summaryrefslogtreecommitdiffstats
path: root/src/backend/executor/execIndexing.c
blob: 74becdc85df743d00a228584d9364e9ee2f0cfdd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
/*-------------------------------------------------------------------------
 *
 * execIndexing.c
 *	  routines for inserting index tuples and enforcing unique and
 *	  exclusion constraints.
 *
 * ExecInsertIndexTuples() is the main entry point.  It's called after
 * inserting a tuple to the heap, and it inserts corresponding index tuples
 * into all indexes.  At the same time, it enforces any unique and
 * exclusion constraints:
 *
 * Unique Indexes
 * --------------
 *
 * Enforcing a unique constraint is straightforward.  When the index AM
 * inserts the tuple to the index, it also checks that there are no
 * conflicting tuples in the index already.  It does so atomically, so that
 * even if two backends try to insert the same key concurrently, only one
 * of them will succeed.  All the logic to ensure atomicity, and to wait
 * for in-progress transactions to finish, is handled by the index AM.
 *
 * If a unique constraint is deferred, we request the index AM to not
 * throw an error if a conflict is found.  Instead, we make note that there
 * was a conflict and return the list of indexes with conflicts to the
 * caller.  The caller must re-check them later, by calling index_insert()
 * with the UNIQUE_CHECK_EXISTING option.
 *
 * Exclusion Constraints
 * ---------------------
 *
 * Exclusion constraints are different from unique indexes in that when the
 * tuple is inserted to the index, the index AM does not check for
 * duplicate keys at the same time.  After the insertion, we perform a
 * separate scan on the index to check for conflicting tuples, and if one
 * is found, we throw an error and the transaction is aborted.  If the
 * conflicting tuple's inserter or deleter is in-progress, we wait for it
 * to finish first.
 *
 * There is a chance of deadlock, if two backends insert a tuple at the
 * same time, and then perform the scan to check for conflicts.  They will
 * find each other's tuple, and both try to wait for each other.  The
 * deadlock detector will detect that, and abort one of the transactions.
 * That's fairly harmless, as one of them was bound to abort with a
 * "duplicate key error" anyway, although you get a different error
 * message.
 *
 * If an exclusion constraint is deferred, we still perform the conflict
 * checking scan immediately after inserting the index tuple.  But instead
 * of throwing an error if a conflict is found, we return that information
 * to the caller.  The caller must re-check them later by calling
 * check_exclusion_constraint().
 *
 * Speculative insertion
 * ---------------------
 *
 * Speculative insertion is a two-phase mechanism used to implement
 * INSERT ... ON CONFLICT DO UPDATE/NOTHING.  The tuple is first inserted
 * to the heap and update the indexes as usual, but if a constraint is
 * violated, we can still back out the insertion without aborting the whole
 * transaction.  In an INSERT ... ON CONFLICT statement, if a conflict is
 * detected, the inserted tuple is backed out and the ON CONFLICT action is
 * executed instead.
 *
 * Insertion to a unique index works as usual: the index AM checks for
 * duplicate keys atomically with the insertion.  But instead of throwing
 * an error on a conflict, the speculatively inserted heap tuple is backed
 * out.
 *
 * Exclusion constraints are slightly more complicated.  As mentioned
 * earlier, there is a risk of deadlock when two backends insert the same
 * key concurrently.  That was not a problem for regular insertions, when
 * one of the transactions has to be aborted anyway, but with a speculative
 * insertion we cannot let a deadlock happen, because we only want to back
 * out the speculatively inserted tuple on conflict, not abort the whole
 * transaction.
 *
 * When a backend detects that the speculative insertion conflicts with
 * another in-progress tuple, it has two options:
 *
 * 1. back out the speculatively inserted tuple, then wait for the other
 *	  transaction, and retry. Or,
 * 2. wait for the other transaction, with the speculatively inserted tuple
 *	  still in place.
 *
 * If two backends insert at the same time, and both try to wait for each
 * other, they will deadlock.  So option 2 is not acceptable.  Option 1
 * avoids the deadlock, but it is prone to a livelock instead.  Both
 * transactions will wake up immediately as the other transaction backs
 * out.  Then they both retry, and conflict with each other again, lather,
 * rinse, repeat.
 *
 * To avoid the livelock, one of the backends must back out first, and then
 * wait, while the other one waits without backing out.  It doesn't matter
 * which one backs out, so we employ an arbitrary rule that the transaction
 * with the higher XID backs out.
 *
 *
 * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/executor/execIndexing.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/genam.h"
#include "access/relscan.h"
#include "access/tableam.h"
#include "access/xact.h"
#include "catalog/index.h"
#include "executor/executor.h"
#include "nodes/nodeFuncs.h"
#include "storage/lmgr.h"
#include "utils/snapmgr.h"

