
+
+/*
+ * If the index is partial, add its predicate to the given qual list.
+ *
+ * ANDing the index predicate with the explicitly given indexquals produces
+ * a more accurate idea of the index's selectivity. However, we need to be
+ * careful not to insert redundant clauses, because clauselist_selectivity()
+ * is easily fooled into computing a too-low selectivity estimate. Our
+ * approach is to add only the predicate clause(s) that cannot be proven to
+ * be implied by the given indexquals. This successfully handles cases such
+ * as a qual "x = 42" used with a partial index "WHERE x >= 40 AND x < 50".
+ * There are many other cases where we won't detect redundancy, leading to a
+ * too-low selectivity estimate, which will bias the system in favor of using
+ * partial indexes where possible. That is not necessarily bad though.
+ *
+ * Note that indexQuals contains RestrictInfo nodes while the indpred
+ * does not, so the output list will be mixed. This is OK for both
+ * predicate_implied_by() and clauselist_selectivity(), but might be
+ * problematic if the result were passed to other things.
+ */
+List *
+add_predicate_to_index_quals(IndexOptInfo *index, List *indexQuals)
+{
+ List *predExtraQuals = NIL;
+ ListCell *lc;
+
+ if (index->indpred == NIL)
+ return indexQuals;
+
+ foreach(lc, index->indpred)
+ {
+ Node *predQual = (Node *) lfirst(lc);
+ List *oneQual = list_make1(predQual);
+
+ if (!predicate_implied_by(oneQual, indexQuals, false))
+ predExtraQuals = list_concat(predExtraQuals, oneQual);
+ }
+ return list_concat(predExtraQuals, indexQuals);
+}
+
+
+void
+btcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
+ Cost *indexStartupCost, Cost *indexTotalCost,
+ Selectivity *indexSelectivity, double *indexCorrelation,
+ double *indexPages)
+{
+ IndexOptInfo *index = path->indexinfo;
+ GenericCosts costs;
+ Oid relid;
+ AttrNumber colnum;
+ VariableStatData vardata;
+ double numIndexTuples;
+ Cost descentCost;
+ List *indexBoundQuals;
+ int indexcol;
+ bool eqQualHere;
+ bool found_saop;
+ bool found_is_null_op;
+ double num_sa_scans;
+ ListCell *lc;
+
+ /*
+ * For a btree scan, only leading '=' quals plus inequality quals for the
+ * immediately next attribute contribute to index selectivity (these are
+ * the "boundary quals" that determine the starting and stopping points of
+ * the index scan). Additional quals can suppress visits to the heap, so
+ * it's OK to count them in indexSelectivity, but they should not count
+ * for estimating numIndexTuples. So we must examine the given indexquals
+ * to find out which ones count as boundary quals. We rely on the
+ * knowledge that they are given in index column order.
+ *
+ * For a RowCompareExpr, we consider only the first column, just as
+ * rowcomparesel() does.
+ *
+ * If there's a ScalarArrayOpExpr in the quals, we'll actually perform N
+ * index scans not one, but the ScalarArrayOpExpr's operator can be
+ * considered to act the same as it normally does.
+ */
+ indexBoundQuals = NIL;
+ indexcol = 0;
+ eqQualHere = false;
+ found_saop = false;
+ found_is_null_op = false;
+ num_sa_scans = 1;
+ foreach(lc, path->indexclauses)
+ {
+ IndexClause *iclause = lfirst_node(IndexClause, lc);
+ ListCell *lc2;
+
+ if (indexcol != iclause->indexcol)
+ {
+ /* Beginning of a new column's quals */
+ if (!eqQualHere)
+ break; /* done if no '=' qual for indexcol */
+ eqQualHere = false;
+ indexcol++;
+ if (indexcol != iclause->indexcol)
+ break; /* no quals at all for indexcol */
+ }
+
+ /* Examine each indexqual associated with this index clause */
+ foreach(lc2, iclause->indexquals)
+ {
+ RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
+ Expr *clause = rinfo->clause;
+ Oid clause_op = InvalidOid;
+ int op_strategy;
+
+ if (IsA(clause, OpExpr))
+ {
+ OpExpr *op = (OpExpr *) clause;
+
+ clause_op = op->opno;
+ }
+ else if (IsA(clause, RowCompareExpr))
+ {
+ RowCompareExpr *rc = (RowCompareExpr *) clause;
+
+ clause_op = linitial_oid(rc->opnos);
+ }
+ else if (IsA(clause, ScalarArrayOpExpr))
+ {
+ ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
+ Node *other_operand = (Node *) lsecond(saop->args);
+ int alength = estimate_array_length(other_operand);
+
+ clause_op = saop->opno;
+ found_saop = true;
+ /* count number of SA scans induced by indexBoundQuals only */
+ if (alength > 1)
+ num_sa_scans *= alength;
+ }
+ else if (IsA(clause, NullTest))
+ {
+ NullTest *nt = (NullTest *) clause;
+
+ if (nt->nulltesttype == IS_NULL)
+ {
+ found_is_null_op = true;
+ /* IS NULL is like = for selectivity purposes */
+ eqQualHere = true;
+ }
+ }
+ else
+ elog(ERROR, "unsupported indexqual type: %d",
+ (int) nodeTag(clause));
+
+ /* check for equality operator */
+ if (OidIsValid(clause_op))
+ {
+ op_strategy = get_op_opfamily_strategy(clause_op,
+ index->opfamily[indexcol]);
+ Assert(op_strategy != 0); /* not a member of opfamily?? */
+ if (op_strategy == BTEqualStrategyNumber)
+ eqQualHere = true;
+ }
+
+ indexBoundQuals = lappend(indexBoundQuals, rinfo);
+ }
+ }
+
+ /*
+ * If index is unique and we found an '=' clause for each column, we can
+ * just assume numIndexTuples = 1 and skip the expensive
+ * clauselist_selectivity calculations. However, a ScalarArrayOp or
+ * NullTest invalidates that theory, even though it sets eqQualHere.
