summaryrefslogtreecommitdiffstats
path: root/src/backend/executor/execTuples.c
blob: 5004b3b1656936d0d9351dfe2d28c210ffe3dae7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
/*-------------------------------------------------------------------------
 *
 * execTuples.c
 *	  Routines dealing with TupleTableSlots.  These are used for resource
 *	  management associated with tuples (eg, releasing buffer pins for
 *	  tuples in disk buffers, or freeing the memory occupied by transient
 *	  tuples).  Slots also provide access abstraction that lets us implement
 *	  "virtual" tuples to reduce data-copying overhead.
 *
 *	  Routines dealing with the type information for tuples. Currently,
 *	  the type information for a tuple is an array of FormData_pg_attribute.
 *	  This information is needed by routines manipulating tuples
 *	  (getattribute, formtuple, etc.).
 *
 *
 *	 EXAMPLE OF HOW TABLE ROUTINES WORK
 *		Suppose we have a query such as SELECT emp.name FROM emp and we have
 *		a single SeqScan node in the query plan.
 *
 *		At ExecutorStart()
 *		----------------
 *
 *		- ExecInitSeqScan() calls ExecInitScanTupleSlot() to construct a
 *		  TupleTableSlots for the tuples returned by the access method, and
 *		  ExecInitResultTypeTL() to define the node's return
 *		  type. ExecAssignScanProjectionInfo() will, if necessary, create
 *		  another TupleTableSlot for the tuples resulting from performing
 *		  target list projections.
 *
 *		During ExecutorRun()
 *		----------------
 *		- SeqNext() calls ExecStoreBufferHeapTuple() to place the tuple
 *		  returned by the access method into the scan tuple slot.
 *
 *		- ExecSeqScan() (via ExecScan), if necessary, calls ExecProject(),
 *		  putting the result of the projection in the result tuple slot. If
 *		  not necessary, it directly returns the slot returned by SeqNext().
 *
 *		- ExecutePlan() calls the output function.
 *
 *		The important thing to watch in the executor code is how pointers
 *		to the slots containing tuples are passed instead of the tuples
 *		themselves.  This facilitates the communication of related information
 *		(such as whether or not a tuple should be pfreed, what buffer contains
 *		this tuple, the tuple's tuple descriptor, etc).  It also allows us
 *		to avoid physically constructing projection tuples in many cases.
 *
 *
 * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/executor/execTuples.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/heaptoast.h"
#include "access/htup_details.h"
#include "access/tupdesc_details.h"
#include "catalog/pg_type.h"
#include "funcapi.h"
#include "nodes/nodeFuncs.h"
#include "storage/bufmgr.h"
#include "utils/builtins.h"
#include "utils/expandeddatum.h"
#include "utils/lsyscache.h"
#include "utils/typcache.h"

static TupleDesc ExecTypeFromTLInternal(List *targetList,
										bool skipjunk);
static pg_attribute_always_inline void slot_deform_heap_tuple(TupleTableSlot *slot, HeapTuple tuple, uint32 *offp,
															  int natts);
static inline void tts_buffer_heap_store_tuple(TupleTableSlot *slot,
											   HeapTuple tuple,
											   Buffer buffer,
											   bool transfer_pin);
static void tts_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple, bool shouldFree);


const TupleTableSlotOps TTSOpsVirtual;
const TupleTableSlotOps TTSOpsHeapTuple;
const TupleTableSlotOps TTSOpsMinimalTuple;
const TupleTableSlotOps TTSOpsBufferHeapTuple;


/*
 * TupleTableSlotOps implementations.
 */

/*
 * TupleTableSlotOps implementation for VirtualTupleTableSlot.
 */
static void
tts_virtual_init(TupleTableSlot *slot)
{
}

static void
tts_virtual_release(TupleTableSlot *slot)
{
}

static void
tts_virtual_clear(TupleTableSlot *slot)
{
	if (unlikely(TTS_SHOULDFREE(slot)))
	{
		VirtualTupleTableSlot *vslot = (VirtualTupleTableSlot *) slot;

		pfree(vslot->data);
		vslot->data = NULL;

		slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
	}

	slot->tts_nvalid = 0;
	slot->tts_flags |= TTS_FLAG_EMPTY;
	ItemPointerSetInvalid(&slot->tts_tid);
}

/*
 * VirtualTupleTableSlots always have fully populated tts_values and
 * tts_isnull arrays.  So this function should never be called.
 */
static void
tts_virtual_getsomeattrs(TupleTableSlot *slot, int natts)
{
	elog(ERROR, "getsomeattrs is not required to be called on a virtual tuple table slot");
}

/*
 * VirtualTupleTableSlots never provide system attributes (except those
 * handled generically, such as tableoid).  We generally shouldn't get
 * here, but provide a user-friendly message if we do.
 */
static Datum
tts_virtual_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
{
	Assert(!TTS_EMPTY(slot));

	ereport(ERROR,
			(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
			 errmsg("cannot retrieve a system column in this context")));

	return 0;					/* silence compiler warnings */
}

/*
 * To materialize a virtual slot all the datums that aren't passed by value
 * have to be copied into the slot's memory context.  To do so, compute the
 * required size, and allocate enough memory to store all attributes.  That's
 * good for cache hit ratio, but more importantly requires only memory
 * allocation/deallocation.
 */
static void
tts_virtual_materialize(TupleTableSlot *slot)
{
	VirtualTupleTableSlot *vslot = (VirtualTupleTableSlot *) slot;
	TupleDesc	desc = slot->tts_tupleDescriptor;
	Size		sz = 0;
	char	   *data;

	/* already materialized */
	if (TTS_SHOULDFREE(slot))
		return;

	/* compute size of memory required */
	for (int natt = 0; natt < desc->natts; natt++)
	{
		Form_pg_attribute att = TupleDescAttr(desc, natt);
		Datum		val;

		if (att->attbyval || slot->tts_isnull[natt])
			continue;

		val = slot->tts_values[natt];

		if (att->attlen == -1 &&
			VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(val)))
		{
			/*
			 * We want to flatten the expanded value so that the materialized
			 * slot doesn't depend on it.
			 */
			sz = att_align_nominal(sz, att->attalign);
			sz += EOH_get_flat_size(DatumGetEOHP(val));
		}
		else
		{
			sz = att_align_nominal(sz, att->attalign);
			sz = att_addlength_datum(sz, att->attlen, val);
		}
	}

	/* all data is byval */
	if (sz == 0)
		return;

	/* allocate memory */
	vslot->data = data = MemoryContextAlloc(slot->tts_mcxt, sz);
	slot->tts_flags |= TTS_FLAG_SHOULDFREE;

	/* and copy all attributes into the pre-allocated space */
	for (int natt = 0; natt < desc->natts; natt++)
	{
		Form_pg_attribute att = TupleDescAttr(desc, natt);
		Datum		val;

		if (att->attbyval || slot->tts_isnull[natt])
			continue;

		val = slot->tts_values[natt];

		if (att->attlen == -1 &&
			VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(val)))
		{
			Size		data_length;

			/*
			 * We want to flatten the expanded value so that the materialized
			 * slot doesn't depend on it.
			 */
			ExpandedObjectHeader *eoh = DatumGetEOHP(val);

			data = (char *) att_align_nominal(data,
											  att->attalign);
			data_length = EOH_get_flat_size(eoh);
			EOH_flatten_into(eoh, data, data_length);

			slot->tts_values[natt] = PointerGetDatum(data);
			data += data_length;
		}
		else
		{
			Size		data_length = 0;

			data = (char *) att_align_nominal(data, att->attalign);
			data_length = att_addlength_datum(data_length, att->attlen, val);

			memcpy(data, DatumGetPointer(val), data_length);

			slot->tts_values[natt] = PointerGetDatum(data);
			data += data_length;
		}
	}
}

static void
tts_virtual_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
{
	TupleDesc	srcdesc = srcslot->tts_tupleDescriptor;

	Assert(srcdesc->natts <= dstslot->tts_tupleDescriptor->natts);

	tts_virtual_clear(dstslot);

	slot_getallattrs(srcslot);

	for (int natt = 0; natt < srcdesc->natts; natt++)
	{
		dstslot->tts_values[natt] = srcslot->tts_values[natt];
		dstslot->tts_isnull[natt] = srcslot->tts_isnull[natt];
	}

	dstslot->tts_nvalid = srcdesc->natts;
	dstslot->tts_flags &= ~TTS_FLAG_EMPTY;

	/* make sure storage doesn't depend on external memory */
	tts_virtual_materialize(dstslot);
}

static HeapTuple
tts_virtual_copy_heap_tuple(TupleTableSlot *slot)
{
	Assert(!TTS_EMPTY(slot));

	return heap_form_tuple(slot->tts_tupleDescriptor,
						   slot->tts_values,
						   slot->tts_isnull);
}

static MinimalTuple
tts_virtual_copy_minimal_tuple(TupleTableSlot *slot)
{
	Assert(!TTS_EMPTY(slot));

	return heap_form_minimal_tuple(slot->tts_tupleDescriptor,
								   slot->tts_values,
								   slot->tts_isnull);
}