/* waitMode argument to check_exclusion_or_unique_constraint() */
typedef enum
{
	CEOUC_WAIT,
	CEOUC_NOWAIT,
	CEOUC_LIVELOCK_PREVENTING_WAIT
} CEOUC_WAIT_MODE;

static bool check_exclusion_or_unique_constraint(Relation heap, Relation index,
												 IndexInfo *indexInfo,
												 ItemPointer tupleid,
												 Datum *values, bool *isnull,
												 EState *estate, bool newIndex,
												 CEOUC_WAIT_MODE waitMode,
												 bool errorOK,
												 ItemPointer conflictTid);

static bool index_recheck_constraint(Relation index, Oid *constr_procs,
									 Datum *existing_values, bool *existing_isnull,
									 Datum *new_values);

/* ----------------------------------------------------------------
 *		ExecOpenIndices
 *
 *		Find the indices associated with a result relation, open them,
 *		and save information about them in the result ResultRelInfo.
 *
 *		At entry, caller has already opened and locked
 *		resultRelInfo->ri_RelationDesc.
 * ----------------------------------------------------------------
 */
void
ExecOpenIndices(ResultRelInfo *resultRelInfo, bool speculative)
{
	Relation	resultRelation = resultRelInfo->ri_RelationDesc;
	List	   *indexoidlist;
	ListCell   *l;
	int			len,
				i;
	RelationPtr relationDescs;
	IndexInfo **indexInfoArray;

	resultRelInfo->ri_NumIndices = 0;

	/* fast path if no indexes */
	if (!RelationGetForm(resultRelation)->relhasindex)
		return;

	/*
	 * Get cached list of index OIDs
	 */
	indexoidlist = RelationGetIndexList(resultRelation);
	len = list_length(indexoidlist);
	if (len == 0)
		return;

	/*
	 * allocate space for result arrays
	 */
	relationDescs = (RelationPtr) palloc(len * sizeof(Relation));
	indexInfoArray = (IndexInfo **) palloc(len * sizeof(IndexInfo *));

	resultRelInfo->ri_NumIndices = len;
	resultRelInfo->ri_IndexRelationDescs = relationDescs;
	resultRelInfo->ri_IndexRelationInfo = indexInfoArray;

	/*
	 * For each index, open the index relation and save pg_index info. We
	 * acquire RowExclusiveLock, signifying we will update the index.
	 *
	 * Note: we do this even if the index is not indisready; it's not worth
	 * the trouble to optimize for the case where it isn't.
	 */
	i = 0;
	foreach(l, indexoidlist)
	{
		Oid			indexOid = lfirst_oid(l);
		Relation	indexDesc;
		IndexInfo  *ii;

		indexDesc = index_open(indexOid, RowExclusiveLock);

		/* extract index key information from the index's pg_index info */
		ii = BuildIndexInfo(indexDesc);

