summaryrefslogtreecommitdiffstats
path: root/src/backend/access/gist/gistbuild.c
blob: ec28bfe89f092339dd57caa1a41291a8b9395600 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
/*-------------------------------------------------------------------------
 *
 * gistbuild.c
 *	  build algorithm for GiST indexes implementation.
 *
 * There are two different strategies:
 *
 * 1. Sort all input tuples, pack them into GiST leaf pages in the sorted
 *    order, and create downlinks and internal pages as we go. This builds
 *    the index from the bottom up, similar to how B-tree index build
 *    works.
 *
 * 2. Start with an empty index, and insert all tuples one by one.
 *
 * The sorted method is used if the operator classes for all columns have
 * a 'sortsupport' defined. Otherwise, we resort to the second strategy.
 *
 * The second strategy can optionally use buffers at different levels of
 * the tree to reduce I/O, see "Buffering build algorithm" in the README
 * for a more detailed explanation. It initially calls insert over and
 * over, but switches to the buffered algorithm after a certain number of
 * tuples (unless buffering mode is disabled).
 *
 *
 * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *	  src/backend/access/gist/gistbuild.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include <math.h>

#include "access/genam.h"
#include "access/gist_private.h"
#include "access/gistxlog.h"
#include "access/tableam.h"
#include "access/xloginsert.h"
#include "catalog/index.h"
#include "miscadmin.h"
#include "optimizer/optimizer.h"
#include "storage/bufmgr.h"
#include "storage/smgr.h"
#include "utils/memutils.h"
#include "utils/rel.h"
#include "utils/tuplesort.h"

/* Step of index tuples for check whether to switch to buffering build mode */
#define BUFFERING_MODE_SWITCH_CHECK_STEP 256

/*
 * Number of tuples to process in the slow way before switching to buffering
 * mode, when buffering is explicitly turned on. Also, the number of tuples
 * to process between readjusting the buffer size parameter, while in
 * buffering mode.
 */
#define BUFFERING_MODE_TUPLE_SIZE_STATS_TARGET 4096

/*
 * Strategy used to build the index. It can change between the
 * GIST_BUFFERING_* modes on the fly, but if the Sorted method is used,
 * that needs to be decided up-front and cannot be changed afterwards.
 */
typedef enum
{
	GIST_SORTED_BUILD,			/* bottom-up build by sorting */
	GIST_BUFFERING_DISABLED,	/* in regular build mode and aren't going to
								 * switch */
	GIST_BUFFERING_AUTO,		/* in regular build mode, but will switch to
								 * buffering build mode if the index grows too
								 * big */
	GIST_BUFFERING_STATS,		/* gathering statistics of index tuple size
								 * before switching to the buffering build
								 * mode */
	GIST_BUFFERING_ACTIVE		/* in buffering build mode */
} GistBuildMode;

/* Working state for gistbuild and its callback */
typedef struct
{
	Relation	indexrel;
	Relation	heaprel;
	GISTSTATE  *giststate;

	Size		freespace;		/* amount of free space to leave on pages */

	GistBuildMode buildMode;

	int64		indtuples;		/* number of tuples indexed */

	/*
	 * Extra data structures used during a buffering build. 'gfbb' contains
	 * information related to managing the build buffers. 'parentMap' is a
	 * lookup table of the parent of each internal page.
	 */
	int64		indtuplesSize;	/* total size of all indexed tuples */
	GISTBuildBuffers *gfbb;
	HTAB	   *parentMap;

	/*
	 * Extra data structures used during a sorting build.
	 */
	Tuplesortstate *sortstate;	/* state data for tuplesort.c */

	BlockNumber pages_allocated;
	BlockNumber pages_written;

	int			ready_num_pages;
	BlockNumber ready_blknos[XLR_MAX_BLOCK_ID];
	Page		ready_pages[XLR_MAX_BLOCK_ID];
} GISTBuildState;

/*
 * In sorted build, we use a stack of these structs, one for each level,
 * to hold an in-memory buffer of the rightmost page at the level. When the
 * page fills up, it is written out and a new page is allocated.
 */
typedef struct GistSortedBuildPageState
{
	Page		page;
	struct GistSortedBuildPageState *parent;	/* Upper level, if any */
} GistSortedBuildPageState;

/* prototypes for private functions */

static void gistSortedBuildCallback(Relation index, ItemPointer tid,
									Datum *values, bool *isnull,
									bool tupleIsAlive, void *state);
static void gist_indexsortbuild(GISTBuildState *state);
static void gist_indexsortbuild_pagestate_add(GISTBuildState *state,
											  GistSortedBuildPageState *pagestate,
											  IndexTuple itup);
static void gist_indexsortbuild_pagestate_flush(GISTBuildState *state,
												GistSortedBuildPageState *pagestate);
static void gist_indexsortbuild_flush_ready_pages(GISTBuildState *state);

static void gistInitBuffering(GISTBuildState *buildstate);
static int	calculatePagesPerBuffer(GISTBuildState *buildstate, int levelStep);
static void gistBuildCallback(Relation index,
							  ItemPointer tid,
							  Datum *values,
							  bool *isnull,
							  bool tupleIsAlive,
							  void *state);
static void gistBufferingBuildInsert(GISTBuildState *buildstate,
									 IndexTuple itup);
static bool gistProcessItup(GISTBuildState *buildstate, IndexTuple itup,
							BlockNumber startblkno, int startlevel);
static BlockNumber gistbufferinginserttuples(GISTBuildState *buildstate,
											 Buffer buffer, int level,
											 IndexTuple *itup, int ntup, OffsetNumber oldoffnum,
											 BlockNumber parentblk, OffsetNumber downlinkoffnum);
static Buffer gistBufferingFindCorrectParent(GISTBuildState *buildstate,
											 BlockNumber childblkno, int level,
											 BlockNumber *parentblk,
											 OffsetNumber *downlinkoffnum);
static void gistProcessEmptyingQueue(GISTBuildState *buildstate);
static void gistEmptyAllBuffers(GISTBuildState *buildstate);
static int	gistGetMaxLevel(Relation index);

static void gistInitParentMap(GISTBuildState *buildstate);
static void gistMemorizeParent(GISTBuildState *buildstate, BlockNumber child,
							   BlockNumber parent);
static void gistMemorizeAllDownlinks(GISTBuildState *buildstate, Buffer parent);
static BlockNumber gistGetParent(GISTBuildState *buildstate, BlockNumber child);


/*
 * Main entry point to GiST index build.
 */
IndexBuildResult *
gistbuild(Relation heap, Relation index, IndexInfo *indexInfo)
{
	IndexBuildResult *result;
	double		reltuples;
	GISTBuildState buildstate;
	MemoryContext oldcxt = CurrentMemoryContext;
	int			fillfactor;
	Oid			SortSupportFnOids[INDEX_MAX_KEYS];
	GiSTOptions *options = (GiSTOptions *) index->rd_options;

