summaryrefslogtreecommitdiffstats
path: root/src/backend/optimizer/util/plancat.c
blob: c5194fdbbf23b5fc97e6b32a9335d77ff91e42c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
/*-------------------------------------------------------------------------
 *
 * plancat.c
 *	   routines for accessing the system catalogs
 *
 *
 * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/optimizer/util/plancat.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include <math.h>

#include "access/genam.h"
#include "access/htup_details.h"
#include "access/nbtree.h"
#include "access/sysattr.h"
#include "access/table.h"
#include "access/tableam.h"
#include "access/transam.h"
#include "access/xlog.h"
#include "catalog/catalog.h"
#include "catalog/heap.h"
#include "catalog/pg_am.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_statistic_ext.h"
#include "foreign/fdwapi.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "nodes/supportnodes.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/optimizer.h"
#include "optimizer/plancat.h"
#include "optimizer/prep.h"
#include "parser/parse_relation.h"
#include "parser/parsetree.h"
#include "partitioning/partdesc.h"
#include "rewrite/rewriteManip.h"
#include "statistics/statistics.h"
#include "storage/bufmgr.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/partcache.h"
#include "utils/rel.h"
#include "utils/snapmgr.h"
#include "utils/syscache.h"

/* GUC parameter */
int			constraint_exclusion = CONSTRAINT_EXCLUSION_PARTITION;

/* Hook for plugins to get control in get_relation_info() */
get_relation_info_hook_type get_relation_info_hook = NULL;


static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
									  Relation relation, bool inhparent);
static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
										  List *idxExprs);
static List *get_relation_constraints(PlannerInfo *root,
									  Oid relationObjectId, RelOptInfo *rel,
									  bool include_noinherit,
									  bool include_notnull,
									  bool include_partition);
static List *build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
							   Relation heapRelation);
static List *get_relation_statistics(RelOptInfo *rel, Relation relation);
static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
										Relation relation);
static PartitionScheme find_partition_scheme(PlannerInfo *root, Relation rel);
static void set_baserel_partition_key_exprs(Relation relation,
											RelOptInfo *rel);
static void set_baserel_partition_constraint(Relation relation,
											 RelOptInfo *rel);


/*
 * get_relation_info -
 *	  Retrieves catalog information for a given relation.
 *
 * Given the Oid of the relation, return the following info into fields
 * of the RelOptInfo struct:
 *
 *	min_attr	lowest valid AttrNumber
 *	max_attr	highest valid AttrNumber
 *	indexlist	list of IndexOptInfos for relation's indexes
 *	statlist	list of StatisticExtInfo for relation's statistic objects
 *	serverid	if it's a foreign table, the server OID
 *	fdwroutine	if it's a foreign table, the FDW function pointers
 *	pages		number of pages
 *	tuples		number of tuples
 *	rel_parallel_workers user-defined number of parallel workers
 *
 * Also, add information about the relation's foreign keys to root->fkey_list.
 *
 * Also, initialize the attr_needed[] and attr_widths[] arrays.  In most
 * cases these are left as zeroes, but sometimes we need to compute attr
 * widths here, and we may as well cache the results for costsize.c.
 *
 * If inhparent is true, all we need to do is set up the attr arrays:
 * the RelOptInfo actually represents the appendrel formed by an inheritance
 * tree, and so the parent rel's physical size and index information isn't
 * important for it.
 */
void
get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
				  RelOptInfo *rel)
{
	Index		varno = rel->relid;
	Relation	relation;
	bool		hasindex;
	List	   *indexinfos = NIL;

	/*
	 * We need not lock the relation since it was already locked, either by
	 * the rewriter or when expand_inherited_rtentry() added it to the query's
	 * rangetable.
	 */
	relation = table_open(relationObjectId, NoLock);

	/* Temporary and unlogged relations are inaccessible during recovery. */
	if (!RelationIsPermanent(relation) && RecoveryInProgress())
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("cannot access temporary or unlogged relations during recovery")));

	rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1;
	rel->max_attr = RelationGetNumberOfAttributes(relation);
	rel->reltablespace = RelationGetForm(relation)->reltablespace;

	Assert(rel->max_attr >= rel->min_attr);
	rel->attr_needed = (Relids *)
		palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
	rel->attr_widths = (int32 *)
		palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));

	/*
	 * Estimate relation size --- unless it's an inheritance parent, in which
	 * case the size we want is not the rel's own size but the size of its
	 * inheritance tree.  That will be computed in set_append_rel_size().
	 */
	if (!inhparent)
		estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
						  &rel->pages, &rel->tuples, &rel->allvisfrac);

	/* Retrieve the parallel_workers reloption, or -1 if not set. */
	rel->rel_parallel_workers = RelationGetParallelWorkers(relation, -1);

	/*
	 * Make list of indexes.  Ignore indexes on system catalogs if told to.
	 * Don't bother with indexes for an inheritance parent, either.
	 */
	if (inhparent ||
		(IgnoreSystemIndexes && IsSystemRelation(relation)))
		hasindex = false;
	else
		hasindex = relation->rd_rel->relhasindex;

	if (hasindex)
	{
		List	   *indexoidlist;
		LOCKMODE	lmode;
		ListCell   *l;

		indexoidlist = RelationGetIndexList(relation);

		/*
		 * For each index, we get the same type of lock that the executor will
		 * need, and do not release it.  This saves a couple of trips to the
		 * shared lock manager while not creating any real loss of
		 * concurrency, because no schema changes could be happening on the
		 * index while we hold lock on the parent rel, and no lock type used
		 * for queries blocks any other kind of index operation.
		 */
		lmode = root->simple_rte_array[varno]->rellockmode;

		foreach(l, indexoidlist)
		{
			Oid			indexoid = lfirst_oid(l);
			Relation	indexRelation;
			Form_pg_index index;
			IndexAmRoutine *amroutine;
			IndexOptInfo *info;
			int			ncolumns,
						nkeycolumns;
			int			i;

			/*
			 * Extract info from the relation descriptor for the index.
			 */
			indexRelation = index_open(indexoid, lmode);
			index = indexRelation->rd_index;

			/*
			 * Ignore invalid indexes, since they can't safely be used for
			 * queries.  Note that this is OK because the data structure we
			 * are constructing is only used by the planner --- the executor
			 * still needs to insert into "invalid" indexes, if they're marked
			 * indisready.
			 */
			if (!index->indisvalid)
			{
				index_close(indexRelation, NoLock);
				continue;
			}

			/*
			 * Ignore partitioned indexes, since they are not usable for
			 * queries.
			 */
			if (indexRelation->rd_rel->relkind == RELKIND_PARTITIONED_INDEX)
			{
				index_close(indexRelation, NoLock);
				continue;
			}

			/*
			 * If the index is valid, but cannot yet be used, ignore it; but
			 * mark the plan we are generating as transient. See
			 * src/backend/access/heap/README.HOT for discussion.
			 */
			if (index->indcheckxmin &&
				!TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data),
									   TransactionXmin))
			{
				root->glob->transientPlan = true;
				index_close(indexRelation, NoLock);
				continue;
			}

			info = makeNode(IndexOptInfo);

			info->indexoid = index->indexrelid;
			info->reltablespace =
				RelationGetForm(indexRelation)->reltablespace;
			info->rel = rel;
			info->ncolumns = ncolumns = index->indnatts;
			info->nkeycolumns = nkeycolumns = index->indnkeyatts;

			info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
			info->indexcollations = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
			info->opfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
			info->opcintype = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
			info->canreturn = (bool *) palloc(sizeof(bool) * ncolumns);

			for (i = 0; i < ncolumns; i++)
			{
				info->indexkeys[i] = index->indkey.values[i];
				info->canreturn[i] = index_can_return(indexRelation, i + 1);
			}

			for (i = 0; i < nkeycolumns; i++)
			{
				info->opfamily[i] = indexRelation->rd_opfamily[i];
				info->opcintype[i] = indexRelation->rd_opcintype[i];
				info->indexcollations[i] = indexRelation->rd_indcollation[i];
			}

			info->relam = indexRelation->rd_rel->relam;

			/* We copy just the fields we need, not all of rd_indam */
			amroutine = indexRelation->rd_indam;
			info->amcanorderbyop = amroutine->amcanorderbyop;
			info->amoptionalkey = amroutine->amoptionalkey;
			info->amsearcharray = amroutine->amsearcharray;
			info->amsearchnulls = amroutine->amsearchnulls;
			info->amcanparallel = amroutine->amcanparallel;
			info->amhasgettuple = (amroutine->amgettuple != NULL);
			info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
				relation->rd_tableam->scan_bitmap_next_block != NULL;
			info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
								  amroutine->amrestrpos != NULL);
			info->amcostestimate = amroutine->amcostestimate;
			Assert(info->amcostestimate != NULL);

			/* Fetch index opclass options */
			info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);

