1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
|
/*-------------------------------------------------------------------------
*
* mcv.c
* POSTGRES multivariate MCV lists
*
*
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/statistics/mcv.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <math.h>
#include "access/htup_details.h"
#include "catalog/pg_collation.h"
#include "catalog/pg_statistic_ext.h"
#include "catalog/pg_statistic_ext_data.h"
#include "fmgr.h"
#include "funcapi.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "statistics/extended_stats_internal.h"
#include "statistics/statistics.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "utils/bytea.h"
#include "utils/fmgroids.h"
#include "utils/fmgrprotos.h"
#include "utils/lsyscache.h"
#include "utils/selfuncs.h"
#include "utils/syscache.h"
#include "utils/typcache.h"
/*
* Computes size of a serialized MCV item, depending on the number of
* dimensions (columns) the statistic is defined on. The datum values are
* stored in a separate array (deduplicated, to minimize the size), and
* so the serialized items only store uint16 indexes into that array.
*
* Each serialized item stores (in this order):
*
* - indexes to values (ndim * sizeof(uint16))
* - null flags (ndim * sizeof(bool))
* - frequency (sizeof(double))
* - base_frequency (sizeof(double))
*
* There is no alignment padding within an MCV item.
* So in total each MCV item requires this many bytes:
*
* ndim * (sizeof(uint16) + sizeof(bool)) + 2 * sizeof(double)
*/
#define ITEM_SIZE(ndims) \
((ndims) * (sizeof(uint16) + sizeof(bool)) + 2 * sizeof(double))
/*
* Used to compute size of serialized MCV list representation.
*/
#define MinSizeOfMCVList \
(VARHDRSZ + sizeof(uint32) * 3 + sizeof(AttrNumber))
/*
* Size of the serialized MCV list, excluding the space needed for
* deduplicated per-dimension values. The macro is meant to be used
* when it's not yet safe to access the serialized info about amount
* of data for each column.
*/
#define SizeOfMCVList(ndims,nitems) \
((MinSizeOfMCVList + sizeof(Oid) * (ndims)) + \
((ndims) * sizeof(DimensionInfo)) + \
((nitems) * ITEM_SIZE(ndims)))
static MultiSortSupport build_mss(StatsBuildData *data);
static SortItem *build_distinct_groups(int numrows, SortItem *items,
MultiSortSupport mss, int *ndistinct);
static SortItem **build_column_frequencies(SortItem *groups, int ngroups,
MultiSortSupport mss, int *ncounts);
static int count_distinct_groups(int numrows, SortItem *items,
MultiSortSupport mss);
/*
* Compute new value for bitmap item, considering whether it's used for
* clauses connected by AND/OR.
*/
#define RESULT_MERGE(value, is_or, match) \
((is_or) ? ((value) || (match)) : ((value) && (match)))
/*
* When processing a list of clauses, the bitmap item may get set to a value
* such that additional clauses can't change it. For example, when processing
* a list of clauses connected to AND, as soon as the item gets set to 'false'
* then it'll remain like that. Similarly clauses connected by OR and 'true'.
*
* Returns true when the value in the bitmap can't change no matter how the
* remaining clauses are evaluated.
*/
#define RESULT_IS_FINAL(value, is_or) ((is_or) ? (value) : (!(value)))
/*
* get_mincount_for_mcv_list
* Determine the minimum number of times a value needs to appear in
* the sample for it to be included in the MCV list.
*
* We want to keep only values that appear sufficiently often in the
* sample that it is reasonable to extrapolate their sample frequencies to
* the entire table. We do this by placing an upper bound on the relative
* standard error of the sample frequency, so that any estimates the
* planner generates from the MCV statistics can be expected to be
* reasonably accurate.
*
* Since we are sampling without replacement, the sample frequency of a
* particular value is described by a hypergeometric distribution. A
* common rule of thumb when estimating errors in this situation is to
* require at least 10 instances of the value in the sample, in which case
* the distribution can be approximated by a normal distribution, and
* standard error analysis techniques can be applied. Given a sample size
* of n, a population size of N, and a sample frequency of p=cnt/n, the
* standard error of the proportion p is given by
* SE = sqrt(p*(1-p)/n) * sqrt((N-n)/(N-1))
* where the second term is the finite population correction. To get
* reasonably accurate planner estimates, we impose an upper bound on the
* relative standard error of 20% -- i.e., SE/p < 0.2. This 20% relative
* error bound is fairly arbitrary, but has been found empirically to work
* well. Rearranging this formula gives a lower bound on the number of
* instances of the value seen:
* cnt > n*(N-n) / (N-n+0.04*n*(N-1))
* This bound is at most 25, and approaches 0 as n approaches 0 or N. The
* case where n approaches 0 cannot happen in practice, since the sample
* size is at least 300. The case where n approaches N corresponds to
* sampling the whole the table, in which case it is reasonable to keep
* the whole MCV list (have no lower bound), so it makes sense to apply
* this formula for all inputs, even though the above derivation is
* technically only valid when the right hand side is at least around 10.