+ */
+ if (index->unique &&
+ indexcol == index->nkeycolumns - 1 &&
+ eqQualHere &&
+ !found_saop &&
+ !found_is_null_op)
+ numIndexTuples = 1.0;
+ else
+ {
+ List *selectivityQuals;
+ Selectivity btreeSelectivity;
+
+ /*
+ * If the index is partial, AND the index predicate with the
+ * index-bound quals to produce a more accurate idea of the number of
+ * rows covered by the bound conditions.
+ */
+ selectivityQuals = add_predicate_to_index_quals(index, indexBoundQuals);
+
+ btreeSelectivity = clauselist_selectivity(root, selectivityQuals,
+ index->rel->relid,
+ JOIN_INNER,
+ NULL);
+ numIndexTuples = btreeSelectivity * index->rel->tuples;
+
+ /*
+ * As in genericcostestimate(), we have to adjust for any
+ * ScalarArrayOpExpr quals included in indexBoundQuals, and then round
+ * to integer.
+ */
+ numIndexTuples = rint(numIndexTuples / num_sa_scans);
+ }
+
+ /*
+ * Now do generic index cost estimation.
+ */
+ MemSet(&costs, 0, sizeof(costs));
+ costs.numIndexTuples = numIndexTuples;
+
+ genericcostestimate(root, path, loop_count, &costs);
+
+ /*
+ * Add a CPU-cost component to represent the costs of initial btree
+ * descent. We don't charge any I/O cost for touching upper btree levels,
+ * since they tend to stay in cache, but we still have to do about log2(N)
+ * comparisons to descend a btree of N leaf tuples. We charge one
+ * cpu_operator_cost per comparison.
+ *
+ * If there are ScalarArrayOpExprs, charge this once per SA scan. The
+ * ones after the first one are not startup cost so far as the overall
+ * plan is concerned, so add them only to "total" cost.
+ */
+ if (index->tuples > 1) /* avoid computing log(0) */
+ {
+ descentCost = ceil(log(index->tuples) / log(2.0)) * cpu_operator_cost;
+ costs.indexStartupCost += descentCost;
+ costs.indexTotalCost += costs.num_sa_scans * descentCost;
+ }
+
+ /*
+ * Even though we're not charging I/O cost for touching upper btree pages,
+ * it's still reasonable to charge some CPU cost per page descended
+ * through. Moreover, if we had no such charge at all, bloated indexes
+ * would appear to have the same search cost as unbloated ones, at least
+ * in cases where only a single leaf page is expected to be visited. This
+ * cost is somewhat arbitrarily set at 50x cpu_operator_cost per page
+ * touched. The number of such pages is btree tree height plus one (ie,
+ * we charge for the leaf page too). As above, charge once per SA scan.
+ */
+ descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost;
+ costs.indexStartupCost += descentCost;
+ costs.indexTotalCost += costs.num_sa_scans * descentCost;
+
+ /*
+ * If we can get an estimate of the first column's ordering correlation C
+ * from pg_statistic, estimate the index correlation as C for a
+ * single-column index, or C * 0.75 for multiple columns. (The idea here
+ * is that multiple columns dilute the importance of the first column's
+ * ordering, but don't negate it entirely. Before 8.0 we divided the
+ * correlation by the number of columns, but that seems too strong.)
+ */
+ MemSet(&vardata, 0, sizeof(vardata));
+
+ if (index->indexkeys[0] != 0)
+ {
+ /* Simple variable --- look to stats for the underlying table */
+ RangeTblEntry *rte = planner_rt_fetch(index->rel->relid, root);
+
+ Assert(rte->rtekind == RTE_RELATION);
+ relid = rte->relid;
+ Assert(relid != InvalidOid);
+ colnum = index->indexkeys[0];
+
+ if (get_relation_stats_hook &&
+ (*get_relation_stats_hook) (root, rte, colnum, &vardata))
+ {
+ /*
+ * The hook took control of acquiring a stats tuple. If it did
+ * supply a tuple, it'd better have supplied a freefunc.
+ */
+ if (HeapTupleIsValid(vardata.statsTuple) &&
+ !vardata.freefunc)
+ elog(ERROR, "no function provided to release variable stats with");
+ }
+ else
+ {
+ vardata.statsTuple = SearchSysCache3(STATRELATTINH,
+ ObjectIdGetDatum(relid),
+ Int16GetDatum(colnum),
+ BoolGetDatum(rte->inh));
+ vardata.freefunc = ReleaseSysCache;
+ }
+ }
+ else
+ {
+ /* Expression --- maybe there are stats for the index itself */
+ relid = index->indexoid;
+ colnum = 1;
+
+ if (get_index_stats_hook &&
+ (*get_index_stats_hook) (root, relid, colnum, &vardata))
+ {
+ /*
+ * The hook took control of acquiring a stats tuple. If it did
+ * supply a tuple, it'd better have supplied a freefunc.
+ */
+ if (HeapTupleIsValid(vardata.statsTuple) &&
+ !vardata.freefunc)
+ elog(ERROR, "no function provided to release variable stats with");
+ }
+ else
+ {
+ vardata.statsTuple = SearchSysCache3(STATRELATTINH,
+ ObjectIdGetDatum(relid),
+ Int16GetDatum(colnum),
+ BoolGetDatum(false));
+ vardata.freefunc = ReleaseSysCache;
+ }
+ }
+
+ if (HeapTupleIsValid(vardata.statsTuple))
+ {
+ Oid sortop;
+ AttStatsSlot sslot;
+
+ sortop = get_opfamily_member(index->opfamily[0],
+ index->opcintype[0],
+ index->opcintype[0],
+ BTLessStrategyNumber);
+ if (OidIsValid(sortop) &&
+ get_attstatsslot(&sslot, vardata.statsTuple,
+ STATISTIC_KIND_CORRELATION, sortop,
+ ATTSTATSSLOT_NUMBERS))
+ {
+ double varCorrelation;
+
+ Assert(sslot.nnumbers == 1);
+ varCorrelation = sslot.numbers[0];
+
+ if (index->reverse_sort[0])
+ varCorrelation = -varCorrelation;
+
+ if (index->nkeycolumns > 1)
+ costs.indexCorrelation = varCorrelation * 0.75;
+ else
+ costs.indexCorrelation = varCorrelation;
+
+ free_attstatsslot(&sslot);
+ }
+ }
+
+ ReleaseVariableStats(vardata);
+
+ *indexStartupCost = costs.indexStartupCost;
+ *indexTotalCost = costs.indexTotalCost;
+ *indexSelectivity = costs.indexSelectivity;
+ *indexCorrelation = costs.indexCorrelation;
+ *indexPages = costs.numIndexPages;
+}
+
+void
+hashcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
+ Cost *indexStartupCost, Cost *indexTotalCost,
+ Selectivity *indexSelectivity, double *indexCorrelation,
+ double *indexPages)
+{
+ GenericCosts costs;
+
+ MemSet(&costs, 0, sizeof(costs));
+
+ genericcostestimate(root, path, loop_count, &costs);
+
+ /*
+ * A hash index has no descent costs as such, since the index AM can go
+ * directly to the target bucket after computing the hash value. There
+ * are a couple of other hash-specific costs that we could conceivably add
+ * here, though:
+ *
+ * Ideally we'd charge spc_random_page_cost for each page in the target
+ * bucket, not just the numIndexPages pages that genericcostestimate
+ * thought we'd visit. However in most cases we don't know which bucket
+ * that will be. There's no point in considering the average bucket size
+ * because the hash AM makes sure that's always one page.