/*
 * TupleTableSlotOps implementation for HeapTupleTableSlot.
 */

static void
tts_heap_init(TupleTableSlot *slot)
{
}

static void
tts_heap_release(TupleTableSlot *slot)
{
}

static void
tts_heap_clear(TupleTableSlot *slot)
{
	HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;

	/* Free the memory for the heap tuple if it's allowed. */
	if (TTS_SHOULDFREE(slot))
	{
		heap_freetuple(hslot->tuple);
		slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
	}

	slot->tts_nvalid = 0;
	slot->tts_flags |= TTS_FLAG_EMPTY;
	ItemPointerSetInvalid(&slot->tts_tid);
	hslot->off = 0;
	hslot->tuple = NULL;
}

static void
tts_heap_getsomeattrs(TupleTableSlot *slot, int natts)
{
	HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;

	Assert(!TTS_EMPTY(slot));

	slot_deform_heap_tuple(slot, hslot->tuple, &hslot->off, natts);
}

static Datum
tts_heap_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
{
	HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;

	Assert(!TTS_EMPTY(slot));

	/*
	 * In some code paths it's possible to get here with a non-materialized
	 * slot, in which case we can't retrieve system columns.
	 */
	if (!hslot->tuple)
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("cannot retrieve a system column in this context")));

	return heap_getsysattr(hslot->tuple, attnum,
						   slot->tts_tupleDescriptor, isnull);
}

static void
tts_heap_materialize(TupleTableSlot *slot)
{
	HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
	MemoryContext oldContext;

	Assert(!TTS_EMPTY(slot));

	/* If slot has its tuple already materialized, nothing to do. */
	if (TTS_SHOULDFREE(slot))
		return;

	oldContext = MemoryContextSwitchTo(slot->tts_mcxt);

	/*
	 * Have to deform from scratch, otherwise tts_values[] entries could point
	 * into the non-materialized tuple (which might be gone when accessed).
	 */
	slot->tts_nvalid = 0;
	hslot->off = 0;

	if (!hslot->tuple)
		hslot->tuple = heap_form_tuple(slot->tts_tupleDescriptor,
									   slot->tts_values,
									   slot->tts_isnull);
	else
	{
		/*
		 * The tuple contained in this slot is not allocated in the memory
		 * context of the given slot (else it would have TTS_SHOULDFREE set).
		 * Copy the tuple into the given slot's memory context.
		 */
		hslot->tuple = heap_copytuple(hslot->tuple);
	}

	slot->tts_flags |= TTS_FLAG_SHOULDFREE;

	MemoryContextSwitchTo(oldContext);
}

static void
tts_heap_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
{
	HeapTuple	tuple;
	MemoryContext oldcontext;

	oldcontext = MemoryContextSwitchTo(dstslot->tts_mcxt);
	tuple = ExecCopySlotHeapTuple(srcslot);
	MemoryContextSwitchTo(oldcontext);

	ExecStoreHeapTuple(tuple, dstslot, true);
}

static HeapTuple
tts_heap_get_heap_tuple(TupleTableSlot *slot)
{
	HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;

	Assert(!TTS_EMPTY(slot));
	if (!hslot->tuple)
		tts_heap_materialize(slot);

	return hslot->tuple;
}

static HeapTuple
tts_heap_copy_heap_tuple(TupleTableSlot *slot)
{
	HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;

	Assert(!TTS_EMPTY(slot));
	if (!hslot->tuple)
		tts_heap_materialize(slot);

	return heap_copytuple(hslot->tuple);
}

static MinimalTuple
tts_heap_copy_minimal_tuple(TupleTableSlot *slot)
{
	HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;

	if (!hslot->tuple)
		tts_heap_materialize(slot);

	return minimal_tuple_from_heap_tuple(hslot->tuple);
}

static void
tts_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple, bool shouldFree)
{
	HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;

	tts_heap_clear(slot);

	slot->tts_nvalid = 0;
	hslot->tuple = tuple;
	hslot->off = 0;
	slot->tts_flags &= ~(TTS_FLAG_EMPTY | TTS_FLAG_SHOULDFREE);
	slot->tts_tid = tuple->t_self;

	if (shouldFree)
		slot->tts_flags |= TTS_FLAG_SHOULDFREE;
}


/*
 * TupleTableSlotOps implementation for MinimalTupleTableSlot.
 */

static void
tts_minimal_init(TupleTableSlot *slot)
{
	MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;

	/*
	 * Initialize the heap tuple pointer to access attributes of the minimal
	 * tuple contained in the slot as if its a heap tuple.
	 */
	mslot->tuple = &mslot->minhdr;
}

static void
tts_minimal_release(TupleTableSlot *slot)
{
}

static void
tts_minimal_clear(TupleTableSlot *slot)
{
	MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;

	if (TTS_SHOULDFREE(slot))
	{
		heap_free_minimal_tuple(mslot->mintuple);
		slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
	}

	slot->tts_nvalid = 0;
	slot->tts_flags |= TTS_FLAG_EMPTY;
	ItemPointerSetInvalid(&slot->tts_tid);
	mslot->off = 0;
	mslot->mintuple = NULL;
}

static void
tts_minimal_getsomeattrs(TupleTableSlot *slot, int natts)
{
	MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;

	Assert(!TTS_EMPTY(slot));

	slot_deform_heap_tuple(slot, mslot->tuple, &mslot->off, natts);
}

static Datum
tts_minimal_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
{
	Assert(!TTS_EMPTY(slot));

	ereport(ERROR,
			(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
			 errmsg("cannot retrieve a system column in this context")));

	return 0;					/* silence compiler warnings */
}

static void
tts_minimal_materialize(TupleTableSlot *slot)
{
	MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
	MemoryContext oldContext;

	Assert(!TTS_EMPTY(slot));

	/* If slot has its tuple already materialized, nothing to do. */
	if (TTS_SHOULDFREE(slot))
		return;

	oldContext = MemoryContextSwitchTo(slot->tts_mcxt);

	/*
	 * Have to deform from scratch, otherwise tts_values[] entries could point
	 * into the non-materialized tuple (which might be gone when accessed).
	 */
	slot->tts_nvalid = 0;
	mslot->off = 0;

	if (!mslot->mintuple)
	{
		mslot->mintuple = heap_form_minimal_tuple(slot->tts_tupleDescriptor,
												  slot->tts_values,
												  slot->tts_isnull);
	}
	else
	{
		/*
		 * The minimal tuple contained in this slot is not allocated in the
		 * memory context of the given slot (else it would have TTS_SHOULDFREE
		 * set).  Copy the minimal tuple into the given slot's memory context.
		 */
		mslot->mintuple = heap_copy_minimal_tuple(mslot->mintuple);
	}

	slot->tts_flags |= TTS_FLAG_SHOULDFREE;

	Assert(mslot->tuple == &mslot->minhdr);

	mslot->minhdr.t_len = mslot->mintuple->t_len + MINIMAL_TUPLE_OFFSET;
	mslot->minhdr.t_data = (HeapTupleHeader) ((char *) mslot->mintuple - MINIMAL_TUPLE_OFFSET);

	MemoryContextSwitchTo(oldContext);
}

static void
tts_minimal_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
{
	MemoryContext oldcontext;
	MinimalTuple mintuple;

	oldcontext = MemoryContextSwitchTo(dstslot->tts_mcxt);
	mintuple = ExecCopySlotMinimalTuple(srcslot);
	MemoryContextSwitchTo(oldcontext);

	ExecStoreMinimalTuple(mintuple, dstslot, true);
}

static MinimalTuple
tts_minimal_get_minimal_tuple(TupleTableSlot *slot)
{
	MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;

	if (!mslot->mintuple)
		tts_minimal_materialize(slot);

	return mslot->mintuple;
}

static HeapTuple
tts_minimal_copy_heap_tuple(TupleTableSlot *slot)
{
	MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;

	if (!mslot->mintuple)
		tts_minimal_materialize(slot);

	return heap_tuple_from_minimal_tuple(mslot->mintuple);
}

static MinimalTuple
tts_minimal_copy_minimal_tuple(TupleTableSlot *slot)
{
	MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;

	if (!mslot->mintuple)
		tts_minimal_materialize(slot);

	return heap_copy_minimal_tuple(mslot->mintuple);
}

static void
tts_minimal_store_tuple(TupleTableSlot *slot, MinimalTuple mtup, bool shouldFree)
{
	MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;

	tts_minimal_clear(slot);

	Assert(!TTS_SHOULDFREE(slot));
	Assert(TTS_EMPTY(slot));

	slot->tts_flags &= ~TTS_FLAG_EMPTY;
	slot->tts_nvalid = 0;
	mslot->off = 0;

	mslot->mintuple = mtup;
	Assert(mslot->tuple == &mslot->minhdr);
	mslot->minhdr.t_len = mtup->t_len + MINIMAL_TUPLE_OFFSET;
	mslot->minhdr.t_data = (HeapTupleHeader) ((char *) mtup - MINIMAL_TUPLE_OFFSET);
	/* no need to set t_self or t_tableOid since we won't allow access */

	if (shouldFree)
		slot->tts_flags |= TTS_FLAG_SHOULDFREE;
}


/*
 * TupleTableSlotOps implementation for BufferHeapTupleTableSlot.
 */

static void
tts_buffer_heap_init(TupleTableSlot *slot)
{
}

static void
tts_buffer_heap_release(TupleTableSlot *slot)
{
}

static void
tts_buffer_heap_clear(TupleTableSlot *slot)
{
	BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;