		/*
		 * If the indexes are to be used for speculative insertion, add extra
		 * information required by unique index entries.
		 */
		if (speculative && ii->ii_Unique)
			BuildSpeculativeIndexInfo(indexDesc, ii);

		relationDescs[i] = indexDesc;
		indexInfoArray[i] = ii;
		i++;
	}

	list_free(indexoidlist);
}

/* ----------------------------------------------------------------
 *		ExecCloseIndices
 *
 *		Close the index relations stored in resultRelInfo
 * ----------------------------------------------------------------
 */
void
ExecCloseIndices(ResultRelInfo *resultRelInfo)
{
	int			i;
	int			numIndices;
	RelationPtr indexDescs;

	numIndices = resultRelInfo->ri_NumIndices;
	indexDescs = resultRelInfo->ri_IndexRelationDescs;

	for (i = 0; i < numIndices; i++)
	{
		if (indexDescs[i] == NULL)
			continue;			/* shouldn't happen? */

		/* Drop lock acquired by ExecOpenIndices */
		index_close(indexDescs[i], RowExclusiveLock);
	}

	/*
	 * XXX should free indexInfo array here too?  Currently we assume that
	 * such stuff will be cleaned up automatically in FreeExecutorState.
	 */
}

/* ----------------------------------------------------------------
 *		ExecInsertIndexTuples
 *
 *		This routine takes care of inserting index tuples
 *		into all the relations indexing the result relation
 *		when a heap tuple is inserted into the result relation.
 *
 *		When 'update' is true, executor is performing an UPDATE
 *		that could not use an optimization like heapam's HOT (in
 *		more general terms a call to table_tuple_update() took
 *		place and set 'update_indexes' to true).  Receiving this
 *		hint makes us consider if we should pass down the
 *		'indexUnchanged' hint in turn.  That's something that we
 *		figure out for each index_insert() call iff 'update' is
 *		true.  (When 'update' is false we already know not to pass
 *		the hint to any index.)
 *
 *		Unique and exclusion constraints are enforced at the same
 *		time.  This returns a list of index OIDs for any unique or
 *		exclusion constraints that are deferred and that had
 *		potential (unconfirmed) conflicts.  (if noDupErr == true,
 *		the same is done for non-deferred constraints, but report
 *		if conflict was speculative or deferred conflict to caller)
 *
 *		If 'arbiterIndexes' is nonempty, noDupErr applies only to
 *		those indexes.  NIL means noDupErr applies to all indexes.
 * ----------------------------------------------------------------
 */
List *
ExecInsertIndexTuples(ResultRelInfo *resultRelInfo,
					  TupleTableSlot *slot,
					  EState *estate,
					  bool update,
					  bool noDupErr,
					  bool *specConflict,
					  List *arbiterIndexes)
{
	ItemPointer tupleid = &slot->tts_tid;
	List	   *result = NIL;
	int			i;
	int			numIndices;
	RelationPtr relationDescs;
	Relation	heapRelation;
	IndexInfo **indexInfoArray;
	ExprContext *econtext;
	Datum		values[INDEX_MAX_KEYS];
	bool		isnull[INDEX_MAX_KEYS];

	Assert(ItemPointerIsValid(tupleid));

	/*
	 * Get information from the result relation info structure.
	 */
	numIndices = resultRelInfo->ri_NumIndices;
	relationDescs = resultRelInfo->ri_IndexRelationDescs;
	indexInfoArray = resultRelInfo->ri_IndexRelationInfo;
	heapRelation = resultRelInfo->ri_RelationDesc;

	/* Sanity check: slot must belong to the same rel as the resultRelInfo. */
	Assert(slot->tts_tableOid == RelationGetRelid(heapRelation));

	/*
	 * We will use the EState's per-tuple context for evaluating predicates
	 * and index expressions (creating it if it's not already there).
	 */
	econtext = GetPerTupleExprContext(estate);

	/* Arrange for econtext's scan tuple to be the tuple under test */
	econtext->ecxt_scantuple = slot;

	/*
	 * for each index, form and insert the index tuple
	 */
	for (i = 0; i < numIndices; i++)
	{
		Relation	indexRelation = relationDescs[i];
		IndexInfo  *indexInfo;
		bool		applyNoDupErr;
		IndexUniqueCheck checkUnique;
		bool		indexUnchanged;
		bool		satisfiesConstraint;

		if (indexRelation == NULL)
			continue;

		indexInfo = indexInfoArray[i];