	/*
	 * We expect to be called exactly once for any index relation. If that's
	 * not the case, big trouble's what we have.
	 */
	if (RelationGetNumberOfBlocks(index) != 0)
		elog(ERROR, "index \"%s\" already contains data",
			 RelationGetRelationName(index));

	buildstate.indexrel = index;
	buildstate.heaprel = heap;
	buildstate.sortstate = NULL;
	buildstate.giststate = initGISTstate(index);

	/*
	 * Create a temporary memory context that is reset once for each tuple
	 * processed.  (Note: we don't bother to make this a child of the
	 * giststate's scanCxt, so we have to delete it separately at the end.)
	 */
	buildstate.giststate->tempCxt = createTempGistContext();

	/*
	 * Choose build strategy.  First check whether the user specified to use
	 * buffering mode.  (The use-case for that in the field is somewhat
	 * questionable perhaps, but it's important for testing purposes.)
	 */
	if (options)
	{
		if (options->buffering_mode == GIST_OPTION_BUFFERING_ON)
			buildstate.buildMode = GIST_BUFFERING_STATS;
		else if (options->buffering_mode == GIST_OPTION_BUFFERING_OFF)
			buildstate.buildMode = GIST_BUFFERING_DISABLED;
		else					/* must be "auto" */
			buildstate.buildMode = GIST_BUFFERING_AUTO;
	}
	else
	{
		buildstate.buildMode = GIST_BUFFERING_AUTO;
	}

	/*
	 * Unless buffering mode was forced, see if we can use sorting instead.
	 */
	if (buildstate.buildMode != GIST_BUFFERING_STATS)
	{
		bool		hasallsortsupports = true;
		int			keyscount = IndexRelationGetNumberOfKeyAttributes(index);

		for (int i = 0; i < keyscount; i++)
		{
			SortSupportFnOids[i] = index_getprocid(index, i + 1,
												   GIST_SORTSUPPORT_PROC);
			if (!OidIsValid(SortSupportFnOids[i]))
			{
				hasallsortsupports = false;
				break;
			}
		}
		if (hasallsortsupports)
			buildstate.buildMode = GIST_SORTED_BUILD;
	}

	/*
	 * Calculate target amount of free space to leave on pages.
	 */
	fillfactor = options ? options->fillfactor : GIST_DEFAULT_FILLFACTOR;
	buildstate.freespace = BLCKSZ * (100 - fillfactor) / 100;

	/*
	 * Build the index using the chosen strategy.
	 */
	buildstate.indtuples = 0;
	buildstate.indtuplesSize = 0;

	if (buildstate.buildMode == GIST_SORTED_BUILD)
	{
		/*
		 * Sort all data, build the index from bottom up.
		 */
		buildstate.sortstate = tuplesort_begin_index_gist(heap,
														  index,
														  maintenance_work_mem,
														  NULL,
														  false);

		/* Scan the table, adding all tuples to the tuplesort */
		reltuples = table_index_build_scan(heap, index, indexInfo, true, true,
										   gistSortedBuildCallback,
										   (void *) &buildstate, NULL);

		/*
		 * Perform the sort and build index pages.
		 */
		tuplesort_performsort(buildstate.sortstate);

		gist_indexsortbuild(&buildstate);

		tuplesort_end(buildstate.sortstate);
	}
	else
	{
		/*
		 * Initialize an empty index and insert all tuples, possibly using
		 * buffers on intermediate levels.
		 */
		Buffer		buffer;
		Page		page;

		/* initialize the root page */
		buffer = gistNewBuffer(index);
		Assert(BufferGetBlockNumber(buffer) == GIST_ROOT_BLKNO);
		page = BufferGetPage(buffer);

		START_CRIT_SECTION();

		GISTInitBuffer(buffer, F_LEAF);

		MarkBufferDirty(buffer);
		PageSetLSN(page, GistBuildLSN);

		UnlockReleaseBuffer(buffer);

		END_CRIT_SECTION();

		/* Scan the table, inserting all the tuples to the index. */
		reltuples = table_index_build_scan(heap, index, indexInfo, true, true,
										   gistBuildCallback,
										   (void *) &buildstate, NULL);

		/*
		 * If buffering was used, flush out all the tuples that are still in
		 * the buffers.
		 */
		if (buildstate.buildMode == GIST_BUFFERING_ACTIVE)
		{
			elog(DEBUG1, "all tuples processed, emptying buffers");
			gistEmptyAllBuffers(&buildstate);
			gistFreeBuildBuffers(buildstate.gfbb);
		}

		/*
		 * We didn't write WAL records as we built the index, so if
		 * WAL-logging is required, write all pages to the WAL now.
		 */
		if (RelationNeedsWAL(index))
		{
			log_newpage_range(index, MAIN_FORKNUM,
							  0, RelationGetNumberOfBlocks(index),
							  true);
		}
	}

	/* okay, all heap tuples are indexed */
	MemoryContextSwitchTo(oldcxt);
	MemoryContextDelete(buildstate.giststate->tempCxt);

	freeGISTstate(buildstate.giststate);

	/*
	 * Return statistics
	 */
	result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult));

	result->heap_tuples = reltuples;
	result->index_tuples = (double) buildstate.indtuples;

	return result;
}

/*-------------------------------------------------------------------------
 * Routines for sorted build
 *-------------------------------------------------------------------------
 */

/*
 * Per-tuple callback for table_index_build_scan.
 */
static void
gistSortedBuildCallback(Relation index,
						ItemPointer tid,
						Datum *values,
						bool *isnull,
						bool tupleIsAlive,
						void *state)
{
	GISTBuildState *buildstate = (GISTBuildState *) state;
	MemoryContext oldCtx;
	Datum		compressed_values[INDEX_MAX_KEYS];

	oldCtx = MemoryContextSwitchTo(buildstate->giststate->tempCxt);

	/* Form an index tuple and point it at the heap tuple */
	gistCompressValues(buildstate->giststate, index,
					   values, isnull,
					   true, compressed_values);

	tuplesort_putindextuplevalues(buildstate->sortstate,
								  buildstate->indexrel,
								  tid,
								  compressed_values, isnull);

	MemoryContextSwitchTo(oldCtx);
	MemoryContextReset(buildstate->giststate->tempCxt);

	/* Update tuple count. */
	buildstate->indtuples += 1;
}

/*
 * Build GiST index from bottom up from pre-sorted tuples.
 */
static void
gist_indexsortbuild(GISTBuildState *state)
{
	IndexTuple	itup;
	GistSortedBuildPageState *leafstate;
	GistSortedBuildPageState *pagestate;
	Page		page;

	state->pages_allocated = 0;
	state->pages_written = 0;
	state->ready_num_pages = 0;

