summaryrefslogtreecommitdiffstats
path: root/src/backend/access/brin/brin_minmax_multi.c
blob: 52009160695bed8eb2d95a49fa1742813f4e63e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
/*
 * brin_minmax_multi.c
 *		Implementation of Multi Min/Max opclass for BRIN
 *
 * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * Implements a variant of minmax opclass, where the summary is composed of
 * multiple smaller intervals. This allows us to handle outliers, which
 * usually make the simple minmax opclass inefficient.
 *
 * Consider for example page range with simple minmax interval [1000,2000],
 * and assume a new row gets inserted into the range with value 1000000.
 * Due to that the interval gets [1000,1000000]. I.e. the minmax interval
 * got 1000x wider and won't be useful to eliminate scan keys between 2001
 * and 1000000.
 *
 * With minmax-multi opclass, we may have [1000,2000] interval initially,
 * but after adding the new row we start tracking it as two interval:
 *
 *   [1000,2000] and [1000000,1000000]
 *
 * This allows us to still eliminate the page range when the scan keys hit
 * the gap between 2000 and 1000000, making it useful in cases when the
 * simple minmax opclass gets inefficient.
 *
 * The number of intervals tracked per page range is somewhat flexible.
 * What is restricted is the number of values per page range, and the limit
 * is currently 32 (see values_per_range reloption). Collapsed intervals
 * (with equal minimum and maximum value) are stored as a single value,
 * while regular intervals require two values.
 *
 * When the number of values gets too high (by adding new values to the
 * summary), we merge some of the intervals to free space for more values.
 * This is done in a greedy way - we simply pick the two closest intervals,
 * merge them, and repeat this until the number of values to store gets
 * sufficiently low (below 50% of maximum values), but that is mostly
 * arbitrary threshold and may be changed easily).
 *
 * To pick the closest intervals we use the "distance" support procedure,
 * which measures space between two ranges (i.e. the length of an interval).
 * The computed value may be an approximation - in the worst case we will
 * merge two ranges that are slightly less optimal at that step, but the
 * index should still produce correct results.
 *
 * The compactions (reducing the number of values) is fairly expensive, as
 * it requires calling the distance functions, sorting etc. So when building
 * the summary, we use a significantly larger buffer, and only enforce the
 * exact limit at the very end. This improves performance, and it also helps
 * with building better ranges (due to the greedy approach).
 *
 *
 * IDENTIFICATION
 *	  src/backend/access/brin/brin_minmax_multi.c
 */
#include "postgres.h"

/* needed for PGSQL_AF_INET */
#include <sys/socket.h>

#include "access/genam.h"
#include "access/brin.h"
#include "access/brin_internal.h"
#include "access/brin_tuple.h"
#include "access/reloptions.h"
#include "access/stratnum.h"
#include "access/htup_details.h"
#include "catalog/pg_type.h"
#include "catalog/pg_am.h"
#include "catalog/pg_amop.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "utils/date.h"
#include "utils/datum.h"
#include "utils/float.h"
#include "utils/inet.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/numeric.h"
#include "utils/pg_lsn.h"
#include "utils/rel.h"
#include "utils/syscache.h"
#include "utils/timestamp.h"
#include "utils/uuid.h"

/*
 * Additional SQL level support functions
 *
 * Procedure numbers must not use values reserved for BRIN itself; see
 * brin_internal.h.
 */
#define		MINMAX_MAX_PROCNUMS		1	/* maximum support procs we need */
#define		PROCNUM_DISTANCE		11	/* required, distance between values */

/*
 * Subtract this from procnum to obtain index in MinmaxMultiOpaque arrays
 * (Must be equal to minimum of private procnums).
 */
#define		PROCNUM_BASE			11

/*
 * Sizing the insert buffer - we use 10x the number of values specified
 * in the reloption, but we cap it to 8192 not to get too large. When
 * the buffer gets full, we reduce the number of values by half.
 */
#define		MINMAX_BUFFER_FACTOR			10
#define		MINMAX_BUFFER_MIN				256
#define		MINMAX_BUFFER_MAX				8192
#define		MINMAX_BUFFER_LOAD_FACTOR		0.5

typedef struct MinmaxMultiOpaque
{
	FmgrInfo	extra_procinfos[MINMAX_MAX_PROCNUMS];
	bool		extra_proc_missing[MINMAX_MAX_PROCNUMS];
	Oid			cached_subtype;
	FmgrInfo	strategy_procinfos[BTMaxStrategyNumber];
} MinmaxMultiOpaque;

/*
 * Storage type for BRIN's minmax reloptions
 */
typedef struct MinMaxMultiOptions
{
	int32		vl_len_;		/* varlena header (do not touch directly!) */
	int			valuesPerRange; /* number of values per range */
} MinMaxMultiOptions;

#define MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE		32

#define MinMaxMultiGetValuesPerRange(opts) \
		((opts) && (((MinMaxMultiOptions *) (opts))->valuesPerRange != 0) ? \
		 ((MinMaxMultiOptions *) (opts))->valuesPerRange : \
		 MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE)

#define SAMESIGN(a,b) (((a) < 0) == ((b) < 0))

/*
 * The summary of minmax-multi indexes has two representations - Ranges for
 * convenient processing, and SerializedRanges for storage in bytea value.
 *
 * The Ranges struct stores the boundary values in a single array, but we
 * treat regular and single-point ranges differently to save space. For
 * regular ranges (with different boundary values) we have to store both
 * values, while for "single-point ranges" we only need to save one value.
 *
 * The 'values' array stores boundary values for regular ranges first (there
 * are 2*nranges values to store), and then the nvalues boundary values for
 * single-point ranges. That is, we have (2*nranges + nvalues) boundary
 * values in the array.
 *
 * +---------------------------------+-------------------------------+
 * | ranges (sorted pairs of values) | sorted values (single points) |
 * +---------------------------------+-------------------------------+
 *
 * This allows us to quickly add new values, and store outliers without
 * making the other ranges very wide.
 *
 * We never store more than maxvalues values (as set by values_per_range
 * reloption). If needed we merge some of the ranges.
 *
 * To minimize palloc overhead, we always allocate the full array with
 * space for maxvalues elements. This should be fine as long as the
 * maxvalues is reasonably small (64 seems fine), which is the case
 * thanks to values_per_range reloption being limited to 256.
 */
typedef struct Ranges
{
	/* Cache information that we need quite often. */
	Oid			typid;
	Oid			colloid;
	AttrNumber	attno;
	FmgrInfo   *cmp;

	/* (2*nranges + nvalues) <= maxvalues */
	int			nranges;		/* number of ranges in the array (stored) */
	int			nsorted;		/* number of sorted values (ranges + points) */
	int			nvalues;		/* number of values in the data array (all) */
	int			maxvalues;		/* maximum number of values (reloption) */

	/*
	 * We simply add the values into a large buffer, without any expensive
	 * steps (sorting, deduplication, ...). The buffer is a multiple of the
	 * target number of values, so the compaction happens less often,
	 * amortizing the costs. We keep the actual target and compact to the
	 * requested number of values at the very end, before serializing to
	 * on-disk representation.
	 */
	/* requested number of values */
	int			target_maxvalues;

	/* values stored for this range - either raw values, or ranges */
	Datum		values[FLEXIBLE_ARRAY_MEMBER];
} Ranges;

/*
 * On-disk the summary is stored as a bytea value, with a simple header
 * with basic metadata, followed by the boundary values. It has a varlena
 * header, so can be treated as varlena directly.
 *
 * See range_serialize/range_deserialize for serialization details.
 */
typedef struct SerializedRanges
{
	/* varlena header (do not touch directly!) */
	int32		vl_len_;

	/* type of values stored in the data array */
	Oid			typid;

	/* (2*nranges + nvalues) <= maxvalues */
	int			nranges;		/* number of ranges in the array (stored) */
	int			nvalues;		/* number of values in the data array (all) */
	int			maxvalues;		/* maximum number of values (reloption) */

	/* contains the actual data */
	char		data[FLEXIBLE_ARRAY_MEMBER];
} SerializedRanges;

static SerializedRanges *range_serialize(Ranges *range);

static Ranges *range_deserialize(int maxvalues, SerializedRanges *range);


/*
 * Used to represent ranges expanded to make merging and combining easier.
 *
 * Each expanded range is essentially an interval, represented by min/max
 * values, along with a flag whether it's a collapsed range (in which case
 * the min and max values are equal). We have the flag to handle by-ref
 * data types - we can't simply compare the datums, and this saves some
 * calls to the type-specific comparator function.
 */
typedef struct ExpandedRange
{
	Datum		minval;			/* lower boundary */
	Datum		maxval;			/* upper boundary */
	bool		collapsed;		/* true if minval==maxval */
} ExpandedRange;

/*
 * Represents a distance between two ranges (identified by index into
 * an array of extended ranges).
 */
typedef struct DistanceValue
{
	int			index;
	double		value;
} DistanceValue;


/* Cache for support and strategy procedures. */

static FmgrInfo *minmax_multi_get_procinfo(BrinDesc *bdesc, uint16 attno,
										   uint16 procnum);

static FmgrInfo *minmax_multi_get_strategy_procinfo(BrinDesc *bdesc,
													uint16 attno, Oid subtype,
													uint16 strategynum);

typedef struct compare_context
{
	FmgrInfo   *cmpFn;
	Oid			colloid;
} compare_context;

static int	compare_values(const void *a, const void *b, void *arg);


#ifdef USE_ASSERT_CHECKING
/*
 * Check that the order of the array values is correct, using the cmp
 * function (which should be BTLessStrategyNumber).
 */
static void
AssertArrayOrder(FmgrInfo *cmp, Oid colloid, Datum *values, int nvalues)
{
	int			i;
	Datum		lt;

	for (i = 0; i < (nvalues - 1); i++)
	{
		lt = FunctionCall2Coll(cmp, colloid, values[i], values[i + 1]);
		Assert(DatumGetBool(lt));
	}
}
#endif

/*
 * Comprehensive check of the Ranges structure.
 */
static void
AssertCheckRanges(Ranges *ranges, FmgrInfo *cmpFn, Oid colloid)
{
#ifdef USE_ASSERT_CHECKING
	int			i;

	/* some basic sanity checks */
	Assert(ranges->nranges >= 0);
	Assert(ranges->nsorted >= 0);
	Assert(ranges->nvalues >= ranges->nsorted);
	Assert(ranges->maxvalues >= 2 * ranges->nranges + ranges->nvalues);
	Assert(ranges->typid != InvalidOid);

	/*
	 * First the ranges - there are 2*nranges boundary values, and the values
	 * have to be strictly ordered (equal values would mean the range is
	 * collapsed, and should be stored as a point). This also guarantees that
	 * the ranges do not overlap.
	 */
	AssertArrayOrder(cmpFn, colloid, ranges->values, 2 * ranges->nranges);

	/* then the single-point ranges (with nvalues boundar values ) */
	AssertArrayOrder(cmpFn, colloid, &ranges->values[2 * ranges->nranges],
					 ranges->nsorted);

	/*
	 * Check that none of the values are not covered by ranges (both sorted
	 * and unsorted)
	 */
	for (i = 0; i < ranges->nvalues; i++)
	{
		Datum		compar;
		int			start,
					end;
		Datum		minvalue,
					maxvalue;

		Datum		value = ranges->values[2 * ranges->nranges + i];

		if (ranges->nranges == 0)
			break;

		minvalue = ranges->values[0];
		maxvalue = ranges->values[2 * ranges->nranges - 1];

		/*
		 * Is the value smaller than the minval? If yes, we'll recurse to the
		 * left side of range array.
		 */
		compar = FunctionCall2Coll(cmpFn, colloid, value, minvalue);

		/* smaller than the smallest value in the first range */
		if (DatumGetBool(compar))
			continue;

		/*
		 * Is the value greater than the maxval? If yes, we'll recurse to the
		 * right side of range array.
		 */
		compar = FunctionCall2Coll(cmpFn, colloid, maxvalue, value);

		/* larger than the largest value in the last range */
		if (DatumGetBool(compar))
			continue;

		start = 0;				/* first range */
		end = ranges->nranges - 1;	/* last range */
		while (true)
		{
			int			midpoint = (start + end) / 2;