	/*
	 * Free the memory for heap tuple if allowed. A tuple coming from buffer
	 * can never be freed. But we may have materialized a tuple from buffer.
	 * Such a tuple can be freed.
	 */
	if (TTS_SHOULDFREE(slot))
	{
		/* We should have unpinned the buffer while materializing the tuple. */
		Assert(!BufferIsValid(bslot->buffer));

		heap_freetuple(bslot->base.tuple);
		slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
	}

	if (BufferIsValid(bslot->buffer))
		ReleaseBuffer(bslot->buffer);

	slot->tts_nvalid = 0;
	slot->tts_flags |= TTS_FLAG_EMPTY;
	ItemPointerSetInvalid(&slot->tts_tid);
	bslot->base.tuple = NULL;
	bslot->base.off = 0;
	bslot->buffer = InvalidBuffer;
}

static void
tts_buffer_heap_getsomeattrs(TupleTableSlot *slot, int natts)
{
	BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;

	Assert(!TTS_EMPTY(slot));

	slot_deform_heap_tuple(slot, bslot->base.tuple, &bslot->base.off, natts);
}

static Datum
tts_buffer_heap_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
{
	BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;

	Assert(!TTS_EMPTY(slot));

	/*
	 * In some code paths it's possible to get here with a non-materialized
	 * slot, in which case we can't retrieve system columns.
	 */
	if (!bslot->base.tuple)
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("cannot retrieve a system column in this context")));

	return heap_getsysattr(bslot->base.tuple, attnum,
						   slot->tts_tupleDescriptor, isnull);
}

static void
tts_buffer_heap_materialize(TupleTableSlot *slot)
{
	BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
	MemoryContext oldContext;

	Assert(!TTS_EMPTY(slot));

	/* If slot has its tuple already materialized, nothing to do. */
	if (TTS_SHOULDFREE(slot))
		return;

	oldContext = MemoryContextSwitchTo(slot->tts_mcxt);

	/*
	 * Have to deform from scratch, otherwise tts_values[] entries could point
	 * into the non-materialized tuple (which might be gone when accessed).
	 */
	bslot->base.off = 0;
	slot->tts_nvalid = 0;

	if (!bslot->base.tuple)
	{
		/*
		 * Normally BufferHeapTupleTableSlot should have a tuple + buffer
		 * associated with it, unless it's materialized (which would've
		 * returned above). But when it's useful to allow storing virtual
		 * tuples in a buffer slot, which then also needs to be
		 * materializable.
		 */
		bslot->base.tuple = heap_form_tuple(slot->tts_tupleDescriptor,
											slot->tts_values,
											slot->tts_isnull);
	}
	else
	{
		bslot->base.tuple = heap_copytuple(bslot->base.tuple);

		/*
		 * A heap tuple stored in a BufferHeapTupleTableSlot should have a
		 * buffer associated with it, unless it's materialized or virtual.
		 */
		if (likely(BufferIsValid(bslot->buffer)))
			ReleaseBuffer(bslot->buffer);
		bslot->buffer = InvalidBuffer;
	}

	/*
	 * We don't set TTS_FLAG_SHOULDFREE until after releasing the buffer, if
	 * any.  This avoids having a transient state that would fall foul of our
	 * assertions that a slot with TTS_FLAG_SHOULDFREE doesn't own a buffer.
	 * In the unlikely event that ReleaseBuffer() above errors out, we'd
	 * effectively leak the copied tuple, but that seems fairly harmless.
	 */
	slot->tts_flags |= TTS_FLAG_SHOULDFREE;

	MemoryContextSwitchTo(oldContext);
}

static void
tts_buffer_heap_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
{
	BufferHeapTupleTableSlot *bsrcslot = (BufferHeapTupleTableSlot *) srcslot;
	BufferHeapTupleTableSlot *bdstslot = (BufferHeapTupleTableSlot *) dstslot;

	/*
	 * If the source slot is of a different kind, or is a buffer slot that has
	 * been materialized / is virtual, make a new copy of the tuple. Otherwise
	 * make a new reference to the in-buffer tuple.
	 */
	if (dstslot->tts_ops != srcslot->tts_ops ||
		TTS_SHOULDFREE(srcslot) ||
		!bsrcslot->base.tuple)
	{
		MemoryContext oldContext;

		ExecClearTuple(dstslot);
		dstslot->tts_flags &= ~TTS_FLAG_EMPTY;
		oldContext = MemoryContextSwitchTo(dstslot->tts_mcxt);
		bdstslot->base.tuple = ExecCopySlotHeapTuple(srcslot);
		dstslot->tts_flags |= TTS_FLAG_SHOULDFREE;
		MemoryContextSwitchTo(oldContext);
	}
	else
	{
		Assert(BufferIsValid(bsrcslot->buffer));

		tts_buffer_heap_store_tuple(dstslot, bsrcslot->base.tuple,
									bsrcslot->buffer, false);

		/*
		 * The HeapTupleData portion of the source tuple might be shorter
		 * lived than the destination slot. Therefore copy the HeapTuple into
		 * our slot's tupdata, which is guaranteed to live long enough (but
		 * will still point into the buffer).
		 */
		memcpy(&bdstslot->base.tupdata, bdstslot->base.tuple, sizeof(HeapTupleData));
		bdstslot->base.tuple = &bdstslot->base.tupdata;
	}
}

static HeapTuple
tts_buffer_heap_get_heap_tuple(TupleTableSlot *slot)
{
	BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;

	Assert(!TTS_EMPTY(slot));

	if (!bslot->base.tuple)
		tts_buffer_heap_materialize(slot);

	return bslot->base.tuple;
}

static HeapTuple
tts_buffer_heap_copy_heap_tuple(TupleTableSlot *slot)
{
	BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;

	Assert(!TTS_EMPTY(slot));

	if (!bslot->base.tuple)
		tts_buffer_heap_materialize(slot);

	return heap_copytuple(bslot->base.tuple);
}

static MinimalTuple
tts_buffer_heap_copy_minimal_tuple(TupleTableSlot *slot)
{
	BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;

	Assert(!TTS_EMPTY(slot));

	if (!bslot->base.tuple)
		tts_buffer_heap_materialize(slot);

	return minimal_tuple_from_heap_tuple(bslot->base.tuple);
}

static inline void
tts_buffer_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple,
							Buffer buffer, bool transfer_pin)
{
	BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;

	if (TTS_SHOULDFREE(slot))
	{
		/* materialized slot shouldn't have a buffer to release */
		Assert(!BufferIsValid(bslot->buffer));

		heap_freetuple(bslot->base.tuple);
		slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
	}

	slot->tts_flags &= ~TTS_FLAG_EMPTY;
	slot->tts_nvalid = 0;
	bslot->base.tuple = tuple;
	bslot->base.off = 0;
	slot->tts_tid = tuple->t_self;

	/*
	 * If tuple is on a disk page, keep the page pinned as long as we hold a
	 * pointer into it.  We assume the caller already has such a pin.  If
	 * transfer_pin is true, we'll transfer that pin to this slot, if not
	 * we'll pin it again ourselves.
	 *
	 * This is coded to optimize the case where the slot previously held a
	 * tuple on the same disk page: in that case releasing and re-acquiring
	 * the pin is a waste of cycles.  This is a common situation during
	 * seqscans, so it's worth troubling over.
	 */
	if (bslot->buffer != buffer)
	{
		if (BufferIsValid(bslot->buffer))
			ReleaseBuffer(bslot->buffer);

		bslot->buffer = buffer;

		if (!transfer_pin && BufferIsValid(buffer))
			IncrBufferRefCount(buffer);
	}
	else if (transfer_pin && BufferIsValid(buffer))
	{
		/*
		 * In transfer_pin mode the caller won't know about the same-page
		 * optimization, so we gotta release its pin.
		 */
		ReleaseBuffer(buffer);
	}
}

/*
 * slot_deform_heap_tuple
 *		Given a TupleTableSlot, extract data from the slot's physical tuple
 *		into its Datum/isnull arrays.  Data is extracted up through the
 *		natts'th column (caller must ensure this is a legal column number).
 *
 *		This is essentially an incremental version of heap_deform_tuple:
 *		on each call we extract attributes up to the one needed, without
 *		re-computing information about previously extracted attributes.
 *		slot->tts_nvalid is the number of attributes already extracted.
 *
 * This is marked as always inline, so the different offp for different types
 * of slots gets optimized away.
 */
static pg_attribute_always_inline void
slot_deform_heap_tuple(TupleTableSlot *slot, HeapTuple tuple, uint32 *offp,
					   int natts)
{
	TupleDesc	tupleDesc = slot->tts_tupleDescriptor;
	Datum	   *values = slot->tts_values;
	bool	   *isnull = slot->tts_isnull;
	HeapTupleHeader tup = tuple->t_data;
	bool		hasnulls = HeapTupleHasNulls(tuple);
	int			attnum;
	char	   *tp;				/* ptr to tuple data */
	uint32		off;			/* offset in tuple data */
	bits8	   *bp = tup->t_bits;	/* ptr to null bitmap in tuple */
	bool		slow;			/* can we use/set attcacheoff? */