+ *
+ * Likewise, we could consider charging some CPU for each index tuple in
+ * the bucket, if we knew how many there were. But the per-tuple cost is
+ * just a hash value comparison, not a general datatype-dependent
+ * comparison, so any such charge ought to be quite a bit less than
+ * cpu_operator_cost; which makes it probably not worth worrying about.
+ *
+ * A bigger issue is that chance hash-value collisions will result in
+ * wasted probes into the heap. We don't currently attempt to model this
+ * cost on the grounds that it's rare, but maybe it's not rare enough.
+ * (Any fix for this ought to consider the generic lossy-operator problem,
+ * though; it's not entirely hash-specific.)
+ */
+
+ *indexStartupCost = costs.indexStartupCost;
+ *indexTotalCost = costs.indexTotalCost;
+ *indexSelectivity = costs.indexSelectivity;
+ *indexCorrelation = costs.indexCorrelation;
+ *indexPages = costs.numIndexPages;
+}
+
+void
+gistcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
+ Cost *indexStartupCost, Cost *indexTotalCost,
+ Selectivity *indexSelectivity, double *indexCorrelation,
+ double *indexPages)
+{
+ IndexOptInfo *index = path->indexinfo;
+ GenericCosts costs;
+ Cost descentCost;
+
+ MemSet(&costs, 0, sizeof(costs));
+
+ genericcostestimate(root, path, loop_count, &costs);
+
+ /*
+ * We model index descent costs similarly to those for btree, but to do
+ * that we first need an idea of the tree height. We somewhat arbitrarily
+ * assume that the fanout is 100, meaning the tree height is at most
+ * log100(index->pages).
+ *
+ * Although this computation isn't really expensive enough to require
+ * caching, we might as well use index->tree_height to cache it.
+ */
+ if (index->tree_height < 0) /* unknown? */
+ {
+ if (index->pages > 1) /* avoid computing log(0) */
+ index->tree_height = (int) (log(index->pages) / log(100.0));
+ else
+ index->tree_height = 0;
+ }
+
+ /*
+ * Add a CPU-cost component to represent the costs of initial descent. We
+ * just use log(N) here not log2(N) since the branching factor isn't
+ * necessarily two anyway. As for btree, charge once per SA scan.
+ */
+ if (index->tuples > 1) /* avoid computing log(0) */
+ {
+ descentCost = ceil(log(index->tuples)) * cpu_operator_cost;
+ costs.indexStartupCost += descentCost;
+ costs.indexTotalCost += costs.num_sa_scans * descentCost;
+ }
+
+ /*
+ * Likewise add a per-page charge, calculated the same as for btrees.
+ */
+ descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost;
+ costs.indexStartupCost += descentCost;
+ costs.indexTotalCost += costs.num_sa_scans * descentCost;
+
+ *indexStartupCost = costs.indexStartupCost;
+ *indexTotalCost = costs.indexTotalCost;
+ *indexSelectivity = costs.indexSelectivity;
+ *indexCorrelation = costs.indexCorrelation;
+ *indexPages = costs.numIndexPages;
+}
+
+void
+spgcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
+ Cost *indexStartupCost, Cost *indexTotalCost,
+ Selectivity *indexSelectivity, double *indexCorrelation,
+ double *indexPages)
+{
+ IndexOptInfo *index = path->indexinfo;
+ GenericCosts costs;
+ Cost descentCost;
+
+ MemSet(&costs, 0, sizeof(costs));
+
+ genericcostestimate(root, path, loop_count, &costs);
+
+ /*
+ * We model index descent costs similarly to those for btree, but to do
+ * that we first need an idea of the tree height. We somewhat arbitrarily
+ * assume that the fanout is 100, meaning the tree height is at most
+ * log100(index->pages).
+ *
+ * Although this computation isn't really expensive enough to require
+ * caching, we might as well use index->tree_height to cache it.
+ */
+ if (index->tree_height < 0) /* unknown? */
+ {
+ if (index->pages > 1) /* avoid computing log(0) */
+ index->tree_height = (int) (log(index->pages) / log(100.0));
+ else
+ index->tree_height = 0;
+ }
+
+ /*
+ * Add a CPU-cost component to represent the costs of initial descent. We
+ * just use log(N) here not log2(N) since the branching factor isn't
+ * necessarily two anyway. As for btree, charge once per SA scan.
+ */
+ if (index->tuples > 1) /* avoid computing log(0) */
+ {
+ descentCost = ceil(log(index->tuples)) * cpu_operator_cost;
+ costs.indexStartupCost += descentCost;
+ costs.indexTotalCost += costs.num_sa_scans * descentCost;
+ }
+
+ /*
+ * Likewise add a per-page charge, calculated the same as for btrees.