			/* this means we ran out of ranges in the last step */
			if (start > end)
				break;

			/* copy the min/max values from the ranges */
			minvalue = ranges->values[2 * midpoint];
			maxvalue = ranges->values[2 * midpoint + 1];

			/*
			 * Is the value smaller than the minval? If yes, we'll recurse to
			 * the left side of range array.
			 */
			compar = FunctionCall2Coll(cmpFn, colloid, value, minvalue);

			/* smaller than the smallest value in this range */
			if (DatumGetBool(compar))
			{
				end = (midpoint - 1);
				continue;
			}

			/*
			 * Is the value greater than the minval? If yes, we'll recurse to
			 * the right side of range array.
			 */
			compar = FunctionCall2Coll(cmpFn, colloid, maxvalue, value);

			/* larger than the largest value in this range */
			if (DatumGetBool(compar))
			{
				start = (midpoint + 1);
				continue;
			}

			/* hey, we found a matching range */
			Assert(false);
		}
	}

	/* and values in the unsorted part must not be in sorted part */
	for (i = ranges->nsorted; i < ranges->nvalues; i++)
	{
		compare_context cxt;
		Datum		value = ranges->values[2 * ranges->nranges + i];

		if (ranges->nsorted == 0)
			break;

		cxt.colloid = ranges->colloid;
		cxt.cmpFn = ranges->cmp;

		Assert(bsearch_arg(&value, &ranges->values[2 * ranges->nranges],
						   ranges->nsorted, sizeof(Datum),
						   compare_values, (void *) &cxt) == NULL);
	}
#endif
}

/*
 * Check that the expanded ranges (built when reducing the number of ranges
 * by combining some of them) are correctly sorted and do not overlap.
 */
static void
AssertCheckExpandedRanges(BrinDesc *bdesc, Oid colloid, AttrNumber attno,
						  Form_pg_attribute attr, ExpandedRange *ranges,
						  int nranges)
{
#ifdef USE_ASSERT_CHECKING
	int			i;
	FmgrInfo   *eq;
	FmgrInfo   *lt;

	eq = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
											BTEqualStrategyNumber);

	lt = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
											BTLessStrategyNumber);

	/*
	 * Each range independently should be valid, i.e. that for the boundary
	 * values (lower <= upper).
	 */
	for (i = 0; i < nranges; i++)
	{
		Datum		r;
		Datum		minval = ranges[i].minval;
		Datum		maxval = ranges[i].maxval;

		if (ranges[i].collapsed)	/* collapsed: minval == maxval */
			r = FunctionCall2Coll(eq, colloid, minval, maxval);
		else					/* non-collapsed: minval < maxval */
			r = FunctionCall2Coll(lt, colloid, minval, maxval);

		Assert(DatumGetBool(r));
	}

	/*
	 * And the ranges should be ordered and must not overlap, i.e. upper <
	 * lower for boundaries of consecutive ranges.
	 */
	for (i = 0; i < nranges - 1; i++)
	{
		Datum		r;
		Datum		maxval = ranges[i].maxval;
		Datum		minval = ranges[i + 1].minval;

		r = FunctionCall2Coll(lt, colloid, maxval, minval);

		Assert(DatumGetBool(r));
	}
#endif
}


/*
 * minmax_multi_init
 * 		Initialize the deserialized range list, allocate all the memory.
 *
 * This is only in-memory representation of the ranges, so we allocate
 * enough space for the maximum number of values (so as not to have to do
 * repallocs as the ranges grow).
 */
static Ranges *
minmax_multi_init(int maxvalues)
{
	Size		len;
	Ranges	   *ranges;

	Assert(maxvalues > 0);

	len = offsetof(Ranges, values); /* fixed header */
	len += maxvalues * sizeof(Datum);	/* Datum values */

	ranges = (Ranges *) palloc0(len);

	ranges->maxvalues = maxvalues;

	return ranges;
}


/*
 * range_deduplicate_values
 *		Deduplicate the part with values in the simple points.
 *
 * This is meant to be a cheaper way of reducing the size of the ranges. It
 * does not touch the ranges, and only sorts the other values - it does not
 * call the distance functions, which may be quite expensive, etc.
 *
 * We do know the values are not duplicate with the ranges, because we check
 * that before adding a new value. Same for the sorted part of values.
 */
static void
range_deduplicate_values(Ranges *range)
{
	int			i,
				n;
	int			start;
	compare_context cxt;

	/*
	 * If there are no unsorted values, we're done (this probably can't
	 * happen, as we're adding values to unsorted part).
	 */
	if (range->nsorted == range->nvalues)
		return;

	/* sort the values */
	cxt.colloid = range->colloid;
	cxt.cmpFn = range->cmp;

	/* the values start right after the ranges (which are always sorted) */
	start = 2 * range->nranges;

	/*
	 * XXX This might do a merge sort, to leverage that the first part of the
	 * array is already sorted. If the sorted part is large, it might be quite
	 * a bit faster.
	 */
	qsort_arg(&range->values[start],
			  range->nvalues, sizeof(Datum),
			  compare_values, (void *) &cxt);

	n = 1;
	for (i = 1; i < range->nvalues; i++)
	{
		/* same as preceding value, so store it */
		if (compare_values(&range->values[start + i - 1],
						   &range->values[start + i],
						   (void *) &cxt) == 0)
			continue;

		range->values[start + n] = range->values[start + i];

		n++;
	}

	/* now all the values are sorted */
	range->nvalues = n;
	range->nsorted = n;

	AssertCheckRanges(range, range->cmp, range->colloid);
}


/*
 * range_serialize
 *	  Serialize the in-memory representation into a compact varlena value.
 *
 * Simply copy the header and then also the individual values, as stored
 * in the in-memory value array.
 */
static SerializedRanges *
range_serialize(Ranges *range)
{
	Size		len;
	int			nvalues;
	SerializedRanges *serialized;
	Oid			typid;
	int			typlen;
	bool		typbyval;

	int			i;
	char	   *ptr;

	/* simple sanity checks */
	Assert(range->nranges >= 0);
	Assert(range->nsorted >= 0);
	Assert(range->nvalues >= 0);
	Assert(range->maxvalues > 0);
	Assert(range->target_maxvalues > 0);

	/* at this point the range should be compacted to the target size */
	Assert(2 * range->nranges + range->nvalues <= range->target_maxvalues);

	Assert(range->target_maxvalues <= range->maxvalues);

	/* range boundaries are always sorted */
	Assert(range->nvalues >= range->nsorted);

	/* deduplicate values, if there's unsorted part */
	range_deduplicate_values(range);

	/* see how many Datum values we actually have */
	nvalues = 2 * range->nranges + range->nvalues;

	typid = range->typid;
	typbyval = get_typbyval(typid);
	typlen = get_typlen(typid);

	/* header is always needed */
	len = offsetof(SerializedRanges, data);

	/*
	 * The space needed depends on data type - for fixed-length data types
	 * (by-value and some by-reference) it's pretty simple, just multiply
	 * (attlen * nvalues) and we're done. For variable-length by-reference
	 * types we need to actually walk all the values and sum the lengths.
	 */
	if (typlen == -1)			/* varlena */
	{
		int			i;

		for (i = 0; i < nvalues; i++)
		{
			len += VARSIZE_ANY(range->values[i]);
		}
	}
	else if (typlen == -2)		/* cstring */
	{
		int			i;

		for (i = 0; i < nvalues; i++)
		{
			/* don't forget to include the null terminator ;-) */
			len += strlen(DatumGetCString(range->values[i])) + 1;
		}
	}
	else						/* fixed-length types (even by-reference) */
	{
		Assert(typlen > 0);
		len += nvalues * typlen;
	}

	/*
	 * Allocate the serialized object, copy the basic information. The
	 * serialized object is a varlena, so update the header.
	 */
	serialized = (SerializedRanges *) palloc0(len);
	SET_VARSIZE(serialized, len);

	serialized->typid = typid;
	serialized->nranges = range->nranges;
	serialized->nvalues = range->nvalues;
	serialized->maxvalues = range->target_maxvalues;

	/*
	 * And now copy also the boundary values (like the length calculation this
	 * depends on the particular data type).
	 */
	ptr = serialized->data;		/* start of the serialized data */

	for (i = 0; i < nvalues; i++)
	{
		if (typbyval)			/* simple by-value data types */
		{
			Datum		tmp;

			/*
			 * For byval types, we need to copy just the significant bytes -
			 * we can't use memcpy directly, as that assumes little-endian
			 * behavior.  store_att_byval does almost what we need, but it
			 * requires a properly aligned buffer - the output buffer does not
			 * guarantee that. So we simply use a local Datum variable (which
			 * guarantees proper alignment), and then copy the value from it.
			 */
			store_att_byval(&tmp, range->values[i], typlen);

			memcpy(ptr, &tmp, typlen);
			ptr += typlen;
		}
		else if (typlen > 0)	/* fixed-length by-ref types */
		{
			memcpy(ptr, DatumGetPointer(range->values[i]), typlen);
			ptr += typlen;
		}
		else if (typlen == -1)	/* varlena */
		{
			int			tmp = VARSIZE_ANY(DatumGetPointer(range->values[i]));

			memcpy(ptr, DatumGetPointer(range->values[i]), tmp);
			ptr += tmp;
		}
		else if (typlen == -2)	/* cstring */
		{
			int			tmp = strlen(DatumGetCString(range->values[i])) + 1;

			memcpy(ptr, DatumGetCString(range->values[i]), tmp);
			ptr += tmp;
		}

		/* make sure we haven't overflown the buffer end */
		Assert(ptr <= ((char *) serialized + len));
	}

	/* exact size */
	Assert(ptr == ((char *) serialized + len));

	return serialized;
}

/*
 * range_deserialize
 *	  Serialize the in-memory representation into a compact varlena value.
 *
 * Simply copy the header and then also the individual values, as stored
 * in the in-memory value array.
 */
static Ranges *
range_deserialize(int maxvalues, SerializedRanges *serialized)
{
	int			i,
				nvalues;
	char	   *ptr,
			   *dataptr;
	bool		typbyval;
	int			typlen;
	Size		datalen;

	Ranges	   *range;

	Assert(serialized->nranges >= 0);
	Assert(serialized->nvalues >= 0);
	Assert(serialized->maxvalues > 0);

	nvalues = 2 * serialized->nranges + serialized->nvalues;

	Assert(nvalues <= serialized->maxvalues);
	Assert(serialized->maxvalues <= maxvalues);

	range = minmax_multi_init(maxvalues);

	/* copy the header info */
	range->nranges = serialized->nranges;
	range->nvalues = serialized->nvalues;
	range->nsorted = serialized->nvalues;
	range->maxvalues = maxvalues;
	range->target_maxvalues = serialized->maxvalues;

	range->typid = serialized->typid;

	typbyval = get_typbyval(serialized->typid);
	typlen = get_typlen(serialized->typid);

	/*
	 * And now deconstruct the values into Datum array. We have to copy the
	 * data because the serialized representation ignores alignment, and we
	 * don't want to rely on it being kept around anyway.
	 */
	ptr = serialized->data;

	/*
	 * We don't want to allocate many pieces, so we just allocate everything
	 * in one chunk. How much space will we need?
	 *
	 * XXX We don't need to copy simple by-value data types.
	 */
	datalen = 0;
	dataptr = NULL;
	for (i = 0; (i < nvalues) && (!typbyval); i++)
	{
		if (typlen > 0)			/* fixed-length by-ref types */
			datalen += MAXALIGN(typlen);
		else if (typlen == -1)	/* varlena */
		{
			datalen += MAXALIGN(VARSIZE_ANY(DatumGetPointer(ptr)));
			ptr += VARSIZE_ANY(DatumGetPointer(ptr));
		}
		else if (typlen == -2)	/* cstring */
		{
			Size		slen = strlen(DatumGetCString(ptr)) + 1;

			datalen += MAXALIGN(slen);
			ptr += slen;
		}
	}

	if (datalen > 0)
		dataptr = palloc(datalen);