			/*
			 * Fetch the ordering information for the index, if any.
			 */
			if (info->relam == BTREE_AM_OID)
			{
				/*
				 * If it's a btree index, we can use its opfamily OIDs
				 * directly as the sort ordering opfamily OIDs.
				 */
				Assert(amroutine->amcanorder);

				info->sortopfamily = info->opfamily;
				info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
				info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);

				for (i = 0; i < nkeycolumns; i++)
				{
					int16		opt = indexRelation->rd_indoption[i];

					info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
					info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
				}
			}
			else if (amroutine->amcanorder)
			{
				/*
				 * Otherwise, identify the corresponding btree opfamilies by
				 * trying to map this index's "<" operators into btree.  Since
				 * "<" uniquely defines the behavior of a sort order, this is
				 * a sufficient test.
				 *
				 * XXX This method is rather slow and also requires the
				 * undesirable assumption that the other index AM numbers its
				 * strategies the same as btree.  It'd be better to have a way
				 * to explicitly declare the corresponding btree opfamily for
				 * each opfamily of the other index type.  But given the lack
				 * of current or foreseeable amcanorder index types, it's not
				 * worth expending more effort on now.
				 */
				info->sortopfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
				info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
				info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);

				for (i = 0; i < nkeycolumns; i++)
				{
					int16		opt = indexRelation->rd_indoption[i];
					Oid			ltopr;
					Oid			btopfamily;
					Oid			btopcintype;
					int16		btstrategy;

					info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
					info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;

					ltopr = get_opfamily_member(info->opfamily[i],
												info->opcintype[i],
												info->opcintype[i],
												BTLessStrategyNumber);
					if (OidIsValid(ltopr) &&
						get_ordering_op_properties(ltopr,
												   &btopfamily,
												   &btopcintype,
												   &btstrategy) &&
						btopcintype == info->opcintype[i] &&
						btstrategy == BTLessStrategyNumber)
					{
						/* Successful mapping */
						info->sortopfamily[i] = btopfamily;
					}
					else
					{
						/* Fail ... quietly treat index as unordered */
						info->sortopfamily = NULL;
						info->reverse_sort = NULL;
						info->nulls_first = NULL;
						break;
					}
				}
			}
			else
			{
				info->sortopfamily = NULL;
				info->reverse_sort = NULL;
				info->nulls_first = NULL;
			}

			/*
			 * Fetch the index expressions and predicate, if any.  We must
			 * modify the copies we obtain from the relcache to have the
			 * correct varno for the parent relation, so that they match up
			 * correctly against qual clauses.
			 */
			info->indexprs = RelationGetIndexExpressions(indexRelation);
			info->indpred = RelationGetIndexPredicate(indexRelation);
			if (info->indexprs && varno != 1)
				ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
			if (info->indpred && varno != 1)
				ChangeVarNodes((Node *) info->indpred, 1, varno, 0);

			/* Build targetlist using the completed indexprs data */
			info->indextlist = build_index_tlist(root, info, relation);

			info->indrestrictinfo = NIL;	/* set later, in indxpath.c */
			info->predOK = false;	/* set later, in indxpath.c */
			info->unique = index->indisunique;
			info->immediate = index->indimmediate;
			info->hypothetical = false;

			/*
			 * Estimate the index size.  If it's not a partial index, we lock
			 * the number-of-tuples estimate to equal the parent table; if it
			 * is partial then we have to use the same methods as we would for
			 * a table, except we can be sure that the index is not larger
			 * than the table.
			 */
			if (info->indpred == NIL)
			{
				info->pages = RelationGetNumberOfBlocks(indexRelation);
				info->tuples = rel->tuples;
			}
			else
			{
				double		allvisfrac; /* dummy */

				estimate_rel_size(indexRelation, NULL,
								  &info->pages, &info->tuples, &allvisfrac);
				if (info->tuples > rel->tuples)
					info->tuples = rel->tuples;
			}

			if (info->relam == BTREE_AM_OID)
			{
				/* For btrees, get tree height while we have the index open */
				info->tree_height = _bt_getrootheight(indexRelation);
			}
			else
			{
				/* For other index types, just set it to "unknown" for now */
				info->tree_height = -1;
			}

			index_close(indexRelation, NoLock);

			/*
			 * We've historically used lcons() here.  It'd make more sense to
			 * use lappend(), but that causes the planner to change behavior
			 * in cases where two indexes seem equally attractive.  For now,
			 * stick with lcons() --- few tables should have so many indexes
			 * that the O(N^2) behavior of lcons() is really a problem.
			 */
			indexinfos = lcons(info, indexinfos);
		}

		list_free(indexoidlist);
	}

	rel->indexlist = indexinfos;

	rel->statlist = get_relation_statistics(rel, relation);

	/* Grab foreign-table info using the relcache, while we have it */
	if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
	{
		rel->serverid = GetForeignServerIdByRelId(RelationGetRelid(relation));
		rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
	}
	else
	{
		rel->serverid = InvalidOid;
		rel->fdwroutine = NULL;
	}

	/* Collect info about relation's foreign keys, if relevant */
	get_relation_foreign_keys(root, rel, relation, inhparent);

	/* Collect info about functions implemented by the rel's table AM. */
	if (relation->rd_tableam &&
		relation->rd_tableam->scan_set_tidrange != NULL &&
		relation->rd_tableam->scan_getnextslot_tidrange != NULL)
		rel->amflags |= AMFLAG_HAS_TID_RANGE;

	/*
	 * Collect info about relation's partitioning scheme, if any. Only
	 * inheritance parents may be partitioned.
	 */
	if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
		set_relation_partition_info(root, rel, relation);

	table_close(relation, NoLock);

	/*
	 * Allow a plugin to editorialize on the info we obtained from the
	 * catalogs.  Actions might include altering the assumed relation size,
	 * removing an index, or adding a hypothetical index to the indexlist.
	 */
	if (get_relation_info_hook)
		(*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
}

/*
 * get_relation_foreign_keys -
 *	  Retrieves foreign key information for a given relation.
 *
 * ForeignKeyOptInfos for relevant foreign keys are created and added to
 * root->fkey_list.  We do this now while we have the relcache entry open.
 * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
 * until all RelOptInfos have been built, but the cost of re-opening the
 * relcache entries would probably exceed any savings.
 */
static void
get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
						  Relation relation, bool inhparent)
{
	List	   *rtable = root->parse->rtable;
	List	   *cachedfkeys;
	ListCell   *lc;

	/*
	 * If it's not a baserel, we don't care about its FKs.  Also, if the query
	 * references only a single relation, we can skip the lookup since no FKs
	 * could satisfy the requirements below.
	 */
	if (rel->reloptkind != RELOPT_BASEREL ||
		list_length(rtable) < 2)
		return;

	/*
	 * If it's the parent of an inheritance tree, ignore its FKs.  We could
	 * make useful FK-based deductions if we found that all members of the
	 * inheritance tree have equivalent FK constraints, but detecting that
	 * would require code that hasn't been written.
	 */
	if (inhparent)
		return;

	/*
	 * Extract data about relation's FKs from the relcache.  Note that this
	 * list belongs to the relcache and might disappear in a cache flush, so
	 * we must not do any further catalog access within this function.
	 */
	cachedfkeys = RelationGetFKeyList(relation);

	/*
	 * Figure out which FKs are of interest for this query, and create
	 * ForeignKeyOptInfos for them.  We want only FKs that reference some
	 * other RTE of the current query.  In queries containing self-joins,
	 * there might be more than one other RTE for a referenced table, and we
	 * should make a ForeignKeyOptInfo for each occurrence.
	 *
	 * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
	 * too hard to identify those here, so we might end up making some useless
	 * ForeignKeyOptInfos.  If so, match_foreign_keys_to_quals() will remove
	 * them again.
	 */
	foreach(lc, cachedfkeys)
	{
		ForeignKeyCacheInfo *cachedfk = (ForeignKeyCacheInfo *) lfirst(lc);
		Index		rti;
		ListCell   *lc2;

		/* conrelid should always be that of the table we're considering */
		Assert(cachedfk->conrelid == RelationGetRelid(relation));

		/* Scan to find other RTEs matching confrelid */
		rti = 0;
		foreach(lc2, rtable)
		{
			RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
			ForeignKeyOptInfo *info;

			rti++;
			/* Ignore if not the correct table */
			if (rte->rtekind != RTE_RELATION ||
				rte->relid != cachedfk->confrelid)
				continue;
			/* Ignore if it's an inheritance parent; doesn't really match */
			if (rte->inh)
				continue;
			/* Ignore self-referential FKs; we only care about joins */
			if (rti == rel->relid)
				continue;