	/*
	 * Write an empty page as a placeholder for the root page. It will be
	 * replaced with the real root page at the end.
	 */
	page = palloc0(BLCKSZ);
	RelationOpenSmgr(state->indexrel);
	smgrextend(state->indexrel->rd_smgr, MAIN_FORKNUM, GIST_ROOT_BLKNO,
			   page, true);
	state->pages_allocated++;
	state->pages_written++;

	/* Allocate a temporary buffer for the first leaf page. */
	leafstate = palloc(sizeof(GistSortedBuildPageState));
	leafstate->page = page;
	leafstate->parent = NULL;
	gistinitpage(page, F_LEAF);

	/*
	 * Fill index pages with tuples in the sorted order.
	 */
	while ((itup = tuplesort_getindextuple(state->sortstate, true)) != NULL)
	{
		gist_indexsortbuild_pagestate_add(state, leafstate, itup);
		MemoryContextReset(state->giststate->tempCxt);
	}

	/*
	 * Write out the partially full non-root pages.
	 *
	 * Keep in mind that flush can build a new root.
	 */
	pagestate = leafstate;
	while (pagestate->parent != NULL)
	{
		GistSortedBuildPageState *parent;

		gist_indexsortbuild_pagestate_flush(state, pagestate);
		parent = pagestate->parent;
		pfree(pagestate->page);
		pfree(pagestate);
		pagestate = parent;
	}

	gist_indexsortbuild_flush_ready_pages(state);

	/* Write out the root */
	RelationOpenSmgr(state->indexrel);
	PageSetLSN(pagestate->page, GistBuildLSN);
	PageSetChecksumInplace(pagestate->page, GIST_ROOT_BLKNO);
	smgrwrite(state->indexrel->rd_smgr, MAIN_FORKNUM, GIST_ROOT_BLKNO,
			  pagestate->page, true);
	if (RelationNeedsWAL(state->indexrel))
		log_newpage(&state->indexrel->rd_node, MAIN_FORKNUM, GIST_ROOT_BLKNO,
					pagestate->page, true);

	pfree(pagestate->page);
	pfree(pagestate);

	/*
	 * When we WAL-logged index pages, we must nonetheless fsync index files.
	 * Since we're building outside shared buffers, a CHECKPOINT occurring
	 * during the build has no way to flush the previously written data to
	 * disk (indeed it won't know the index even exists).  A crash later on
	 * would replay WAL from the checkpoint, therefore it wouldn't replay our
	 * earlier WAL entries. If we do not fsync those pages here, they might
	 * still not be on disk when the crash occurs.
	 */
	if (RelationNeedsWAL(state->indexrel))
	{
		RelationOpenSmgr(state->indexrel);
		smgrimmedsync(state->indexrel->rd_smgr, MAIN_FORKNUM);
	}
}

/*
 * Add tuple to a page. If the pages is full, write it out and re-initialize
 * a new page first.
 */
static void
gist_indexsortbuild_pagestate_add(GISTBuildState *state,
								  GistSortedBuildPageState *pagestate,
								  IndexTuple itup)
{
	Size		sizeNeeded;

	/* Does the tuple fit? If not, flush */
	sizeNeeded = IndexTupleSize(itup) + sizeof(ItemIdData) + state->freespace;
	if (PageGetFreeSpace(pagestate->page) < sizeNeeded)
		gist_indexsortbuild_pagestate_flush(state, pagestate);

	gistfillbuffer(pagestate->page, &itup, 1, InvalidOffsetNumber);
}

static void
gist_indexsortbuild_pagestate_flush(GISTBuildState *state,
									GistSortedBuildPageState *pagestate)
{
	GistSortedBuildPageState *parent;
	IndexTuple *itvec;
	IndexTuple	union_tuple;
	int			vect_len;
	bool		isleaf;
	BlockNumber blkno;
	MemoryContext oldCtx;

	/* check once per page */
	CHECK_FOR_INTERRUPTS();

	if (state->ready_num_pages == XLR_MAX_BLOCK_ID)
		gist_indexsortbuild_flush_ready_pages(state);

	/*
	 * The page is now complete. Assign a block number to it, and add it to
	 * the list of finished pages. (We don't write it out immediately, because
	 * we want to WAL-log the pages in batches.)
	 */
	blkno = state->pages_allocated++;
	state->ready_blknos[state->ready_num_pages] = blkno;
	state->ready_pages[state->ready_num_pages] = pagestate->page;
	state->ready_num_pages++;

	isleaf = GistPageIsLeaf(pagestate->page);

	/*
	 * Form a downlink tuple to represent all the tuples on the page.
	 */
	oldCtx = MemoryContextSwitchTo(state->giststate->tempCxt);
	itvec = gistextractpage(pagestate->page, &vect_len);
	union_tuple = gistunion(state->indexrel, itvec, vect_len,
							state->giststate);
	ItemPointerSetBlockNumber(&(union_tuple->t_tid), blkno);
	MemoryContextSwitchTo(oldCtx);

	/*
	 * Insert the downlink to the parent page. If this was the root, create a
	 * new page as the parent, which becomes the new root.
	 */
	parent = pagestate->parent;
	if (parent == NULL)
	{
		parent = palloc(sizeof(GistSortedBuildPageState));
		parent->page = (Page) palloc(BLCKSZ);
		parent->parent = NULL;
		gistinitpage(parent->page, 0);

		pagestate->parent = parent;
	}
	gist_indexsortbuild_pagestate_add(state, parent, union_tuple);

	/* Re-initialize the page buffer for next page on this level. */
	pagestate->page = palloc(BLCKSZ);
	gistinitpage(pagestate->page, isleaf ? F_LEAF : 0);

	/*
	 * Set the right link to point to the previous page. This is just for
	 * debugging purposes: GiST only follows the right link if a page is split
	 * concurrently to a scan, and that cannot happen during index build.
	 *
	 * It's a bit counterintuitive that we set the right link on the new page
	 * to point to the previous page, and not the other way round. But GiST
	 * pages are not ordered like B-tree pages are, so as long as the
	 * right-links form a chain through all the pages in the same level, the
	 * order doesn't matter.
	 */
	GistPageGetOpaque(pagestate->page)->rightlink = blkno;
}

static void
gist_indexsortbuild_flush_ready_pages(GISTBuildState *state)
{
	if (state->ready_num_pages == 0)
		return;

	RelationOpenSmgr(state->indexrel);

	for (int i = 0; i < state->ready_num_pages; i++)
	{
		Page		page = state->ready_pages[i];
		BlockNumber blkno = state->ready_blknos[i];

		/* Currently, the blocks must be buffered in order. */
		if (blkno != state->pages_written)
			elog(ERROR, "unexpected block number to flush GiST sorting build");