*
* An alternative way to look at this formula is as follows -- assume that
* the number of instances of the value seen scales up to the entire
* table, so that the population count is K=N*cnt/n. Then the distribution
* in the sample is a hypergeometric distribution parameterised by N, n
* and K, and the bound above is mathematically equivalent to demanding
* that the standard deviation of that distribution is less than 20% of
* its mean. Thus the relative errors in any planner estimates produced
* from the MCV statistics are likely to be not too large.
*/
static double
get_mincount_for_mcv_list(int samplerows, double totalrows)
{
double n = samplerows;
double N = totalrows;
double numer,
denom;
numer = n * (N - n);
denom = N - n + 0.04 * n * (N - 1);
/* Guard against division by zero (possible if n = N = 1) */
if (denom == 0.0)
return 0.0;
return numer / denom;
}
/*
* Builds MCV list from the set of sampled rows.
*
* The algorithm is quite simple:
*
* (1) sort the data (default collation, '<' for the data type)
*
* (2) count distinct groups, decide how many to keep
*
* (3) build the MCV list using the threshold determined in (2)
*
* (4) remove rows represented by the MCV from the sample
*
*/
MCVList *
statext_mcv_build(StatsBuildData *data, double totalrows, int stattarget)
{
int i,
numattrs,
numrows,
ngroups,
nitems;
double mincount;
SortItem *items;
SortItem *groups;
MCVList *mcvlist = NULL;
MultiSortSupport mss;
/* comparator for all the columns */
mss = build_mss(data);
/* sort the rows */
items = build_sorted_items(data, &nitems, mss,
data->nattnums, data->attnums);
if (!items)
return NULL;
/* for convenience */
numattrs = data->nattnums;
numrows = data->numrows;
/* transform the sorted rows into groups (sorted by frequency) */
groups = build_distinct_groups(nitems, items, mss, &ngroups);
/*
* The maximum number of MCV items to store, based on the statistics
* target we computed for the statistics object (from the target set for
* the object itself, attributes and the system default). In any case, we
* can't keep more groups than we have available.
*/
nitems = stattarget;
if (nitems > ngroups)
nitems = ngroups;
/*
* Decide how many items to keep in the MCV list. We can't use the same
* algorithm as per-column MCV lists, because that only considers the
* actual group frequency - but we're primarily interested in how the
* actual frequency differs from the base frequency (product of simple
* per-column frequencies, as if the columns were independent).
*
* Using the same algorithm might exclude items that are close to the
* "average" frequency of the sample. But that does not say whether the
* observed frequency is close to the base frequency or not. We also need
* to consider unexpectedly uncommon items (again, compared to the base
* frequency), and the single-column algorithm does not have to.
*
* We simply decide how many items to keep by computing the minimum count
* using get_mincount_for_mcv_list() and then keep all items that seem to
* be more common than that.
*/
mincount = get_mincount_for_mcv_list(numrows, totalrows);
/*
* Walk the groups until we find the first group with a count below the
* mincount threshold (the index of that group is the number of groups we
* want to keep).
*/
for (i = 0; i < nitems; i++)
{
if (groups[i].count < mincount)
{
nitems = i;
break;
}
}
/*
* At this point, we know the number of items for the MCV list. There
* might be none (for uniform distribution with many groups), and in that
* case, there will be no MCV list. Otherwise, construct the MCV list.
*/
if (nitems > 0)
{
int j;
SortItem key;
MultiSortSupport tmp;
/* frequencies for values in each attribute */
SortItem **freqs;
int *nfreqs;
/* used to search values */
tmp = (MultiSortSupport) palloc(offsetof(MultiSortSupportData, ssup)
+ sizeof(SortSupportData));
/* compute frequencies for values in each column */
nfreqs = (int *) palloc0(sizeof(int) * numattrs);
freqs = build_column_frequencies(groups, ngroups, mss, nfreqs);
/*
* Allocate the MCV list structure, set the global parameters.