			/* OK, let's make an entry */
			info = makeNode(ForeignKeyOptInfo);
			info->con_relid = rel->relid;
			info->ref_relid = rti;
			info->nkeys = cachedfk->nkeys;
			memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
			memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
			memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
			/* zero out fields to be filled by match_foreign_keys_to_quals */
			info->nmatched_ec = 0;
			info->nconst_ec = 0;
			info->nmatched_rcols = 0;
			info->nmatched_ri = 0;
			memset(info->eclass, 0, sizeof(info->eclass));
			memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
			memset(info->rinfos, 0, sizeof(info->rinfos));

			root->fkey_list = lappend(root->fkey_list, info);
		}
	}
}

/*
 * infer_arbiter_indexes -
 *	  Determine the unique indexes used to arbitrate speculative insertion.
 *
 * Uses user-supplied inference clause expressions and predicate to match a
 * unique index from those defined and ready on the heap relation (target).
 * An exact match is required on columns/expressions (although they can appear
 * in any order).  However, the predicate given by the user need only restrict
 * insertion to a subset of some part of the table covered by some particular
 * unique index (in particular, a partial unique index) in order to be
 * inferred.
 *
 * The implementation does not consider which B-Tree operator class any
 * particular available unique index attribute uses, unless one was specified
 * in the inference specification. The same is true of collations.  In
 * particular, there is no system dependency on the default operator class for
 * the purposes of inference.  If no opclass (or collation) is specified, then
 * all matching indexes (that may or may not match the default in terms of
 * each attribute opclass/collation) are used for inference.
 */
List *
infer_arbiter_indexes(PlannerInfo *root)
{
	OnConflictExpr *onconflict = root->parse->onConflict;

	/* Iteration state */
	RangeTblEntry *rte;
	Relation	relation;
	Oid			indexOidFromConstraint = InvalidOid;
	List	   *indexList;
	ListCell   *l;

	/* Normalized inference attributes and inference expressions: */
	Bitmapset  *inferAttrs = NULL;
	List	   *inferElems = NIL;

	/* Results */
	List	   *results = NIL;

	/*
	 * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
	 * specification or named constraint.  ON CONFLICT DO UPDATE statements
	 * must always provide one or the other (but parser ought to have caught
	 * that already).
	 */
	if (onconflict->arbiterElems == NIL &&
		onconflict->constraint == InvalidOid)
		return NIL;

	/*
	 * We need not lock the relation since it was already locked, either by
	 * the rewriter or when expand_inherited_rtentry() added it to the query's
	 * rangetable.
	 */
	rte = rt_fetch(root->parse->resultRelation, root->parse->rtable);

	relation = table_open(rte->relid, NoLock);

	/*
	 * Build normalized/BMS representation of plain indexed attributes, as
	 * well as a separate list of expression items.  This simplifies matching
	 * the cataloged definition of indexes.
	 */
	foreach(l, onconflict->arbiterElems)
	{
		InferenceElem *elem = (InferenceElem *) lfirst(l);
		Var		   *var;
		int			attno;

		if (!IsA(elem->expr, Var))
		{
			/* If not a plain Var, just shove it in inferElems for now */
			inferElems = lappend(inferElems, elem->expr);
			continue;
		}

		var = (Var *) elem->expr;
		attno = var->varattno;

		if (attno == 0)
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("whole row unique index inference specifications are not supported")));

		inferAttrs = bms_add_member(inferAttrs,
									attno - FirstLowInvalidHeapAttributeNumber);
	}

	/*
	 * Lookup named constraint's index.  This is not immediately returned
	 * because some additional sanity checks are required.
	 */
	if (onconflict->constraint != InvalidOid)
	{
		indexOidFromConstraint = get_constraint_index(onconflict->constraint);

		if (indexOidFromConstraint == InvalidOid)
			ereport(ERROR,
					(errcode(ERRCODE_WRONG_OBJECT_TYPE),
					 errmsg("constraint in ON CONFLICT clause has no associated index")));
	}

	/*
	 * Using that representation, iterate through the list of indexes on the
	 * target relation to try and find a match
	 */
	indexList = RelationGetIndexList(relation);

	foreach(l, indexList)
	{
		Oid			indexoid = lfirst_oid(l);
		Relation	idxRel;
		Form_pg_index idxForm;
		Bitmapset  *indexedAttrs;
		List	   *idxExprs;
		List	   *predExprs;
		AttrNumber	natt;
		ListCell   *el;

		/*
		 * Extract info from the relation descriptor for the index.  Obtain
		 * the same lock type that the executor will ultimately use.
		 *
		 * Let executor complain about !indimmediate case directly, because
		 * enforcement needs to occur there anyway when an inference clause is
		 * omitted.
		 */
		idxRel = index_open(indexoid, rte->rellockmode);
		idxForm = idxRel->rd_index;

		if (!idxForm->indisvalid)
			goto next;

		/*
		 * Note that we do not perform a check against indcheckxmin (like e.g.
		 * get_relation_info()) here to eliminate candidates, because
		 * uniqueness checking only cares about the most recently committed
		 * tuple versions.
		 */

		/*
		 * Look for match on "ON constraint_name" variant, which may not be
		 * unique constraint.  This can only be a constraint name.
		 */
		if (indexOidFromConstraint == idxForm->indexrelid)
		{
			if (!idxForm->indisunique && onconflict->action == ONCONFLICT_UPDATE)
				ereport(ERROR,
						(errcode(ERRCODE_WRONG_OBJECT_TYPE),
						 errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));

			results = lappend_oid(results, idxForm->indexrelid);
			list_free(indexList);
			index_close(idxRel, NoLock);
			table_close(relation, NoLock);
			return results;
		}
		else if (indexOidFromConstraint != InvalidOid)
		{
			/* No point in further work for index in named constraint case */
			goto next;
		}

		/*
		 * Only considering conventional inference at this point (not named
		 * constraints), so index under consideration can be immediately
		 * skipped if it's not unique
		 */
		if (!idxForm->indisunique)
			goto next;

		/* Build BMS representation of plain (non expression) index attrs */
		indexedAttrs = NULL;
		for (natt = 0; natt < idxForm->indnkeyatts; natt++)
		{
			int			attno = idxRel->rd_index->indkey.values[natt];

			if (attno != 0)
				indexedAttrs = bms_add_member(indexedAttrs,
											  attno - FirstLowInvalidHeapAttributeNumber);
		}

		/* Non-expression attributes (if any) must match */
		if (!bms_equal(indexedAttrs, inferAttrs))
			goto next;

		/* Expression attributes (if any) must match */
		idxExprs = RelationGetIndexExpressions(idxRel);
		foreach(el, onconflict->arbiterElems)
		{
			InferenceElem *elem = (InferenceElem *) lfirst(el);

			/*
			 * Ensure that collation/opclass aspects of inference expression
			 * element match.  Even though this loop is primarily concerned
			 * with matching expressions, it is a convenient point to check
			 * this for both expressions and ordinary (non-expression)
			 * attributes appearing as inference elements.
			 */
			if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
				goto next;

			/*
			 * Plain Vars don't factor into count of expression elements, and
			 * the question of whether or not they satisfy the index
			 * definition has already been considered (they must).
			 */
			if (IsA(elem->expr, Var))
				continue;

			/*
			 * Might as well avoid redundant check in the rare cases where
			 * infer_collation_opclass_match() is required to do real work.
			 * Otherwise, check that element expression appears in cataloged
			 * index definition.
			 */
			if (elem->infercollid != InvalidOid ||
				elem->inferopclass != InvalidOid ||
				list_member(idxExprs, elem->expr))
				continue;

			goto next;
		}

		/*
		 * Now that all inference elements were matched, ensure that the
		 * expression elements from inference clause are not missing any
		 * cataloged expressions.  This does the right thing when unique
		 * indexes redundantly repeat the same attribute, or if attributes
		 * redundantly appear multiple times within an inference clause.
		 */
		if (list_difference(idxExprs, inferElems) != NIL)
			goto next;

		/*
		 * If it's a partial index, its predicate must be implied by the ON
		 * CONFLICT's WHERE clause.
		 */
		predExprs = RelationGetIndexPredicate(idxRel);

		if (!predicate_implied_by(predExprs, (List *) onconflict->arbiterWhere, false))
			goto next;

		results = lappend_oid(results, idxForm->indexrelid);
next:
		index_close(idxRel, NoLock);
	}

	list_free(indexList);
	table_close(relation, NoLock);

	if (results == NIL)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
				 errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));

	return results;
}

/*
 * infer_collation_opclass_match - ensure infer element opclass/collation match
 *
 * Given unique index inference element from inference specification, if
 * collation was specified, or if opclass was specified, verify that there is
 * at least one matching indexed attribute (occasionally, there may be more).
 * Skip this in the common case where inference specification does not include
 * collation or opclass (instead matching everything, regardless of cataloged
 * collation/opclass of indexed attribute).
 *
 * At least historically, Postgres has not offered collations or opclasses
 * with alternative-to-default notions of equality, so these additional
 * criteria should only be required infrequently.
 *
 * Don't give up immediately when an inference element matches some attribute
 * cataloged as indexed but not matching additional opclass/collation
 * criteria.  This is done so that the implementation is as forgiving as
 * possible of redundancy within cataloged index attributes (or, less
 * usefully, within inference specification elements).  If collations actually
 * differ between apparently redundantly indexed attributes (redundant within
 * or across indexes), then there really is no redundancy as such.
 *
 * Note that if an inference element specifies an opclass and a collation at
 * once, both must match in at least one particular attribute within index
 * catalog definition in order for that inference element to be considered
 * inferred/satisfied.
 */
static bool
infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
							  List *idxExprs)
{
	AttrNumber	natt;
	Oid			inferopfamily = InvalidOid; /* OID of opclass opfamily */
	Oid			inferopcinputtype = InvalidOid; /* OID of opclass input type */
	int			nplain = 0;		/* # plain attrs observed */