		/* If the index is marked as read-only, ignore it */
		if (!indexInfo->ii_ReadyForInserts)
			continue;

		/* Check for partial index */
		if (indexInfo->ii_Predicate != NIL)
		{
			ExprState  *predicate;

			/*
			 * If predicate state not set up yet, create it (in the estate's
			 * per-query context)
			 */
			predicate = indexInfo->ii_PredicateState;
			if (predicate == NULL)
			{
				predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
				indexInfo->ii_PredicateState = predicate;
			}

			/* Skip this index-update if the predicate isn't satisfied */
			if (!ExecQual(predicate, econtext))
				continue;
		}

		/*
		 * FormIndexDatum fills in its values and isnull parameters with the
		 * appropriate values for the column(s) of the index.
		 */
		FormIndexDatum(indexInfo,
					   slot,
					   estate,
					   values,
					   isnull);

		/* Check whether to apply noDupErr to this index */
		applyNoDupErr = noDupErr &&
			(arbiterIndexes == NIL ||
			 list_member_oid(arbiterIndexes,
							 indexRelation->rd_index->indexrelid));

		/*
		 * The index AM does the actual insertion, plus uniqueness checking.
		 *
		 * For an immediate-mode unique index, we just tell the index AM to
		 * throw error if not unique.
		 *
		 * For a deferrable unique index, we tell the index AM to just detect
		 * possible non-uniqueness, and we add the index OID to the result
		 * list if further checking is needed.
		 *
		 * For a speculative insertion (used by INSERT ... ON CONFLICT), do
		 * the same as for a deferrable unique index.
		 */
		if (!indexRelation->rd_index->indisunique)
			checkUnique = UNIQUE_CHECK_NO;
		else if (applyNoDupErr)
			checkUnique = UNIQUE_CHECK_PARTIAL;
		else if (indexRelation->rd_index->indimmediate)
			checkUnique = UNIQUE_CHECK_YES;
		else
			checkUnique = UNIQUE_CHECK_PARTIAL;

		/*
		 * There's definitely going to be an index_insert() call for this
		 * index.  If we're being called as part of an UPDATE statement,
		 * consider if the 'indexUnchanged' = true hint should be passed.
		 *
		 * XXX We always assume that the hint should be passed for an UPDATE.
		 * This is a workaround for a bug in PostgreSQL 14.  In practice this
		 * won't make much difference for current users of the hint.
		 */
		indexUnchanged = update;

		satisfiesConstraint =
			index_insert(indexRelation, /* index relation */
						 values,	/* array of index Datums */
						 isnull,	/* null flags */
						 tupleid,	/* tid of heap tuple */
						 heapRelation,	/* heap relation */
						 checkUnique,	/* type of uniqueness check to do */
						 indexUnchanged,	/* UPDATE without logical change? */
						 indexInfo);	/* index AM may need this */

		/*
		 * If the index has an associated exclusion constraint, check that.
		 * This is simpler than the process for uniqueness checks since we
		 * always insert first and then check.  If the constraint is deferred,
		 * we check now anyway, but don't throw error on violation or wait for
		 * a conclusive outcome from a concurrent insertion; instead we'll
		 * queue a recheck event.  Similarly, noDupErr callers (speculative
		 * inserters) will recheck later, and wait for a conclusive outcome
		 * then.
		 *
		 * An index for an exclusion constraint can't also be UNIQUE (not an
		 * essential property, we just don't allow it in the grammar), so no
		 * need to preserve the prior state of satisfiesConstraint.
		 */
		if (indexInfo->ii_ExclusionOps != NULL)
		{
			bool		violationOK;
			CEOUC_WAIT_MODE waitMode;

			if (applyNoDupErr)
			{
				violationOK = true;
				waitMode = CEOUC_LIVELOCK_PREVENTING_WAIT;
			}
			else if (!indexRelation->rd_index->indimmediate)
			{
				violationOK = true;
				waitMode = CEOUC_NOWAIT;
			}
			else
			{
				violationOK = false;
				waitMode = CEOUC_WAIT;
			}