		PageSetLSN(page, GistBuildLSN);
		PageSetChecksumInplace(page, blkno);
		smgrextend(state->indexrel->rd_smgr, MAIN_FORKNUM, blkno, page, true);

		state->pages_written++;
	}

	if (RelationNeedsWAL(state->indexrel))
		log_newpages(&state->indexrel->rd_node, MAIN_FORKNUM, state->ready_num_pages,
					 state->ready_blknos, state->ready_pages, true);

	for (int i = 0; i < state->ready_num_pages; i++)
		pfree(state->ready_pages[i]);

	state->ready_num_pages = 0;
}


/*-------------------------------------------------------------------------
 * Routines for non-sorted build
 *-------------------------------------------------------------------------
 */

/*
 * Attempt to switch to buffering mode.
 *
 * If there is not enough memory for buffering build, sets bufferingMode
 * to GIST_BUFFERING_DISABLED, so that we don't bother to try the switch
 * anymore. Otherwise initializes the build buffers, and sets bufferingMode to
 * GIST_BUFFERING_ACTIVE.
 */
static void
gistInitBuffering(GISTBuildState *buildstate)
{
	Relation	index = buildstate->indexrel;
	int			pagesPerBuffer;
	Size		pageFreeSpace;
	Size		itupAvgSize,
				itupMinSize;
	double		avgIndexTuplesPerPage,
				maxIndexTuplesPerPage;
	int			i;
	int			levelStep;

	/* Calc space of index page which is available for index tuples */
	pageFreeSpace = BLCKSZ - SizeOfPageHeaderData - sizeof(GISTPageOpaqueData)
		- sizeof(ItemIdData)
		- buildstate->freespace;

	/*
	 * Calculate average size of already inserted index tuples using gathered
	 * statistics.
	 */
	itupAvgSize = (double) buildstate->indtuplesSize /
		(double) buildstate->indtuples;

	/*
	 * Calculate minimal possible size of index tuple by index metadata.
	 * Minimal possible size of varlena is VARHDRSZ.
	 *
	 * XXX: that's not actually true, as a short varlen can be just 2 bytes.
	 * And we should take padding into account here.
	 */
	itupMinSize = (Size) MAXALIGN(sizeof(IndexTupleData));
	for (i = 0; i < index->rd_att->natts; i++)
	{
		if (TupleDescAttr(index->rd_att, i)->attlen < 0)
			itupMinSize += VARHDRSZ;
		else
			itupMinSize += TupleDescAttr(index->rd_att, i)->attlen;
	}

	/* Calculate average and maximal number of index tuples which fit to page */
	avgIndexTuplesPerPage = pageFreeSpace / itupAvgSize;
	maxIndexTuplesPerPage = pageFreeSpace / itupMinSize;

	/*
	 * We need to calculate two parameters for the buffering algorithm:
	 * levelStep and pagesPerBuffer.
	 *
	 * levelStep determines the size of subtree that we operate on, while
	 * emptying a buffer. A higher value is better, as you need fewer buffer
	 * emptying steps to build the index. However, if you set it too high, the
	 * subtree doesn't fit in cache anymore, and you quickly lose the benefit
	 * of the buffers.
	 *
	 * In Arge et al's paper, levelStep is chosen as logB(M/4B), where B is
	 * the number of tuples on page (ie. fanout), and M is the amount of
	 * internal memory available. Curiously, they doesn't explain *why* that
	 * setting is optimal. We calculate it by taking the highest levelStep so
	 * that a subtree still fits in cache. For a small B, our way of
	 * calculating levelStep is very close to Arge et al's formula. For a
	 * large B, our formula gives a value that is 2x higher.
	 *
	 * The average size (in pages) of a subtree of depth n can be calculated
	 * as a geometric series:
	 *
	 * B^0 + B^1 + B^2 + ... + B^n = (1 - B^(n + 1)) / (1 - B)
	 *
	 * where B is the average number of index tuples on page. The subtree is
	 * cached in the shared buffer cache and the OS cache, so we choose
	 * levelStep so that the subtree size is comfortably smaller than
	 * effective_cache_size, with a safety factor of 4.
	 *
	 * The estimate on the average number of index tuples on page is based on
	 * average tuple sizes observed before switching to buffered build, so the
	 * real subtree size can be somewhat larger. Also, it would selfish to
	 * gobble the whole cache for our index build. The safety factor of 4
	 * should account for those effects.
	 *
	 * The other limiting factor for setting levelStep is that while
	 * processing a subtree, we need to hold one page for each buffer at the
	 * next lower buffered level. The max. number of buffers needed for that
	 * is maxIndexTuplesPerPage^levelStep. This is very conservative, but
	 * hopefully maintenance_work_mem is set high enough that you're
	 * constrained by effective_cache_size rather than maintenance_work_mem.
	 *
	 * XXX: the buffer hash table consumes a fair amount of memory too per
	 * buffer, but that is not currently taken into account. That scales on
	 * the total number of buffers used, ie. the index size and on levelStep.
	 * Note that a higher levelStep *reduces* the amount of memory needed for
	 * the hash table.
	 */
	levelStep = 1;
	for (;;)
	{
		double		subtreesize;
		double		maxlowestlevelpages;

		/* size of an average subtree at this levelStep (in pages). */
		subtreesize =
			(1 - pow(avgIndexTuplesPerPage, (double) (levelStep + 1))) /
			(1 - avgIndexTuplesPerPage);

		/* max number of pages at the lowest level of a subtree */
		maxlowestlevelpages = pow(maxIndexTuplesPerPage, (double) levelStep);

		/* subtree must fit in cache (with safety factor of 4) */
		if (subtreesize > effective_cache_size / 4)
			break;

		/* each node in the lowest level of a subtree has one page in memory */
		if (maxlowestlevelpages > ((double) maintenance_work_mem * 1024) / BLCKSZ)
			break;

		/* Good, we can handle this levelStep. See if we can go one higher. */
		levelStep++;
	}

	/*
	 * We just reached an unacceptable value of levelStep in previous loop.
	 * So, decrease levelStep to get last acceptable value.
	 */
	levelStep--;

	/*
	 * If there's not enough cache or maintenance_work_mem, fall back to plain
	 * inserts.
	 */
	if (levelStep <= 0)
	{
		elog(DEBUG1, "failed to switch to buffered GiST build");
		buildstate->buildMode = GIST_BUFFERING_DISABLED;
		return;
	}

	/*
	 * The second parameter to set is pagesPerBuffer, which determines the
	 * size of each buffer. We adjust pagesPerBuffer also during the build,
	 * which is why this calculation is in a separate function.
	 */
	pagesPerBuffer = calculatePagesPerBuffer(buildstate, levelStep);