*/
mcvlist = (MCVList *) palloc0(offsetof(MCVList, items) +
sizeof(MCVItem) * nitems);
mcvlist->magic = STATS_MCV_MAGIC;
mcvlist->type = STATS_MCV_TYPE_BASIC;
mcvlist->ndimensions = numattrs;
mcvlist->nitems = nitems;
/* store info about data type OIDs */
for (i = 0; i < numattrs; i++)
mcvlist->types[i] = data->stats[i]->attrtypid;
/* Copy the first chunk of groups into the result. */
for (i = 0; i < nitems; i++)
{
/* just pointer to the proper place in the list */
MCVItem *item = &mcvlist->items[i];
item->values = (Datum *) palloc(sizeof(Datum) * numattrs);
item->isnull = (bool *) palloc(sizeof(bool) * numattrs);
/* copy values for the group */
memcpy(item->values, groups[i].values, sizeof(Datum) * numattrs);
memcpy(item->isnull, groups[i].isnull, sizeof(bool) * numattrs);
/* groups should be sorted by frequency in descending order */
Assert((i == 0) || (groups[i - 1].count >= groups[i].count));
/* group frequency */
item->frequency = (double) groups[i].count / numrows;
/* base frequency, if the attributes were independent */
item->base_frequency = 1.0;
for (j = 0; j < numattrs; j++)
{
SortItem *freq;
/* single dimension */
tmp->ndims = 1;
tmp->ssup[0] = mss->ssup[j];
/* fill search key */
key.values = &groups[i].values[j];
key.isnull = &groups[i].isnull[j];
freq = (SortItem *) bsearch_arg(&key, freqs[j], nfreqs[j],
sizeof(SortItem),
multi_sort_compare, tmp);
item->base_frequency *= ((double) freq->count) / numrows;
}
}
pfree(nfreqs);
pfree(freqs);
}
pfree(items);
pfree(groups);
return mcvlist;
}
/*
* build_mss
* Build a MultiSortSupport for the given StatsBuildData.
*/
static MultiSortSupport
build_mss(StatsBuildData *data)
{
int i;
int numattrs = data->nattnums;
/* Sort by multiple columns (using array of SortSupport) */
MultiSortSupport mss = multi_sort_init(numattrs);
/* prepare the sort functions for all the attributes */
for (i = 0; i < numattrs; i++)
{
VacAttrStats *colstat = data->stats[i];
TypeCacheEntry *type;
type = lookup_type_cache(colstat->attrtypid, TYPECACHE_LT_OPR);
if (type->lt_opr == InvalidOid) /* shouldn't happen */
elog(ERROR, "cache lookup failed for ordering operator for type %u",
colstat->attrtypid);
multi_sort_add_dimension(mss, i, type->lt_opr, colstat->attrcollid);
}
return mss;
}
/*
* count_distinct_groups
* Count distinct combinations of SortItems in the array.
*
* The array is assumed to be sorted according to the MultiSortSupport.
*/
static int
count_distinct_groups(int numrows, SortItem *items, MultiSortSupport mss)
{
int i;
int ndistinct;
ndistinct = 1;
for (i = 1; i < numrows; i++)
{
/* make sure the array really is sorted */
Assert(multi_sort_compare(&items[i], &items[i - 1], mss) >= 0);
if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0)
ndistinct += 1;
}
return ndistinct;
}
/*
* compare_sort_item_count
* Comparator for sorting items by count (frequencies) in descending
* order.
*/
static int
compare_sort_item_count(const void *a, const void *b, void *arg)
{
SortItem *ia = (SortItem *) a;
SortItem *ib = (SortItem *) b;
if (ia->count == ib->count)
return 0;
else if (ia->count > ib->count)
return -1;
return 1;
}
/*
* build_distinct_groups
* Build an array of SortItems for distinct groups and counts matching
* items.
*
* The 'items' array is assumed to be sorted.
*/
static SortItem *
build_distinct_groups(int numrows, SortItem *items, MultiSortSupport mss,
int *ndistinct)
{
int i,
j;
int ngroups = count_distinct_groups(numrows, items, mss);
SortItem *groups = (SortItem *) palloc(ngroups * sizeof(SortItem));
j = 0;
groups[0] = items[0];
groups[0].count = 1;
for (i = 1; i < numrows; i++)
{
/* Assume sorted in ascending order. */
Assert(multi_sort_compare(&items[i], &items[i - 1], mss) >= 0);
/* New distinct group detected. */
if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0)
{
groups[++j] = items[i];
groups[j].count = 0;
}
groups[j].count++;
}
/* ensure we filled the expected number of distinct groups */
Assert(j + 1 == ngroups);
/* Sort the distinct groups by frequency (in descending order). */
qsort_interruptible((void *) groups, ngroups, sizeof(SortItem),
compare_sort_item_count, NULL);
*ndistinct = ngroups;
return groups;
}
/* compare sort items (single dimension) */
static int
sort_item_compare(const void *a, const void *b, void *arg)
{
SortSupport ssup = (SortSupport) arg;
SortItem *ia = (SortItem *) a;
SortItem *ib = (SortItem *) b;
return ApplySortComparator(ia->values[0], ia->isnull[0],
ib->values[0], ib->isnull[0],
ssup);
}
/*
* build_column_frequencies
* Compute frequencies of values in each column.