			satisfiesConstraint =
				check_exclusion_or_unique_constraint(heapRelation,
													 indexRelation, indexInfo,
													 tupleid, values, isnull,
													 estate, false,
													 waitMode, violationOK, NULL);
		}

		if ((checkUnique == UNIQUE_CHECK_PARTIAL ||
			 indexInfo->ii_ExclusionOps != NULL) &&
			!satisfiesConstraint)
		{
			/*
			 * The tuple potentially violates the uniqueness or exclusion
			 * constraint, so make a note of the index so that we can re-check
			 * it later.  Speculative inserters are told if there was a
			 * speculative conflict, since that always requires a restart.
			 */
			result = lappend_oid(result, RelationGetRelid(indexRelation));
			if (indexRelation->rd_index->indimmediate && specConflict)
				*specConflict = true;
		}
	}

	return result;
}

/* ----------------------------------------------------------------
 *		ExecCheckIndexConstraints
 *
 *		This routine checks if a tuple violates any unique or
 *		exclusion constraints.  Returns true if there is no conflict.
 *		Otherwise returns false, and the TID of the conflicting
 *		tuple is returned in *conflictTid.
 *
 *		If 'arbiterIndexes' is given, only those indexes are checked.
 *		NIL means all indexes.
 *
 *		Note that this doesn't lock the values in any way, so it's
 *		possible that a conflicting tuple is inserted immediately
 *		after this returns.  But this can be used for a pre-check
 *		before insertion.
 * ----------------------------------------------------------------
 */
bool
ExecCheckIndexConstraints(ResultRelInfo *resultRelInfo, TupleTableSlot *slot,
						  EState *estate, ItemPointer conflictTid,
						  List *arbiterIndexes)
{
	int			i;
	int			numIndices;
	RelationPtr relationDescs;
	Relation	heapRelation;
	IndexInfo **indexInfoArray;
	ExprContext *econtext;
	Datum		values[INDEX_MAX_KEYS];
	bool		isnull[INDEX_MAX_KEYS];
	ItemPointerData invalidItemPtr;
	bool		checkedIndex = false;

	ItemPointerSetInvalid(conflictTid);
	ItemPointerSetInvalid(&invalidItemPtr);

	/*
	 * Get information from the result relation info structure.
	 */
	numIndices = resultRelInfo->ri_NumIndices;
	relationDescs = resultRelInfo->ri_IndexRelationDescs;
	indexInfoArray = resultRelInfo->ri_IndexRelationInfo;
	heapRelation = resultRelInfo->ri_RelationDesc;

	/*
	 * We will use the EState's per-tuple context for evaluating predicates
	 * and index expressions (creating it if it's not already there).
	 */
	econtext = GetPerTupleExprContext(estate);

	/* Arrange for econtext's scan tuple to be the tuple under test */
	econtext->ecxt_scantuple = slot;

	/*
	 * For each index, form index tuple and check if it satisfies the
	 * constraint.
	 */
	for (i = 0; i < numIndices; i++)
	{
		Relation	indexRelation = relationDescs[i];
		IndexInfo  *indexInfo;
		bool		satisfiesConstraint;

		if (indexRelation == NULL)
			continue;

		indexInfo = indexInfoArray[i];

		if (!indexInfo->ii_Unique && !indexInfo->ii_ExclusionOps)
			continue;

		/* If the index is marked as read-only, ignore it */
		if (!indexInfo->ii_ReadyForInserts)
			continue;

		/* When specific arbiter indexes requested, only examine them */
		if (arbiterIndexes != NIL &&
			!list_member_oid(arbiterIndexes,
							 indexRelation->rd_index->indexrelid))
			continue;

		if (!indexRelation->rd_index->indimmediate)
			ereport(ERROR,
					(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
					 errmsg("ON CONFLICT does not support deferrable unique constraints/exclusion constraints as arbiters"),
					 errtableconstraint(heapRelation,
										RelationGetRelationName(indexRelation))));

		checkedIndex = true;