	/*
	 * Restore the source pointer (might have been modified when calculating
	 * the space we need to allocate).
	 */
	ptr = serialized->data;

	for (i = 0; i < nvalues; i++)
	{
		if (typbyval)			/* simple by-value data types */
		{
			Datum		v = 0;

			memcpy(&v, ptr, typlen);

			range->values[i] = fetch_att(&v, true, typlen);
			ptr += typlen;
		}
		else if (typlen > 0)	/* fixed-length by-ref types */
		{
			range->values[i] = PointerGetDatum(dataptr);

			memcpy(dataptr, ptr, typlen);
			dataptr += MAXALIGN(typlen);

			ptr += typlen;
		}
		else if (typlen == -1)	/* varlena */
		{
			range->values[i] = PointerGetDatum(dataptr);

			memcpy(dataptr, ptr, VARSIZE_ANY(ptr));
			dataptr += MAXALIGN(VARSIZE_ANY(ptr));
			ptr += VARSIZE_ANY(ptr);
		}
		else if (typlen == -2)	/* cstring */
		{
			Size		slen = strlen(ptr) + 1;

			range->values[i] = PointerGetDatum(dataptr);

			memcpy(dataptr, ptr, slen);
			dataptr += MAXALIGN(slen);
			ptr += slen;
		}

		/* make sure we haven't overflown the buffer end */
		Assert(ptr <= ((char *) serialized + VARSIZE_ANY(serialized)));
	}

	/* should have consumed the whole input value exactly */
	Assert(ptr == ((char *) serialized + VARSIZE_ANY(serialized)));

	/* return the deserialized value */
	return range;
}

/*
 * compare_expanded_ranges
 *	  Compare the expanded ranges - first by minimum, then by maximum.
 *
 * We do guarantee that ranges in a single Ranges object do not overlap, so it
 * may seem strange that we don't order just by minimum. But when merging two
 * Ranges (which happens in the union function), the ranges may in fact
 * overlap. So we do compare both.
 */
static int
compare_expanded_ranges(const void *a, const void *b, void *arg)
{
	ExpandedRange *ra = (ExpandedRange *) a;
	ExpandedRange *rb = (ExpandedRange *) b;
	Datum		r;

	compare_context *cxt = (compare_context *) arg;

	/* first compare minvals */
	r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, ra->minval, rb->minval);

	if (DatumGetBool(r))
		return -1;

	r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, rb->minval, ra->minval);

	if (DatumGetBool(r))
		return 1;

	/* then compare maxvals */
	r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, ra->maxval, rb->maxval);

	if (DatumGetBool(r))
		return -1;

	r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, rb->maxval, ra->maxval);

	if (DatumGetBool(r))
		return 1;

	return 0;
}

/*
 * compare_values
 *	  Compare the values.
 */
static int
compare_values(const void *a, const void *b, void *arg)
{
	Datum	   *da = (Datum *) a;
	Datum	   *db = (Datum *) b;
	Datum		r;

	compare_context *cxt = (compare_context *) arg;

	r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, *da, *db);

	if (DatumGetBool(r))
		return -1;

	r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, *db, *da);

	if (DatumGetBool(r))
		return 1;

	return 0;
}

/*
 * Check if the new value matches one of the existing ranges.
 */
static bool
has_matching_range(BrinDesc *bdesc, Oid colloid, Ranges *ranges,
				   Datum newval, AttrNumber attno, Oid typid)
{
	Datum		compar;

	Datum		minvalue = ranges->values[0];
	Datum		maxvalue = ranges->values[2 * ranges->nranges - 1];

	FmgrInfo   *cmpLessFn;
	FmgrInfo   *cmpGreaterFn;

	/* binary search on ranges */
	int			start,
				end;

	if (ranges->nranges == 0)
		return false;

	/*
	 * Otherwise, need to compare the new value with boundaries of all the
	 * ranges. First check if it's less than the absolute minimum, which is
	 * the first value in the array.
	 */
	cmpLessFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
												   BTLessStrategyNumber);
	compar = FunctionCall2Coll(cmpLessFn, colloid, newval, minvalue);

	/* smaller than the smallest value in the range list */
	if (DatumGetBool(compar))
		return false;

	/*
	 * And now compare it to the existing maximum (last value in the data
	 * array). But only if we haven't already ruled out a possible match in
	 * the minvalue check.
	 */
	cmpGreaterFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
													  BTGreaterStrategyNumber);
	compar = FunctionCall2Coll(cmpGreaterFn, colloid, newval, maxvalue);

	if (DatumGetBool(compar))
		return false;

	/*
	 * So we know it's in the general min/max, the question is whether it
	 * falls in one of the ranges or gaps. We'll do a binary search on
	 * individual ranges - for each range we check equality (value falls into
	 * the range), and then check ranges either above or below the current
	 * range.
	 */
	start = 0;					/* first range */
	end = (ranges->nranges - 1);	/* last range */
	while (true)
	{
		int			midpoint = (start + end) / 2;

		/* this means we ran out of ranges in the last step */
		if (start > end)
			return false;

		/* copy the min/max values from the ranges */
		minvalue = ranges->values[2 * midpoint];
		maxvalue = ranges->values[2 * midpoint + 1];

		/*
		 * Is the value smaller than the minval? If yes, we'll recurse to the
		 * left side of range array.
		 */
		compar = FunctionCall2Coll(cmpLessFn, colloid, newval, minvalue);

		/* smaller than the smallest value in this range */
		if (DatumGetBool(compar))
		{
			end = (midpoint - 1);
			continue;
		}

		/*
		 * Is the value greater than the minval? If yes, we'll recurse to the
		 * right side of range array.
		 */
		compar = FunctionCall2Coll(cmpGreaterFn, colloid, newval, maxvalue);

		/* larger than the largest value in this range */
		if (DatumGetBool(compar))
		{
			start = (midpoint + 1);
			continue;
		}

		/* hey, we found a matching range */
		return true;
	}

	return false;
}


/*
 * range_contains_value
 * 		See if the new value is already contained in the range list.
 *
 * We first inspect the list of intervals. We use a small trick - we check
 * the value against min/max of the whole range (min of the first interval,
 * max of the last one) first, and only inspect the individual intervals if
 * this passes.
 *
 * If the value matches none of the intervals, we check the exact values.
 * We simply loop through them and invoke equality operator on them.
 *
 * The last parameter (full) determines whether we need to search all the
 * values, including the unsorted part. With full=false, the unsorted part
 * is not searched, which may produce false negatives and duplicate values
 * (in the unsorted part only), but when we're building the range that's
 * fine - we'll deduplicate before serialization, and it can only happen
 * if there already are unsorted values (so it was already modified).
 *
 * Serialized ranges don't have any unsorted values, so this can't cause
 * false negatives during querying.
 */
static bool
range_contains_value(BrinDesc *bdesc, Oid colloid,
					 AttrNumber attno, Form_pg_attribute attr,
					 Ranges *ranges, Datum newval, bool full)
{
	int			i;
	FmgrInfo   *cmpEqualFn;
	Oid			typid = attr->atttypid;

	/*
	 * First inspect the ranges, if there are any. We first check the whole
	 * range, and only when there's still a chance of getting a match we
	 * inspect the individual ranges.
	 */
	if (has_matching_range(bdesc, colloid, ranges, newval, attno, typid))
		return true;

	cmpEqualFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
													BTEqualStrategyNumber);

	/*
	 * There is no matching range, so let's inspect the sorted values.
	 *
	 * We do a sequential search for small numbers of values, and binary
	 * search once we have more than 16 values. This threshold is somewhat
	 * arbitrary, as it depends on how expensive the comparison function is.
	 *
	 * XXX If we use the threshold here, maybe we should do the same thing in
	 * has_matching_range? Or maybe we should do the bin search all the time?
	 *
	 * XXX We could use the same optimization as for ranges, to check if the
	 * value is between min/max, to maybe rule out all sorted values without
	 * having to inspect all of them.
	 */
	if (ranges->nsorted >= 16)
	{
		compare_context cxt;

		cxt.colloid = ranges->colloid;
		cxt.cmpFn = ranges->cmp;

		if (bsearch_arg(&newval, &ranges->values[2 * ranges->nranges],
						ranges->nsorted, sizeof(Datum),
						compare_values, (void *) &cxt) != NULL)
			return true;
	}
	else
	{
		for (i = 2 * ranges->nranges; i < 2 * ranges->nranges + ranges->nsorted; i++)
		{
			Datum		compar;

			compar = FunctionCall2Coll(cmpEqualFn, colloid, newval, ranges->values[i]);

			/* found an exact match */
			if (DatumGetBool(compar))
				return true;
		}
	}

	/* If not asked to inspect the unsorted part, we're done. */
	if (!full)
		return false;

	/* Inspect the unsorted part. */
	for (i = 2 * ranges->nranges + ranges->nsorted; i < 2 * ranges->nranges + ranges->nvalues; i++)
	{
		Datum		compar;

		compar = FunctionCall2Coll(cmpEqualFn, colloid, newval, ranges->values[i]);

		/* found an exact match */
		if (DatumGetBool(compar))
			return true;
	}

	/* the value is not covered by this BRIN tuple */
	return false;
}

/*
 * Expand ranges from Ranges into ExpandedRange array. This expects the
 * eranges to be pre-allocated and with the correct size - there needs to be
 * (nranges + nvalues) elements.
 *
 * The order of expanded ranges is arbitrary. We do expand the ranges first,
 * and this part is sorted. But then we expand the values, and this part may
 * be unsorted.
 */
static void
fill_expanded_ranges(ExpandedRange *eranges, int neranges, Ranges *ranges)
{
	int			idx;
	int			i;

	/* Check that the output array has the right size. */
	Assert(neranges == (ranges->nranges + ranges->nvalues));

	idx = 0;
	for (i = 0; i < ranges->nranges; i++)
	{
		eranges[idx].minval = ranges->values[2 * i];
		eranges[idx].maxval = ranges->values[2 * i + 1];
		eranges[idx].collapsed = false;
		idx++;

		Assert(idx <= neranges);
	}

	for (i = 0; i < ranges->nvalues; i++)
	{
		eranges[idx].minval = ranges->values[2 * ranges->nranges + i];
		eranges[idx].maxval = ranges->values[2 * ranges->nranges + i];
		eranges[idx].collapsed = true;
		idx++;

		Assert(idx <= neranges);
	}

	/* Did we produce the expected number of elements? */
	Assert(idx == neranges);

	return;
}

/*
 * Sort and deduplicate expanded ranges.
 *
 * The ranges may be deduplicated - we're simply appending values, without
 * checking for duplicates etc. So maybe the deduplication will reduce the
 * number of ranges enough, and we won't have to compute the distances etc.
 *
 * Returns the number of expanded ranges.
 */
static int
sort_expanded_ranges(FmgrInfo *cmp, Oid colloid,
					 ExpandedRange *eranges, int neranges)
{
	int			n;
	int			i;
	compare_context cxt;

	Assert(neranges > 0);

	/* sort the values */
	cxt.colloid = colloid;
	cxt.cmpFn = cmp;

	/*
	 * XXX We do qsort on all the values, but we could also leverage the fact
	 * that some of the input data is already sorted (all the ranges and maybe
	 * some of the points) and do merge sort.
	 */
	qsort_arg(eranges, neranges, sizeof(ExpandedRange),
			  compare_expanded_ranges, (void *) &cxt);

	/*
	 * Deduplicate the ranges - simply compare each range to the preceding
	 * one, and skip the duplicate ones.
	 */
	n = 1;
	for (i = 1; i < neranges; i++)
	{
		/* if the current range is equal to the preceding one, do nothing */
		if (!compare_expanded_ranges(&eranges[i - 1], &eranges[i], (void *) &cxt))
			continue;

		/* otherwise, copy it to n-th place (if not already there) */
		if (i != n)
			memcpy(&eranges[n], &eranges[i], sizeof(ExpandedRange));

		n++;
	}

	Assert((n > 0) && (n <= neranges));

	return n;
}

/*
 * When combining multiple Range values (in union function), some of the
 * ranges may overlap. We simply merge the overlapping ranges to fix that.
 *
 * XXX This assumes the expanded ranges were previously sorted (by minval
 * and then maxval). We leverage this when detecting overlap.
 */
static int
merge_overlapping_ranges(FmgrInfo *cmp, Oid colloid,
						 ExpandedRange *eranges, int neranges)
{
	int			idx;