	/* Initialize GISTBuildBuffers with these parameters */
	buildstate->gfbb = gistInitBuildBuffers(pagesPerBuffer, levelStep,
											gistGetMaxLevel(index));

	gistInitParentMap(buildstate);

	buildstate->buildMode = GIST_BUFFERING_ACTIVE;

	elog(DEBUG1, "switched to buffered GiST build; level step = %d, pagesPerBuffer = %d",
		 levelStep, pagesPerBuffer);
}

/*
 * Calculate pagesPerBuffer parameter for the buffering algorithm.
 *
 * Buffer size is chosen so that assuming that tuples are distributed
 * randomly, emptying half a buffer fills on average one page in every buffer
 * at the next lower level.
 */
static int
calculatePagesPerBuffer(GISTBuildState *buildstate, int levelStep)
{
	double		pagesPerBuffer;
	double		avgIndexTuplesPerPage;
	double		itupAvgSize;
	Size		pageFreeSpace;

	/* Calc space of index page which is available for index tuples */
	pageFreeSpace = BLCKSZ - SizeOfPageHeaderData - sizeof(GISTPageOpaqueData)
		- sizeof(ItemIdData)
		- buildstate->freespace;

	/*
	 * Calculate average size of already inserted index tuples using gathered
	 * statistics.
	 */
	itupAvgSize = (double) buildstate->indtuplesSize /
		(double) buildstate->indtuples;

	avgIndexTuplesPerPage = pageFreeSpace / itupAvgSize;

	/*
	 * Recalculate required size of buffers.
	 */
	pagesPerBuffer = 2 * pow(avgIndexTuplesPerPage, levelStep);

	return (int) rint(pagesPerBuffer);
}

/*
 * Per-tuple callback for table_index_build_scan.
 */
static void
gistBuildCallback(Relation index,
				  ItemPointer tid,
				  Datum *values,
				  bool *isnull,
				  bool tupleIsAlive,
				  void *state)
{
	GISTBuildState *buildstate = (GISTBuildState *) state;
	IndexTuple	itup;
	MemoryContext oldCtx;

	oldCtx = MemoryContextSwitchTo(buildstate->giststate->tempCxt);

	/* form an index tuple and point it at the heap tuple */
	itup = gistFormTuple(buildstate->giststate, index,
						 values, isnull,
						 true);
	itup->t_tid = *tid;

	if (buildstate->buildMode == GIST_BUFFERING_ACTIVE)
	{
		/* We have buffers, so use them. */
		gistBufferingBuildInsert(buildstate, itup);
	}
	else
	{
		/*
		 * There's no buffers (yet). Since we already have the index relation
		 * locked, we call gistdoinsert directly.
		 */
		gistdoinsert(index, itup, buildstate->freespace,
					 buildstate->giststate, buildstate->heaprel, true);
	}

	/* Update tuple count and total size. */
	buildstate->indtuples += 1;
	buildstate->indtuplesSize += IndexTupleSize(itup);

	MemoryContextSwitchTo(oldCtx);
	MemoryContextReset(buildstate->giststate->tempCxt);

	if (buildstate->buildMode == GIST_BUFFERING_ACTIVE &&
		buildstate->indtuples % BUFFERING_MODE_TUPLE_SIZE_STATS_TARGET == 0)
	{
		/* Adjust the target buffer size now */
		buildstate->gfbb->pagesPerBuffer =
			calculatePagesPerBuffer(buildstate, buildstate->gfbb->levelStep);
	}

	/*
	 * In 'auto' mode, check if the index has grown too large to fit in cache,
	 * and switch to buffering mode if it has.
	 *
	 * To avoid excessive calls to smgrnblocks(), only check this every
	 * BUFFERING_MODE_SWITCH_CHECK_STEP index tuples.
	 *
	 * In 'stats' state, switch as soon as we have seen enough tuples to have
	 * some idea of the average tuple size.
	 */
	if ((buildstate->buildMode == GIST_BUFFERING_AUTO &&
		 buildstate->indtuples % BUFFERING_MODE_SWITCH_CHECK_STEP == 0 &&
		 effective_cache_size < smgrnblocks(index->rd_smgr, MAIN_FORKNUM)) ||
		(buildstate->buildMode == GIST_BUFFERING_STATS &&
		 buildstate->indtuples >= BUFFERING_MODE_TUPLE_SIZE_STATS_TARGET))
	{
		/*
		 * Index doesn't fit in effective cache anymore. Try to switch to
		 * buffering build mode.
		 */
		gistInitBuffering(buildstate);
	}
}

/*
 * Insert function for buffering index build.
 */
static void
gistBufferingBuildInsert(GISTBuildState *buildstate, IndexTuple itup)
{
	/* Insert the tuple to buffers. */
	gistProcessItup(buildstate, itup, 0, buildstate->gfbb->rootlevel);

	/* If we filled up (half of a) buffer, process buffer emptying. */
	gistProcessEmptyingQueue(buildstate);
}

/*
 * Process an index tuple. Runs the tuple down the tree until we reach a leaf
 * page or node buffer, and inserts the tuple there. Returns true if we have
 * to stop buffer emptying process (because one of child buffers can't take
 * index tuples anymore).
 */
static bool
gistProcessItup(GISTBuildState *buildstate, IndexTuple itup,
				BlockNumber startblkno, int startlevel)
{
	GISTSTATE  *giststate = buildstate->giststate;
	GISTBuildBuffers *gfbb = buildstate->gfbb;
	Relation	indexrel = buildstate->indexrel;
	BlockNumber childblkno;
	Buffer		buffer;
	bool		result = false;
	BlockNumber blkno;
	int			level;
	OffsetNumber downlinkoffnum = InvalidOffsetNumber;
	BlockNumber parentblkno = InvalidBlockNumber;

	CHECK_FOR_INTERRUPTS();

	/*
	 * Loop until we reach a leaf page (level == 0) or a level with buffers
	 * (not including the level we start at, because we would otherwise make
	 * no progress).
	 */
	blkno = startblkno;
	level = startlevel;
	for (;;)
	{
		ItemId		iid;
		IndexTuple	idxtuple,
					newtup;
		Page		page;
		OffsetNumber childoffnum;

		/* Have we reached a level with buffers? */
		if (LEVEL_HAS_BUFFERS(level, gfbb) && level != startlevel)
			break;

		/* Have we reached a leaf page? */
		if (level == 0)
			break;

		/*
		 * Nope. Descend down to the next level then. Choose a child to
		 * descend down to.
		 */

		buffer = ReadBuffer(indexrel, blkno);
		LockBuffer(buffer, GIST_EXCLUSIVE);

		page = (Page) BufferGetPage(buffer);
		childoffnum = gistchoose(indexrel, page, itup, giststate);
		iid = PageGetItemId(page, childoffnum);
		idxtuple = (IndexTuple) PageGetItem(page, iid);
		childblkno = ItemPointerGetBlockNumber(&(idxtuple->t_tid));

		if (level > 1)
			gistMemorizeParent(buildstate, childblkno, blkno);