		/* Check for partial index */
		if (indexInfo->ii_Predicate != NIL)
		{
			ExprState  *predicate;

			/*
			 * If predicate state not set up yet, create it (in the estate's
			 * per-query context)
			 */
			predicate = indexInfo->ii_PredicateState;
			if (predicate == NULL)
			{
				predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
				indexInfo->ii_PredicateState = predicate;
			}

			/* Skip this index-update if the predicate isn't satisfied */
			if (!ExecQual(predicate, econtext))
				continue;
		}

		/*
		 * FormIndexDatum fills in its values and isnull parameters with the
		 * appropriate values for the column(s) of the index.
		 */
		FormIndexDatum(indexInfo,
					   slot,
					   estate,
					   values,
					   isnull);

		satisfiesConstraint =
			check_exclusion_or_unique_constraint(heapRelation, indexRelation,
												 indexInfo, &invalidItemPtr,
												 values, isnull, estate, false,
												 CEOUC_WAIT, true,
												 conflictTid);
		if (!satisfiesConstraint)
			return false;
	}

	if (arbiterIndexes != NIL && !checkedIndex)
		elog(ERROR, "unexpected failure to find arbiter index");

	return true;
}

/*
 * Check for violation of an exclusion or unique constraint
 *
 * heap: the table containing the new tuple
 * index: the index supporting the constraint
 * indexInfo: info about the index, including the exclusion properties
 * tupleid: heap TID of the new tuple we have just inserted (invalid if we
 *		haven't inserted a new tuple yet)
 * values, isnull: the *index* column values computed for the new tuple
 * estate: an EState we can do evaluation in
 * newIndex: if true, we are trying to build a new index (this affects
 *		only the wording of error messages)
 * waitMode: whether to wait for concurrent inserters/deleters
 * violationOK: if true, don't throw error for violation
 * conflictTid: if not-NULL, the TID of the conflicting tuple is returned here
 *
 * Returns true if OK, false if actual or potential violation
 *
 * 'waitMode' determines what happens if a conflict is detected with a tuple
 * that was inserted or deleted by a transaction that's still running.
 * CEOUC_WAIT means that we wait for the transaction to commit, before
 * throwing an error or returning.  CEOUC_NOWAIT means that we report the
 * violation immediately; so the violation is only potential, and the caller
 * must recheck sometime later.  This behavior is convenient for deferred
 * exclusion checks; we need not bother queuing a deferred event if there is
 * definitely no conflict at insertion time.
 *
 * CEOUC_LIVELOCK_PREVENTING_WAIT is like CEOUC_NOWAIT, but we will sometimes
 * wait anyway, to prevent livelocking if two transactions try inserting at
 * the same time.  This is used with speculative insertions, for INSERT ON
 * CONFLICT statements. (See notes in file header)
 *
 * If violationOK is true, we just report the potential or actual violation to
 * the caller by returning 'false'.  Otherwise we throw a descriptive error
 * message here.  When violationOK is false, a false result is impossible.
 *
 * Note: The indexam is normally responsible for checking unique constraints,
 * so this normally only needs to be used for exclusion constraints.  But this
 * function is also called when doing a "pre-check" for conflicts on a unique
 * constraint, when doing speculative insertion.  Caller may use the returned
 * conflict TID to take further steps.
 */
static bool
check_exclusion_or_unique_constraint(Relation heap, Relation index,
									 IndexInfo *indexInfo,
									 ItemPointer tupleid,
									 Datum *values, bool *isnull,
									 EState *estate, bool newIndex,
									 CEOUC_WAIT_MODE waitMode,
									 bool violationOK,
									 ItemPointer conflictTid)
{
	Oid		   *constr_procs;
	uint16	   *constr_strats;
	Oid		   *index_collations = index->rd_indcollation;
	int			indnkeyatts = IndexRelationGetNumberOfKeyAttributes(index);
	IndexScanDesc index_scan;
	ScanKeyData scankeys[INDEX_MAX_KEYS];
	SnapshotData DirtySnapshot;
	int			i;
	bool		conflict;
	bool		found_self;
	ExprContext *econtext;
	TupleTableSlot *existing_slot;
	TupleTableSlot *save_scantuple;