	/*
	 * If inference specification element lacks collation/opclass, then no
	 * need to check for exact match.
	 */
	if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
		return true;

	/*
	 * Lookup opfamily and input type, for matching indexes
	 */
	if (elem->inferopclass)
	{
		inferopfamily = get_opclass_family(elem->inferopclass);
		inferopcinputtype = get_opclass_input_type(elem->inferopclass);
	}

	for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
	{
		Oid			opfamily = idxRel->rd_opfamily[natt - 1];
		Oid			opcinputtype = idxRel->rd_opcintype[natt - 1];
		Oid			collation = idxRel->rd_indcollation[natt - 1];
		int			attno = idxRel->rd_index->indkey.values[natt - 1];

		if (attno != 0)
			nplain++;

		if (elem->inferopclass != InvalidOid &&
			(inferopfamily != opfamily || inferopcinputtype != opcinputtype))
		{
			/* Attribute needed to match opclass, but didn't */
			continue;
		}

		if (elem->infercollid != InvalidOid &&
			elem->infercollid != collation)
		{
			/* Attribute needed to match collation, but didn't */
			continue;
		}

		/* If one matching index att found, good enough -- return true */
		if (IsA(elem->expr, Var))
		{
			if (((Var *) elem->expr)->varattno == attno)
				return true;
		}
		else if (attno == 0)
		{
			Node	   *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);

			/*
			 * Note that unlike routines like match_index_to_operand() we
			 * don't need to care about RelabelType.  Neither the index
			 * definition nor the inference clause should contain them.
			 */
			if (equal(elem->expr, nattExpr))
				return true;
		}
	}

	return false;
}

/*
 * estimate_rel_size - estimate # pages and # tuples in a table or index
 *
 * We also estimate the fraction of the pages that are marked all-visible in
 * the visibility map, for use in estimation of index-only scans.
 *
 * If attr_widths isn't NULL, it points to the zero-index entry of the
 * relation's attr_widths[] cache; we fill this in if we have need to compute
 * the attribute widths for estimation purposes.
 */
void
estimate_rel_size(Relation rel, int32 *attr_widths,
				  BlockNumber *pages, double *tuples, double *allvisfrac)
{
	BlockNumber curpages;
	BlockNumber relpages;
	double		reltuples;
	BlockNumber relallvisible;
	double		density;

	switch (rel->rd_rel->relkind)
	{
		case RELKIND_RELATION:
		case RELKIND_MATVIEW:
		case RELKIND_TOASTVALUE:
			table_relation_estimate_size(rel, attr_widths, pages, tuples,
										 allvisfrac);
			break;

		case RELKIND_INDEX:

			/*
			 * XXX: It'd probably be good to move this into a callback,
			 * individual index types e.g. know if they have a metapage.
			 */

			/* it has storage, ok to call the smgr */
			curpages = RelationGetNumberOfBlocks(rel);

			/* report estimated # pages */
			*pages = curpages;
			/* quick exit if rel is clearly empty */
			if (curpages == 0)
			{
				*tuples = 0;
				*allvisfrac = 0;
				break;
			}

			/* coerce values in pg_class to more desirable types */
			relpages = (BlockNumber) rel->rd_rel->relpages;
			reltuples = (double) rel->rd_rel->reltuples;
			relallvisible = (BlockNumber) rel->rd_rel->relallvisible;

			/*
			 * Discount the metapage while estimating the number of tuples.
			 * This is a kluge because it assumes more than it ought to about
			 * index structure.  Currently it's OK for btree, hash, and GIN
			 * indexes but suspect for GiST indexes.
			 */
			if (relpages > 0)
			{
				curpages--;
				relpages--;
			}

			/* estimate number of tuples from previous tuple density */
			if (reltuples >= 0 && relpages > 0)
				density = reltuples / (double) relpages;
			else
			{
				/*
				 * If we have no data because the relation was never vacuumed,
				 * estimate tuple width from attribute datatypes.  We assume
				 * here that the pages are completely full, which is OK for
				 * tables (since they've presumably not been VACUUMed yet) but
				 * is probably an overestimate for indexes.  Fortunately
				 * get_relation_info() can clamp the overestimate to the
				 * parent table's size.
				 *
				 * Note: this code intentionally disregards alignment
				 * considerations, because (a) that would be gilding the lily
				 * considering how crude the estimate is, and (b) it creates
				 * platform dependencies in the default plans which are kind
				 * of a headache for regression testing.
				 *
				 * XXX: Should this logic be more index specific?
				 */
				int32		tuple_width;

				tuple_width = get_rel_data_width(rel, attr_widths);
				tuple_width += MAXALIGN(SizeofHeapTupleHeader);
				tuple_width += sizeof(ItemIdData);
				/* note: integer division is intentional here */
				density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
			}
			*tuples = rint(density * (double) curpages);

			/*
			 * We use relallvisible as-is, rather than scaling it up like we
			 * do for the pages and tuples counts, on the theory that any
			 * pages added since the last VACUUM are most likely not marked
			 * all-visible.  But costsize.c wants it converted to a fraction.
			 */
			if (relallvisible == 0 || curpages <= 0)
				*allvisfrac = 0;
			else if ((double) relallvisible >= curpages)
				*allvisfrac = 1;
			else
				*allvisfrac = (double) relallvisible / curpages;
			break;

		case RELKIND_SEQUENCE:
			/* Sequences always have a known size */
			*pages = 1;
			*tuples = 1;
			*allvisfrac = 0;
			break;
		case RELKIND_FOREIGN_TABLE:
			/* Just use whatever's in pg_class */
			/* Note that FDW must cope if reltuples is -1! */
			*pages = rel->rd_rel->relpages;
			*tuples = rel->rd_rel->reltuples;
			*allvisfrac = 0;
			break;
		default:
			/* else it has no disk storage; probably shouldn't get here? */
			*pages = 0;
			*tuples = 0;
			*allvisfrac = 0;
			break;
	}
}


/*
 * get_rel_data_width
 *
 * Estimate the average width of (the data part of) the relation's tuples.
 *
 * If attr_widths isn't NULL, it points to the zero-index entry of the
 * relation's attr_widths[] cache; use and update that cache as appropriate.
 *
 * Currently we ignore dropped columns.  Ideally those should be included
 * in the result, but we haven't got any way to get info about them; and
 * since they might be mostly NULLs, treating them as zero-width is not
 * necessarily the wrong thing anyway.
 */
int32
get_rel_data_width(Relation rel, int32 *attr_widths)
{
	int32		tuple_width = 0;
	int			i;

	for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
	{
		Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
		int32		item_width;

		if (att->attisdropped)
			continue;

		/* use previously cached data, if any */
		if (attr_widths != NULL && attr_widths[i] > 0)
		{
			tuple_width += attr_widths[i];
			continue;
		}

		/* This should match set_rel_width() in costsize.c */
		item_width = get_attavgwidth(RelationGetRelid(rel), i);
		if (item_width <= 0)
		{
			item_width = get_typavgwidth(att->atttypid, att->atttypmod);
			Assert(item_width > 0);
		}
		if (attr_widths != NULL)
			attr_widths[i] = item_width;
		tuple_width += item_width;
	}

	return tuple_width;
}

/*
 * get_relation_data_width
 *
 * External API for get_rel_data_width: same behavior except we have to
 * open the relcache entry.
 */
int32
get_relation_data_width(Oid relid, int32 *attr_widths)
{
	int32		result;
	Relation	relation;

	/* As above, assume relation is already locked */
	relation = table_open(relid, NoLock);

	result = get_rel_data_width(relation, attr_widths);

	table_close(relation, NoLock);

	return result;
}


/*
 * get_relation_constraints
 *
 * Retrieve the applicable constraint expressions of the given relation.
 *
 * Returns a List (possibly empty) of constraint expressions.  Each one
 * has been canonicalized, and its Vars are changed to have the varno
 * indicated by rel->relid.  This allows the expressions to be easily
 * compared to expressions taken from WHERE.
 *
 * If include_noinherit is true, it's okay to include constraints that
 * are marked NO INHERIT.
 *
 * If include_notnull is true, "col IS NOT NULL" expressions are generated
 * and added to the result for each column that's marked attnotnull.
 *
 * If include_partition is true, and the relation is a partition,
 * also include the partitioning constraints.
 *
 * Note: at present this is invoked at most once per relation per planner
 * run, and in many cases it won't be invoked at all, so there seems no
 * point in caching the data in RelOptInfo.
 */
static List *
get_relation_constraints(PlannerInfo *root,
						 Oid relationObjectId, RelOptInfo *rel,
						 bool include_noinherit,
						 bool include_notnull,
						 bool include_partition)
{
	List	   *result = NIL;
	Index		varno = rel->relid;
	Relation	relation;
	TupleConstr *constr;

