1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
|
/*-------------------------------------------------------------------------
*
* nodeMergeAppend.c
* routines to handle MergeAppend nodes.
*
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/executor/nodeMergeAppend.c
*
*-------------------------------------------------------------------------
*/
/* INTERFACE ROUTINES
* ExecInitMergeAppend - initialize the MergeAppend node
* ExecMergeAppend - retrieve the next tuple from the node
* ExecEndMergeAppend - shut down the MergeAppend node
* ExecReScanMergeAppend - rescan the MergeAppend node
*
* NOTES
* A MergeAppend node contains a list of one or more subplans.
* These are each expected to deliver tuples that are sorted according
* to a common sort key. The MergeAppend node merges these streams
* to produce output sorted the same way.
*
* MergeAppend nodes don't make use of their left and right
* subtrees, rather they maintain a list of subplans so
* a typical MergeAppend node looks like this in the plan tree:
*
* ...
* /
* MergeAppend---+------+------+--- nil
* / \ | | |
* nil nil ... ... ...
* subplans
*/
#include "postgres.h"
#include "executor/execdebug.h"
#include "executor/execPartition.h"
#include "executor/nodeMergeAppend.h"
#include "lib/binaryheap.h"
#include "miscadmin.h"
/*
* We have one slot for each item in the heap array. We use SlotNumber
* to store slot indexes. This doesn't actually provide any formal
* type-safety, but it makes the code more self-documenting.
*/
typedef int32 SlotNumber;
static TupleTableSlot *ExecMergeAppend(PlanState *pstate);
static int heap_compare_slots(Datum a, Datum b, void *arg);
/* ----------------------------------------------------------------
* ExecInitMergeAppend
*
* Begin all of the subscans of the MergeAppend node.
* ----------------------------------------------------------------
*/
MergeAppendState *
ExecInitMergeAppend(MergeAppend *node, EState *estate, int eflags)
{
MergeAppendState *mergestate = makeNode(MergeAppendState);
PlanState **mergeplanstates;
Bitmapset *validsubplans;
int nplans;
int i,
j;
/* check for unsupported flags */
Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
/*
* create new MergeAppendState for our node
*/
mergestate->ps.plan = (Plan *) node;
mergestate->ps.state = estate;
mergestate->ps.ExecProcNode = ExecMergeAppend;
/* If run-time partition pruning is enabled, then set that up now */
if (node->part_prune_info != NULL)
{
PartitionPruneState *prunestate;
/* We may need an expression context to evaluate partition exprs */
ExecAssignExprContext(estate, &mergestate->ps);
prunestate = ExecCreatePartitionPruneState(&mergestate->ps,
node->part_prune_info);
mergestate->ms_prune_state = prunestate;
/* Perform an initial partition prune, if required. */
if (prunestate->do_initial_prune)
{
/* Determine which subplans survive initial pruning */
validsubplans = ExecFindInitialMatchingSubPlans(prunestate,
list_length(node->mergeplans));
nplans = bms_num_members(validsubplans);
}
else
{
/* We'll need to initialize all subplans */
nplans = list_length(node->mergeplans);
Assert(nplans > 0);
validsubplans = bms_add_range(NULL, 0, nplans - 1);
}
/*
* When no run-time pruning is required and there's at least one
* subplan, we can fill as_valid_subplans immediately, preventing
* later calls to ExecFindMatchingSubPlans.
*/
if (!prunestate->do_exec_prune && nplans > 0)
mergestate->ms_valid_subplans = bms_add_range(NULL, 0, nplans - 1);
}
else
{
nplans = list_length(node->mergeplans);
/*
* When run-time partition pruning is not enabled we can just mark all
* subplans as valid; they must also all be initialized.
*/
Assert(nplans > 0);
mergestate->ms_valid_subplans = validsubplans =
bms_add_range(NULL, 0, nplans - 1);
mergestate->ms_prune_state = NULL;
}
mergeplanstates = (PlanState **) palloc(nplans * sizeof(PlanState *));
mergestate->mergeplans = mergeplanstates;
mergestate->ms_nplans = nplans;
mergestate->ms_slots = (TupleTableSlot **) palloc0(sizeof(TupleTableSlot *) * nplans);
mergestate->ms_heap = binaryheap_allocate(nplans, heap_compare_slots,
mergestate);
/*
* Miscellaneous initialization
*
* MergeAppend nodes do have Result slots, which hold pointers to tuples,
* so we have to initialize them. FIXME
*/
ExecInitResultTupleSlotTL(&mergestate->ps, &TTSOpsVirtual);
/* node returns slots from each of its subnodes, therefore not fixed */
mergestate->ps.resultopsset = true;
mergestate->ps.resultopsfixed = false;
/*
* call ExecInitNode on each of the valid plans to be executed and save
* the results into the mergeplanstates array.
*/
j = 0;
i = -1;
while ((i = bms_next_member(validsubplans, i)) >= 0)
{
Plan *initNode = (Plan *) list_nth(node->mergeplans, i);
mergeplanstates[j++] = ExecInitNode(initNode, estate, eflags);
}
mergestate->ps.ps_ProjInfo = NULL;
/*
* initialize sort-key information
*/
mergestate->ms_nkeys = node->numCols;
mergestate->ms_sortkeys = palloc0(sizeof(SortSupportData) * node->numCols);
for (i = 0; i < node->numCols; i++)
{
SortSupport sortKey = mergestate->ms_sortkeys + i;
sortKey->ssup_cxt = CurrentMemoryContext;
sortKey->ssup_collation = node->collations[i];
sortKey->ssup_nulls_first = node->nullsFirst[i];
sortKey->ssup_attno = node->sortColIdx[i];
/*
* It isn't feasible to perform abbreviated key conversion, since
* tuples are pulled into mergestate's binary heap as needed. It
* would likely be counter-productive to convert tuples into an
* abbreviated representation as they're pulled up, so opt out of that
* additional optimization entirely.