	if (indexInfo->ii_ExclusionOps)
	{
		constr_procs = indexInfo->ii_ExclusionProcs;
		constr_strats = indexInfo->ii_ExclusionStrats;
	}
	else
	{
		constr_procs = indexInfo->ii_UniqueProcs;
		constr_strats = indexInfo->ii_UniqueStrats;
	}

	/*
	 * If any of the input values are NULL, the constraint check is assumed to
	 * pass (i.e., we assume the operators are strict).
	 */
	for (i = 0; i < indnkeyatts; i++)
	{
		if (isnull[i])
			return true;
	}

	/*
	 * Search the tuples that are in the index for any violations, including
	 * tuples that aren't visible yet.
	 */
	InitDirtySnapshot(DirtySnapshot);

	for (i = 0; i < indnkeyatts; i++)
	{
		ScanKeyEntryInitialize(&scankeys[i],
							   0,
							   i + 1,
							   constr_strats[i],
							   InvalidOid,
							   index_collations[i],
							   constr_procs[i],
							   values[i]);
	}

	/*
	 * Need a TupleTableSlot to put existing tuples in.
	 *
	 * To use FormIndexDatum, we have to make the econtext's scantuple point
	 * to this slot.  Be sure to save and restore caller's value for
	 * scantuple.
	 */
	existing_slot = table_slot_create(heap, NULL);

	econtext = GetPerTupleExprContext(estate);
	save_scantuple = econtext->ecxt_scantuple;
	econtext->ecxt_scantuple = existing_slot;

	/*
	 * May have to restart scan from this point if a potential conflict is
	 * found.
	 */
retry:
	conflict = false;
	found_self = false;
	index_scan = index_beginscan(heap, index, &DirtySnapshot, indnkeyatts, 0);
	index_rescan(index_scan, scankeys, indnkeyatts, NULL, 0);

	while (index_getnext_slot(index_scan, ForwardScanDirection, existing_slot))
	{
		TransactionId xwait;
		XLTW_Oper	reason_wait;
		Datum		existing_values[INDEX_MAX_KEYS];
		bool		existing_isnull[INDEX_MAX_KEYS];
		char	   *error_new;
		char	   *error_existing;

		/*
		 * Ignore the entry for the tuple we're trying to check.
		 */
		if (ItemPointerIsValid(tupleid) &&
			ItemPointerEquals(tupleid, &existing_slot->tts_tid))
		{
			if (found_self)		/* should not happen */
				elog(ERROR, "found self tuple multiple times in index \"%s\"",
					 RelationGetRelationName(index));
			found_self = true;
			continue;
		}

		/*
		 * Extract the index column values and isnull flags from the existing
		 * tuple.
		 */
		FormIndexDatum(indexInfo, existing_slot, estate,
					   existing_values, existing_isnull);

		/* If lossy indexscan, must recheck the condition */
		if (index_scan->xs_recheck)
		{
			if (!index_recheck_constraint(index,
										  constr_procs,
										  existing_values,
										  existing_isnull,
										  values))
				continue;		/* tuple doesn't actually match, so no
								 * conflict */
		}

		/*
		 * At this point we have either a conflict or a potential conflict.
		 *
		 * If an in-progress transaction is affecting the visibility of this
		 * tuple, we need to wait for it to complete and then recheck (unless
		 * the caller requested not to).  For simplicity we do rechecking by
		 * just restarting the whole scan --- this case probably doesn't
		 * happen often enough to be worth trying harder, and anyway we don't
		 * want to hold any index internal locks while waiting.
		 */
		xwait = TransactionIdIsValid(DirtySnapshot.xmin) ?
			DirtySnapshot.xmin : DirtySnapshot.xmax;