+ */
+ descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost;
+ costs.indexStartupCost += descentCost;
+ costs.indexTotalCost += costs.num_sa_scans * descentCost;
+
+ *indexStartupCost = costs.indexStartupCost;
+ *indexTotalCost = costs.indexTotalCost;
+ *indexSelectivity = costs.indexSelectivity;
+ *indexCorrelation = costs.indexCorrelation;
+ *indexPages = costs.numIndexPages;
+}
+
+
+/*
+ * Support routines for gincostestimate
+ */
+
+typedef struct
+{
+ bool attHasFullScan[INDEX_MAX_KEYS];
+ bool attHasNormalScan[INDEX_MAX_KEYS];
+ double partialEntries;
+ double exactEntries;
+ double searchEntries;
+ double arrayScans;
+} GinQualCounts;
+
+/*
+ * Estimate the number of index terms that need to be searched for while
+ * testing the given GIN query, and increment the counts in *counts
+ * appropriately. If the query is unsatisfiable, return false.
+ */
+static bool
+gincost_pattern(IndexOptInfo *index, int indexcol,
+ Oid clause_op, Datum query,
+ GinQualCounts *counts)
+{
+ FmgrInfo flinfo;
+ Oid extractProcOid;
+ Oid collation;
+ int strategy_op;
+ Oid lefttype,
+ righttype;
+ int32 nentries = 0;
+ bool *partial_matches = NULL;
+ Pointer *extra_data = NULL;
+ bool *nullFlags = NULL;
+ int32 searchMode = GIN_SEARCH_MODE_DEFAULT;
+ int32 i;
+
+ Assert(indexcol < index->nkeycolumns);
+
+ /*
+ * Get the operator's strategy number and declared input data types within
+ * the index opfamily. (We don't need the latter, but we use
+ * get_op_opfamily_properties because it will throw error if it fails to
+ * find a matching pg_amop entry.)
+ */
+ get_op_opfamily_properties(clause_op, index->opfamily[indexcol], false,
+ &strategy_op, &lefttype, &righttype);
+
+ /*
+ * GIN always uses the "default" support functions, which are those with
+ * lefttype == righttype == the opclass' opcintype (see
+ * IndexSupportInitialize in relcache.c).
+ */
+ extractProcOid = get_opfamily_proc(index->opfamily[indexcol],
+ index->opcintype[indexcol],
+ index->opcintype[indexcol],
+ GIN_EXTRACTQUERY_PROC);
+
+ if (!OidIsValid(extractProcOid))
+ {
+ /* should not happen; throw same error as index_getprocinfo */
+ elog(ERROR, "missing support function %d for attribute %d of index \"%s\"",
+ GIN_EXTRACTQUERY_PROC, indexcol + 1,
+ get_rel_name(index->indexoid));
+ }
+
+ /*
+ * Choose collation to pass to extractProc (should match initGinState).
+ */
+ if (OidIsValid(index->indexcollations[indexcol]))
+ collation = index->indexcollations[indexcol];
+ else
+ collation = DEFAULT_COLLATION_OID;
+
+ fmgr_info(extractProcOid, &flinfo);
+
+ set_fn_opclass_options(&flinfo, index->opclassoptions[indexcol]);
+
+ FunctionCall7Coll(&flinfo,
+ collation,
+ query,
+ PointerGetDatum(&nentries),
+ UInt16GetDatum(strategy_op),
+ PointerGetDatum(&partial_matches),
+ PointerGetDatum(&extra_data),
+ PointerGetDatum(&nullFlags),
+ PointerGetDatum(&searchMode));
+
+ if (nentries <= 0 && searchMode == GIN_SEARCH_MODE_DEFAULT)
+ {
+ /* No match is possible */
+ return false;
+ }
+
+ for (i = 0; i < nentries; i++)
+ {
+ /*
+ * For partial match we haven't any information to estimate number of
+ * matched entries in index, so, we just estimate it as 100
+ */
+ if (partial_matches && partial_matches[i])
+ counts->partialEntries += 100;
+ else
+ counts->exactEntries++;
+
+ counts->searchEntries++;
+ }
+
+ if (searchMode == GIN_SEARCH_MODE_DEFAULT)
+ {
+ counts->attHasNormalScan[indexcol] = true;
+ }
+ else if (searchMode == GIN_SEARCH_MODE_INCLUDE_EMPTY)
+ {
+ /* Treat "include empty" like an exact-match item */
+ counts->attHasNormalScan[indexcol] = true;
+ counts->exactEntries++;
+ counts->searchEntries++;
+ }
+ else
+ {
+ /* It's GIN_SEARCH_MODE_ALL */
+ counts->attHasFullScan[indexcol] = true;
+ }
+
+ return true;
+}
+
+/*
+ * Estimate the number of index terms that need to be searched for while
+ * testing the given GIN index clause, and increment the counts in *counts
+ * appropriately. If the query is unsatisfiable, return false.
+ */
+static bool
+gincost_opexpr(PlannerInfo *root,
+ IndexOptInfo *index,
+ int indexcol,
+ OpExpr *clause,
+ GinQualCounts *counts)
+{
+ Oid clause_op = clause->opno;
+ Node *operand = (Node *) lsecond(clause->args);
+
+ /* aggressively reduce to a constant, and look through relabeling */
+ operand = estimate_expression_value(root, operand);
+
+ if (IsA(operand, RelabelType))
+ operand = (Node *) ((RelabelType *) operand)->arg;
+
+ /*
+ * It's impossible to call extractQuery method for unknown operand. So
+ * unless operand is a Const we can't do much; just assume there will be
+ * one ordinary search entry from the operand at runtime.
+ */
+ if (!IsA(operand, Const))
+ {
+ counts->exactEntries++;
+ counts->searchEntries++;
+ return true;
+ }
+
+ /* If Const is null, there can be no matches */
+ if (((Const *) operand)->constisnull)
+ return false;
+
+ /* Otherwise, apply extractQuery and get the actual term counts */
+ return gincost_pattern(index, indexcol, clause_op,
+ ((Const *) operand)->constvalue,
+ counts);
+}
+
+/*
+ * Estimate the number of index terms that need to be searched for while
+ * testing the given GIN index clause, and increment the counts in *counts
+ * appropriately. If the query is unsatisfiable, return false.