*/
sortKey->abbreviate = false;
PrepareSortSupportFromOrderingOp(node->sortOperators[i], sortKey);
}
/*
* initialize to show we have not run the subplans yet
*/
mergestate->ms_initialized = false;
return mergestate;
}
/* ----------------------------------------------------------------
* ExecMergeAppend
*
* Handles iteration over multiple subplans.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecMergeAppend(PlanState *pstate)
{
MergeAppendState *node = castNode(MergeAppendState, pstate);
TupleTableSlot *result;
SlotNumber i;
CHECK_FOR_INTERRUPTS();
if (!node->ms_initialized)
{
/* Nothing to do if all subplans were pruned */
if (node->ms_nplans == 0)
return ExecClearTuple(node->ps.ps_ResultTupleSlot);
/*
* If we've yet to determine the valid subplans then do so now. If
* run-time pruning is disabled then the valid subplans will always be
* set to all subplans.
*/
if (node->ms_valid_subplans == NULL)
node->ms_valid_subplans =
ExecFindMatchingSubPlans(node->ms_prune_state);
/*
* First time through: pull the first tuple from each valid subplan,
* and set up the heap.
*/
i = -1;
while ((i = bms_next_member(node->ms_valid_subplans, i)) >= 0)
{
node->ms_slots[i] = ExecProcNode(node->mergeplans[i]);
if (!TupIsNull(node->ms_slots[i]))
binaryheap_add_unordered(node->ms_heap, Int32GetDatum(i));
}
binaryheap_build(node->ms_heap);
node->ms_initialized = true;
}
else
{
/*
* Otherwise, pull the next tuple from whichever subplan we returned
* from last time, and reinsert the subplan index into the heap,
* because it might now compare differently against the existing
* elements of the heap. (We could perhaps simplify the logic a bit
* by doing this before returning from the prior call, but it's better
* to not pull tuples until necessary.)
*/
i = DatumGetInt32(binaryheap_first(node->ms_heap));
node->ms_slots[i] = ExecProcNode(node->mergeplans[i]);
if (!TupIsNull(node->ms_slots[i]))
binaryheap_replace_first(node->ms_heap, Int32GetDatum(i));
else
(void) binaryheap_remove_first(node->ms_heap);
}
if (binaryheap_empty(node->ms_heap))
{
/* All the subplans are exhausted, and so is the heap */
result = ExecClearTuple(node->ps.ps_ResultTupleSlot);
}
else
{
i = DatumGetInt32(binaryheap_first(node->ms_heap));
result = node->ms_slots[i];
}
return result;
}
/*
* Compare the tuples in the two given slots.
*/
static int32
heap_compare_slots(Datum a, Datum b, void *arg)
{
MergeAppendState *node = (MergeAppendState *) arg;
SlotNumber slot1 = DatumGetInt32(a);
SlotNumber slot2 = DatumGetInt32(b);
TupleTableSlot *s1 = node->ms_slots[slot1];
TupleTableSlot *s2 = node->ms_slots[slot2];
int nkey;
Assert(!TupIsNull(s1));
Assert(!TupIsNull(s2));
for (nkey = 0; nkey < node->ms_nkeys; nkey++)
{
SortSupport sortKey = node->ms_sortkeys + nkey;
AttrNumber attno = sortKey->ssup_attno;
Datum datum1,
datum2;
bool isNull1,
isNull2;
int compare;
datum1 = slot_getattr(s1, attno, &isNull1);
datum2 = slot_getattr(s2, attno, &isNull2);
compare = ApplySortComparator(datum1, isNull1,
datum2, isNull2,
sortKey);
if (compare != 0)
{
INVERT_COMPARE_RESULT(compare);
return compare;
}
}
return 0;
}
/* ----------------------------------------------------------------
* ExecEndMergeAppend
*
* Shuts down the subscans of the MergeAppend node.
*
* Returns nothing of interest.
* ----------------------------------------------------------------
*/
void
ExecEndMergeAppend(MergeAppendState *node)
{
PlanState **mergeplans;
int nplans;
int i;
/*
* get information from the node
*/
mergeplans = node->mergeplans;
nplans = node->ms_nplans;
/*
* shut down each of the subscans
*/
for (i = 0; i < nplans; i++)
ExecEndNode(mergeplans[i]);
}
void
ExecReScanMergeAppend(MergeAppendState *node)
{
int i;
/*
* If any PARAM_EXEC Params used in pruning expressions have changed, then
* we'd better unset the valid subplans so that they are reselected for
* the new parameter values.
*/
if (node->ms_prune_state &&
bms_overlap(node->ps.chgParam,
node->ms_prune_state->execparamids))
{
bms_free(node->ms_valid_subplans);
node->ms_valid_subplans = NULL;
}
for (i = 0; i < node->ms_nplans; i++)
{
PlanState *subnode = node->mergeplans[i];
/*
* ExecReScan doesn't know about my subplans, so I have to do
* changed-parameter signaling myself.
*/
if (node->ps.chgParam != NULL)
UpdateChangedParamSet(subnode, node->ps.chgParam);
/*
* If chgParam of subnode is not null then plan will be re-scanned by
* first ExecProcNode.
*/
if (subnode->chgParam == NULL)
ExecReScan(subnode);
}
binaryheap_reset(node->ms_heap);
node->ms_initialized = false;
}
|