		/*
		 * Check that the key representing the target child node is consistent
		 * with the key we're inserting. Update it if it's not.
		 */
		newtup = gistgetadjusted(indexrel, idxtuple, itup, giststate);
		if (newtup)
		{
			blkno = gistbufferinginserttuples(buildstate,
											  buffer,
											  level,
											  &newtup,
											  1,
											  childoffnum,
											  InvalidBlockNumber,
											  InvalidOffsetNumber);
			/* gistbufferinginserttuples() released the buffer */
		}
		else
			UnlockReleaseBuffer(buffer);

		/* Descend to the child */
		parentblkno = blkno;
		blkno = childblkno;
		downlinkoffnum = childoffnum;
		Assert(level > 0);
		level--;
	}

	if (LEVEL_HAS_BUFFERS(level, gfbb))
	{
		/*
		 * We've reached level with buffers. Place the index tuple to the
		 * buffer, and add the buffer to the emptying queue if it overflows.
		 */
		GISTNodeBuffer *childNodeBuffer;

		/* Find the buffer or create a new one */
		childNodeBuffer = gistGetNodeBuffer(gfbb, giststate, blkno, level);

		/* Add index tuple to it */
		gistPushItupToNodeBuffer(gfbb, childNodeBuffer, itup);

		if (BUFFER_OVERFLOWED(childNodeBuffer, gfbb))
			result = true;
	}
	else
	{
		/*
		 * We've reached a leaf page. Place the tuple here.
		 */
		Assert(level == 0);
		buffer = ReadBuffer(indexrel, blkno);
		LockBuffer(buffer, GIST_EXCLUSIVE);
		gistbufferinginserttuples(buildstate, buffer, level,
								  &itup, 1, InvalidOffsetNumber,
								  parentblkno, downlinkoffnum);
		/* gistbufferinginserttuples() released the buffer */
	}

	return result;
}

/*
 * Insert tuples to a given page.
 *
 * This is analogous with gistinserttuples() in the regular insertion code.
 *
 * Returns the block number of the page where the (first) new or updated tuple
 * was inserted. Usually that's the original page, but might be a sibling page
 * if the original page was split.
 *
 * Caller should hold a lock on 'buffer' on entry. This function will unlock
 * and unpin it.
 */
static BlockNumber
gistbufferinginserttuples(GISTBuildState *buildstate, Buffer buffer, int level,
						  IndexTuple *itup, int ntup, OffsetNumber oldoffnum,
						  BlockNumber parentblk, OffsetNumber downlinkoffnum)
{
	GISTBuildBuffers *gfbb = buildstate->gfbb;
	List	   *splitinfo;
	bool		is_split;
	BlockNumber placed_to_blk = InvalidBlockNumber;

	is_split = gistplacetopage(buildstate->indexrel,
							   buildstate->freespace,
							   buildstate->giststate,
							   buffer,
							   itup, ntup, oldoffnum, &placed_to_blk,
							   InvalidBuffer,
							   &splitinfo,
							   false,
							   buildstate->heaprel, true);

	/*
	 * If this is a root split, update the root path item kept in memory. This
	 * ensures that all path stacks are always complete, including all parent
	 * nodes up to the root. That simplifies the algorithm to re-find correct
	 * parent.
	 */
	if (is_split && BufferGetBlockNumber(buffer) == GIST_ROOT_BLKNO)
	{
		Page		page = BufferGetPage(buffer);
		OffsetNumber off;
		OffsetNumber maxoff;

		Assert(level == gfbb->rootlevel);
		gfbb->rootlevel++;

		elog(DEBUG2, "splitting GiST root page, now %d levels deep", gfbb->rootlevel);

		/*
		 * All the downlinks on the old root page are now on one of the child
		 * pages. Visit all the new child pages to memorize the parents of the
		 * grandchildren.
		 */
		if (gfbb->rootlevel > 1)
		{
			maxoff = PageGetMaxOffsetNumber(page);
			for (off = FirstOffsetNumber; off <= maxoff; off++)
			{
				ItemId		iid = PageGetItemId(page, off);
				IndexTuple	idxtuple = (IndexTuple) PageGetItem(page, iid);
				BlockNumber childblkno = ItemPointerGetBlockNumber(&(idxtuple->t_tid));
				Buffer		childbuf = ReadBuffer(buildstate->indexrel, childblkno);

				LockBuffer(childbuf, GIST_SHARE);
				gistMemorizeAllDownlinks(buildstate, childbuf);
				UnlockReleaseBuffer(childbuf);

				/*
				 * Also remember that the parent of the new child page is the
				 * root block.
				 */
				gistMemorizeParent(buildstate, childblkno, GIST_ROOT_BLKNO);
			}
		}
	}

	if (splitinfo)
	{
		/*
		 * Insert the downlinks to the parent. This is analogous with
		 * gistfinishsplit() in the regular insertion code, but the locking is
		 * simpler, and we have to maintain the buffers on internal nodes and
		 * the parent map.
		 */
		IndexTuple *downlinks;
		int			ndownlinks,
					i;
		Buffer		parentBuffer;
		ListCell   *lc;

		/* Parent may have changed since we memorized this path. */
		parentBuffer =
			gistBufferingFindCorrectParent(buildstate,
										   BufferGetBlockNumber(buffer),
										   level,
										   &parentblk,
										   &downlinkoffnum);

		/*
		 * If there's a buffer associated with this page, that needs to be
		 * split too. gistRelocateBuildBuffersOnSplit() will also adjust the
		 * downlinks in 'splitinfo', to make sure they're consistent not only
		 * with the tuples already on the pages, but also the tuples in the
		 * buffers that will eventually be inserted to them.
		 */
		gistRelocateBuildBuffersOnSplit(gfbb,
										buildstate->giststate,
										buildstate->indexrel,
										level,
										buffer, splitinfo);

		/* Create an array of all the downlink tuples */
		ndownlinks = list_length(splitinfo);
		downlinks = (IndexTuple *) palloc(sizeof(IndexTuple) * ndownlinks);
		i = 0;
		foreach(lc, splitinfo)
		{
			GISTPageSplitInfo *splitinfo = lfirst(lc);

			/*
			 * Remember the parent of each new child page in our parent map.
			 * This assumes that the downlinks fit on the parent page. If the
			 * parent page is split, too, when we recurse up to insert the
			 * downlinks, the recursive gistbufferinginserttuples() call will
			 * update the map again.
			 */
			if (level > 0)
				gistMemorizeParent(buildstate,
								   BufferGetBlockNumber(splitinfo->buf),
								   BufferGetBlockNumber(parentBuffer));

			/*
			 * Also update the parent map for all the downlinks that got moved
			 * to a different page. (actually this also loops through the
			 * downlinks that stayed on the original page, but it does no
			 * harm).
			 */
			if (level > 1)
				gistMemorizeAllDownlinks(buildstate, splitinfo->buf);