	/* Merge ranges (idx) and (idx+1) if they overlap. */
	idx = 0;
	while (idx < (neranges - 1))
	{
		Datum		r;

		/*
		 * comparing [?,maxval] vs. [minval,?] - the ranges overlap if (minval
		 * < maxval)
		 */
		r = FunctionCall2Coll(cmp, colloid,
							  eranges[idx].maxval,
							  eranges[idx + 1].minval);

		/*
		 * Nope, maxval < minval, so no overlap. And we know the ranges are
		 * ordered, so there are no more overlaps, because all the remaining
		 * ranges have greater or equal minval.
		 */
		if (DatumGetBool(r))
		{
			/* proceed to the next range */
			idx += 1;
			continue;
		}

		/*
		 * So ranges 'idx' and 'idx+1' do overlap, but we don't know if
		 * 'idx+1' is contained in 'idx', or if they overlap only partially.
		 * So compare the upper bounds and keep the larger one.
		 */
		r = FunctionCall2Coll(cmp, colloid,
							  eranges[idx].maxval,
							  eranges[idx + 1].maxval);

		if (DatumGetBool(r))
			eranges[idx].maxval = eranges[idx + 1].maxval;

		/*
		 * The range certainly is no longer collapsed (irrespectively of the
		 * previous state).
		 */
		eranges[idx].collapsed = false;

		/*
		 * Now get rid of the (idx+1) range entirely by shifting the remaining
		 * ranges by 1. There are neranges elements, and we need to move
		 * elements from (idx+2). That means the number of elements to move is
		 * [ncranges - (idx+2)].
		 */
		memmove(&eranges[idx + 1], &eranges[idx + 2],
				(neranges - (idx + 2)) * sizeof(ExpandedRange));

		/*
		 * Decrease the number of ranges, and repeat (with the same range, as
		 * it might overlap with additional ranges thanks to the merge).
		 */
		neranges--;
	}

	return neranges;
}

/*
 * Simple comparator for distance values, comparing the double value.
 * This is intentionally sorting the distances in descending order, i.e.
 * the longer gaps will be at the front.
 */
static int
compare_distances(const void *a, const void *b)
{
	DistanceValue *da = (DistanceValue *) a;
	DistanceValue *db = (DistanceValue *) b;

	if (da->value < db->value)
		return 1;
	else if (da->value > db->value)
		return -1;

	return 0;
}

/*
 * Given an array of expanded ranges, compute size of the gaps between each
 * range.  For neranges there are (neranges-1) gaps.
 *
 * We simply call the "distance" function to compute the (max-min) for pairs
 * of consecutive ranges. The function may be fairly expensive, so we do that
 * just once (and then use it to pick as many ranges to merge as possible).
 *
 * See reduce_expanded_ranges for details.
 */
static DistanceValue *
build_distances(FmgrInfo *distanceFn, Oid colloid,
				ExpandedRange *eranges, int neranges)
{
	int			i;
	int			ndistances;
	DistanceValue *distances;

	Assert(neranges >= 2);

	ndistances = (neranges - 1);
	distances = (DistanceValue *) palloc0(sizeof(DistanceValue) * ndistances);

	/*
	 * Walk through the ranges once and compute the distance between the
	 * ranges so that we can sort them once.
	 */
	for (i = 0; i < ndistances; i++)
	{
		Datum		a1,
					a2,
					r;

		a1 = eranges[i].maxval;
		a2 = eranges[i + 1].minval;

		/* compute length of the gap (between max/min) */
		r = FunctionCall2Coll(distanceFn, colloid, a1, a2);

		/* remember the index of the gap the distance is for */
		distances[i].index = i;
		distances[i].value = DatumGetFloat8(r);
	}

	/*
	 * Sort the distances in descending order, so that the longest gaps are at
	 * the front.
	 */
	pg_qsort(distances, ndistances, sizeof(DistanceValue), compare_distances);

	return distances;
}

/*
 * Builds expanded ranges for the existing ranges (and single-point ranges),
 * and also the new value (which did not fit into the array).  This expanded
 * representation makes the processing a bit easier, as it allows handling
 * ranges and points the same way.
 *
 * We sort and deduplicate the expanded ranges - this is necessary, because
 * the points may be unsorted. And moreover the two parts (ranges and
 * points) are sorted on their own.
 */
static ExpandedRange *
build_expanded_ranges(FmgrInfo *cmp, Oid colloid, Ranges *ranges,
					  int *nranges)
{
	int			neranges;
	ExpandedRange *eranges;

	/* both ranges and points are expanded into a separate element */
	neranges = ranges->nranges + ranges->nvalues;

	eranges = (ExpandedRange *) palloc0(neranges * sizeof(ExpandedRange));

	/* fill the expanded ranges */
	fill_expanded_ranges(eranges, neranges, ranges);

	/* sort and deduplicate the expanded ranges */
	neranges = sort_expanded_ranges(cmp, colloid, eranges, neranges);

	/* remember how many ranges we built */
	*nranges = neranges;

	return eranges;
}

#ifdef USE_ASSERT_CHECKING
/*
 * Counts boundary values needed to store the ranges. Each single-point
 * range is stored using a single value, each regular range needs two.
 */
static int
count_values(ExpandedRange *cranges, int ncranges)
{
	int			i;
	int			count;

	count = 0;
	for (i = 0; i < ncranges; i++)
	{
		if (cranges[i].collapsed)
			count += 1;
		else
			count += 2;
	}

	return count;
}
#endif

/*
 * reduce_expanded_ranges
 *		reduce the ranges until the number of values is low enough
 *
 * Combines ranges until the number of boundary values drops below the
 * threshold specified by max_values. This happens by merging enough
 * ranges by the distance between them.
 *
 * Returns the number of result ranges.
 *
 * We simply use the global min/max and then add boundaries for enough
 * largest gaps. Each gap adds 2 values, so we simply use (target/2-1)
 * distances. Then we simply sort all the values - each two values are
 * a boundary of a range (possibly collapsed).
 *
 * XXX Some of the ranges may be collapsed (i.e. the min/max values are
 * equal), but we ignore that for now. We could repeat the process,
 * adding a couple more gaps recursively.
 *
 * XXX The ranges to merge are selected solely using the distance. But
 * that may not be the best strategy, for example when multiple gaps
 * are of equal (or very similar) length.
 *
 * Consider for example points 1, 2, 3, .., 64, which have gaps of the
 * same length 1 of course. In that case, we tend to pick the first
 * gap of that length, which leads to this:
 *
 *    step 1:  [1, 2], 3, 4, 5, .., 64
 *    step 2:  [1, 3], 4, 5,    .., 64
 *    step 3:  [1, 4], 5,       .., 64
 *    ...
 *
 * So in the end we'll have one "large" range and multiple small points.
 * That may be fine, but it seems a bit strange and non-optimal. Maybe
 * we should consider other things when picking ranges to merge - e.g.
 * length of the ranges? Or perhaps randomize the choice of ranges, with
 * probability inversely proportional to the distance (the gap lengths
 * may be very close, but not exactly the same).
 *
 * XXX Or maybe we could just handle this by using random value as a
 * tie-break, or by adding random noise to the actual distance.
 */
static int
reduce_expanded_ranges(ExpandedRange *eranges, int neranges,
					   DistanceValue *distances, int max_values,
					   FmgrInfo *cmp, Oid colloid)
{
	int			i;
	int			nvalues;
	Datum	   *values;

	compare_context cxt;

	/* total number of gaps between ranges */
	int			ndistances = (neranges - 1);

	/* number of gaps to keep */
	int			keep = (max_values / 2 - 1);

	/*
	 * Maybe we have a sufficiently low number of ranges already?
	 *
	 * XXX This should happen before we actually do the expensive stuff like
	 * sorting, so maybe this should be just an assert.
	 */
	if (keep >= ndistances)
		return neranges;

	/* sort the values */
	cxt.colloid = colloid;
	cxt.cmpFn = cmp;

	/* allocate space for the boundary values */
	nvalues = 0;
	values = (Datum *) palloc(sizeof(Datum) * max_values);

	/* add the global min/max values, from the first/last range */
	values[nvalues++] = eranges[0].minval;
	values[nvalues++] = eranges[neranges - 1].maxval;

	/* add boundary values for enough gaps */
	for (i = 0; i < keep; i++)
	{
		/* index of the gap between (index) and (index+1) ranges */
		int			index = distances[i].index;

		Assert((index >= 0) && ((index + 1) < neranges));

		/* add max from the preceding range, minval from the next one */
		values[nvalues++] = eranges[index].maxval;
		values[nvalues++] = eranges[index + 1].minval;

		Assert(nvalues <= max_values);
	}

	/* We should have an even number of range values. */
	Assert(nvalues % 2 == 0);

	/*
	 * Sort the values using the comparator function, and form ranges from the
	 * sorted result.
	 */
	qsort_arg(values, nvalues, sizeof(Datum),
			  compare_values, (void *) &cxt);

	/* We have nvalues boundary values, which means nvalues/2 ranges. */
	for (i = 0; i < (nvalues / 2); i++)
	{
		eranges[i].minval = values[2 * i];
		eranges[i].maxval = values[2 * i + 1];

		/* if the boundary values are the same, it's a collapsed range */
		eranges[i].collapsed = (compare_values(&values[2 * i],
											   &values[2 * i + 1],
											   &cxt) == 0);
	}

	return (nvalues / 2);
}

/*
 * Store the boundary values from ExpandedRanges back into 'ranges' (using
 * only the minimal number of values needed).
 */
static void
store_expanded_ranges(Ranges *ranges, ExpandedRange *eranges, int neranges)
{
	int			i;
	int			idx = 0;

	/* first copy in the regular ranges */
	ranges->nranges = 0;
	for (i = 0; i < neranges; i++)
	{
		if (!eranges[i].collapsed)
		{
			ranges->values[idx++] = eranges[i].minval;
			ranges->values[idx++] = eranges[i].maxval;
			ranges->nranges++;
		}
	}

	/* now copy in the collapsed ones */
	ranges->nvalues = 0;
	for (i = 0; i < neranges; i++)
	{
		if (eranges[i].collapsed)
		{
			ranges->values[idx++] = eranges[i].minval;
			ranges->nvalues++;
		}
	}

	/* all the values are sorted */
	ranges->nsorted = ranges->nvalues;

	Assert(count_values(eranges, neranges) == 2 * ranges->nranges + ranges->nvalues);
	Assert(2 * ranges->nranges + ranges->nvalues <= ranges->maxvalues);
}


/*
 * Consider freeing space in the ranges. Checks if there's space for at least
 * one new value, and performs compaction if needed.
 *
 * Returns true if the value was actually modified.
 */
static bool
ensure_free_space_in_buffer(BrinDesc *bdesc, Oid colloid,
							AttrNumber attno, Form_pg_attribute attr,
							Ranges *range)
{
	MemoryContext ctx;
	MemoryContext oldctx;

	FmgrInfo   *cmpFn,
			   *distanceFn;

	/* expanded ranges */
	ExpandedRange *eranges;
	int			neranges;
	DistanceValue *distances;

	/*
	 * If there is free space in the buffer, we're done without having to
	 * modify anything.
	 */
	if (2 * range->nranges + range->nvalues < range->maxvalues)
		return false;

	/* we'll certainly need the comparator, so just look it up now */
	cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
											   BTLessStrategyNumber);

	/* deduplicate values, if there's an unsorted part */
	range_deduplicate_values(range);

	/*
	 * Did we reduce enough free space by just the deduplication?
	 *
	 * We don't simply check against range->maxvalues again. The deduplication
	 * might have freed very little space (e.g. just one value), forcing us to
	 * do deduplication very often. In that case, it's better to do the
	 * compaction and reduce more space.
	 */
	if (2 * range->nranges + range->nvalues <= range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR)
		return true;