	/* We can only fetch as many attributes as the tuple has. */
	natts = Min(HeapTupleHeaderGetNatts(tuple->t_data), natts);

	/*
	 * Check whether the first call for this tuple, and initialize or restore
	 * loop state.
	 */
	attnum = slot->tts_nvalid;
	if (attnum == 0)
	{
		/* Start from the first attribute */
		off = 0;
		slow = false;
	}
	else
	{
		/* Restore state from previous execution */
		off = *offp;
		slow = TTS_SLOW(slot);
	}

	tp = (char *) tup + tup->t_hoff;

	for (; attnum < natts; attnum++)
	{
		Form_pg_attribute thisatt = TupleDescAttr(tupleDesc, attnum);

		if (hasnulls && att_isnull(attnum, bp))
		{
			values[attnum] = (Datum) 0;
			isnull[attnum] = true;
			slow = true;		/* can't use attcacheoff anymore */
			continue;
		}

		isnull[attnum] = false;

		if (!slow && thisatt->attcacheoff >= 0)
			off = thisatt->attcacheoff;
		else if (thisatt->attlen == -1)
		{
			/*
			 * We can only cache the offset for a varlena attribute if the
			 * offset is already suitably aligned, so that there would be no
			 * pad bytes in any case: then the offset will be valid for either
			 * an aligned or unaligned value.
			 */
			if (!slow &&
				off == att_align_nominal(off, thisatt->attalign))
				thisatt->attcacheoff = off;
			else
			{
				off = att_align_pointer(off, thisatt->attalign, -1,
										tp + off);
				slow = true;
			}
		}
		else
		{
			/* not varlena, so safe to use att_align_nominal */
			off = att_align_nominal(off, thisatt->attalign);

			if (!slow)
				thisatt->attcacheoff = off;
		}

		values[attnum] = fetchatt(thisatt, tp + off);

		off = att_addlength_pointer(off, thisatt->attlen, tp + off);

		if (thisatt->attlen <= 0)
			slow = true;		/* can't use attcacheoff anymore */
	}

	/*
	 * Save state for next execution
	 */
	slot->tts_nvalid = attnum;
	*offp = off;
	if (slow)
		slot->tts_flags |= TTS_FLAG_SLOW;
	else
		slot->tts_flags &= ~TTS_FLAG_SLOW;
}


const TupleTableSlotOps TTSOpsVirtual = {
	.base_slot_size = sizeof(VirtualTupleTableSlot),
	.init = tts_virtual_init,
	.release = tts_virtual_release,
	.clear = tts_virtual_clear,
	.getsomeattrs = tts_virtual_getsomeattrs,
	.getsysattr = tts_virtual_getsysattr,
	.materialize = tts_virtual_materialize,
	.copyslot = tts_virtual_copyslot,

	/*
	 * A virtual tuple table slot can not "own" a heap tuple or a minimal
	 * tuple.
	 */
	.get_heap_tuple = NULL,
	.get_minimal_tuple = NULL,
	.copy_heap_tuple = tts_virtual_copy_heap_tuple,
	.copy_minimal_tuple = tts_virtual_copy_minimal_tuple
};

const TupleTableSlotOps TTSOpsHeapTuple = {
	.base_slot_size = sizeof(HeapTupleTableSlot),
	.init = tts_heap_init,
	.release = tts_heap_release,
	.clear = tts_heap_clear,
	.getsomeattrs = tts_heap_getsomeattrs,
	.getsysattr = tts_heap_getsysattr,
	.materialize = tts_heap_materialize,
	.copyslot = tts_heap_copyslot,
	.get_heap_tuple = tts_heap_get_heap_tuple,

	/* A heap tuple table slot can not "own" a minimal tuple. */
	.get_minimal_tuple = NULL,
	.copy_heap_tuple = tts_heap_copy_heap_tuple,
	.copy_minimal_tuple = tts_heap_copy_minimal_tuple
};

const TupleTableSlotOps TTSOpsMinimalTuple = {
	.base_slot_size = sizeof(MinimalTupleTableSlot),
	.init = tts_minimal_init,
	.release = tts_minimal_release,
	.clear = tts_minimal_clear,
	.getsomeattrs = tts_minimal_getsomeattrs,
	.getsysattr = tts_minimal_getsysattr,
	.materialize = tts_minimal_materialize,
	.copyslot = tts_minimal_copyslot,

	/* A minimal tuple table slot can not "own" a heap tuple. */
	.get_heap_tuple = NULL,
	.get_minimal_tuple = tts_minimal_get_minimal_tuple,
	.copy_heap_tuple = tts_minimal_copy_heap_tuple,
	.copy_minimal_tuple = tts_minimal_copy_minimal_tuple
};

const TupleTableSlotOps TTSOpsBufferHeapTuple = {
	.base_slot_size = sizeof(BufferHeapTupleTableSlot),
	.init = tts_buffer_heap_init,
	.release = tts_buffer_heap_release,
	.clear = tts_buffer_heap_clear,
	.getsomeattrs = tts_buffer_heap_getsomeattrs,
	.getsysattr = tts_buffer_heap_getsysattr,
	.materialize = tts_buffer_heap_materialize,
	.copyslot = tts_buffer_heap_copyslot,
	.get_heap_tuple = tts_buffer_heap_get_heap_tuple,

	/* A buffer heap tuple table slot can not "own" a minimal tuple. */
	.get_minimal_tuple = NULL,
	.copy_heap_tuple = tts_buffer_heap_copy_heap_tuple,
	.copy_minimal_tuple = tts_buffer_heap_copy_minimal_tuple
};


/* ----------------------------------------------------------------
 *				  tuple table create/delete functions
 * ----------------------------------------------------------------
 */

/* --------------------------------
 *		MakeTupleTableSlot
 *
 *		Basic routine to make an empty TupleTableSlot of given
 *		TupleTableSlotType. If tupleDesc is specified the slot's descriptor is
 *		fixed for its lifetime, gaining some efficiency. If that's
 *		undesirable, pass NULL.
 * --------------------------------
 */
TupleTableSlot *
MakeTupleTableSlot(TupleDesc tupleDesc,
				   const TupleTableSlotOps *tts_ops)
{
	Size		basesz,
				allocsz;
	TupleTableSlot *slot;

	basesz = tts_ops->base_slot_size;

	/*
	 * When a fixed descriptor is specified, we can reduce overhead by
	 * allocating the entire slot in one go.
	 */
	if (tupleDesc)
		allocsz = MAXALIGN(basesz) +
			MAXALIGN(tupleDesc->natts * sizeof(Datum)) +
			MAXALIGN(tupleDesc->natts * sizeof(bool));
	else
		allocsz = basesz;

	slot = palloc0(allocsz);
	/* const for optimization purposes, OK to modify at allocation time */
	*((const TupleTableSlotOps **) &slot->tts_ops) = tts_ops;
	slot->type = T_TupleTableSlot;
	slot->tts_flags |= TTS_FLAG_EMPTY;
	if (tupleDesc != NULL)
		slot->tts_flags |= TTS_FLAG_FIXED;
	slot->tts_tupleDescriptor = tupleDesc;
	slot->tts_mcxt = CurrentMemoryContext;
	slot->tts_nvalid = 0;

	if (tupleDesc != NULL)
	{
		slot->tts_values = (Datum *)
			(((char *) slot)
			 + MAXALIGN(basesz));
		slot->tts_isnull = (bool *)
			(((char *) slot)
			 + MAXALIGN(basesz)
			 + MAXALIGN(tupleDesc->natts * sizeof(Datum)));

		PinTupleDesc(tupleDesc);
	}

	/*
	 * And allow slot type specific initialization.
	 */
	slot->tts_ops->init(slot);

	return slot;
}

/* --------------------------------
 *		ExecAllocTableSlot
 *
 *		Create a tuple table slot within a tuple table (which is just a List).
 * --------------------------------
 */
TupleTableSlot *
ExecAllocTableSlot(List **tupleTable, TupleDesc desc,
				   const TupleTableSlotOps *tts_ops)
{
	TupleTableSlot *slot = MakeTupleTableSlot(desc, tts_ops);

	*tupleTable = lappend(*tupleTable, slot);

	return slot;
}

/* --------------------------------
 *		ExecResetTupleTable
 *
 *		This releases any resources (buffer pins, tupdesc refcounts)
 *		held by the tuple table, and optionally releases the memory
 *		occupied by the tuple table data structure.
 *		It is expected that this routine be called by ExecEndPlan().
 * --------------------------------
 */
void
ExecResetTupleTable(List *tupleTable,	/* tuple table */
					bool shouldFree)	/* true if we should free memory */
{
	ListCell   *lc;

	foreach(lc, tupleTable)
	{
		TupleTableSlot *slot = lfirst_node(TupleTableSlot, lc);