			/*
			 * Since there's no concurrent access, we can release the lower
			 * level buffers immediately. This includes the original page.
			 */
			UnlockReleaseBuffer(splitinfo->buf);
			downlinks[i++] = splitinfo->downlink;
		}

		/* Insert them into parent. */
		gistbufferinginserttuples(buildstate, parentBuffer, level + 1,
								  downlinks, ndownlinks, downlinkoffnum,
								  InvalidBlockNumber, InvalidOffsetNumber);

		list_free_deep(splitinfo);	/* we don't need this anymore */
	}
	else
		UnlockReleaseBuffer(buffer);

	return placed_to_blk;
}

/*
 * Find the downlink pointing to a child page.
 *
 * 'childblkno' indicates the child page to find the parent for. 'level' is
 * the level of the child. On entry, *parentblkno and *downlinkoffnum can
 * point to a location where the downlink used to be - we will check that
 * location first, and save some cycles if it hasn't moved. The function
 * returns a buffer containing the downlink, exclusively-locked, and
 * *parentblkno and *downlinkoffnum are set to the real location of the
 * downlink.
 *
 * If the child page is a leaf (level == 0), the caller must supply a correct
 * parentblkno. Otherwise we use the parent map hash table to find the parent
 * block.
 *
 * This function serves the same purpose as gistFindCorrectParent() during
 * normal index inserts, but this is simpler because we don't need to deal
 * with concurrent inserts.
 */
static Buffer
gistBufferingFindCorrectParent(GISTBuildState *buildstate,
							   BlockNumber childblkno, int level,
							   BlockNumber *parentblkno,
							   OffsetNumber *downlinkoffnum)
{
	BlockNumber parent;
	Buffer		buffer;
	Page		page;
	OffsetNumber maxoff;
	OffsetNumber off;

	if (level > 0)
		parent = gistGetParent(buildstate, childblkno);
	else
	{
		/*
		 * For a leaf page, the caller must supply a correct parent block
		 * number.
		 */
		if (*parentblkno == InvalidBlockNumber)
			elog(ERROR, "no parent buffer provided of child %u", childblkno);
		parent = *parentblkno;
	}

	buffer = ReadBuffer(buildstate->indexrel, parent);
	page = BufferGetPage(buffer);
	LockBuffer(buffer, GIST_EXCLUSIVE);
	gistcheckpage(buildstate->indexrel, buffer);
	maxoff = PageGetMaxOffsetNumber(page);

	/* Check if it was not moved */
	if (parent == *parentblkno && *parentblkno != InvalidBlockNumber &&
		*downlinkoffnum != InvalidOffsetNumber && *downlinkoffnum <= maxoff)
	{
		ItemId		iid = PageGetItemId(page, *downlinkoffnum);
		IndexTuple	idxtuple = (IndexTuple) PageGetItem(page, iid);

		if (ItemPointerGetBlockNumber(&(idxtuple->t_tid)) == childblkno)
		{
			/* Still there */
			return buffer;
		}
	}

	/*
	 * Downlink was not at the offset where it used to be. Scan the page to
	 * find it. During normal gist insertions, it might've moved to another
	 * page, to the right, but during a buffering build, we keep track of the
	 * parent of each page in the lookup table so we should always know what
	 * page it's on.
	 */
	for (off = FirstOffsetNumber; off <= maxoff; off = OffsetNumberNext(off))
	{
		ItemId		iid = PageGetItemId(page, off);
		IndexTuple	idxtuple = (IndexTuple) PageGetItem(page, iid);

		if (ItemPointerGetBlockNumber(&(idxtuple->t_tid)) == childblkno)
		{
			/* yes!!, found it */
			*downlinkoffnum = off;
			return buffer;
		}
	}

	elog(ERROR, "failed to re-find parent for block %u", childblkno);
	return InvalidBuffer;		/* keep compiler quiet */
}

/*
 * Process buffers emptying stack. Emptying of one buffer can cause emptying
 * of other buffers. This function iterates until this cascading emptying
 * process finished, e.g. until buffers emptying stack is empty.
 */
static void
gistProcessEmptyingQueue(GISTBuildState *buildstate)
{
	GISTBuildBuffers *gfbb = buildstate->gfbb;

	/* Iterate while we have elements in buffers emptying stack. */
	while (gfbb->bufferEmptyingQueue != NIL)
	{
		GISTNodeBuffer *emptyingNodeBuffer;

		/* Get node buffer from emptying stack. */
		emptyingNodeBuffer = (GISTNodeBuffer *) linitial(gfbb->bufferEmptyingQueue);
		gfbb->bufferEmptyingQueue = list_delete_first(gfbb->bufferEmptyingQueue);
		emptyingNodeBuffer->queuedForEmptying = false;

		/*
		 * We are going to load last pages of buffers where emptying will be
		 * to. So let's unload any previously loaded buffers.
		 */
		gistUnloadNodeBuffers(gfbb);

		/*
		 * Pop tuples from the buffer and run them down to the buffers at
		 * lower level, or leaf pages. We continue until one of the lower
		 * level buffers fills up, or this buffer runs empty.
		 *
		 * In Arge et al's paper, the buffer emptying is stopped after
		 * processing 1/2 node buffer worth of tuples, to avoid overfilling
		 * any of the lower level buffers. However, it's more efficient to
		 * keep going until one of the lower level buffers actually fills up,
		 * so that's what we do. This doesn't need to be exact, if a buffer
		 * overfills by a few tuples, there's no harm done.
		 */
		while (true)
		{
			IndexTuple	itup;

			/* Get next index tuple from the buffer */
			if (!gistPopItupFromNodeBuffer(gfbb, emptyingNodeBuffer, &itup))
				break;

			/*
			 * Run it down to the underlying node buffer or leaf page.
			 *
			 * Note: it's possible that the buffer we're emptying splits as a
			 * result of this call. If that happens, our emptyingNodeBuffer
			 * points to the left half of the split. After split, it's very
			 * likely that the new left buffer is no longer over the half-full
			 * threshold, but we might as well keep flushing tuples from it
			 * until we fill a lower-level buffer.
			 */
			if (gistProcessItup(buildstate, itup, emptyingNodeBuffer->nodeBlocknum, emptyingNodeBuffer->level))
			{
				/*
				 * A lower level buffer filled up. Stop emptying this buffer,
				 * to avoid overflowing the lower level buffer.
				 */
				break;
			}

			/* Free all the memory allocated during index tuple processing */
			MemoryContextReset(buildstate->giststate->tempCxt);
		}
	}
}