+ *
+ * A ScalarArrayOpExpr will give rise to N separate indexscans at runtime,
+ * each of which involves one value from the RHS array, plus all the
+ * non-array quals (if any). To model this, we average the counts across
+ * the RHS elements, and add the averages to the counts in *counts (which
+ * correspond to per-indexscan costs). We also multiply counts->arrayScans
+ * by N, causing gincostestimate to scale up its estimates accordingly.
+ */
+static bool
+gincost_scalararrayopexpr(PlannerInfo *root,
+ IndexOptInfo *index,
+ int indexcol,
+ ScalarArrayOpExpr *clause,
+ double numIndexEntries,
+ GinQualCounts *counts)
+{
+ Oid clause_op = clause->opno;
+ Node *rightop = (Node *) lsecond(clause->args);
+ ArrayType *arrayval;
+ int16 elmlen;
+ bool elmbyval;
+ char elmalign;
+ int numElems;
+ Datum *elemValues;
+ bool *elemNulls;
+ GinQualCounts arraycounts;
+ int numPossible = 0;
+ int i;
+
+ Assert(clause->useOr);
+
+ /* aggressively reduce to a constant, and look through relabeling */
+ rightop = estimate_expression_value(root, rightop);
+
+ if (IsA(rightop, RelabelType))
+ rightop = (Node *) ((RelabelType *) rightop)->arg;
+
+ /*
+ * It's impossible to call extractQuery method for unknown operand. So
+ * unless operand is a Const we can't do much; just assume there will be
+ * one ordinary search entry from each array entry at runtime, and fall
+ * back on a probably-bad estimate of the number of array entries.
+ */
+ if (!IsA(rightop, Const))
+ {
+ counts->exactEntries++;
+ counts->searchEntries++;
+ counts->arrayScans *= estimate_array_length(rightop);
+ return true;
+ }
+
+ /* If Const is null, there can be no matches */
+ if (((Const *) rightop)->constisnull)
+ return false;
+
+ /* Otherwise, extract the array elements and iterate over them */
+ arrayval = DatumGetArrayTypeP(((Const *) rightop)->constvalue);
+ get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
+ &elmlen, &elmbyval, &elmalign);
+ deconstruct_array(arrayval,
+ ARR_ELEMTYPE(arrayval),
+ elmlen, elmbyval, elmalign,
+ &elemValues, &elemNulls, &numElems);
+
+ memset(&arraycounts, 0, sizeof(arraycounts));
+
+ for (i = 0; i < numElems; i++)
+ {
+ GinQualCounts elemcounts;
+
+ /* NULL can't match anything, so ignore, as the executor will */
+ if (elemNulls[i])
+ continue;
+
+ /* Otherwise, apply extractQuery and get the actual term counts */
+ memset(&elemcounts, 0, sizeof(elemcounts));
+
+ if (gincost_pattern(index, indexcol, clause_op, elemValues[i],
+ &elemcounts))
+ {
+ /* We ignore array elements that are unsatisfiable patterns */
+ numPossible++;
+
+ if (elemcounts.attHasFullScan[indexcol] &&
+ !elemcounts.attHasNormalScan[indexcol])
+ {
+ /*
+ * Full index scan will be required. We treat this as if
+ * every key in the index had been listed in the query; is
+ * that reasonable?
+ */
+ elemcounts.partialEntries = 0;
+ elemcounts.exactEntries = numIndexEntries;
+ elemcounts.searchEntries = numIndexEntries;
+ }
+ arraycounts.partialEntries += elemcounts.partialEntries;
+ arraycounts.exactEntries += elemcounts.exactEntries;
+ arraycounts.searchEntries += elemcounts.searchEntries;
+ }
+ }
+
+ if (numPossible == 0)
+ {
+ /* No satisfiable patterns in the array */
+ return false;
+ }
+
+ /*
+ * Now add the averages to the global counts. This will give us an
+ * estimate of the average number of terms searched for in each indexscan,
+ * including contributions from both array and non-array quals.
+ */
+ counts->partialEntries += arraycounts.partialEntries / numPossible;
+ counts->exactEntries += arraycounts.exactEntries / numPossible;
+ counts->searchEntries += arraycounts.searchEntries / numPossible;
+
+ counts->arrayScans *= numPossible;
+
+ return true;
+}
+
+/*
+ * GIN has search behavior completely different from other index types
+ */
+void
+gincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
+ Cost *indexStartupCost, Cost *indexTotalCost,
+ Selectivity *indexSelectivity, double *indexCorrelation,
+ double *indexPages)
+{
+ IndexOptInfo *index = path->indexinfo;
+ List *indexQuals = get_quals_from_indexclauses(path->indexclauses);
+ List *selectivityQuals;
+ double numPages = index->pages,
+ numTuples = index->tuples;
+ double numEntryPages,
+ numDataPages,
+ numPendingPages,
+ numEntries;
+ GinQualCounts counts;
+ bool matchPossible;
+ bool fullIndexScan;
+ double partialScale;
+ double entryPagesFetched,
+ dataPagesFetched,
+ dataPagesFetchedBySel;
+ double qual_op_cost,
+ qual_arg_cost,
+ spc_random_page_cost,
+ outer_scans;
+ Relation indexRel;
+ GinStatsData ginStats;
+ ListCell *lc;
+ int i;
+
+ /*
+ * Obtain statistical information from the meta page, if possible. Else
+ * set ginStats to zeroes, and we'll cope below.
+ */
+ if (!index->hypothetical)
+ {
+ /* Lock should have already been obtained in plancat.c */
+ indexRel = index_open(index->indexoid, NoLock);
+ ginGetStats(indexRel, &ginStats);
+ index_close(indexRel, NoLock);
+ }
+ else
+ {
+ memset(&ginStats, 0, sizeof(ginStats));
+ }
+
+ /*
+ * Assuming we got valid (nonzero) stats at all, nPendingPages can be
+ * trusted, but the other fields are data as of the last VACUUM. We can
+ * scale them up to account for growth since then, but that method only
+ * goes so far; in the worst case, the stats might be for a completely
+ * empty index, and scaling them will produce pretty bogus numbers.