		/* Always release resources and reset the slot to empty */
		ExecClearTuple(slot);
		slot->tts_ops->release(slot);
		if (slot->tts_tupleDescriptor)
		{
			ReleaseTupleDesc(slot->tts_tupleDescriptor);
			slot->tts_tupleDescriptor = NULL;
		}

		/* If shouldFree, release memory occupied by the slot itself */
		if (shouldFree)
		{
			if (!TTS_FIXED(slot))
			{
				if (slot->tts_values)
					pfree(slot->tts_values);
				if (slot->tts_isnull)
					pfree(slot->tts_isnull);
			}
			pfree(slot);
		}
	}

	/* If shouldFree, release the list structure */
	if (shouldFree)
		list_free(tupleTable);
}

/* --------------------------------
 *		MakeSingleTupleTableSlot
 *
 *		This is a convenience routine for operations that need a standalone
 *		TupleTableSlot not gotten from the main executor tuple table.  It makes
 *		a single slot of given TupleTableSlotType and initializes it to use the
 *		given tuple descriptor.
 * --------------------------------
 */
TupleTableSlot *
MakeSingleTupleTableSlot(TupleDesc tupdesc,
						 const TupleTableSlotOps *tts_ops)
{
	TupleTableSlot *slot = MakeTupleTableSlot(tupdesc, tts_ops);

	return slot;
}

/* --------------------------------
 *		ExecDropSingleTupleTableSlot
 *
 *		Release a TupleTableSlot made with MakeSingleTupleTableSlot.
 *		DON'T use this on a slot that's part of a tuple table list!
 * --------------------------------
 */
void
ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
{
	/* This should match ExecResetTupleTable's processing of one slot */
	Assert(IsA(slot, TupleTableSlot));
	ExecClearTuple(slot);
	slot->tts_ops->release(slot);
	if (slot->tts_tupleDescriptor)
		ReleaseTupleDesc(slot->tts_tupleDescriptor);
	if (!TTS_FIXED(slot))
	{
		if (slot->tts_values)
			pfree(slot->tts_values);
		if (slot->tts_isnull)
			pfree(slot->tts_isnull);
	}
	pfree(slot);
}


/* ----------------------------------------------------------------
 *				  tuple table slot accessor functions
 * ----------------------------------------------------------------
 */

/* --------------------------------
 *		ExecSetSlotDescriptor
 *
 *		This function is used to set the tuple descriptor associated
 *		with the slot's tuple.  The passed descriptor must have lifespan
 *		at least equal to the slot's.  If it is a reference-counted descriptor
 *		then the reference count is incremented for as long as the slot holds
 *		a reference.
 * --------------------------------
 */
void
ExecSetSlotDescriptor(TupleTableSlot *slot, /* slot to change */
					  TupleDesc tupdesc)	/* new tuple descriptor */
{
	Assert(!TTS_FIXED(slot));

	/* For safety, make sure slot is empty before changing it */
	ExecClearTuple(slot);

	/*
	 * Release any old descriptor.  Also release old Datum/isnull arrays if
	 * present (we don't bother to check if they could be re-used).
	 */
	if (slot->tts_tupleDescriptor)
		ReleaseTupleDesc(slot->tts_tupleDescriptor);

	if (slot->tts_values)
		pfree(slot->tts_values);
	if (slot->tts_isnull)
		pfree(slot->tts_isnull);

	/*
	 * Install the new descriptor; if it's refcounted, bump its refcount.
	 */
	slot->tts_tupleDescriptor = tupdesc;
	PinTupleDesc(tupdesc);

	/*
	 * Allocate Datum/isnull arrays of the appropriate size.  These must have
	 * the same lifetime as the slot, so allocate in the slot's own context.
	 */
	slot->tts_values = (Datum *)
		MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(Datum));
	slot->tts_isnull = (bool *)
		MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(bool));
}

/* --------------------------------
 *		ExecStoreHeapTuple
 *
 *		This function is used to store an on-the-fly physical tuple into a specified
 *		slot in the tuple table.
 *
 *		tuple:	tuple to store
 *		slot:	TTSOpsHeapTuple type slot to store it in
 *		shouldFree: true if ExecClearTuple should pfree() the tuple
 *					when done with it
 *
 * shouldFree is normally set 'true' for tuples constructed on-the-fly.  But it
 * can be 'false' when the referenced tuple is held in a tuple table slot
 * belonging to a lower-level executor Proc node.  In this case the lower-level
 * slot retains ownership and responsibility for eventually releasing the
 * tuple.  When this method is used, we must be certain that the upper-level
 * Proc node will lose interest in the tuple sooner than the lower-level one
 * does!  If you're not certain, copy the lower-level tuple with heap_copytuple
 * and let the upper-level table slot assume ownership of the copy!
 *
 * Return value is just the passed-in slot pointer.
 *
 * If the target slot is not guaranteed to be TTSOpsHeapTuple type slot, use
 * the, more expensive, ExecForceStoreHeapTuple().
 * --------------------------------
 */
TupleTableSlot *
ExecStoreHeapTuple(HeapTuple tuple,
				   TupleTableSlot *slot,
				   bool shouldFree)
{
	/*
	 * sanity checks
	 */
	Assert(tuple != NULL);
	Assert(slot != NULL);
	Assert(slot->tts_tupleDescriptor != NULL);

	if (unlikely(!TTS_IS_HEAPTUPLE(slot)))
		elog(ERROR, "trying to store a heap tuple into wrong type of slot");
	tts_heap_store_tuple(slot, tuple, shouldFree);

	slot->tts_tableOid = tuple->t_tableOid;

	return slot;
}

/* --------------------------------
 *		ExecStoreBufferHeapTuple
 *
 *		This function is used to store an on-disk physical tuple from a buffer
 *		into a specified slot in the tuple table.
 *
 *		tuple:	tuple to store
 *		slot:	TTSOpsBufferHeapTuple type slot to store it in
 *		buffer: disk buffer if tuple is in a disk page, else InvalidBuffer
 *
 * The tuple table code acquires a pin on the buffer which is held until the
 * slot is cleared, so that the tuple won't go away on us.
 *
 * Return value is just the passed-in slot pointer.
 *
 * If the target slot is not guaranteed to be TTSOpsBufferHeapTuple type slot,
 * use the, more expensive, ExecForceStoreHeapTuple().
 * --------------------------------
 */
TupleTableSlot *
ExecStoreBufferHeapTuple(HeapTuple tuple,
						 TupleTableSlot *slot,
						 Buffer buffer)
{
	/*
	 * sanity checks
	 */
	Assert(tuple != NULL);
	Assert(slot != NULL);
	Assert(slot->tts_tupleDescriptor != NULL);
	Assert(BufferIsValid(buffer));

	if (unlikely(!TTS_IS_BUFFERTUPLE(slot)))
		elog(ERROR, "trying to store an on-disk heap tuple into wrong type of slot");
	tts_buffer_heap_store_tuple(slot, tuple, buffer, false);

	slot->tts_tableOid = tuple->t_tableOid;

	return slot;
}

/*
 * Like ExecStoreBufferHeapTuple, but transfer an existing pin from the caller
 * to the slot, i.e. the caller doesn't need to, and may not, release the pin.
 */
TupleTableSlot *
ExecStorePinnedBufferHeapTuple(HeapTuple tuple,
							   TupleTableSlot *slot,
							   Buffer buffer)
{
	/*
	 * sanity checks
	 */
	Assert(tuple != NULL);
	Assert(slot != NULL);
	Assert(slot->tts_tupleDescriptor != NULL);
	Assert(BufferIsValid(buffer));

	if (unlikely(!TTS_IS_BUFFERTUPLE(slot)))
		elog(ERROR, "trying to store an on-disk heap tuple into wrong type of slot");
	tts_buffer_heap_store_tuple(slot, tuple, buffer, true);

	slot->tts_tableOid = tuple->t_tableOid;

	return slot;
}

/*
 * Store a minimal tuple into TTSOpsMinimalTuple type slot.
 *
 * If the target slot is not guaranteed to be TTSOpsMinimalTuple type slot,
 * use the, more expensive, ExecForceStoreMinimalTuple().
 */
TupleTableSlot *
ExecStoreMinimalTuple(MinimalTuple mtup,
					  TupleTableSlot *slot,
					  bool shouldFree)
{
	/*
	 * sanity checks
	 */
	Assert(mtup != NULL);
	Assert(slot != NULL);
	Assert(slot->tts_tupleDescriptor != NULL);

	if (unlikely(!TTS_IS_MINIMALTUPLE(slot)))
		elog(ERROR, "trying to store a minimal tuple into wrong type of slot");
	tts_minimal_store_tuple(slot, mtup, shouldFree);

	return slot;
}

/*
 * Store a HeapTuple into any kind of slot, performing conversion if
 * necessary.
 */
void
ExecForceStoreHeapTuple(HeapTuple tuple,
						TupleTableSlot *slot,
						bool shouldFree)
{
	if (TTS_IS_HEAPTUPLE(slot))
	{
		ExecStoreHeapTuple(tuple, slot, shouldFree);
	}
	else if (TTS_IS_BUFFERTUPLE(slot))
	{
		MemoryContext oldContext;
		BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;