/*
 * Empty all node buffers, from top to bottom. This is done at the end of
 * index build to flush all remaining tuples to the index.
 *
 * Note: This destroys the buffersOnLevels lists, so the buffers should not
 * be inserted to after this call.
 */
static void
gistEmptyAllBuffers(GISTBuildState *buildstate)
{
	GISTBuildBuffers *gfbb = buildstate->gfbb;
	MemoryContext oldCtx;
	int			i;

	oldCtx = MemoryContextSwitchTo(buildstate->giststate->tempCxt);

	/*
	 * Iterate through the levels from top to bottom.
	 */
	for (i = gfbb->buffersOnLevelsLen - 1; i >= 0; i--)
	{
		/*
		 * Empty all buffers on this level. Note that new buffers can pop up
		 * in the list during the processing, as a result of page splits, so a
		 * simple walk through the list won't work. We remove buffers from the
		 * list when we see them empty; a buffer can't become non-empty once
		 * it's been fully emptied.
		 */
		while (gfbb->buffersOnLevels[i] != NIL)
		{
			GISTNodeBuffer *nodeBuffer;

			nodeBuffer = (GISTNodeBuffer *) linitial(gfbb->buffersOnLevels[i]);

			if (nodeBuffer->blocksCount != 0)
			{
				/*
				 * Add this buffer to the emptying queue, and proceed to empty
				 * the queue.
				 */
				if (!nodeBuffer->queuedForEmptying)
				{
					MemoryContextSwitchTo(gfbb->context);
					nodeBuffer->queuedForEmptying = true;
					gfbb->bufferEmptyingQueue =
						lcons(nodeBuffer, gfbb->bufferEmptyingQueue);
					MemoryContextSwitchTo(buildstate->giststate->tempCxt);
				}
				gistProcessEmptyingQueue(buildstate);
			}
			else
				gfbb->buffersOnLevels[i] =
					list_delete_first(gfbb->buffersOnLevels[i]);
		}
		elog(DEBUG2, "emptied all buffers at level %d", i);
	}
	MemoryContextSwitchTo(oldCtx);
}

/*
 * Get the depth of the GiST index.
 */
static int
gistGetMaxLevel(Relation index)
{
	int			maxLevel;
	BlockNumber blkno;

	/*
	 * Traverse down the tree, starting from the root, until we hit the leaf
	 * level.
	 */
	maxLevel = 0;
	blkno = GIST_ROOT_BLKNO;
	while (true)
	{
		Buffer		buffer;
		Page		page;
		IndexTuple	itup;

		buffer = ReadBuffer(index, blkno);

		/*
		 * There's no concurrent access during index build, so locking is just
		 * pro forma.
		 */
		LockBuffer(buffer, GIST_SHARE);
		page = (Page) BufferGetPage(buffer);

		if (GistPageIsLeaf(page))
		{
			/* We hit the bottom, so we're done. */
			UnlockReleaseBuffer(buffer);
			break;
		}

		/*
		 * Pick the first downlink on the page, and follow it. It doesn't
		 * matter which downlink we choose, the tree has the same depth
		 * everywhere, so we just pick the first one.
		 */
		itup = (IndexTuple) PageGetItem(page,
										PageGetItemId(page, FirstOffsetNumber));
		blkno = ItemPointerGetBlockNumber(&(itup->t_tid));
		UnlockReleaseBuffer(buffer);

		/*
		 * We're going down on the tree. It means that there is yet one more
		 * level in the tree.
		 */
		maxLevel++;
	}
	return maxLevel;
}


/*
 * Routines for managing the parent map.
 *
 * Whenever a page is split, we need to insert the downlinks into the parent.
 * We need to somehow find the parent page to do that. In normal insertions,
 * we keep a stack of nodes visited when we descend the tree. However, in
 * buffering build, we can start descending the tree from any internal node,
 * when we empty a buffer by cascading tuples to its children. So we don't
 * have a full stack up to the root available at that time.
 *
 * So instead, we maintain a hash table to track the parent of every internal
 * page. We don't need to track the parents of leaf nodes, however. Whenever
 * we insert to a leaf, we've just descended down from its parent, so we know
 * its immediate parent already. This helps a lot to limit the memory used
 * by this hash table.
 *
 * Whenever an internal node is split, the parent map needs to be updated.
 * the parent of the new child page needs to be recorded, and also the
 * entries for all page whose downlinks are moved to a new page at the split
 * needs to be updated.
 *
 * We also update the parent map whenever we descend the tree. That might seem
 * unnecessary, because we maintain the map whenever a downlink is moved or
 * created, but it is needed because we switch to buffering mode after
 * creating a tree with regular index inserts. Any pages created before
 * switching to buffering mode will not be present in the parent map initially,
 * but will be added there the first time we visit them.
 */

typedef struct
{
	BlockNumber childblkno;		/* hash key */
	BlockNumber parentblkno;
} ParentMapEntry;

static void
gistInitParentMap(GISTBuildState *buildstate)
{
	HASHCTL		hashCtl;

	hashCtl.keysize = sizeof(BlockNumber);
	hashCtl.entrysize = sizeof(ParentMapEntry);
	hashCtl.hcxt = CurrentMemoryContext;
	buildstate->parentMap = hash_create("gistbuild parent map",
										1024,
										&hashCtl,
										HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
}

static void
gistMemorizeParent(GISTBuildState *buildstate, BlockNumber child, BlockNumber parent)
{
	ParentMapEntry *entry;
	bool		found;

	entry = (ParentMapEntry *) hash_search(buildstate->parentMap,
										   (const void *) &child,
										   HASH_ENTER,
										   &found);
	entry->parentblkno = parent;
}

/*
 * Scan all downlinks on a page, and memorize their parent.
 */
static void
gistMemorizeAllDownlinks(GISTBuildState *buildstate, Buffer parentbuf)
{
	OffsetNumber maxoff;
	OffsetNumber off;
	BlockNumber parentblkno = BufferGetBlockNumber(parentbuf);
	Page		page = BufferGetPage(parentbuf);

	Assert(!GistPageIsLeaf(page));

	maxoff = PageGetMaxOffsetNumber(page);
	for (off = FirstOffsetNumber; off <= maxoff; off++)
	{
		ItemId		iid = PageGetItemId(page, off);
		IndexTuple	idxtuple = (IndexTuple) PageGetItem(page, iid);
		BlockNumber childblkno = ItemPointerGetBlockNumber(&(idxtuple->t_tid));

		gistMemorizeParent(buildstate, childblkno, parentblkno);
	}
}

static BlockNumber
gistGetParent(GISTBuildState *buildstate, BlockNumber child)
{
	ParentMapEntry *entry;
	bool		found;

	/* Find node buffer in hash table */
	entry = (ParentMapEntry *) hash_search(buildstate->parentMap,
										   (const void *) &child,
										   HASH_FIND,
										   &found);
	if (!found)
		elog(ERROR, "could not find parent of block %u in lookup table", child);

	return entry->parentblkno;
}