		if (TransactionIdIsValid(xwait) &&
			(waitMode == CEOUC_WAIT ||
			 (waitMode == CEOUC_LIVELOCK_PREVENTING_WAIT &&
			  DirtySnapshot.speculativeToken &&
			  TransactionIdPrecedes(GetCurrentTransactionId(), xwait))))
		{
			reason_wait = indexInfo->ii_ExclusionOps ?
				XLTW_RecheckExclusionConstr : XLTW_InsertIndex;
			index_endscan(index_scan);
			if (DirtySnapshot.speculativeToken)
				SpeculativeInsertionWait(DirtySnapshot.xmin,
										 DirtySnapshot.speculativeToken);
			else
				XactLockTableWait(xwait, heap,
								  &existing_slot->tts_tid, reason_wait);
			goto retry;
		}

		/*
		 * We have a definite conflict (or a potential one, but the caller
		 * didn't want to wait).  Return it to caller, or report it.
		 */
		if (violationOK)
		{
			conflict = true;
			if (conflictTid)
				*conflictTid = existing_slot->tts_tid;
			break;
		}

		error_new = BuildIndexValueDescription(index, values, isnull);
		error_existing = BuildIndexValueDescription(index, existing_values,
													existing_isnull);
		if (newIndex)
			ereport(ERROR,
					(errcode(ERRCODE_EXCLUSION_VIOLATION),
					 errmsg("could not create exclusion constraint \"%s\"",
							RelationGetRelationName(index)),
					 error_new && error_existing ?
					 errdetail("Key %s conflicts with key %s.",
							   error_new, error_existing) :
					 errdetail("Key conflicts exist."),
					 errtableconstraint(heap,
										RelationGetRelationName(index))));
		else
			ereport(ERROR,
					(errcode(ERRCODE_EXCLUSION_VIOLATION),
					 errmsg("conflicting key value violates exclusion constraint \"%s\"",
							RelationGetRelationName(index)),
					 error_new && error_existing ?
					 errdetail("Key %s conflicts with existing key %s.",
							   error_new, error_existing) :
					 errdetail("Key conflicts with existing key."),
					 errtableconstraint(heap,
										RelationGetRelationName(index))));
	}

	index_endscan(index_scan);

	/*
	 * Ordinarily, at this point the search should have found the originally
	 * inserted tuple (if any), unless we exited the loop early because of
	 * conflict.  However, it is possible to define exclusion constraints for
	 * which that wouldn't be true --- for instance, if the operator is <>. So
	 * we no longer complain if found_self is still false.
	 */

	econtext->ecxt_scantuple = save_scantuple;

	ExecDropSingleTupleTableSlot(existing_slot);

	return !conflict;
}

/*
 * Check for violation of an exclusion constraint
 *
 * This is a dumbed down version of check_exclusion_or_unique_constraint
 * for external callers. They don't need all the special modes.
 */
void
check_exclusion_constraint(Relation heap, Relation index,
						   IndexInfo *indexInfo,
						   ItemPointer tupleid,
						   Datum *values, bool *isnull,
						   EState *estate, bool newIndex)
{
	(void) check_exclusion_or_unique_constraint(heap, index, indexInfo, tupleid,
												values, isnull,
												estate, newIndex,
												CEOUC_WAIT, false, NULL);
}

/*
 * Check existing tuple's index values to see if it really matches the
 * exclusion condition against the new_values.  Returns true if conflict.
 */
static bool
index_recheck_constraint(Relation index, Oid *constr_procs,
						 Datum *existing_values, bool *existing_isnull,
						 Datum *new_values)
{
	int			indnkeyatts = IndexRelationGetNumberOfKeyAttributes(index);
	int			i;

	for (i = 0; i < indnkeyatts; i++)
	{
		/* Assume the exclusion operators are strict */
		if (existing_isnull[i])
			return false;

		if (!DatumGetBool(OidFunctionCall2Coll(constr_procs[i],
											   index->rd_indcollation[i],
											   existing_values[i],
											   new_values[i])))
			return false;
	}

	return true;
}