	/*
	 * We assume the relation has already been safely locked.
	 */
	relation = table_open(relationObjectId, NoLock);

	constr = relation->rd_att->constr;
	if (constr != NULL)
	{
		int			num_check = constr->num_check;
		int			i;

		for (i = 0; i < num_check; i++)
		{
			Node	   *cexpr;

			/*
			 * If this constraint hasn't been fully validated yet, we must
			 * ignore it here.  Also ignore if NO INHERIT and we weren't told
			 * that that's safe.
			 */
			if (!constr->check[i].ccvalid)
				continue;
			if (constr->check[i].ccnoinherit && !include_noinherit)
				continue;

			cexpr = stringToNode(constr->check[i].ccbin);

			/*
			 * Run each expression through const-simplification and
			 * canonicalization.  This is not just an optimization, but is
			 * necessary, because we will be comparing it to
			 * similarly-processed qual clauses, and may fail to detect valid
			 * matches without this.  This must match the processing done to
			 * qual clauses in preprocess_expression()!  (We can skip the
			 * stuff involving subqueries, however, since we don't allow any
			 * in check constraints.)
			 */
			cexpr = eval_const_expressions(root, cexpr);

			cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);

			/* Fix Vars to have the desired varno */
			if (varno != 1)
				ChangeVarNodes(cexpr, 1, varno, 0);

			/*
			 * Finally, convert to implicit-AND format (that is, a List) and
			 * append the resulting item(s) to our output list.
			 */
			result = list_concat(result,
								 make_ands_implicit((Expr *) cexpr));
		}

		/* Add NOT NULL constraints in expression form, if requested */
		if (include_notnull && constr->has_not_null)
		{
			int			natts = relation->rd_att->natts;

			for (i = 1; i <= natts; i++)
			{
				Form_pg_attribute att = TupleDescAttr(relation->rd_att, i - 1);

				if (att->attnotnull && !att->attisdropped)
				{
					NullTest   *ntest = makeNode(NullTest);

					ntest->arg = (Expr *) makeVar(varno,
												  i,
												  att->atttypid,
												  att->atttypmod,
												  att->attcollation,
												  0);
					ntest->nulltesttype = IS_NOT_NULL;

					/*
					 * argisrow=false is correct even for a composite column,
					 * because attnotnull does not represent a SQL-spec IS NOT
					 * NULL test in such a case, just IS DISTINCT FROM NULL.
					 */
					ntest->argisrow = false;
					ntest->location = -1;
					result = lappend(result, ntest);
				}
			}
		}
	}

	/*
	 * Add partitioning constraints, if requested.
	 */
	if (include_partition && relation->rd_rel->relispartition)
	{
		/* make sure rel->partition_qual is set */
		set_baserel_partition_constraint(relation, rel);
		result = list_concat(result, rel->partition_qual);
	}

	table_close(relation, NoLock);

	return result;
}

/*
 * get_relation_statistics
 *		Retrieve extended statistics defined on the table.
 *
 * Returns a List (possibly empty) of StatisticExtInfo objects describing
 * the statistics.  Note that this doesn't load the actual statistics data,
 * just the identifying metadata.  Only stats actually built are considered.
 */
static List *
get_relation_statistics(RelOptInfo *rel, Relation relation)
{
	Index		varno = rel->relid;
	List	   *statoidlist;
	List	   *stainfos = NIL;
	ListCell   *l;

	statoidlist = RelationGetStatExtList(relation);

	foreach(l, statoidlist)
	{
		Oid			statOid = lfirst_oid(l);
		Form_pg_statistic_ext staForm;
		HeapTuple	htup;
		HeapTuple	dtup;
		Bitmapset  *keys = NULL;
		List	   *exprs = NIL;
		int			i;

		htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
		if (!HeapTupleIsValid(htup))
			elog(ERROR, "cache lookup failed for statistics object %u", statOid);
		staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);

		dtup = SearchSysCache1(STATEXTDATASTXOID, ObjectIdGetDatum(statOid));
		if (!HeapTupleIsValid(dtup))
			elog(ERROR, "cache lookup failed for statistics object %u", statOid);

		/*
		 * First, build the array of columns covered.  This is ultimately
		 * wasted if no stats within the object have actually been built, but
		 * it doesn't seem worth troubling over that case.
		 */
		for (i = 0; i < staForm->stxkeys.dim1; i++)
			keys = bms_add_member(keys, staForm->stxkeys.values[i]);

		/*
		 * Preprocess expressions (if any). We read the expressions, run them
		 * through eval_const_expressions, and fix the varnos.
		 */
		{
			bool		isnull;
			Datum		datum;

			/* decode expression (if any) */
			datum = SysCacheGetAttr(STATEXTOID, htup,
									Anum_pg_statistic_ext_stxexprs, &isnull);

			if (!isnull)
			{
				char	   *exprsString;

				exprsString = TextDatumGetCString(datum);
				exprs = (List *) stringToNode(exprsString);
				pfree(exprsString);

				/*
				 * Run the expressions through eval_const_expressions. This is
				 * not just an optimization, but is necessary, because the
				 * planner will be comparing them to similarly-processed qual
				 * clauses, and may fail to detect valid matches without this.
				 * We must not use canonicalize_qual, however, since these
				 * aren't qual expressions.
				 */
				exprs = (List *) eval_const_expressions(NULL, (Node *) exprs);

				/* May as well fix opfuncids too */
				fix_opfuncids((Node *) exprs);

				/*
				 * Modify the copies we obtain from the relcache to have the
				 * correct varno for the parent relation, so that they match
				 * up correctly against qual clauses.
				 */
				if (varno != 1)
					ChangeVarNodes((Node *) exprs, 1, varno, 0);
			}
		}

		/* add one StatisticExtInfo for each kind built */
		if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
		{
			StatisticExtInfo *info = makeNode(StatisticExtInfo);

			info->statOid = statOid;
			info->rel = rel;
			info->kind = STATS_EXT_NDISTINCT;
			info->keys = bms_copy(keys);
			info->exprs = exprs;

			stainfos = lappend(stainfos, info);
		}

		if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
		{
			StatisticExtInfo *info = makeNode(StatisticExtInfo);

			info->statOid = statOid;
			info->rel = rel;
			info->kind = STATS_EXT_DEPENDENCIES;
			info->keys = bms_copy(keys);
			info->exprs = exprs;

			stainfos = lappend(stainfos, info);
		}

		if (statext_is_kind_built(dtup, STATS_EXT_MCV))
		{
			StatisticExtInfo *info = makeNode(StatisticExtInfo);

			info->statOid = statOid;
			info->rel = rel;
			info->kind = STATS_EXT_MCV;
			info->keys = bms_copy(keys);
			info->exprs = exprs;

			stainfos = lappend(stainfos, info);
		}

		if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
		{
			StatisticExtInfo *info = makeNode(StatisticExtInfo);

			info->statOid = statOid;
			info->rel = rel;
			info->kind = STATS_EXT_EXPRESSIONS;
			info->keys = bms_copy(keys);
			info->exprs = exprs;

			stainfos = lappend(stainfos, info);
		}

		ReleaseSysCache(htup);
		ReleaseSysCache(dtup);
		bms_free(keys);
	}

	list_free(statoidlist);

	return stainfos;
}

/*
 * relation_excluded_by_constraints
 *
 * Detect whether the relation need not be scanned because it has either
 * self-inconsistent restrictions, or restrictions inconsistent with the
 * relation's applicable constraints.
 *
 * Note: this examines only rel->relid, rel->reloptkind, and
 * rel->baserestrictinfo; therefore it can be called before filling in
 * other fields of the RelOptInfo.
 */
bool
relation_excluded_by_constraints(PlannerInfo *root,
								 RelOptInfo *rel, RangeTblEntry *rte)
{
	bool		include_noinherit;
	bool		include_notnull;
	bool		include_partition = false;
	List	   *safe_restrictions;
	List	   *constraint_pred;
	List	   *safe_constraints;
	ListCell   *lc;

	/* As of now, constraint exclusion works only with simple relations. */
	Assert(IS_SIMPLE_REL(rel));

	/*
	 * If there are no base restriction clauses, we have no hope of proving
	 * anything below, so fall out quickly.
	 */
	if (rel->baserestrictinfo == NIL)
		return false;