		ExecClearTuple(slot);
		slot->tts_flags &= ~TTS_FLAG_EMPTY;
		oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
		bslot->base.tuple = heap_copytuple(tuple);
		slot->tts_flags |= TTS_FLAG_SHOULDFREE;
		MemoryContextSwitchTo(oldContext);

		if (shouldFree)
			pfree(tuple);
	}
	else
	{
		ExecClearTuple(slot);
		heap_deform_tuple(tuple, slot->tts_tupleDescriptor,
						  slot->tts_values, slot->tts_isnull);
		ExecStoreVirtualTuple(slot);

		if (shouldFree)
		{
			ExecMaterializeSlot(slot);
			pfree(tuple);
		}
	}
}

/*
 * Store a MinimalTuple into any kind of slot, performing conversion if
 * necessary.
 */
void
ExecForceStoreMinimalTuple(MinimalTuple mtup,
						   TupleTableSlot *slot,
						   bool shouldFree)
{
	if (TTS_IS_MINIMALTUPLE(slot))
	{
		tts_minimal_store_tuple(slot, mtup, shouldFree);
	}
	else
	{
		HeapTupleData htup;

		ExecClearTuple(slot);

		htup.t_len = mtup->t_len + MINIMAL_TUPLE_OFFSET;
		htup.t_data = (HeapTupleHeader) ((char *) mtup - MINIMAL_TUPLE_OFFSET);
		heap_deform_tuple(&htup, slot->tts_tupleDescriptor,
						  slot->tts_values, slot->tts_isnull);
		ExecStoreVirtualTuple(slot);

		if (shouldFree)
		{
			ExecMaterializeSlot(slot);
			pfree(mtup);
		}
	}
}

/* --------------------------------
 *		ExecStoreVirtualTuple
 *			Mark a slot as containing a virtual tuple.
 *
 * The protocol for loading a slot with virtual tuple data is:
 *		* Call ExecClearTuple to mark the slot empty.
 *		* Store data into the Datum/isnull arrays.
 *		* Call ExecStoreVirtualTuple to mark the slot valid.
 * This is a bit unclean but it avoids one round of data copying.
 * --------------------------------
 */
TupleTableSlot *
ExecStoreVirtualTuple(TupleTableSlot *slot)
{
	/*
	 * sanity checks
	 */
	Assert(slot != NULL);
	Assert(slot->tts_tupleDescriptor != NULL);
	Assert(TTS_EMPTY(slot));

	slot->tts_flags &= ~TTS_FLAG_EMPTY;
	slot->tts_nvalid = slot->tts_tupleDescriptor->natts;

	return slot;
}

/* --------------------------------
 *		ExecStoreAllNullTuple
 *			Set up the slot to contain a null in every column.
 *
 * At first glance this might sound just like ExecClearTuple, but it's
 * entirely different: the slot ends up full, not empty.
 * --------------------------------
 */
TupleTableSlot *
ExecStoreAllNullTuple(TupleTableSlot *slot)
{
	/*
	 * sanity checks
	 */
	Assert(slot != NULL);
	Assert(slot->tts_tupleDescriptor != NULL);

	/* Clear any old contents */
	ExecClearTuple(slot);

	/*
	 * Fill all the columns of the virtual tuple with nulls
	 */
	MemSet(slot->tts_values, 0,
		   slot->tts_tupleDescriptor->natts * sizeof(Datum));
	memset(slot->tts_isnull, true,
		   slot->tts_tupleDescriptor->natts * sizeof(bool));

	return ExecStoreVirtualTuple(slot);
}

/*
 * Store a HeapTuple in datum form, into a slot. That always requires
 * deforming it and storing it in virtual form.
 *
 * Until the slot is materialized, the contents of the slot depend on the
 * datum.
 */
void
ExecStoreHeapTupleDatum(Datum data, TupleTableSlot *slot)
{
	HeapTupleData tuple = {0};
	HeapTupleHeader td;

	td = DatumGetHeapTupleHeader(data);

	tuple.t_len = HeapTupleHeaderGetDatumLength(td);
	tuple.t_self = td->t_ctid;
	tuple.t_data = td;

	ExecClearTuple(slot);

	heap_deform_tuple(&tuple, slot->tts_tupleDescriptor,
					  slot->tts_values, slot->tts_isnull);
	ExecStoreVirtualTuple(slot);
}

/*
 * ExecFetchSlotHeapTuple - fetch HeapTuple representing the slot's content
 *
 * The returned HeapTuple represents the slot's content as closely as
 * possible.
 *
 * If materialize is true, the contents of the slots will be made independent
 * from the underlying storage (i.e. all buffer pins are released, memory is
 * allocated in the slot's context).
 *
 * If shouldFree is not-NULL it'll be set to true if the returned tuple has
 * been allocated in the calling memory context, and must be freed by the
 * caller (via explicit pfree() or a memory context reset).
 *
 * NB: If materialize is true, modifications of the returned tuple are
 * allowed. But it depends on the type of the slot whether such modifications
 * will also affect the slot's contents. While that is not the nicest
 * behaviour, all such modifications are in the process of being removed.
 */
HeapTuple
ExecFetchSlotHeapTuple(TupleTableSlot *slot, bool materialize, bool *shouldFree)
{
	/*
	 * sanity checks
	 */
	Assert(slot != NULL);
	Assert(!TTS_EMPTY(slot));

	/* Materialize the tuple so that the slot "owns" it, if requested. */
	if (materialize)
		slot->tts_ops->materialize(slot);

	if (slot->tts_ops->get_heap_tuple == NULL)
	{
		if (shouldFree)
			*shouldFree = true;
		return slot->tts_ops->copy_heap_tuple(slot);
	}
	else
	{
		if (shouldFree)
			*shouldFree = false;
		return slot->tts_ops->get_heap_tuple(slot);
	}
}

/* --------------------------------
 *		ExecFetchSlotMinimalTuple
 *			Fetch the slot's minimal physical tuple.
 *
 *		If the given tuple table slot can hold a minimal tuple, indicated by a
 *		non-NULL get_minimal_tuple callback, the function returns the minimal
 *		tuple returned by that callback. It assumes that the minimal tuple
 *		returned by the callback is "owned" by the slot i.e. the slot is
 *		responsible for freeing the memory consumed by the tuple. Hence it sets
 *		*shouldFree to false, indicating that the caller should not free the
 *		memory consumed by the minimal tuple. In this case the returned minimal
 *		tuple should be considered as read-only.
 *
 *		If that callback is not supported, it calls copy_minimal_tuple callback
 *		which is expected to return a copy of minimal tuple representing the
 *		contents of the slot. In this case *shouldFree is set to true,
 *		indicating the caller that it should free the memory consumed by the
 *		minimal tuple. In this case the returned minimal tuple may be written
 *		up.
 * --------------------------------
 */
MinimalTuple
ExecFetchSlotMinimalTuple(TupleTableSlot *slot,
						  bool *shouldFree)
{
	/*
	 * sanity checks
	 */
	Assert(slot != NULL);
	Assert(!TTS_EMPTY(slot));

	if (slot->tts_ops->get_minimal_tuple)
	{
		if (shouldFree)
			*shouldFree = false;
		return slot->tts_ops->get_minimal_tuple(slot);
	}
	else
	{
		if (shouldFree)
			*shouldFree = true;
		return slot->tts_ops->copy_minimal_tuple(slot);
	}
}

/* --------------------------------
 *		ExecFetchSlotHeapTupleDatum
 *			Fetch the slot's tuple as a composite-type Datum.
 *
 *		The result is always freshly palloc'd in the caller's memory context.
 * --------------------------------
 */
Datum
ExecFetchSlotHeapTupleDatum(TupleTableSlot *slot)
{
	HeapTuple	tup;
	TupleDesc	tupdesc;
	bool		shouldFree;
	Datum		ret;

	/* Fetch slot's contents in regular-physical-tuple form */
	tup = ExecFetchSlotHeapTuple(slot, false, &shouldFree);
	tupdesc = slot->tts_tupleDescriptor;

	/* Convert to Datum form */
	ret = heap_copy_tuple_as_datum(tup, tupdesc);

	if (shouldFree)
		pfree(tup);

	return ret;
}

/* ----------------------------------------------------------------
 *				convenience initialization routines
 * ----------------------------------------------------------------
 */

/* ----------------
 *		ExecInitResultTypeTL
 *
 *		Initialize result type, using the plan node's targetlist.
 * ----------------
 */
void
ExecInitResultTypeTL(PlanState *planstate)
{
	TupleDesc	tupDesc = ExecTypeFromTL(planstate->plan->targetlist);

	planstate->ps_ResultTupleDesc = tupDesc;
}

/* --------------------------------
 *		ExecInit{Result,Scan,Extra}TupleSlot[TL]
 *
 *		These are convenience routines to initialize the specified slot
 *		in nodes inheriting the appropriate state.  ExecInitExtraTupleSlot
 *		is used for initializing special-purpose slots.
 * --------------------------------
 */