	/*
	 * We need to combine some of the existing ranges, to reduce the number of
	 * values we have to store.
	 *
	 * The distanceFn calls (which may internally call e.g. numeric_le) may
	 * allocate quite a bit of memory, and we must not leak it (we might have
	 * to do this repeatedly, even for a single BRIN page range). Otherwise
	 * we'd have problems e.g. when building new indexes. So we use a memory
	 * context and make sure we free the memory at the end (so if we call the
	 * distance function many times, it might be an issue, but meh).
	 */
	ctx = AllocSetContextCreate(CurrentMemoryContext,
								"minmax-multi context",
								ALLOCSET_DEFAULT_SIZES);

	oldctx = MemoryContextSwitchTo(ctx);

	/* build the expanded ranges */
	eranges = build_expanded_ranges(cmpFn, colloid, range, &neranges);

	/* and we'll also need the 'distance' procedure */
	distanceFn = minmax_multi_get_procinfo(bdesc, attno, PROCNUM_DISTANCE);

	/* build array of gap distances and sort them in ascending order */
	distances = build_distances(distanceFn, colloid, eranges, neranges);

	/*
	 * Combine ranges until we release at least 50% of the space. This
	 * threshold is somewhat arbitrary, perhaps needs tuning. We must not use
	 * too low or high value.
	 */
	neranges = reduce_expanded_ranges(eranges, neranges, distances,
									  range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR,
									  cmpFn, colloid);

	/* Make sure we've sufficiently reduced the number of ranges. */
	Assert(count_values(eranges, neranges) <= range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR);

	/* decompose the expanded ranges into regular ranges and single values */
	store_expanded_ranges(range, eranges, neranges);

	MemoryContextSwitchTo(oldctx);
	MemoryContextDelete(ctx);

	/* Did we break the ranges somehow? */
	AssertCheckRanges(range, cmpFn, colloid);

	return true;
}

/*
 * range_add_value
 * 		Add the new value to the minmax-multi range.
 */
static bool
range_add_value(BrinDesc *bdesc, Oid colloid,
				AttrNumber attno, Form_pg_attribute attr,
				Ranges *ranges, Datum newval)
{
	FmgrInfo   *cmpFn;
	bool		modified = false;

	/* we'll certainly need the comparator, so just look it up now */
	cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
											   BTLessStrategyNumber);

	/* comprehensive checks of the input ranges */
	AssertCheckRanges(ranges, cmpFn, colloid);

	/*
	 * Make sure there's enough free space in the buffer. We only trigger this
	 * when the buffer is full, which means it had to be modified as we size
	 * it to be larger than what is stored on disk.
	 *
	 * This needs to happen before we check if the value is contained in the
	 * range, because the value might be in the unsorted part, and we don't
	 * check that in range_contains_value. The deduplication would then move
	 * it to the sorted part, and we'd add the value too, which violates the
	 * rule that we never have duplicates with the ranges or sorted values.
	 *
	 * We might also deduplicate and recheck if the value is contained, but
	 * that seems like overkill. We'd need to deduplicate anyway, so why not
	 * do it now.
	 */
	modified = ensure_free_space_in_buffer(bdesc, colloid,
										   attno, attr, ranges);

	/*
	 * Bail out if the value already is covered by the range.
	 *
	 * We could also add values until we hit values_per_range, and then do the
	 * deduplication in a batch, hoping for better efficiency. But that would
	 * mean we actually modify the range every time, which means having to
	 * serialize the value, which does palloc, walks the values, copies them,
	 * etc. Not exactly cheap.
	 *
	 * So instead we do the check, which should be fairly cheap - assuming the
	 * comparator function is not very expensive.
	 *
	 * This also implies the values array can't contain duplicate values.
	 */
	if (range_contains_value(bdesc, colloid, attno, attr, ranges, newval, false))
		return modified;

	/* Make a copy of the value, if needed. */
	newval = datumCopy(newval, attr->attbyval, attr->attlen);

	/*
	 * If there's space in the values array, copy it in and we're done.
	 *
	 * We do want to keep the values sorted (to speed up searches), so we do a
	 * simple insertion sort. We could do something more elaborate, e.g. by
	 * sorting the values only now and then, but for small counts (e.g. when
	 * maxvalues is 64) this should be fine.
	 */
	ranges->values[2 * ranges->nranges + ranges->nvalues] = newval;
	ranges->nvalues++;

	/* If we added the first value, we can consider it as sorted. */
	if (ranges->nvalues == 1)
		ranges->nsorted = 1;

	/*
	 * Check we haven't broken the ordering of boundary values (checks both
	 * parts, but that doesn't hurt).
	 */
	AssertCheckRanges(ranges, cmpFn, colloid);

	/* Check the range contains the value we just added. */
	Assert(range_contains_value(bdesc, colloid, attno, attr, ranges, newval, true));

	/* yep, we've modified the range */
	return true;
}

/*
 * Generate range representation of data collected during "batch mode".
 * This is similar to reduce_expanded_ranges, except that we can't assume
 * the values are sorted and there may be duplicate values.
 */
static void
compactify_ranges(BrinDesc *bdesc, Ranges *ranges, int max_values)
{
	FmgrInfo   *cmpFn,
			   *distanceFn;

	/* expanded ranges */
	ExpandedRange *eranges;
	int			neranges;
	DistanceValue *distances;

	MemoryContext ctx;
	MemoryContext oldctx;

	/*
	 * Do we need to actually compactify anything?
	 *
	 * There are two reasons why compaction may be needed - firstly, there may
	 * be too many values, or some of the values may be unsorted.
	 */
	if ((ranges->nranges * 2 + ranges->nvalues <= max_values) &&
		(ranges->nsorted == ranges->nvalues))
		return;

	/* we'll certainly need the comparator, so just look it up now */
	cmpFn = minmax_multi_get_strategy_procinfo(bdesc, ranges->attno, ranges->typid,
											   BTLessStrategyNumber);

	/* and we'll also need the 'distance' procedure */
	distanceFn = minmax_multi_get_procinfo(bdesc, ranges->attno, PROCNUM_DISTANCE);

	/*
	 * The distanceFn calls (which may internally call e.g. numeric_le) may
	 * allocate quite a bit of memory, and we must not leak it. Otherwise,
	 * we'd have problems e.g. when building indexes. So we create a local
	 * memory context and make sure we free the memory before leaving this
	 * function (not after every call).
	 */
	ctx = AllocSetContextCreate(CurrentMemoryContext,
								"minmax-multi context",
								ALLOCSET_DEFAULT_SIZES);

	oldctx = MemoryContextSwitchTo(ctx);

	/* build the expanded ranges */
	eranges = build_expanded_ranges(cmpFn, ranges->colloid, ranges, &neranges);

	/* build array of gap distances and sort them in ascending order */
	distances = build_distances(distanceFn, ranges->colloid,
								eranges, neranges);

	/*
	 * Combine ranges until we get below max_values. We don't use any scale
	 * factor, because this is used during serialization, and we don't expect
	 * more tuples to be inserted anytime soon.
	 */
	neranges = reduce_expanded_ranges(eranges, neranges, distances,
									  max_values, cmpFn, ranges->colloid);

	Assert(count_values(eranges, neranges) <= max_values);

	/* transform back into regular ranges and single values */
	store_expanded_ranges(ranges, eranges, neranges);

	/* check all the range invariants */
	AssertCheckRanges(ranges, cmpFn, ranges->colloid);

	MemoryContextSwitchTo(oldctx);
	MemoryContextDelete(ctx);
}

Datum
brin_minmax_multi_opcinfo(PG_FUNCTION_ARGS)
{
	BrinOpcInfo *result;

	/*
	 * opaque->strategy_procinfos is initialized lazily; here it is set to
	 * all-uninitialized by palloc0 which sets fn_oid to InvalidOid.
	 */

	result = palloc0(MAXALIGN(SizeofBrinOpcInfo(1)) +
					 sizeof(MinmaxMultiOpaque));
	result->oi_nstored = 1;
	result->oi_regular_nulls = true;
	result->oi_opaque = (MinmaxMultiOpaque *)
		MAXALIGN((char *) result + SizeofBrinOpcInfo(1));
	result->oi_typcache[0] = lookup_type_cache(PG_BRIN_MINMAX_MULTI_SUMMARYOID, 0);

	PG_RETURN_POINTER(result);
}

/*
 * Compute the distance between two float4 values (plain subtraction).
 */
Datum
brin_minmax_multi_distance_float4(PG_FUNCTION_ARGS)
{
	float		a1 = PG_GETARG_FLOAT4(0);
	float		a2 = PG_GETARG_FLOAT4(1);

	/* if both values are NaN, then we consider them the same */
	if (isnan(a1) && isnan(a2))
		PG_RETURN_FLOAT8(0.0);

	/* if one value is NaN, use infinite distance */
	if (isnan(a1) || isnan(a2))
		PG_RETURN_FLOAT8(get_float8_infinity());

	/*
	 * We know the values are range boundaries, but the range may be collapsed
	 * (i.e. single points), with equal values.
	 */
	Assert(a1 <= a2);

	PG_RETURN_FLOAT8((double) a2 - (double) a1);
}

/*
 * Compute the distance between two float8 values (plain subtraction).
 */
Datum
brin_minmax_multi_distance_float8(PG_FUNCTION_ARGS)
{
	double		a1 = PG_GETARG_FLOAT8(0);
	double		a2 = PG_GETARG_FLOAT8(1);

	/* if both values are NaN, then we consider them the same */
	if (isnan(a1) && isnan(a2))
		PG_RETURN_FLOAT8(0.0);

	/* if one value is NaN, use infinite distance */
	if (isnan(a1) || isnan(a2))
		PG_RETURN_FLOAT8(get_float8_infinity());

	/*
	 * We know the values are range boundaries, but the range may be collapsed
	 * (i.e. single points), with equal values.
	 */
	Assert(a1 <= a2);

	PG_RETURN_FLOAT8(a2 - a1);
}

/*
 * Compute the distance between two int2 values (plain subtraction).
 */
Datum
brin_minmax_multi_distance_int2(PG_FUNCTION_ARGS)
{
	int16		a1 = PG_GETARG_INT16(0);
	int16		a2 = PG_GETARG_INT16(1);

	/*
	 * We know the values are range boundaries, but the range may be collapsed
	 * (i.e. single points), with equal values.
	 */
	Assert(a1 <= a2);

	PG_RETURN_FLOAT8((double) a2 - (double) a1);
}

/*
 * Compute the distance between two int4 values (plain subtraction).
 */
Datum
brin_minmax_multi_distance_int4(PG_FUNCTION_ARGS)
{
	int32		a1 = PG_GETARG_INT32(0);
	int32		a2 = PG_GETARG_INT32(1);

	/*
	 * We know the values are range boundaries, but the range may be collapsed
	 * (i.e. single points), with equal values.
	 */
	Assert(a1 <= a2);

	PG_RETURN_FLOAT8((double) a2 - (double) a1);
}

/*
 * Compute the distance between two int8 values (plain subtraction).
 */
Datum
brin_minmax_multi_distance_int8(PG_FUNCTION_ARGS)
{
	int64		a1 = PG_GETARG_INT64(0);
	int64		a2 = PG_GETARG_INT64(1);

	/*
	 * We know the values are range boundaries, but the range may be collapsed
	 * (i.e. single points), with equal values.
	 */
	Assert(a1 <= a2);

	PG_RETURN_FLOAT8((double) a2 - (double) a1);
}

/*
 * Compute the distance between two tid values (by mapping them to float8 and
 * then subtracting them).
 */
Datum
brin_minmax_multi_distance_tid(PG_FUNCTION_ARGS)
{
	double		da1,
				da2;

	ItemPointer pa1 = (ItemPointer) PG_GETARG_DATUM(0);
	ItemPointer pa2 = (ItemPointer) PG_GETARG_DATUM(1);

	/*
	 * We know the values are range boundaries, but the range may be collapsed
	 * (i.e. single points), with equal values.
	 */
	Assert(ItemPointerCompare(pa1, pa2) <= 0);