+ * Somewhat arbitrarily, set the cutoff for doing scaling at 4X growth; if
+ * it's grown more than that, fall back to estimating things only from the
+ * assumed-accurate index size. But we'll trust nPendingPages in any case
+ * so long as it's not clearly insane, ie, more than the index size.
+ */
+ if (ginStats.nPendingPages < numPages)
+ numPendingPages = ginStats.nPendingPages;
+ else
+ numPendingPages = 0;
+
+ if (numPages > 0 && ginStats.nTotalPages <= numPages &&
+ ginStats.nTotalPages > numPages / 4 &&
+ ginStats.nEntryPages > 0 && ginStats.nEntries > 0)
+ {
+ /*
+ * OK, the stats seem close enough to sane to be trusted. But we
+ * still need to scale them by the ratio numPages / nTotalPages to
+ * account for growth since the last VACUUM.
+ */
+ double scale = numPages / ginStats.nTotalPages;
+
+ numEntryPages = ceil(ginStats.nEntryPages * scale);
+ numDataPages = ceil(ginStats.nDataPages * scale);
+ numEntries = ceil(ginStats.nEntries * scale);
+ /* ensure we didn't round up too much */
+ numEntryPages = Min(numEntryPages, numPages - numPendingPages);
+ numDataPages = Min(numDataPages,
+ numPages - numPendingPages - numEntryPages);
+ }
+ else
+ {
+ /*
+ * We might get here because it's a hypothetical index, or an index
+ * created pre-9.1 and never vacuumed since upgrading (in which case
+ * its stats would read as zeroes), or just because it's grown too
+ * much since the last VACUUM for us to put our faith in scaling.
+ *
+ * Invent some plausible internal statistics based on the index page
+ * count (and clamp that to at least 10 pages, just in case). We
+ * estimate that 90% of the index is entry pages, and the rest is data
+ * pages. Estimate 100 entries per entry page; this is rather bogus
+ * since it'll depend on the size of the keys, but it's more robust
+ * than trying to predict the number of entries per heap tuple.
+ */
+ numPages = Max(numPages, 10);
+ numEntryPages = floor((numPages - numPendingPages) * 0.90);
+ numDataPages = numPages - numPendingPages - numEntryPages;
+ numEntries = floor(numEntryPages * 100);
+ }
+
+ /* In an empty index, numEntries could be zero. Avoid divide-by-zero */
+ if (numEntries < 1)
+ numEntries = 1;
+
+ /*
+ * If the index is partial, AND the index predicate with the index-bound
+ * quals to produce a more accurate idea of the number of rows covered by
+ * the bound conditions.
+ */
+ selectivityQuals = add_predicate_to_index_quals(index, indexQuals);
+
+ /* Estimate the fraction of main-table tuples that will be visited */
+ *indexSelectivity = clauselist_selectivity(root, selectivityQuals,
+ index->rel->relid,
+ JOIN_INNER,
+ NULL);
+
+ /* fetch estimated page cost for tablespace containing index */
+ get_tablespace_page_costs(index->reltablespace,
+ &spc_random_page_cost,
+ NULL);
+
+ /*
+ * Generic assumption about index correlation: there isn't any.
+ */
+ *indexCorrelation = 0.0;
+
+ /*
+ * Examine quals to estimate number of search entries & partial matches
+ */
+ memset(&counts, 0, sizeof(counts));
+ counts.arrayScans = 1;
+ matchPossible = true;
+
+ foreach(lc, path->indexclauses)
+ {
+ IndexClause *iclause = lfirst_node(IndexClause, lc);
+ ListCell *lc2;
+
+ foreach(lc2, iclause->indexquals)
+ {
+ RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
+ Expr *clause = rinfo->clause;
+
+ if (IsA(clause, OpExpr))
+ {
+ matchPossible = gincost_opexpr(root,
+ index,
+ iclause->indexcol,
+ (OpExpr *) clause,
+ &counts);
+ if (!matchPossible)
+ break;
+ }
+ else if (IsA(clause, ScalarArrayOpExpr))
+ {
+ matchPossible = gincost_scalararrayopexpr(root,
+ index,
+ iclause->indexcol,
+ (ScalarArrayOpExpr *) clause,
+ numEntries,
+ &counts);
+ if (!matchPossible)
+ break;
+ }
+ else
+ {
+ /* shouldn't be anything else for a GIN index */
+ elog(ERROR, "unsupported GIN indexqual type: %d",
+ (int) nodeTag(clause));
+ }
+ }
+ }
+
+ /* Fall out if there were any provably-unsatisfiable quals */
+ if (!matchPossible)
+ {
+ *indexStartupCost = 0;
+ *indexTotalCost = 0;
+ *indexSelectivity = 0;
+ return;
+ }
+
+ /*
+ * If attribute has a full scan and at the same time doesn't have normal
+ * scan, then we'll have to scan all non-null entries of that attribute.
+ * Currently, we don't have per-attribute statistics for GIN. Thus, we
+ * must assume the whole GIN index has to be scanned in this case.
+ */
+ fullIndexScan = false;
+ for (i = 0; i < index->nkeycolumns; i++)
+ {
+ if (counts.attHasFullScan[i] && !counts.attHasNormalScan[i])
+ {
+ fullIndexScan = true;
+ break;
+ }
+ }
+
+ if (fullIndexScan || indexQuals == NIL)
+ {
+ /*
+ * Full index scan will be required. We treat this as if every key in
+ * the index had been listed in the query; is that reasonable?
+ */
+ counts.partialEntries = 0;
+ counts.exactEntries = numEntries;
+ counts.searchEntries = numEntries;
+ }
+
+ /* Will we have more than one iteration of a nestloop scan? */
+ outer_scans = loop_count;
+
+ /*
+ * Compute cost to begin scan, first of all, pay attention to pending
+ * list.