/* ----------------
 *		ExecInitResultTupleSlotTL
 *
 *		Initialize result tuple slot, using the tuple descriptor previously
 *		computed with ExecInitResultTypeTL().
 * ----------------
 */
void
ExecInitResultSlot(PlanState *planstate, const TupleTableSlotOps *tts_ops)
{
	TupleTableSlot *slot;

	slot = ExecAllocTableSlot(&planstate->state->es_tupleTable,
							  planstate->ps_ResultTupleDesc, tts_ops);
	planstate->ps_ResultTupleSlot = slot;

	planstate->resultopsfixed = planstate->ps_ResultTupleDesc != NULL;
	planstate->resultops = tts_ops;
	planstate->resultopsset = true;
}

/* ----------------
 *		ExecInitResultTupleSlotTL
 *
 *		Initialize result tuple slot, using the plan node's targetlist.
 * ----------------
 */
void
ExecInitResultTupleSlotTL(PlanState *planstate,
						  const TupleTableSlotOps *tts_ops)
{
	ExecInitResultTypeTL(planstate);
	ExecInitResultSlot(planstate, tts_ops);
}

/* ----------------
 *		ExecInitScanTupleSlot
 * ----------------
 */
void
ExecInitScanTupleSlot(EState *estate, ScanState *scanstate,
					  TupleDesc tupledesc, const TupleTableSlotOps *tts_ops)
{
	scanstate->ss_ScanTupleSlot = ExecAllocTableSlot(&estate->es_tupleTable,
													 tupledesc, tts_ops);
	scanstate->ps.scandesc = tupledesc;
	scanstate->ps.scanopsfixed = tupledesc != NULL;
	scanstate->ps.scanops = tts_ops;
	scanstate->ps.scanopsset = true;
}

/* ----------------
 *		ExecInitExtraTupleSlot
 *
 * Return a newly created slot. If tupledesc is non-NULL the slot will have
 * that as its fixed tupledesc. Otherwise the caller needs to use
 * ExecSetSlotDescriptor() to set the descriptor before use.
 * ----------------
 */
TupleTableSlot *
ExecInitExtraTupleSlot(EState *estate,
					   TupleDesc tupledesc,
					   const TupleTableSlotOps *tts_ops)
{
	return ExecAllocTableSlot(&estate->es_tupleTable, tupledesc, tts_ops);
}

/* ----------------
 *		ExecInitNullTupleSlot
 *
 * Build a slot containing an all-nulls tuple of the given type.
 * This is used as a substitute for an input tuple when performing an
 * outer join.
 * ----------------
 */
TupleTableSlot *
ExecInitNullTupleSlot(EState *estate, TupleDesc tupType,
					  const TupleTableSlotOps *tts_ops)
{
	TupleTableSlot *slot = ExecInitExtraTupleSlot(estate, tupType, tts_ops);

	return ExecStoreAllNullTuple(slot);
}

/* ---------------------------------------------------------------
 *      Routines for setting/accessing attributes in a slot.
 * ---------------------------------------------------------------
 */

/*
 * Fill in missing values for a TupleTableSlot.
 *
 * This is only exposed because it's needed for JIT compiled tuple
 * deforming. That exception aside, there should be no callers outside of this
 * file.
 */
void
slot_getmissingattrs(TupleTableSlot *slot, int startAttNum, int lastAttNum)
{
	AttrMissing *attrmiss = NULL;

	if (slot->tts_tupleDescriptor->constr)
		attrmiss = slot->tts_tupleDescriptor->constr->missing;

	if (!attrmiss)
	{
		/* no missing values array at all, so just fill everything in as NULL */
		memset(slot->tts_values + startAttNum, 0,
			   (lastAttNum - startAttNum) * sizeof(Datum));
		memset(slot->tts_isnull + startAttNum, 1,
			   (lastAttNum - startAttNum) * sizeof(bool));
	}
	else
	{
		int			missattnum;

		/* if there is a missing values array we must process them one by one */
		for (missattnum = startAttNum;
			 missattnum < lastAttNum;
			 missattnum++)
		{
			slot->tts_values[missattnum] = attrmiss[missattnum].am_value;
			slot->tts_isnull[missattnum] = !attrmiss[missattnum].am_present;
		}
	}
}

/*
 * slot_getsomeattrs_int - workhorse for slot_getsomeattrs()
 */
void
slot_getsomeattrs_int(TupleTableSlot *slot, int attnum)
{
	/* Check for caller errors */
	Assert(slot->tts_nvalid < attnum);	/* checked in slot_getsomeattrs */
	Assert(attnum > 0);

	if (unlikely(attnum > slot->tts_tupleDescriptor->natts))
		elog(ERROR, "invalid attribute number %d", attnum);

	/* Fetch as many attributes as possible from the underlying tuple. */
	slot->tts_ops->getsomeattrs(slot, attnum);

	/*
	 * If the underlying tuple doesn't have enough attributes, tuple
	 * descriptor must have the missing attributes.
	 */
	if (unlikely(slot->tts_nvalid < attnum))
	{
		slot_getmissingattrs(slot, slot->tts_nvalid, attnum);
		slot->tts_nvalid = attnum;
	}
}

/* ----------------------------------------------------------------
 *		ExecTypeFromTL
 *
 *		Generate a tuple descriptor for the result tuple of a targetlist.
 *		(A parse/plan tlist must be passed, not an ExprState tlist.)
 *		Note that resjunk columns, if any, are included in the result.
 *
 *		Currently there are about 4 different places where we create
 *		TupleDescriptors.  They should all be merged, or perhaps
 *		be rewritten to call BuildDesc().
 * ----------------------------------------------------------------
 */
TupleDesc
ExecTypeFromTL(List *targetList)
{
	return ExecTypeFromTLInternal(targetList, false);
}

/* ----------------------------------------------------------------
 *		ExecCleanTypeFromTL
 *
 *		Same as above, but resjunk columns are omitted from the result.
 * ----------------------------------------------------------------
 */
TupleDesc
ExecCleanTypeFromTL(List *targetList)
{
	return ExecTypeFromTLInternal(targetList, true);
}

static TupleDesc
ExecTypeFromTLInternal(List *targetList, bool skipjunk)
{
	TupleDesc	typeInfo;
	ListCell   *l;
	int			len;
	int			cur_resno = 1;

	if (skipjunk)
		len = ExecCleanTargetListLength(targetList);
	else
		len = ExecTargetListLength(targetList);
	typeInfo = CreateTemplateTupleDesc(len);

	foreach(l, targetList)
	{
		TargetEntry *tle = lfirst(l);

		if (skipjunk && tle->resjunk)
			continue;
		TupleDescInitEntry(typeInfo,
						   cur_resno,
						   tle->resname,
						   exprType((Node *) tle->expr),
						   exprTypmod((Node *) tle->expr),
						   0);
		TupleDescInitEntryCollation(typeInfo,
									cur_resno,
									exprCollation((Node *) tle->expr));
		cur_resno++;
	}

	return typeInfo;
}

/*
 * ExecTypeFromExprList - build a tuple descriptor from a list of Exprs
 *
 * This is roughly like ExecTypeFromTL, but we work from bare expressions
 * not TargetEntrys.  No names are attached to the tupledesc's columns.
 */
TupleDesc
ExecTypeFromExprList(List *exprList)
{
	TupleDesc	typeInfo;
	ListCell   *lc;
	int			cur_resno = 1;

	typeInfo = CreateTemplateTupleDesc(list_length(exprList));

	foreach(lc, exprList)
	{
		Node	   *e = lfirst(lc);

		TupleDescInitEntry(typeInfo,
						   cur_resno,
						   NULL,
						   exprType(e),
						   exprTypmod(e),
						   0);
		TupleDescInitEntryCollation(typeInfo,
									cur_resno,
									exprCollation(e));
		cur_resno++;
	}

	return typeInfo;
}

/*
 * ExecTypeSetColNames - set column names in a RECORD TupleDesc
 *
 * Column names must be provided as an alias list (list of String nodes).
 */
void
ExecTypeSetColNames(TupleDesc typeInfo, List *namesList)
{
	int			colno = 0;
	ListCell   *lc;

	/* It's only OK to change col names in a not-yet-blessed RECORD type */
	Assert(typeInfo->tdtypeid == RECORDOID);
	Assert(typeInfo->tdtypmod < 0);

	foreach(lc, namesList)
	{
		char	   *cname = strVal(lfirst(lc));
		Form_pg_attribute attr;

		/* Guard against too-long names list (probably can't happen) */
		if (colno >= typeInfo->natts)
			break;
		attr = TupleDescAttr(typeInfo, colno);
		colno++;

		/*
		 * Do nothing for empty aliases or dropped columns (these cases
		 * probably can't arise in RECORD types, either)
		 */
		if (cname[0] == '\0' || attr->attisdropped)
			continue;