	/*
	 * We use the no-check variants here, because user-supplied values may
	 * have (ip_posid == 0). See ItemPointerCompare.
	 */
	da1 = ItemPointerGetBlockNumberNoCheck(pa1) * MaxHeapTuplesPerPage +
		ItemPointerGetOffsetNumberNoCheck(pa1);

	da2 = ItemPointerGetBlockNumberNoCheck(pa2) * MaxHeapTuplesPerPage +
		ItemPointerGetOffsetNumberNoCheck(pa2);

	PG_RETURN_FLOAT8(da2 - da1);
}

/*
 * Compute the distance between two numeric values (plain subtraction).
 */
Datum
brin_minmax_multi_distance_numeric(PG_FUNCTION_ARGS)
{
	Datum		d;
	Datum		a1 = PG_GETARG_DATUM(0);
	Datum		a2 = PG_GETARG_DATUM(1);

	/*
	 * We know the values are range boundaries, but the range may be collapsed
	 * (i.e. single points), with equal values.
	 */
	Assert(DatumGetBool(DirectFunctionCall2(numeric_le, a1, a2)));

	d = DirectFunctionCall2(numeric_sub, a2, a1);	/* a2 - a1 */

	PG_RETURN_FLOAT8(DirectFunctionCall1(numeric_float8, d));
}

/*
 * Compute the approximate distance between two UUID values.
 *
 * XXX We do not need a perfectly accurate value, so we approximate the
 * deltas (which would have to be 128-bit integers) with a 64-bit float.
 * The small inaccuracies do not matter in practice, in the worst case
 * we'll decide to merge ranges that are not the closest ones.
 */
Datum
brin_minmax_multi_distance_uuid(PG_FUNCTION_ARGS)
{
	int			i;
	float8		delta = 0;

	Datum		a1 = PG_GETARG_DATUM(0);
	Datum		a2 = PG_GETARG_DATUM(1);

	pg_uuid_t  *u1 = DatumGetUUIDP(a1);
	pg_uuid_t  *u2 = DatumGetUUIDP(a2);

	/*
	 * We know the values are range boundaries, but the range may be collapsed
	 * (i.e. single points), with equal values.
	 */
	Assert(DatumGetBool(DirectFunctionCall2(uuid_le, a1, a2)));

	/* compute approximate delta as a double precision value */
	for (i = UUID_LEN - 1; i >= 0; i--)
	{
		delta += (int) u2->data[i] - (int) u1->data[i];
		delta /= 256;
	}

	Assert(delta >= 0);

	PG_RETURN_FLOAT8(delta);
}

/*
 * Compute the approximate distance between two dates.
 */
Datum
brin_minmax_multi_distance_date(PG_FUNCTION_ARGS)
{
	DateADT		dateVal1 = PG_GETARG_DATEADT(0);
	DateADT		dateVal2 = PG_GETARG_DATEADT(1);

	if (DATE_NOT_FINITE(dateVal1) || DATE_NOT_FINITE(dateVal2))
		PG_RETURN_FLOAT8(0);

	PG_RETURN_FLOAT8(dateVal1 - dateVal2);
}

/*
 * Compute the approximate distance between two time (without tz) values.
 *
 * TimeADT is just an int64, so we simply subtract the values directly.
 */
Datum
brin_minmax_multi_distance_time(PG_FUNCTION_ARGS)
{
	float8		delta = 0;

	TimeADT		ta = PG_GETARG_TIMEADT(0);
	TimeADT		tb = PG_GETARG_TIMEADT(1);

	delta = (tb - ta);

	Assert(delta >= 0);

	PG_RETURN_FLOAT8(delta);
}

/*
 * Compute the approximate distance between two timetz values.
 *
 * Simply subtracts the TimeADT (int64) values embedded in TimeTzADT.
 */
Datum
brin_minmax_multi_distance_timetz(PG_FUNCTION_ARGS)
{
	float8		delta = 0;

	TimeTzADT  *ta = PG_GETARG_TIMETZADT_P(0);
	TimeTzADT  *tb = PG_GETARG_TIMETZADT_P(1);

	delta = (tb->time - ta->time) + (tb->zone - ta->zone) * USECS_PER_SEC;

	Assert(delta >= 0);

	PG_RETURN_FLOAT8(delta);
}

/*
 * Compute the distance between two timestamp values.
 */
Datum
brin_minmax_multi_distance_timestamp(PG_FUNCTION_ARGS)
{
	float8		delta = 0;

	Timestamp	dt1 = PG_GETARG_TIMESTAMP(0);
	Timestamp	dt2 = PG_GETARG_TIMESTAMP(1);

	if (TIMESTAMP_NOT_FINITE(dt1) || TIMESTAMP_NOT_FINITE(dt2))
		PG_RETURN_FLOAT8(0);

	delta = dt2 - dt1;

	Assert(delta >= 0);

	PG_RETURN_FLOAT8(delta);
}

/*
 * Compute the distance between two interval values.
 */
Datum
brin_minmax_multi_distance_interval(PG_FUNCTION_ARGS)
{
	float8		delta = 0;

	Interval   *ia = PG_GETARG_INTERVAL_P(0);
	Interval   *ib = PG_GETARG_INTERVAL_P(1);
	Interval   *result;

	int64		dayfraction;
	int64		days;

	result = (Interval *) palloc(sizeof(Interval));

	result->month = ib->month - ia->month;
	/* overflow check copied from int4mi */
	if (!SAMESIGN(ib->month, ia->month) &&
		!SAMESIGN(result->month, ib->month))
		ereport(ERROR,
				(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
				 errmsg("interval out of range")));

	result->day = ib->day - ia->day;
	if (!SAMESIGN(ib->day, ia->day) &&
		!SAMESIGN(result->day, ib->day))
		ereport(ERROR,
				(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
				 errmsg("interval out of range")));

	result->time = ib->time - ia->time;
	if (!SAMESIGN(ib->time, ia->time) &&
		!SAMESIGN(result->time, ib->time))
		ereport(ERROR,
				(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
				 errmsg("interval out of range")));

	/*
	 * Delta is (fractional) number of days between the intervals. Assume
	 * months have 30 days for consistency with interval_cmp_internal. We
	 * don't need to be exact, in the worst case we'll build a bit less
	 * efficient ranges. But we should not contradict interval_cmp.
	 */
	dayfraction = result->time % USECS_PER_DAY;
	days = result->time / USECS_PER_DAY;
	days += result->month * INT64CONST(30);
	days += result->day;

	/* convert to double precision */
	delta = (double) days + dayfraction / (double) USECS_PER_DAY;

	Assert(delta >= 0);

	PG_RETURN_FLOAT8(delta);
}

/*
 * Compute the distance between two pg_lsn values.
 *
 * LSN is just an int64 encoding position in the stream, so just subtract
 * those int64 values directly.
 */
Datum
brin_minmax_multi_distance_pg_lsn(PG_FUNCTION_ARGS)
{
	float8		delta = 0;

	XLogRecPtr	lsna = PG_GETARG_LSN(0);
	XLogRecPtr	lsnb = PG_GETARG_LSN(1);

	delta = (lsnb - lsna);

	Assert(delta >= 0);

	PG_RETURN_FLOAT8(delta);
}

/*
 * Compute the distance between two macaddr values.
 *
 * mac addresses are treated as 6 unsigned chars, so do the same thing we
 * already do for UUID values.
 */
Datum
brin_minmax_multi_distance_macaddr(PG_FUNCTION_ARGS)
{
	float8		delta;

	macaddr    *a = PG_GETARG_MACADDR_P(0);
	macaddr    *b = PG_GETARG_MACADDR_P(1);

	delta = ((float8) b->f - (float8) a->f);
	delta /= 256;

	delta += ((float8) b->e - (float8) a->e);
	delta /= 256;

	delta += ((float8) b->d - (float8) a->d);
	delta /= 256;

	delta += ((float8) b->c - (float8) a->c);
	delta /= 256;

	delta += ((float8) b->b - (float8) a->b);
	delta /= 256;

	delta += ((float8) b->a - (float8) a->a);
	delta /= 256;

	Assert(delta >= 0);

	PG_RETURN_FLOAT8(delta);
}

/*
 * Compute the distance between two macaddr8 values.
 *
 * macaddr8 addresses are 8 unsigned chars, so do the same thing we
 * already do for UUID values.
 */
Datum
brin_minmax_multi_distance_macaddr8(PG_FUNCTION_ARGS)
{
	float8		delta;

	macaddr8   *a = PG_GETARG_MACADDR8_P(0);
	macaddr8   *b = PG_GETARG_MACADDR8_P(1);

	delta = ((float8) b->h - (float8) a->h);
	delta /= 256;

	delta += ((float8) b->g - (float8) a->g);
	delta /= 256;

	delta += ((float8) b->f - (float8) a->f);
	delta /= 256;

	delta += ((float8) b->e - (float8) a->e);
	delta /= 256;

	delta += ((float8) b->d - (float8) a->d);
	delta /= 256;

	delta += ((float8) b->c - (float8) a->c);
	delta /= 256;

	delta += ((float8) b->b - (float8) a->b);
	delta /= 256;

	delta += ((float8) b->a - (float8) a->a);
	delta /= 256;

	Assert(delta >= 0);

	PG_RETURN_FLOAT8(delta);
}

/*
 * Compute the distance between two inet values.
 *
 * The distance is defined as the difference between 32-bit/128-bit values,
 * depending on the IP version. The distance is computed by subtracting
 * the bytes and normalizing it to [0,1] range for each IP family.
 * Addresses from different families are considered to be in maximum
 * distance, which is 1.0.
 *
 * XXX Does this need to consider the mask (bits)?  For now, it's ignored.
 */
Datum
brin_minmax_multi_distance_inet(PG_FUNCTION_ARGS)
{
	float8		delta;
	int			i;
	int			len;
	unsigned char *addra,
			   *addrb;

	inet	   *ipa = PG_GETARG_INET_PP(0);
	inet	   *ipb = PG_GETARG_INET_PP(1);

	int			lena,
				lenb;

	/*
	 * If the addresses are from different families, consider them to be in
	 * maximal possible distance (which is 1.0).
	 */
	if (ip_family(ipa) != ip_family(ipb))
		PG_RETURN_FLOAT8(1.0);

	addra = (unsigned char *) palloc(ip_addrsize(ipa));
	memcpy(addra, ip_addr(ipa), ip_addrsize(ipa));

	addrb = (unsigned char *) palloc(ip_addrsize(ipb));
	memcpy(addrb, ip_addr(ipb), ip_addrsize(ipb));

	/*
	 * The length is calculated from the mask length, because we sort the
	 * addresses by first address in the range, so A.B.C.D/24 < A.B.C.1 (the
	 * first range starts at A.B.C.0, which is before A.B.C.1). We don't want
	 * to produce a negative delta in this case, so we just cut the extra
	 * bytes.
	 *
	 * XXX Maybe this should be a bit more careful and cut the bits, not just
	 * whole bytes.
	 */
	lena = ip_bits(ipa);
	lenb = ip_bits(ipb);

	len = ip_addrsize(ipa);

	/* apply the network mask to both addresses */
	for (i = 0; i < len; i++)
	{
		unsigned char mask;
		int			nbits;

		nbits = lena - (i * 8);
		if (nbits < 8)
		{
			mask = (0xFF << (8 - nbits));
			addra[i] = (addra[i] & mask);
		}

		nbits = lenb - (i * 8);
		if (nbits < 8)
		{
			mask = (0xFF << (8 - nbits));
			addrb[i] = (addrb[i] & mask);
		}
	}

	/* Calculate the difference between the addresses. */
	delta = 0;
	for (i = len - 1; i >= 0; i--)
	{
		unsigned char a = addra[i];
		unsigned char b = addrb[i];

		delta += (float8) b - (float8) a;
		delta /= 256;
	}

	Assert((delta >= 0) && (delta <= 1));

	pfree(addra);
	pfree(addrb);

	PG_RETURN_FLOAT8(delta);
}

static void
brin_minmax_multi_serialize(BrinDesc *bdesc, Datum src, Datum *dst)
{
	Ranges	   *ranges = (Ranges *) DatumGetPointer(src);
	SerializedRanges *s;

	/*
	 * In batch mode, we need to compress the accumulated values to the
	 * actually requested number of values/ranges.
	 */
	compactify_ranges(bdesc, ranges, ranges->target_maxvalues);