+ */
+ entryPagesFetched = numPendingPages;
+
+ /*
+ * Estimate number of entry pages read. We need to do
+ * counts.searchEntries searches. Use a power function as it should be,
+ * but tuples on leaf pages usually is much greater. Here we include all
+ * searches in entry tree, including search of first entry in partial
+ * match algorithm
+ */
+ entryPagesFetched += ceil(counts.searchEntries * rint(pow(numEntryPages, 0.15)));
+
+ /*
+ * Add an estimate of entry pages read by partial match algorithm. It's a
+ * scan over leaf pages in entry tree. We haven't any useful stats here,
+ * so estimate it as proportion. Because counts.partialEntries is really
+ * pretty bogus (see code above), it's possible that it is more than
+ * numEntries; clamp the proportion to ensure sanity.
+ */
+ partialScale = counts.partialEntries / numEntries;
+ partialScale = Min(partialScale, 1.0);
+
+ entryPagesFetched += ceil(numEntryPages * partialScale);
+
+ /*
+ * Partial match algorithm reads all data pages before doing actual scan,
+ * so it's a startup cost. Again, we haven't any useful stats here, so
+ * estimate it as proportion.
+ */
+ dataPagesFetched = ceil(numDataPages * partialScale);
+
+ /*
+ * Calculate cache effects if more than one scan due to nestloops or array
+ * quals. The result is pro-rated per nestloop scan, but the array qual
+ * factor shouldn't be pro-rated (compare genericcostestimate).
+ */
+ if (outer_scans > 1 || counts.arrayScans > 1)
+ {
+ entryPagesFetched *= outer_scans * counts.arrayScans;
+ entryPagesFetched = index_pages_fetched(entryPagesFetched,
+ (BlockNumber) numEntryPages,
+ numEntryPages, root);
+ entryPagesFetched /= outer_scans;
+ dataPagesFetched *= outer_scans * counts.arrayScans;
+ dataPagesFetched = index_pages_fetched(dataPagesFetched,
+ (BlockNumber) numDataPages,
+ numDataPages, root);
+ dataPagesFetched /= outer_scans;
+ }
+
+ /*
+ * Here we use random page cost because logically-close pages could be far
+ * apart on disk.
+ */
+ *indexStartupCost = (entryPagesFetched + dataPagesFetched) * spc_random_page_cost;
+
+ /*
+ * Now compute the number of data pages fetched during the scan.
+ *
+ * We assume every entry to have the same number of items, and that there
+ * is no overlap between them. (XXX: tsvector and array opclasses collect
+ * statistics on the frequency of individual keys; it would be nice to use
+ * those here.)
+ */
+ dataPagesFetched = ceil(numDataPages * counts.exactEntries / numEntries);
+
+ /*
+ * If there is a lot of overlap among the entries, in particular if one of
+ * the entries is very frequent, the above calculation can grossly
+ * under-estimate. As a simple cross-check, calculate a lower bound based
+ * on the overall selectivity of the quals. At a minimum, we must read
+ * one item pointer for each matching entry.
+ *
+ * The width of each item pointer varies, based on the level of
+ * compression. We don't have statistics on that, but an average of
+ * around 3 bytes per item is fairly typical.
+ */
+ dataPagesFetchedBySel = ceil(*indexSelectivity *
+ (numTuples / (BLCKSZ / 3)));
+ if (dataPagesFetchedBySel > dataPagesFetched)
+ dataPagesFetched = dataPagesFetchedBySel;
+
+ /* Account for cache effects, the same as above */
+ if (outer_scans > 1 || counts.arrayScans > 1)
+ {
+ dataPagesFetched *= outer_scans * counts.arrayScans;
+ dataPagesFetched = index_pages_fetched(dataPagesFetched,
+ (BlockNumber) numDataPages,
+ numDataPages, root);
+ dataPagesFetched /= outer_scans;
+ }
+
+ /* And apply random_page_cost as the cost per page */
+ *indexTotalCost = *indexStartupCost +
+ dataPagesFetched * spc_random_page_cost;
+
+ /*
+ * Add on index qual eval costs, much as in genericcostestimate. But we
+ * can disregard indexorderbys, since GIN doesn't support those.
+ */
+ qual_arg_cost = index_other_operands_eval_cost(root, indexQuals);
+ qual_op_cost = cpu_operator_cost * list_length(indexQuals);
+
+ *indexStartupCost += qual_arg_cost;
+ *indexTotalCost += qual_arg_cost;
+ *indexTotalCost += (numTuples * *indexSelectivity) * (cpu_index_tuple_cost + qual_op_cost);
+ *indexPages = dataPagesFetched;
+}
+
+/*
+ * BRIN has search behavior completely different from other index types
+ */
+void
+brincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
+ Cost *indexStartupCost, Cost *indexTotalCost,
+ Selectivity *indexSelectivity, double *indexCorrelation,
+ double *indexPages)
+{
+ IndexOptInfo *index = path->indexinfo;
+ List *indexQuals = get_quals_from_indexclauses(path->indexclauses);
+ double numPages = index->pages;
+ RelOptInfo *baserel = index->rel;
+ RangeTblEntry *rte = planner_rt_fetch(baserel->relid, root);
+ Cost spc_seq_page_cost;
+ Cost spc_random_page_cost;
+ double qual_arg_cost;
+ double qualSelectivity;
+ BrinStatsData statsData;
+ double indexRanges;
+ double minimalRanges;
+ double estimatedRanges;
+ double selec;
+ Relation indexRel;
+ ListCell *l;
+ VariableStatData vardata;
+
+ Assert(rte->rtekind == RTE_RELATION);
+
+ /* fetch estimated page cost for the tablespace containing the index */
+ get_tablespace_page_costs(index->reltablespace,
+ &spc_random_page_cost,
+ &spc_seq_page_cost);
+
+ /*
+ * Obtain some data from the index itself, if possible. Otherwise invent
+ * some plausible internal statistics based on the relation page count.
+ */
+ if (!index->hypothetical)
+ {
+ /*
+ * A lock should have already been obtained on the index in plancat.c.