	/*
	 * Regardless of the setting of constraint_exclusion, detect
	 * constant-FALSE-or-NULL restriction clauses.  Because const-folding will
	 * reduce "anything AND FALSE" to just "FALSE", any such case should
	 * result in exactly one baserestrictinfo entry.  This doesn't fire very
	 * often, but it seems cheap enough to be worth doing anyway.  (Without
	 * this, we'd miss some optimizations that 9.5 and earlier found via much
	 * more roundabout methods.)
	 */
	if (list_length(rel->baserestrictinfo) == 1)
	{
		RestrictInfo *rinfo = (RestrictInfo *) linitial(rel->baserestrictinfo);
		Expr	   *clause = rinfo->clause;

		if (clause && IsA(clause, Const) &&
			(((Const *) clause)->constisnull ||
			 !DatumGetBool(((Const *) clause)->constvalue)))
			return true;
	}

	/*
	 * Skip further tests, depending on constraint_exclusion.
	 */
	switch (constraint_exclusion)
	{
		case CONSTRAINT_EXCLUSION_OFF:
			/* In 'off' mode, never make any further tests */
			return false;

		case CONSTRAINT_EXCLUSION_PARTITION:

			/*
			 * When constraint_exclusion is set to 'partition' we only handle
			 * appendrel members.  Partition pruning has already been applied,
			 * so there is no need to consider the rel's partition constraints
			 * here.
			 */
			if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
				break;			/* appendrel member, so process it */
			return false;

		case CONSTRAINT_EXCLUSION_ON:

			/*
			 * In 'on' mode, always apply constraint exclusion.  If we are
			 * considering a baserel that is a partition (i.e., it was
			 * directly named rather than expanded from a parent table), then
			 * its partition constraints haven't been considered yet, so
			 * include them in the processing here.
			 */
			if (rel->reloptkind == RELOPT_BASEREL)
				include_partition = true;
			break;				/* always try to exclude */
	}

	/*
	 * Check for self-contradictory restriction clauses.  We dare not make
	 * deductions with non-immutable functions, but any immutable clauses that
	 * are self-contradictory allow us to conclude the scan is unnecessary.
	 *
	 * Note: strip off RestrictInfo because predicate_refuted_by() isn't
	 * expecting to see any in its predicate argument.
	 */
	safe_restrictions = NIL;
	foreach(lc, rel->baserestrictinfo)
	{
		RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);

		if (!contain_mutable_functions((Node *) rinfo->clause))
			safe_restrictions = lappend(safe_restrictions, rinfo->clause);
	}

	/*
	 * We can use weak refutation here, since we're comparing restriction
	 * clauses with restriction clauses.
	 */
	if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
		return true;

	/*
	 * Only plain relations have constraints, so stop here for other rtekinds.
	 */
	if (rte->rtekind != RTE_RELATION)
		return false;

	/*
	 * If we are scanning just this table, we can use NO INHERIT constraints,
	 * but not if we're scanning its children too.  (Note that partitioned
	 * tables should never have NO INHERIT constraints; but it's not necessary
	 * for us to assume that here.)
	 */
	include_noinherit = !rte->inh;

	/*
	 * Currently, attnotnull constraints must be treated as NO INHERIT unless
	 * this is a partitioned table.  In future we might track their
	 * inheritance status more accurately, allowing this to be refined.
	 */
	include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);

	/*
	 * Fetch the appropriate set of constraint expressions.
	 */
	constraint_pred = get_relation_constraints(root, rte->relid, rel,
											   include_noinherit,
											   include_notnull,
											   include_partition);

	/*
	 * We do not currently enforce that CHECK constraints contain only
	 * immutable functions, so it's necessary to check here. We daren't draw
	 * conclusions from plan-time evaluation of non-immutable functions. Since
	 * they're ANDed, we can just ignore any mutable constraints in the list,
	 * and reason about the rest.
	 */
	safe_constraints = NIL;
	foreach(lc, constraint_pred)
	{
		Node	   *pred = (Node *) lfirst(lc);

		if (!contain_mutable_functions(pred))
			safe_constraints = lappend(safe_constraints, pred);
	}

	/*
	 * The constraints are effectively ANDed together, so we can just try to
	 * refute the entire collection at once.  This may allow us to make proofs
	 * that would fail if we took them individually.
	 *
	 * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
	 * an obvious optimization.  Some of the clauses might be OR clauses that
	 * have volatile and nonvolatile subclauses, and it's OK to make
	 * deductions with the nonvolatile parts.
	 *
	 * We need strong refutation because we have to prove that the constraints
	 * would yield false, not just NULL.
	 */
	if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
		return true;

	return false;
}


/*
 * build_physical_tlist
 *
 * Build a targetlist consisting of exactly the relation's user attributes,
 * in order.  The executor can special-case such tlists to avoid a projection
 * step at runtime, so we use such tlists preferentially for scan nodes.
 *
 * Exception: if there are any dropped or missing columns, we punt and return
 * NIL.  Ideally we would like to handle these cases too.  However this
 * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
 * for a tlist that includes vars of no-longer-existent types.  In theory we
 * could dig out the required info from the pg_attribute entries of the
 * relation, but that data is not readily available to ExecTypeFromTL.
 * For now, we don't apply the physical-tlist optimization when there are
 * dropped cols.
 *
 * We also support building a "physical" tlist for subqueries, functions,
 * values lists, table expressions, and CTEs, since the same optimization can
 * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
 * NamedTuplestoreScan, and WorkTableScan nodes.
 */
List *
build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
{
	List	   *tlist = NIL;
	Index		varno = rel->relid;
	RangeTblEntry *rte = planner_rt_fetch(varno, root);
	Relation	relation;
	Query	   *subquery;
	Var		   *var;
	ListCell   *l;
	int			attrno,
				numattrs;
	List	   *colvars;

	switch (rte->rtekind)
	{
		case RTE_RELATION:
			/* Assume we already have adequate lock */
			relation = table_open(rte->relid, NoLock);

			numattrs = RelationGetNumberOfAttributes(relation);
			for (attrno = 1; attrno <= numattrs; attrno++)
			{
				Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
														  attrno - 1);

				if (att_tup->attisdropped || att_tup->atthasmissing)
				{
					/* found a dropped or missing col, so punt */
					tlist = NIL;
					break;
				}

				var = makeVar(varno,
							  attrno,
							  att_tup->atttypid,
							  att_tup->atttypmod,
							  att_tup->attcollation,
							  0);

				tlist = lappend(tlist,
								makeTargetEntry((Expr *) var,
												attrno,
												NULL,
												false));
			}

			table_close(relation, NoLock);
			break;

		case RTE_SUBQUERY:
			subquery = rte->subquery;
			foreach(l, subquery->targetList)
			{
				TargetEntry *tle = (TargetEntry *) lfirst(l);

				/*
				 * A resjunk column of the subquery can be reflected as
				 * resjunk in the physical tlist; we need not punt.
				 */
				var = makeVarFromTargetEntry(varno, tle);

				tlist = lappend(tlist,
								makeTargetEntry((Expr *) var,
												tle->resno,
												NULL,
												tle->resjunk));
			}
			break;

		case RTE_FUNCTION:
		case RTE_TABLEFUNC:
		case RTE_VALUES:
		case RTE_CTE:
		case RTE_NAMEDTUPLESTORE:
		case RTE_RESULT:
			/* Not all of these can have dropped cols, but share code anyway */
			expandRTE(rte, varno, 0, -1, true /* include dropped */ ,
					  NULL, &colvars);
			foreach(l, colvars)
			{
				var = (Var *) lfirst(l);

				/*
				 * A non-Var in expandRTE's output means a dropped column;
				 * must punt.
				 */
				if (!IsA(var, Var))
				{
					tlist = NIL;
					break;
				}

				tlist = lappend(tlist,
								makeTargetEntry((Expr *) var,
												var->varattno,
												NULL,
												false));
			}
			break;

		default:
			/* caller error */
			elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
				 (int) rte->rtekind);
			break;
	}

	return tlist;
}

/*
 * build_index_tlist
 *
 * Build a targetlist representing the columns of the specified index.
 * Each column is represented by a Var for the corresponding base-relation
 * column, or an expression in base-relation Vars, as appropriate.
 *
 * There are never any dropped columns in indexes, so unlike
 * build_physical_tlist, we need no failure case.
 */
static List *
build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
				  Relation heapRelation)
{
	List	   *tlist = NIL;
	Index		varno = index->rel->relid;
	ListCell   *indexpr_item;
	int			i;

	indexpr_item = list_head(index->indexprs);
	for (i = 0; i < index->ncolumns; i++)
	{
		int			indexkey = index->indexkeys[i];
		Expr	   *indexvar;

		if (indexkey != 0)
		{
			/* simple column */
			const FormData_pg_attribute *att_tup;

			if (indexkey < 0)
				att_tup = SystemAttributeDefinition(indexkey);
			else
				att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);

			indexvar = (Expr *) makeVar(varno,
										indexkey,
										att_tup->atttypid,
										att_tup->atttypmod,
										att_tup->attcollation,
										0);
		}
		else
		{
			/* expression column */
			if (indexpr_item == NULL)
				elog(ERROR, "wrong number of index expressions");
			indexvar = (Expr *) lfirst(indexpr_item);
			indexpr_item = lnext(index->indexprs, indexpr_item);
		}

		tlist = lappend(tlist,
						makeTargetEntry(indexvar,
										i + 1,
										NULL,
										false));
	}
	if (indexpr_item != NULL)
		elog(ERROR, "wrong number of index expressions");

	return tlist;
}

/*
 * restriction_selectivity
 *
 * Returns the selectivity of a specified restriction operator clause.
 * This code executes registered procedures stored in the
 * operator relation, by calling the function manager.
 *
 * See clause_selectivity() for the meaning of the additional parameters.
 */
Selectivity
restriction_selectivity(PlannerInfo *root,
						Oid operatorid,
						List *args,
						Oid inputcollid,
						int varRelid)
{
	RegProcedure oprrest = get_oprrest(operatorid);
	float8		result;