	/* At this point everything has to be fully sorted. */
	Assert(ranges->nsorted == ranges->nvalues);

	s = range_serialize(ranges);
	dst[0] = PointerGetDatum(s);
}

static int
brin_minmax_multi_get_values(BrinDesc *bdesc, MinMaxMultiOptions *opts)
{
	return MinMaxMultiGetValuesPerRange(opts);
}

/*
 * Examine the given index tuple (which contains the partial status of a
 * certain page range) by comparing it to the given value that comes from
 * another heap tuple.  If the new value is outside the min/max range
 * specified by the existing tuple values, update the index tuple and return
 * true.  Otherwise, return false and do not modify in this case.
 */
Datum
brin_minmax_multi_add_value(PG_FUNCTION_ARGS)
{
	BrinDesc   *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
	BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
	Datum		newval = PG_GETARG_DATUM(2);
	bool		isnull PG_USED_FOR_ASSERTS_ONLY = PG_GETARG_DATUM(3);
	MinMaxMultiOptions *opts = (MinMaxMultiOptions *) PG_GET_OPCLASS_OPTIONS();
	Oid			colloid = PG_GET_COLLATION();
	bool		modified = false;
	Form_pg_attribute attr;
	AttrNumber	attno;
	Ranges	   *ranges;
	SerializedRanges *serialized = NULL;

	Assert(!isnull);

	attno = column->bv_attno;
	attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);

	/* use the already deserialized value, if possible */
	ranges = (Ranges *) DatumGetPointer(column->bv_mem_value);

	/*
	 * If this is the first non-null value, we need to initialize the range
	 * list. Otherwise, just extract the existing range list from BrinValues.
	 *
	 * When starting with an empty range, we assume this is a batch mode and
	 * we use a larger buffer. The buffer size is derived from the BRIN range
	 * size, number of rows per page, with some sensible min/max values. A
	 * small buffer would be bad for performance, but a large buffer might
	 * require a lot of memory (because of keeping all the values).
	 */
	if (column->bv_allnulls)
	{
		MemoryContext oldctx;

		int			target_maxvalues;
		int			maxvalues;
		BlockNumber pagesPerRange = BrinGetPagesPerRange(bdesc->bd_index);

		/* what was specified as a reloption? */
		target_maxvalues = brin_minmax_multi_get_values(bdesc, opts);

		/*
		 * Determine the insert buffer size - we use 10x the target, capped to
		 * the maximum number of values in the heap range. This is more than
		 * enough, considering the actual number of rows per page is likely
		 * much lower, but meh.
		 */
		maxvalues = Min(target_maxvalues * MINMAX_BUFFER_FACTOR,
						MaxHeapTuplesPerPage * pagesPerRange);

		/* but always at least the original value */
		maxvalues = Max(maxvalues, target_maxvalues);

		/* always cap by MIN/MAX */
		maxvalues = Max(maxvalues, MINMAX_BUFFER_MIN);
		maxvalues = Min(maxvalues, MINMAX_BUFFER_MAX);

		oldctx = MemoryContextSwitchTo(column->bv_context);
		ranges = minmax_multi_init(maxvalues);
		ranges->attno = attno;
		ranges->colloid = colloid;
		ranges->typid = attr->atttypid;
		ranges->target_maxvalues = target_maxvalues;

		/* we'll certainly need the comparator, so just look it up now */
		ranges->cmp = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
														 BTLessStrategyNumber);

		MemoryContextSwitchTo(oldctx);

		column->bv_allnulls = false;
		modified = true;

		column->bv_mem_value = PointerGetDatum(ranges);
		column->bv_serialize = brin_minmax_multi_serialize;
	}
	else if (!ranges)
	{
		MemoryContext oldctx;

		int			maxvalues;
		BlockNumber pagesPerRange = BrinGetPagesPerRange(bdesc->bd_index);

		oldctx = MemoryContextSwitchTo(column->bv_context);

		serialized = (SerializedRanges *) PG_DETOAST_DATUM(column->bv_values[0]);

		/*
		 * Determine the insert buffer size - we use 10x the target, capped to
		 * the maximum number of values in the heap range. This is more than
		 * enough, considering the actual number of rows per page is likely
		 * much lower, but meh.
		 */
		maxvalues = Min(serialized->maxvalues * MINMAX_BUFFER_FACTOR,
						MaxHeapTuplesPerPage * pagesPerRange);

		/* but always at least the original value */
		maxvalues = Max(maxvalues, serialized->maxvalues);

		/* always cap by MIN/MAX */
		maxvalues = Max(maxvalues, MINMAX_BUFFER_MIN);
		maxvalues = Min(maxvalues, MINMAX_BUFFER_MAX);

		ranges = range_deserialize(maxvalues, serialized);

		ranges->attno = attno;
		ranges->colloid = colloid;
		ranges->typid = attr->atttypid;

		/* we'll certainly need the comparator, so just look it up now */
		ranges->cmp = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
														 BTLessStrategyNumber);

		column->bv_mem_value = PointerGetDatum(ranges);
		column->bv_serialize = brin_minmax_multi_serialize;

		MemoryContextSwitchTo(oldctx);
	}

	/*
	 * Try to add the new value to the range. We need to update the modified
	 * flag, so that we serialize the updated summary later.
	 */
	modified |= range_add_value(bdesc, colloid, attno, attr, ranges, newval);


	PG_RETURN_BOOL(modified);
}

/*
 * Given an index tuple corresponding to a certain page range and a scan key,
 * return whether the scan key is consistent with the index tuple's min/max
 * values.  Return true if so, false otherwise.
 */
Datum
brin_minmax_multi_consistent(PG_FUNCTION_ARGS)
{
	BrinDesc   *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
	BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
	ScanKey    *keys = (ScanKey *) PG_GETARG_POINTER(2);
	int			nkeys = PG_GETARG_INT32(3);

	Oid			colloid = PG_GET_COLLATION(),
				subtype;
	AttrNumber	attno;
	Datum		value;
	FmgrInfo   *finfo;
	SerializedRanges *serialized;
	Ranges	   *ranges;
	int			keyno;
	int			rangeno;
	int			i;

	attno = column->bv_attno;

	serialized = (SerializedRanges *) PG_DETOAST_DATUM(column->bv_values[0]);
	ranges = range_deserialize(serialized->maxvalues, serialized);

	/* inspect the ranges, and for each one evaluate the scan keys */
	for (rangeno = 0; rangeno < ranges->nranges; rangeno++)
	{
		Datum		minval = ranges->values[2 * rangeno];
		Datum		maxval = ranges->values[2 * rangeno + 1];

		/* assume the range is matching, and we'll try to prove otherwise */
		bool		matching = true;

		for (keyno = 0; keyno < nkeys; keyno++)
		{
			Datum		matches;
			ScanKey		key = keys[keyno];

			/* NULL keys are handled and filtered-out in bringetbitmap */
			Assert(!(key->sk_flags & SK_ISNULL));

			attno = key->sk_attno;
			subtype = key->sk_subtype;
			value = key->sk_argument;
			switch (key->sk_strategy)
			{
				case BTLessStrategyNumber:
				case BTLessEqualStrategyNumber:
					finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
															   key->sk_strategy);
					/* first value from the array */
					matches = FunctionCall2Coll(finfo, colloid, minval, value);
					break;

				case BTEqualStrategyNumber:
					{
						Datum		compar;
						FmgrInfo   *cmpFn;

						/* by default this range does not match */
						matches = false;

						/*
						 * Otherwise, need to compare the new value with
						 * boundaries of all the ranges. First check if it's
						 * less than the absolute minimum, which is the first
						 * value in the array.
						 */
						cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
																   BTGreaterStrategyNumber);
						compar = FunctionCall2Coll(cmpFn, colloid, minval, value);

						/* smaller than the smallest value in this range */
						if (DatumGetBool(compar))
							break;

						cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
																   BTLessStrategyNumber);
						compar = FunctionCall2Coll(cmpFn, colloid, maxval, value);

						/* larger than the largest value in this range */
						if (DatumGetBool(compar))
							break;

						/*
						 * We haven't managed to eliminate this range, so
						 * consider it matching.
						 */
						matches = true;

						break;
					}
				case BTGreaterEqualStrategyNumber:
				case BTGreaterStrategyNumber:
					finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
															   key->sk_strategy);
					/* last value from the array */
					matches = FunctionCall2Coll(finfo, colloid, maxval, value);
					break;

				default:
					/* shouldn't happen */
					elog(ERROR, "invalid strategy number %d", key->sk_strategy);
					matches = 0;
					break;
			}

			/* the range has to match all the scan keys */
			matching &= DatumGetBool(matches);

			/* once we find a non-matching key, we're done */
			if (!matching)
				break;
		}

		/*
		 * have we found a range matching all scan keys? if yes, we're done
		 */
		if (matching)
			PG_RETURN_DATUM(BoolGetDatum(true));
	}

	/*
	 * And now inspect the values. We don't bother with doing a binary search
	 * here, because we're dealing with serialized / fully compacted ranges,
	 * so there should be only very few values.
	 */
	for (i = 0; i < ranges->nvalues; i++)
	{
		Datum		val = ranges->values[2 * ranges->nranges + i];

		/* assume the range is matching, and we'll try to prove otherwise */
		bool		matching = true;

		for (keyno = 0; keyno < nkeys; keyno++)
		{
			Datum		matches;
			ScanKey		key = keys[keyno];

			/* we've already dealt with NULL keys at the beginning */
			if (key->sk_flags & SK_ISNULL)
				continue;

			attno = key->sk_attno;
			subtype = key->sk_subtype;
			value = key->sk_argument;
			switch (key->sk_strategy)
			{
				case BTLessStrategyNumber:
				case BTLessEqualStrategyNumber:
				case BTEqualStrategyNumber:
				case BTGreaterEqualStrategyNumber:
				case BTGreaterStrategyNumber:

					finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
															   key->sk_strategy);
					matches = FunctionCall2Coll(finfo, colloid, val, value);
					break;

				default:
					/* shouldn't happen */
					elog(ERROR, "invalid strategy number %d", key->sk_strategy);
					matches = 0;
					break;
			}

			/* the range has to match all the scan keys */
			matching &= DatumGetBool(matches);

			/* once we find a non-matching key, we're done */
			if (!matching)
				break;
		}

		/* have we found a range matching all scan keys? if yes, we're done */
		if (matching)
			PG_RETURN_DATUM(BoolGetDatum(true));
	}

	PG_RETURN_DATUM(BoolGetDatum(false));
}

/*
 * Given two BrinValues, update the first of them as a union of the summary
 * values contained in both.  The second one is untouched.
 */
Datum
brin_minmax_multi_union(PG_FUNCTION_ARGS)
{
	BrinDesc   *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
	BrinValues *col_a = (BrinValues *) PG_GETARG_POINTER(1);
	BrinValues *col_b = (BrinValues *) PG_GETARG_POINTER(2);

	Oid			colloid = PG_GET_COLLATION();
	SerializedRanges *serialized_a;
	SerializedRanges *serialized_b;
	Ranges	   *ranges_a;
	Ranges	   *ranges_b;
	AttrNumber	attno;
	Form_pg_attribute attr;
	ExpandedRange *eranges;
	int			neranges;
	FmgrInfo   *cmpFn,
			   *distanceFn;
	DistanceValue *distances;
	MemoryContext ctx;
	MemoryContext oldctx;

	Assert(col_a->bv_attno == col_b->bv_attno);
	Assert(!col_a->bv_allnulls && !col_b->bv_allnulls);

	attno = col_a->bv_attno;
	attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);

	serialized_a = (SerializedRanges *) PG_DETOAST_DATUM(col_a->bv_values[0]);
	serialized_b = (SerializedRanges *) PG_DETOAST_DATUM(col_b->bv_values[0]);

	ranges_a = range_deserialize(serialized_a->maxvalues, serialized_a);
	ranges_b = range_deserialize(serialized_b->maxvalues, serialized_b);

	/* make sure neither of the ranges is NULL */
	Assert(ranges_a && ranges_b);

	neranges = (ranges_a->nranges + ranges_a->nvalues) +
		(ranges_b->nranges + ranges_b->nvalues);