		/* OK, assign the column name */
		namestrcpy(&(attr->attname), cname);
	}
}

/*
 * BlessTupleDesc - make a completed tuple descriptor useful for SRFs
 *
 * Rowtype Datums returned by a function must contain valid type information.
 * This happens "for free" if the tupdesc came from a relcache entry, but
 * not if we have manufactured a tupdesc for a transient RECORD datatype.
 * In that case we have to notify typcache.c of the existence of the type.
 */
TupleDesc
BlessTupleDesc(TupleDesc tupdesc)
{
	if (tupdesc->tdtypeid == RECORDOID &&
		tupdesc->tdtypmod < 0)
		assign_record_type_typmod(tupdesc);

	return tupdesc;				/* just for notational convenience */
}

/*
 * TupleDescGetAttInMetadata - Build an AttInMetadata structure based on the
 * supplied TupleDesc. AttInMetadata can be used in conjunction with C strings
 * to produce a properly formed tuple.
 */
AttInMetadata *
TupleDescGetAttInMetadata(TupleDesc tupdesc)
{
	int			natts = tupdesc->natts;
	int			i;
	Oid			atttypeid;
	Oid			attinfuncid;
	FmgrInfo   *attinfuncinfo;
	Oid		   *attioparams;
	int32	   *atttypmods;
	AttInMetadata *attinmeta;

	attinmeta = (AttInMetadata *) palloc(sizeof(AttInMetadata));

	/* "Bless" the tupledesc so that we can make rowtype datums with it */
	attinmeta->tupdesc = BlessTupleDesc(tupdesc);

	/*
	 * Gather info needed later to call the "in" function for each attribute
	 */
	attinfuncinfo = (FmgrInfo *) palloc0(natts * sizeof(FmgrInfo));
	attioparams = (Oid *) palloc0(natts * sizeof(Oid));
	atttypmods = (int32 *) palloc0(natts * sizeof(int32));

	for (i = 0; i < natts; i++)
	{
		Form_pg_attribute att = TupleDescAttr(tupdesc, i);

		/* Ignore dropped attributes */
		if (!att->attisdropped)
		{
			atttypeid = att->atttypid;
			getTypeInputInfo(atttypeid, &attinfuncid, &attioparams[i]);
			fmgr_info(attinfuncid, &attinfuncinfo[i]);
			atttypmods[i] = att->atttypmod;
		}
	}
	attinmeta->attinfuncs = attinfuncinfo;
	attinmeta->attioparams = attioparams;
	attinmeta->atttypmods = atttypmods;

	return attinmeta;
}

/*
 * BuildTupleFromCStrings - build a HeapTuple given user data in C string form.
 * values is an array of C strings, one for each attribute of the return tuple.
 * A NULL string pointer indicates we want to create a NULL field.
 */
HeapTuple
BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)
{
	TupleDesc	tupdesc = attinmeta->tupdesc;
	int			natts = tupdesc->natts;
	Datum	   *dvalues;
	bool	   *nulls;
	int			i;
	HeapTuple	tuple;

	dvalues = (Datum *) palloc(natts * sizeof(Datum));
	nulls = (bool *) palloc(natts * sizeof(bool));

	/*
	 * Call the "in" function for each non-dropped attribute, even for nulls,
	 * to support domains.
	 */
	for (i = 0; i < natts; i++)
	{
		if (!TupleDescAttr(tupdesc, i)->attisdropped)
		{
			/* Non-dropped attributes */
			dvalues[i] = InputFunctionCall(&attinmeta->attinfuncs[i],
										   values[i],
										   attinmeta->attioparams[i],
										   attinmeta->atttypmods[i]);
			if (values[i] != NULL)
				nulls[i] = false;
			else
				nulls[i] = true;
		}
		else
		{
			/* Handle dropped attributes by setting to NULL */
			dvalues[i] = (Datum) 0;
			nulls[i] = true;
		}
	}

	/*
	 * Form a tuple
	 */
	tuple = heap_form_tuple(tupdesc, dvalues, nulls);

	/*
	 * Release locally palloc'd space.  XXX would probably be good to pfree
	 * values of pass-by-reference datums, as well.
	 */
	pfree(dvalues);
	pfree(nulls);

	return tuple;
}

/*
 * HeapTupleHeaderGetDatum - convert a HeapTupleHeader pointer to a Datum.
 *
 * This must *not* get applied to an on-disk tuple; the tuple should be
 * freshly made by heap_form_tuple or some wrapper routine for it (such as
 * BuildTupleFromCStrings).  Be sure also that the tupledesc used to build
 * the tuple has a properly "blessed" rowtype.
 *
 * Formerly this was a macro equivalent to PointerGetDatum, relying on the
 * fact that heap_form_tuple fills in the appropriate tuple header fields
 * for a composite Datum.  However, we now require that composite Datums not
 * contain any external TOAST pointers.  We do not want heap_form_tuple itself
 * to enforce that; more specifically, the rule applies only to actual Datums
 * and not to HeapTuple structures.  Therefore, HeapTupleHeaderGetDatum is
 * now a function that detects whether there are externally-toasted fields
 * and constructs a new tuple with inlined fields if so.  We still need
 * heap_form_tuple to insert the Datum header fields, because otherwise this
 * code would have no way to obtain a tupledesc for the tuple.
 *
 * Note that if we do build a new tuple, it's palloc'd in the current
 * memory context.  Beware of code that changes context between the initial
 * heap_form_tuple/etc call and calling HeapTuple(Header)GetDatum.
 *
 * For performance-critical callers, it could be worthwhile to take extra
 * steps to ensure that there aren't TOAST pointers in the output of
 * heap_form_tuple to begin with.  It's likely however that the costs of the
 * typcache lookup and tuple disassembly/reassembly are swamped by TOAST
 * dereference costs, so that the benefits of such extra effort would be
 * minimal.
 *
 * XXX it would likely be better to create wrapper functions that produce
 * a composite Datum from the field values in one step.  However, there's
 * enough code using the existing APIs that we couldn't get rid of this
 * hack anytime soon.
 */
Datum
HeapTupleHeaderGetDatum(HeapTupleHeader tuple)
{
	Datum		result;
	TupleDesc	tupDesc;

	/* No work if there are no external TOAST pointers in the tuple */
	if (!HeapTupleHeaderHasExternal(tuple))
		return PointerGetDatum(tuple);

	/* Use the type data saved by heap_form_tuple to look up the rowtype */
	tupDesc = lookup_rowtype_tupdesc(HeapTupleHeaderGetTypeId(tuple),
									 HeapTupleHeaderGetTypMod(tuple));

	/* And do the flattening */
	result = toast_flatten_tuple_to_datum(tuple,
										  HeapTupleHeaderGetDatumLength(tuple),
										  tupDesc);

	ReleaseTupleDesc(tupDesc);

	return result;
}


/*
 * Functions for sending tuples to the frontend (or other specified destination)
 * as though it is a SELECT result. These are used by utility commands that
 * need to project directly to the destination and don't need or want full
 * table function capability. Currently used by EXPLAIN and SHOW ALL.
 */
TupOutputState *
begin_tup_output_tupdesc(DestReceiver *dest,
						 TupleDesc tupdesc,
						 const TupleTableSlotOps *tts_ops)
{
	TupOutputState *tstate;

	tstate = (TupOutputState *) palloc(sizeof(TupOutputState));

	tstate->slot = MakeSingleTupleTableSlot(tupdesc, tts_ops);
	tstate->dest = dest;

	tstate->dest->rStartup(tstate->dest, (int) CMD_SELECT, tupdesc);

	return tstate;
}

/*
 * write a single tuple
 */
void
do_tup_output(TupOutputState *tstate, Datum *values, bool *isnull)
{
	TupleTableSlot *slot = tstate->slot;
	int			natts = slot->tts_tupleDescriptor->natts;

	/* make sure the slot is clear */
	ExecClearTuple(slot);

	/* insert data */
	memcpy(slot->tts_values, values, natts * sizeof(Datum));
	memcpy(slot->tts_isnull, isnull, natts * sizeof(bool));

	/* mark slot as containing a virtual tuple */
	ExecStoreVirtualTuple(slot);

	/* send the tuple to the receiver */
	(void) tstate->dest->receiveSlot(slot, tstate->dest);

	/* clean up */
	ExecClearTuple(slot);
}

/*
 * write a chunk of text, breaking at newline characters
 *
 * Should only be used with a single-TEXT-attribute tupdesc.
 */
void
do_text_output_multiline(TupOutputState *tstate, const char *txt)
{
	Datum		values[1];
	bool		isnull[1] = {false};

	while (*txt)
	{
		const char *eol;
		int			len;

		eol = strchr(txt, '\n');
		if (eol)
		{
			len = eol - txt;
			eol++;
		}
		else
		{
			len = strlen(txt);
			eol = txt + len;
		}

		values[0] = PointerGetDatum(cstring_to_text_with_len(txt, len));
		do_tup_output(tstate, values, isnull);
		pfree(DatumGetPointer(values[0]));
		txt = eol;
	}
}

void
end_tup_output(TupOutputState *tstate)
{
	tstate->dest->rShutdown(tstate->dest);
	/* note that destroying the dest is not ours to do */
	ExecDropSingleTupleTableSlot(tstate->slot);
	pfree(tstate);
}