	/*
	 * if the oprrest procedure is missing for whatever reason, use a
	 * selectivity of 0.5
	 */
	if (!oprrest)
		return (Selectivity) 0.5;

	result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
												 inputcollid,
												 PointerGetDatum(root),
												 ObjectIdGetDatum(operatorid),
												 PointerGetDatum(args),
												 Int32GetDatum(varRelid)));

	if (result < 0.0 || result > 1.0)
		elog(ERROR, "invalid restriction selectivity: %f", result);

	return (Selectivity) result;
}

/*
 * join_selectivity
 *
 * Returns the selectivity of a specified join operator clause.
 * This code executes registered procedures stored in the
 * operator relation, by calling the function manager.
 *
 * See clause_selectivity() for the meaning of the additional parameters.
 */
Selectivity
join_selectivity(PlannerInfo *root,
				 Oid operatorid,
				 List *args,
				 Oid inputcollid,
				 JoinType jointype,
				 SpecialJoinInfo *sjinfo)
{
	RegProcedure oprjoin = get_oprjoin(operatorid);
	float8		result;

	/*
	 * if the oprjoin procedure is missing for whatever reason, use a
	 * selectivity of 0.5
	 */
	if (!oprjoin)
		return (Selectivity) 0.5;

	result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
												 inputcollid,
												 PointerGetDatum(root),
												 ObjectIdGetDatum(operatorid),
												 PointerGetDatum(args),
												 Int16GetDatum(jointype),
												 PointerGetDatum(sjinfo)));

	if (result < 0.0 || result > 1.0)
		elog(ERROR, "invalid join selectivity: %f", result);

	return (Selectivity) result;
}

/*
 * function_selectivity
 *
 * Returns the selectivity of a specified boolean function clause.
 * This code executes registered procedures stored in the
 * pg_proc relation, by calling the function manager.
 *
 * See clause_selectivity() for the meaning of the additional parameters.
 */
Selectivity
function_selectivity(PlannerInfo *root,
					 Oid funcid,
					 List *args,
					 Oid inputcollid,
					 bool is_join,
					 int varRelid,
					 JoinType jointype,
					 SpecialJoinInfo *sjinfo)
{
	RegProcedure prosupport = get_func_support(funcid);
	SupportRequestSelectivity req;
	SupportRequestSelectivity *sresult;

	/*
	 * If no support function is provided, use our historical default
	 * estimate, 0.3333333.  This seems a pretty unprincipled choice, but
	 * Postgres has been using that estimate for function calls since 1992.
	 * The hoariness of this behavior suggests that we should not be in too
	 * much hurry to use another value.
	 */
	if (!prosupport)
		return (Selectivity) 0.3333333;

	req.type = T_SupportRequestSelectivity;
	req.root = root;
	req.funcid = funcid;
	req.args = args;
	req.inputcollid = inputcollid;
	req.is_join = is_join;
	req.varRelid = varRelid;
	req.jointype = jointype;
	req.sjinfo = sjinfo;
	req.selectivity = -1;		/* to catch failure to set the value */

	sresult = (SupportRequestSelectivity *)
		DatumGetPointer(OidFunctionCall1(prosupport,
										 PointerGetDatum(&req)));

	/* If support function fails, use default */
	if (sresult != &req)
		return (Selectivity) 0.3333333;

	if (req.selectivity < 0.0 || req.selectivity > 1.0)
		elog(ERROR, "invalid function selectivity: %f", req.selectivity);

	return (Selectivity) req.selectivity;
}

/*
 * add_function_cost
 *
 * Get an estimate of the execution cost of a function, and *add* it to
 * the contents of *cost.  The estimate may include both one-time and
 * per-tuple components, since QualCost does.
 *
 * The funcid must always be supplied.  If it is being called as the
 * implementation of a specific parsetree node (FuncExpr, OpExpr,
 * WindowFunc, etc), pass that as "node", else pass NULL.
 *
 * In some usages root might be NULL, too.
 */
void
add_function_cost(PlannerInfo *root, Oid funcid, Node *node,
				  QualCost *cost)
{
	HeapTuple	proctup;
	Form_pg_proc procform;

	proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
	if (!HeapTupleIsValid(proctup))
		elog(ERROR, "cache lookup failed for function %u", funcid);
	procform = (Form_pg_proc) GETSTRUCT(proctup);

	if (OidIsValid(procform->prosupport))
	{
		SupportRequestCost req;
		SupportRequestCost *sresult;

		req.type = T_SupportRequestCost;
		req.root = root;
		req.funcid = funcid;
		req.node = node;

		/* Initialize cost fields so that support function doesn't have to */
		req.startup = 0;
		req.per_tuple = 0;

		sresult = (SupportRequestCost *)
			DatumGetPointer(OidFunctionCall1(procform->prosupport,
											 PointerGetDatum(&req)));

		if (sresult == &req)
		{
			/* Success, so accumulate support function's estimate into *cost */
			cost->startup += req.startup;
			cost->per_tuple += req.per_tuple;
			ReleaseSysCache(proctup);
			return;
		}
	}

	/* No support function, or it failed, so rely on procost */
	cost->per_tuple += procform->procost * cpu_operator_cost;

	ReleaseSysCache(proctup);
}

/*
 * get_function_rows
 *
 * Get an estimate of the number of rows returned by a set-returning function.
 *
 * The funcid must always be supplied.  In current usage, the calling node
 * will always be supplied, and will be either a FuncExpr or OpExpr.
 * But it's a good idea to not fail if it's NULL.
 *
 * In some usages root might be NULL, too.
 *
 * Note: this returns the unfiltered result of the support function, if any.
 * It's usually a good idea to apply clamp_row_est() to the result, but we
 * leave it to the caller to do so.
 */
double
get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
{
	HeapTuple	proctup;
	Form_pg_proc procform;
	double		result;

	proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
	if (!HeapTupleIsValid(proctup))
		elog(ERROR, "cache lookup failed for function %u", funcid);
	procform = (Form_pg_proc) GETSTRUCT(proctup);

	Assert(procform->proretset);	/* else caller error */

	if (OidIsValid(procform->prosupport))
	{
		SupportRequestRows req;
		SupportRequestRows *sresult;

		req.type = T_SupportRequestRows;
		req.root = root;
		req.funcid = funcid;
		req.node = node;

		req.rows = 0;			/* just for sanity */

		sresult = (SupportRequestRows *)
			DatumGetPointer(OidFunctionCall1(procform->prosupport,
											 PointerGetDatum(&req)));

		if (sresult == &req)
		{
			/* Success */
			ReleaseSysCache(proctup);
			return req.rows;
		}
	}

	/* No support function, or it failed, so rely on prorows */
	result = procform->prorows;

	ReleaseSysCache(proctup);

	return result;
}

/*
 * has_unique_index
 *
 * Detect whether there is a unique index on the specified attribute
 * of the specified relation, thus allowing us to conclude that all
 * the (non-null) values of the attribute are distinct.
 *
 * This function does not check the index's indimmediate property, which
 * means that uniqueness may transiently fail to hold intra-transaction.
 * That's appropriate when we are making statistical estimates, but beware
 * of using this for any correctness proofs.
 */
bool
has_unique_index(RelOptInfo *rel, AttrNumber attno)
{
	ListCell   *ilist;

	foreach(ilist, rel->indexlist)
	{
		IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);

		/*
		 * Note: ignore partial indexes, since they don't allow us to conclude
		 * that all attr values are distinct, *unless* they are marked predOK
		 * which means we know the index's predicate is satisfied by the
		 * query. We don't take any interest in expressional indexes either.
		 * Also, a multicolumn unique index doesn't allow us to conclude that
		 * just the specified attr is unique.
		 */
		if (index->unique &&
			index->nkeycolumns == 1 &&
			index->indexkeys[0] == attno &&
			(index->indpred == NIL || index->predOK))
			return true;
	}
	return false;
}