	/*
	 * The distanceFn calls (which may internally call e.g. numeric_le) may
	 * allocate quite a bit of memory, and we must not leak it. Otherwise,
	 * we'd have problems e.g. when building indexes. So we create a local
	 * memory context and make sure we free the memory before leaving this
	 * function (not after every call).
	 */
	ctx = AllocSetContextCreate(CurrentMemoryContext,
								"minmax-multi context",
								ALLOCSET_DEFAULT_SIZES);

	oldctx = MemoryContextSwitchTo(ctx);

	/* allocate and fill */
	eranges = (ExpandedRange *) palloc0(neranges * sizeof(ExpandedRange));

	/* fill the expanded ranges with entries for the first range */
	fill_expanded_ranges(eranges, ranges_a->nranges + ranges_a->nvalues,
						 ranges_a);

	/* and now add combine ranges for the second range */
	fill_expanded_ranges(&eranges[ranges_a->nranges + ranges_a->nvalues],
						 ranges_b->nranges + ranges_b->nvalues,
						 ranges_b);

	cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
											   BTLessStrategyNumber);

	/* sort the expanded ranges */
	neranges = sort_expanded_ranges(cmpFn, colloid, eranges, neranges);

	/*
	 * We've loaded two different lists of expanded ranges, so some of them
	 * may be overlapping. So walk through them and merge them.
	 */
	neranges = merge_overlapping_ranges(cmpFn, colloid, eranges, neranges);

	/* check that the combine ranges are correct (no overlaps, ordering) */
	AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);

	/*
	 * If needed, reduce some of the ranges.
	 *
	 * XXX This may be fairly expensive, so maybe we should do it only when
	 * it's actually needed (when we have too many ranges).
	 */

	/* build array of gap distances and sort them in ascending order */
	distanceFn = minmax_multi_get_procinfo(bdesc, attno, PROCNUM_DISTANCE);
	distances = build_distances(distanceFn, colloid, eranges, neranges);

	/*
	 * See how many values would be needed to store the current ranges, and if
	 * needed combine as many of them to get below the threshold. The
	 * collapsed ranges will be stored as a single value.
	 *
	 * XXX This does not apply the load factor, as we don't expect to add more
	 * values to the range, so we prefer to keep as many ranges as possible.
	 *
	 * XXX Can the maxvalues be different in the two ranges? Perhaps we should
	 * use maximum of those?
	 */
	neranges = reduce_expanded_ranges(eranges, neranges, distances,
									  ranges_a->maxvalues,
									  cmpFn, colloid);

	/* update the first range summary */
	store_expanded_ranges(ranges_a, eranges, neranges);

	MemoryContextSwitchTo(oldctx);
	MemoryContextDelete(ctx);

	/* cleanup and update the serialized value */
	pfree(serialized_a);
	col_a->bv_values[0] = PointerGetDatum(range_serialize(ranges_a));

	PG_RETURN_VOID();
}

/*
 * Cache and return minmax multi opclass support procedure
 *
 * Return the procedure corresponding to the given function support number
 * or null if it does not exist.
 */
static FmgrInfo *
minmax_multi_get_procinfo(BrinDesc *bdesc, uint16 attno, uint16 procnum)
{
	MinmaxMultiOpaque *opaque;
	uint16		basenum = procnum - PROCNUM_BASE;

	/*
	 * We cache these in the opaque struct, to avoid repetitive syscache
	 * lookups.
	 */
	opaque = (MinmaxMultiOpaque *) bdesc->bd_info[attno - 1]->oi_opaque;

	/*
	 * If we already searched for this proc and didn't find it, don't bother
	 * searching again.
	 */
	if (opaque->extra_proc_missing[basenum])
		return NULL;

	if (opaque->extra_procinfos[basenum].fn_oid == InvalidOid)
	{
		if (RegProcedureIsValid(index_getprocid(bdesc->bd_index, attno,
												procnum)))
		{
			fmgr_info_copy(&opaque->extra_procinfos[basenum],
						   index_getprocinfo(bdesc->bd_index, attno, procnum),
						   bdesc->bd_context);
		}
		else
		{
			opaque->extra_proc_missing[basenum] = true;
			return NULL;
		}
	}

	return &opaque->extra_procinfos[basenum];
}

/*
 * Cache and return the procedure for the given strategy.
 *
 * Note: this function mirrors minmax_multi_get_strategy_procinfo; see notes
 * there.  If changes are made here, see that function too.
 */
static FmgrInfo *
minmax_multi_get_strategy_procinfo(BrinDesc *bdesc, uint16 attno, Oid subtype,
								   uint16 strategynum)
{
	MinmaxMultiOpaque *opaque;

	Assert(strategynum >= 1 &&
		   strategynum <= BTMaxStrategyNumber);

	opaque = (MinmaxMultiOpaque *) bdesc->bd_info[attno - 1]->oi_opaque;

	/*
	 * We cache the procedures for the previous subtype in the opaque struct,
	 * to avoid repetitive syscache lookups.  If the subtype changed,
	 * invalidate all the cached entries.
	 */
	if (opaque->cached_subtype != subtype)
	{
		uint16		i;

		for (i = 1; i <= BTMaxStrategyNumber; i++)
			opaque->strategy_procinfos[i - 1].fn_oid = InvalidOid;
		opaque->cached_subtype = subtype;
	}

	if (opaque->strategy_procinfos[strategynum - 1].fn_oid == InvalidOid)
	{
		Form_pg_attribute attr;
		HeapTuple	tuple;
		Oid			opfamily,
					oprid;
		bool		isNull;

		opfamily = bdesc->bd_index->rd_opfamily[attno - 1];
		attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
		tuple = SearchSysCache4(AMOPSTRATEGY, ObjectIdGetDatum(opfamily),
								ObjectIdGetDatum(attr->atttypid),
								ObjectIdGetDatum(subtype),
								Int16GetDatum(strategynum));
		if (!HeapTupleIsValid(tuple))
			elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
				 strategynum, attr->atttypid, subtype, opfamily);

		oprid = DatumGetObjectId(SysCacheGetAttr(AMOPSTRATEGY, tuple,
												 Anum_pg_amop_amopopr, &isNull));
		ReleaseSysCache(tuple);
		Assert(!isNull && RegProcedureIsValid(oprid));

		fmgr_info_cxt(get_opcode(oprid),
					  &opaque->strategy_procinfos[strategynum - 1],
					  bdesc->bd_context);
	}

	return &opaque->strategy_procinfos[strategynum - 1];
}

Datum
brin_minmax_multi_options(PG_FUNCTION_ARGS)
{
	local_relopts *relopts = (local_relopts *) PG_GETARG_POINTER(0);

	init_local_reloptions(relopts, sizeof(MinMaxMultiOptions));

	add_local_int_reloption(relopts, "values_per_range", "desc",
							MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE, 8, 256,
							offsetof(MinMaxMultiOptions, valuesPerRange));

	PG_RETURN_VOID();
}

/*
 * brin_minmax_multi_summary_in
 *		- input routine for type brin_minmax_multi_summary.
 *
 * brin_minmax_multi_summary is only used internally to represent summaries
 * in BRIN minmax-multi indexes, so it has no operations of its own, and we
 * disallow input too.
 */
Datum
brin_minmax_multi_summary_in(PG_FUNCTION_ARGS)
{
	/*
	 * brin_minmax_multi_summary stores the data in binary form and parsing
	 * text input is not needed, so disallow this.
	 */
	ereport(ERROR,
			(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
			 errmsg("cannot accept a value of type %s", "brin_minmax_multi_summary")));

	PG_RETURN_VOID();			/* keep compiler quiet */
}


/*
 * brin_minmax_multi_summary_out
 *		- output routine for type brin_minmax_multi_summary.
 *
 * BRIN minmax-multi summaries are serialized into a bytea value, but we
 * want to output something nicer humans can understand.
 */
Datum
brin_minmax_multi_summary_out(PG_FUNCTION_ARGS)
{
	int			i;
	int			idx;
	SerializedRanges *ranges;
	Ranges	   *ranges_deserialized;
	StringInfoData str;
	bool		isvarlena;
	Oid			outfunc;
	FmgrInfo	fmgrinfo;
	ArrayBuildState *astate_values = NULL;

	initStringInfo(&str);
	appendStringInfoChar(&str, '{');

	/*
	 * Detoast to get value with full 4B header (can't be stored in a toast
	 * table, but can use 1B header).
	 */
	ranges = (SerializedRanges *) PG_DETOAST_DATUM(PG_GETARG_BYTEA_PP(0));

	/* lookup output func for the type */
	getTypeOutputInfo(ranges->typid, &outfunc, &isvarlena);
	fmgr_info(outfunc, &fmgrinfo);

	/* deserialize the range info easy-to-process pieces */
	ranges_deserialized = range_deserialize(ranges->maxvalues, ranges);

	appendStringInfo(&str, "nranges: %u  nvalues: %u  maxvalues: %u",
					 ranges_deserialized->nranges,
					 ranges_deserialized->nvalues,
					 ranges_deserialized->maxvalues);

	/* serialize ranges */
	idx = 0;
	for (i = 0; i < ranges_deserialized->nranges; i++)
	{
		char	   *a,
				   *b;
		text	   *c;
		StringInfoData str;

		initStringInfo(&str);

		a = OutputFunctionCall(&fmgrinfo, ranges_deserialized->values[idx++]);
		b = OutputFunctionCall(&fmgrinfo, ranges_deserialized->values[idx++]);

		appendStringInfo(&str, "%s ... %s", a, b);

		c = cstring_to_text(str.data);

		astate_values = accumArrayResult(astate_values,
										 PointerGetDatum(c),
										 false,
										 TEXTOID,
										 CurrentMemoryContext);
	}

	if (ranges_deserialized->nranges > 0)
	{
		Oid			typoutput;
		bool		typIsVarlena;
		Datum		val;
		char	   *extval;

		getTypeOutputInfo(ANYARRAYOID, &typoutput, &typIsVarlena);

		val = PointerGetDatum(makeArrayResult(astate_values, CurrentMemoryContext));

		extval = OidOutputFunctionCall(typoutput, val);

		appendStringInfo(&str, " ranges: %s", extval);
	}

	/* serialize individual values */
	astate_values = NULL;

	for (i = 0; i < ranges_deserialized->nvalues; i++)
	{
		Datum		a;
		text	   *b;
		StringInfoData str;

		initStringInfo(&str);

		a = FunctionCall1(&fmgrinfo, ranges_deserialized->values[idx++]);

		appendStringInfoString(&str, DatumGetCString(a));

		b = cstring_to_text(str.data);

		astate_values = accumArrayResult(astate_values,
										 PointerGetDatum(b),
										 false,
										 TEXTOID,
										 CurrentMemoryContext);
	}

	if (ranges_deserialized->nvalues > 0)
	{
		Oid			typoutput;
		bool		typIsVarlena;
		Datum		val;
		char	   *extval;

		getTypeOutputInfo(ANYARRAYOID, &typoutput, &typIsVarlena);

		val = PointerGetDatum(makeArrayResult(astate_values, CurrentMemoryContext));

		extval = OidOutputFunctionCall(typoutput, val);

		appendStringInfo(&str, " values: %s", extval);
	}


	appendStringInfoChar(&str, '}');

	PG_RETURN_CSTRING(str.data);
}

/*
 * brin_minmax_multi_summary_recv
 *		- binary input routine for type brin_minmax_multi_summary.
 */
Datum
brin_minmax_multi_summary_recv(PG_FUNCTION_ARGS)
{
	ereport(ERROR,
			(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
			 errmsg("cannot accept a value of type %s", "brin_minmax_multi_summary")));

	PG_RETURN_VOID();			/* keep compiler quiet */
}

/*
 * brin_minmax_multi_summary_send
 *		- binary output routine for type brin_minmax_multi_summary.
 *
 * BRIN minmax-multi summaries are serialized in a bytea value (although
 * the type is named differently), so let's just send that.
 */
Datum
brin_minmax_multi_summary_send(PG_FUNCTION_ARGS)
{
	return byteasend(fcinfo);
}