+ */
+ indexRel = index_open(index->indexoid, NoLock);
+ brinGetStats(indexRel, &statsData);
+ index_close(indexRel, NoLock);
+
+ /* work out the actual number of ranges in the index */
+ indexRanges = Max(ceil((double) baserel->pages /
+ statsData.pagesPerRange), 1.0);
+ }
+ else
+ {
+ /*
+ * Assume default number of pages per range, and estimate the number
+ * of ranges based on that.
+ */
+ indexRanges = Max(ceil((double) baserel->pages /
+ BRIN_DEFAULT_PAGES_PER_RANGE), 1.0);
+
+ statsData.pagesPerRange = BRIN_DEFAULT_PAGES_PER_RANGE;
+ statsData.revmapNumPages = (indexRanges / REVMAP_PAGE_MAXITEMS) + 1;
+ }
+
+ /*
+ * Compute index correlation
+ *
+ * Because we can use all index quals equally when scanning, we can use
+ * the largest correlation (in absolute value) among columns used by the
+ * query. Start at zero, the worst possible case. If we cannot find any
+ * correlation statistics, we will keep it as 0.
+ */
+ *indexCorrelation = 0;
+
+ foreach(l, path->indexclauses)
+ {
+ IndexClause *iclause = lfirst_node(IndexClause, l);
+ AttrNumber attnum = index->indexkeys[iclause->indexcol];
+
+ /* attempt to lookup stats in relation for this index column */
+ if (attnum != 0)
+ {
+ /* Simple variable -- look to stats for the underlying table */
+ if (get_relation_stats_hook &&
+ (*get_relation_stats_hook) (root, rte, attnum, &vardata))
+ {
+ /*
+ * The hook took control of acquiring a stats tuple. If it
+ * did supply a tuple, it'd better have supplied a freefunc.
+ */
+ if (HeapTupleIsValid(vardata.statsTuple) && !vardata.freefunc)
+ elog(ERROR,
+ "no function provided to release variable stats with");
+ }
+ else
+ {
+ vardata.statsTuple =
+ SearchSysCache3(STATRELATTINH,
+ ObjectIdGetDatum(rte->relid),
+ Int16GetDatum(attnum),
+ BoolGetDatum(false));
+ vardata.freefunc = ReleaseSysCache;
+ }
+ }
+ else
+ {
+ /*
+ * Looks like we've found an expression column in the index. Let's
+ * see if there's any stats for it.
+ */
+
+ /* get the attnum from the 0-based index. */
+ attnum = iclause->indexcol + 1;
+
+ if (get_index_stats_hook &&
+ (*get_index_stats_hook) (root, index->indexoid, attnum, &vardata))
+ {
+ /*
+ * The hook took control of acquiring a stats tuple. If it
+ * did supply a tuple, it'd better have supplied a freefunc.
+ */
+ if (HeapTupleIsValid(vardata.statsTuple) &&
+ !vardata.freefunc)
+ elog(ERROR, "no function provided to release variable stats with");
+ }
+ else
+ {
+ vardata.statsTuple = SearchSysCache3(STATRELATTINH,
+ ObjectIdGetDatum(index->indexoid),
+ Int16GetDatum(attnum),
+ BoolGetDatum(false));
+ vardata.freefunc = ReleaseSysCache;
+ }
+ }
+
+ if (HeapTupleIsValid(vardata.statsTuple))
+ {
+ AttStatsSlot sslot;
+
+ if (get_attstatsslot(&sslot, vardata.statsTuple,
+ STATISTIC_KIND_CORRELATION, InvalidOid,
+ ATTSTATSSLOT_NUMBERS))
+ {
+ double varCorrelation = 0.0;
+
+ if (sslot.nnumbers > 0)
+ varCorrelation = Abs(sslot.numbers[0]);
+
+ if (varCorrelation > *indexCorrelation)
+ *indexCorrelation = varCorrelation;
+
+ free_attstatsslot(&sslot);
+ }
+ }
+
+ ReleaseVariableStats(vardata);
+ }
+
+ qualSelectivity = clauselist_selectivity(root, indexQuals,
+ baserel->relid,
+ JOIN_INNER, NULL);
+
+ /*
+ * Now calculate the minimum possible ranges we could match with if all of
+ * the rows were in the perfect order in the table's heap.
+ */
+ minimalRanges = ceil(indexRanges * qualSelectivity);
+
+ /*
+ * Now estimate the number of ranges that we'll touch by using the
+ * indexCorrelation from the stats. Careful not to divide by zero (note
+ * we're using the absolute value of the correlation).
+ */
+ if (*indexCorrelation < 1.0e-10)
+ estimatedRanges = indexRanges;
+ else
+ estimatedRanges = Min(minimalRanges / *indexCorrelation, indexRanges);
+
+ /* we expect to visit this portion of the table */
+ selec = estimatedRanges / indexRanges;
+
+ CLAMP_PROBABILITY(selec);
+
+ *indexSelectivity = selec;
+
+ /*
+ * Compute the index qual costs, much as in genericcostestimate, to add to
+ * the index costs. We can disregard indexorderbys, since BRIN doesn't
+ * support those.
+ */
+ qual_arg_cost = index_other_operands_eval_cost(root, indexQuals);
+
+ /*
+ * Compute the startup cost as the cost to read the whole revmap
+ * sequentially, including the cost to execute the index quals.
+ */
+ *indexStartupCost =
+ spc_seq_page_cost * statsData.revmapNumPages * loop_count;
+ *indexStartupCost += qual_arg_cost;
+
+ /*
+ * To read a BRIN index there might be a bit of back and forth over
+ * regular pages, as revmap might point to them out of sequential order;
+ * calculate the total cost as reading the whole index in random order.
+ */
+ *indexTotalCost = *indexStartupCost +
+ spc_random_page_cost * (numPages - statsData.revmapNumPages) * loop_count;
+
+ /*
+ * Charge a small amount per range tuple which we expect to match to. This
+ * is meant to reflect the costs of manipulating the bitmap. The BRIN scan
+ * will set a bit for each page in the range when we find a matching
+ * range, so we must multiply the charge by the number of pages in the
+ * range.
+ */
+ *indexTotalCost += 0.1 * cpu_operator_cost * estimatedRanges *
+ statsData.pagesPerRange;
+
+ *indexPages = index->pages;
+}