/*
 * has_row_triggers
 *
 * Detect whether the specified relation has any row-level triggers for event.
 */
bool
has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
{
	RangeTblEntry *rte = planner_rt_fetch(rti, root);
	Relation	relation;
	TriggerDesc *trigDesc;
	bool		result = false;

	/* Assume we already have adequate lock */
	relation = table_open(rte->relid, NoLock);

	trigDesc = relation->trigdesc;
	switch (event)
	{
		case CMD_INSERT:
			if (trigDesc &&
				(trigDesc->trig_insert_after_row ||
				 trigDesc->trig_insert_before_row))
				result = true;
			break;
		case CMD_UPDATE:
			if (trigDesc &&
				(trigDesc->trig_update_after_row ||
				 trigDesc->trig_update_before_row))
				result = true;
			break;
		case CMD_DELETE:
			if (trigDesc &&
				(trigDesc->trig_delete_after_row ||
				 trigDesc->trig_delete_before_row))
				result = true;
			break;
		default:
			elog(ERROR, "unrecognized CmdType: %d", (int) event);
			break;
	}

	table_close(relation, NoLock);
	return result;
}

bool
has_stored_generated_columns(PlannerInfo *root, Index rti)
{
	RangeTblEntry *rte = planner_rt_fetch(rti, root);
	Relation	relation;
	TupleDesc	tupdesc;
	bool		result = false;

	/* Assume we already have adequate lock */
	relation = table_open(rte->relid, NoLock);

	tupdesc = RelationGetDescr(relation);
	result = tupdesc->constr && tupdesc->constr->has_generated_stored;

	table_close(relation, NoLock);

	return result;
}

/*
 * set_relation_partition_info
 *
 * Set partitioning scheme and related information for a partitioned table.
 */
static void
set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
							Relation relation)
{
	PartitionDesc partdesc;

	/*
	 * Create the PartitionDirectory infrastructure if we didn't already.
	 */
	if (root->glob->partition_directory == NULL)
	{
		root->glob->partition_directory =
			CreatePartitionDirectory(CurrentMemoryContext, true);
	}

	partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
										relation);
	rel->part_scheme = find_partition_scheme(root, relation);
	Assert(partdesc != NULL && rel->part_scheme != NULL);
	rel->boundinfo = partdesc->boundinfo;
	rel->nparts = partdesc->nparts;
	set_baserel_partition_key_exprs(relation, rel);
	set_baserel_partition_constraint(relation, rel);
}

/*
 * find_partition_scheme
 *
 * Find or create a PartitionScheme for this Relation.
 */
static PartitionScheme
find_partition_scheme(PlannerInfo *root, Relation relation)
{
	PartitionKey partkey = RelationGetPartitionKey(relation);
	ListCell   *lc;
	int			partnatts,
				i;
	PartitionScheme part_scheme;

	/* A partitioned table should have a partition key. */
	Assert(partkey != NULL);

	partnatts = partkey->partnatts;

	/* Search for a matching partition scheme and return if found one. */
	foreach(lc, root->part_schemes)
	{
		part_scheme = lfirst(lc);

		/* Match partitioning strategy and number of keys. */
		if (partkey->strategy != part_scheme->strategy ||
			partnatts != part_scheme->partnatts)
			continue;

		/* Match partition key type properties. */
		if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
				   sizeof(Oid) * partnatts) != 0 ||
			memcmp(partkey->partopcintype, part_scheme->partopcintype,
				   sizeof(Oid) * partnatts) != 0 ||
			memcmp(partkey->partcollation, part_scheme->partcollation,
				   sizeof(Oid) * partnatts) != 0)
			continue;

		/*
		 * Length and byval information should match when partopcintype
		 * matches.
		 */
		Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
					  sizeof(int16) * partnatts) == 0);
		Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
					  sizeof(bool) * partnatts) == 0);

		/*
		 * If partopfamily and partopcintype matched, must have the same
		 * partition comparison functions.  Note that we cannot reliably
		 * Assert the equality of function structs themselves for they might
		 * be different across PartitionKey's, so just Assert for the function
		 * OIDs.
		 */
#ifdef USE_ASSERT_CHECKING
		for (i = 0; i < partkey->partnatts; i++)
			Assert(partkey->partsupfunc[i].fn_oid ==
				   part_scheme->partsupfunc[i].fn_oid);
#endif

		/* Found matching partition scheme. */
		return part_scheme;
	}

	/*
	 * Did not find matching partition scheme. Create one copying relevant
	 * information from the relcache. We need to copy the contents of the
	 * array since the relcache entry may not survive after we have closed the
	 * relation.
	 */
	part_scheme = (PartitionScheme) palloc0(sizeof(PartitionSchemeData));
	part_scheme->strategy = partkey->strategy;
	part_scheme->partnatts = partkey->partnatts;

	part_scheme->partopfamily = (Oid *) palloc(sizeof(Oid) * partnatts);
	memcpy(part_scheme->partopfamily, partkey->partopfamily,
		   sizeof(Oid) * partnatts);

	part_scheme->partopcintype = (Oid *) palloc(sizeof(Oid) * partnatts);
	memcpy(part_scheme->partopcintype, partkey->partopcintype,
		   sizeof(Oid) * partnatts);

	part_scheme->partcollation = (Oid *) palloc(sizeof(Oid) * partnatts);
	memcpy(part_scheme->partcollation, partkey->partcollation,
		   sizeof(Oid) * partnatts);

	part_scheme->parttyplen = (int16 *) palloc(sizeof(int16) * partnatts);
	memcpy(part_scheme->parttyplen, partkey->parttyplen,
		   sizeof(int16) * partnatts);

	part_scheme->parttypbyval = (bool *) palloc(sizeof(bool) * partnatts);
	memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
		   sizeof(bool) * partnatts);

	part_scheme->partsupfunc = (FmgrInfo *)
		palloc(sizeof(FmgrInfo) * partnatts);
	for (i = 0; i < partnatts; i++)
		fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
					   CurrentMemoryContext);

	/* Add the partitioning scheme to PlannerInfo. */
	root->part_schemes = lappend(root->part_schemes, part_scheme);

	return part_scheme;
}

/*
 * set_baserel_partition_key_exprs
 *
 * Builds partition key expressions for the given base relation and fills
 * rel->partexprs.
 */
static void
set_baserel_partition_key_exprs(Relation relation,
								RelOptInfo *rel)
{
	PartitionKey partkey = RelationGetPartitionKey(relation);
	int			partnatts;
	int			cnt;
	List	  **partexprs;
	ListCell   *lc;
	Index		varno = rel->relid;

	Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);

	/* A partitioned table should have a partition key. */
	Assert(partkey != NULL);

	partnatts = partkey->partnatts;
	partexprs = (List **) palloc(sizeof(List *) * partnatts);
	lc = list_head(partkey->partexprs);

	for (cnt = 0; cnt < partnatts; cnt++)
	{
		Expr	   *partexpr;
		AttrNumber	attno = partkey->partattrs[cnt];

		if (attno != InvalidAttrNumber)
		{
			/* Single column partition key is stored as a Var node. */
			Assert(attno > 0);

			partexpr = (Expr *) makeVar(varno, attno,
										partkey->parttypid[cnt],
										partkey->parttypmod[cnt],
										partkey->parttypcoll[cnt], 0);
		}
		else
		{
			if (lc == NULL)
				elog(ERROR, "wrong number of partition key expressions");

			/* Re-stamp the expression with given varno. */
			partexpr = (Expr *) copyObject(lfirst(lc));
			ChangeVarNodes((Node *) partexpr, 1, varno, 0);
			lc = lnext(partkey->partexprs, lc);
		}

		/* Base relations have a single expression per key. */
		partexprs[cnt] = list_make1(partexpr);
	}

	rel->partexprs = partexprs;

	/*
	 * A base relation does not have nullable partition key expressions, since
	 * no outer join is involved.  We still allocate an array of empty
	 * expression lists to keep partition key expression handling code simple.
	 * See build_joinrel_partition_info() and match_expr_to_partition_keys().
	 */
	rel->nullable_partexprs = (List **) palloc0(sizeof(List *) * partnatts);
}

/*
 * set_baserel_partition_constraint
 *
 * Builds the partition constraint for the given base relation and sets it
 * in the given RelOptInfo.  All Var nodes are restamped with the relid of the
 * given relation.
 */
static void
set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
{
	List	   *partconstr;

	if (rel->partition_qual)	/* already done */
		return;

	/*
	 * Run the partition quals through const-simplification similar to check
	 * constraints.  We skip canonicalize_qual, though, because partition
	 * quals should be in canonical form already; also, since the qual is in
	 * implicit-AND format, we'd have to explicitly convert it to explicit-AND
	 * format and back again.
	 */
	partconstr = RelationGetPartitionQual(relation);
	if (partconstr)
	{
		partconstr = (List *) expression_planner((Expr *) partconstr);
		if (rel->relid != 1)
			ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
		rel->partition_qual = partconstr;
	}
}