*
* This returns an array of SortItems for each attribute the MCV is built
* on, with a frequency (number of occurrences) for each value. This is
* then used to compute "base" frequency of MCV items.
*
* All the memory is allocated in a single chunk, so that a single pfree
* is enough to release it. We do not allocate space for values/isnull
* arrays in the SortItems, because we can simply point into the input
* groups directly.
*/
static SortItem **
build_column_frequencies(SortItem *groups, int ngroups,
MultiSortSupport mss, int *ncounts)
{
int i,
dim;
SortItem **result;
char *ptr;
Assert(groups);
Assert(ncounts);
/* allocate arrays for all columns as a single chunk */
ptr = palloc(MAXALIGN(sizeof(SortItem *) * mss->ndims) +
mss->ndims * MAXALIGN(sizeof(SortItem) * ngroups));
/* initial array of pointers */
result = (SortItem **) ptr;
ptr += MAXALIGN(sizeof(SortItem *) * mss->ndims);
for (dim = 0; dim < mss->ndims; dim++)
{
SortSupport ssup = &mss->ssup[dim];
/* array of values for a single column */
result[dim] = (SortItem *) ptr;
ptr += MAXALIGN(sizeof(SortItem) * ngroups);
/* extract data for the dimension */
for (i = 0; i < ngroups; i++)
{
/* point into the input groups */
result[dim][i].values = &groups[i].values[dim];
result[dim][i].isnull = &groups[i].isnull[dim];
result[dim][i].count = groups[i].count;
}
/* sort the values, deduplicate */
qsort_interruptible((void *) result[dim], ngroups, sizeof(SortItem),
sort_item_compare, ssup);
/*
* Identify distinct values, compute frequency (there might be
* multiple MCV items containing this value, so we need to sum counts
* from all of them.
*/
ncounts[dim] = 1;
for (i = 1; i < ngroups; i++)
{
if (sort_item_compare(&result[dim][i - 1], &result[dim][i], ssup) == 0)
{
result[dim][ncounts[dim] - 1].count += result[dim][i].count;
continue;
}
result[dim][ncounts[dim]] = result[dim][i];
ncounts[dim]++;
}
}
return result;
}
/*
* statext_mcv_load
* Load the MCV list for the indicated pg_statistic_ext tuple.
*/
MCVList *
statext_mcv_load(Oid mvoid)
{
MCVList *result;
bool isnull;
Datum mcvlist;
HeapTuple htup = SearchSysCache1(STATEXTDATASTXOID, ObjectIdGetDatum(mvoid));
if (!HeapTupleIsValid(htup))
elog(ERROR, "cache lookup failed for statistics object %u", mvoid);
mcvlist = SysCacheGetAttr(STATEXTDATASTXOID, htup,
Anum_pg_statistic_ext_data_stxdmcv, &isnull);
if (isnull)
elog(ERROR,
"requested statistics kind \"%c\" is not yet built for statistics object %u",
STATS_EXT_DEPENDENCIES, mvoid);
result = statext_mcv_deserialize(DatumGetByteaP(mcvlist));
ReleaseSysCache(htup);
return result;
}
/*
* statext_mcv_serialize
* Serialize MCV list into a pg_mcv_list value.
*
* The MCV items may include values of various data types, and it's reasonable
* to expect redundancy (values for a given attribute, repeated for multiple
* MCV list items). So we deduplicate the values into arrays, and then replace
* the values by indexes into those arrays.
*
* The overall structure of the serialized representation looks like this:
*
* +---------------+----------------+---------------------+-------+
* | header fields | dimension info | deduplicated values | items |
* +---------------+----------------+---------------------+-------+
*
* Where dimension info stores information about the type of the K-th
* attribute (e.g. typlen, typbyval and length of deduplicated values).
* Deduplicated values store deduplicated values for each attribute. And
* items store the actual MCV list items, with values replaced by indexes into
* the arrays.
*
* When serializing the items, we use uint16 indexes. The number of MCV items
* is limited by the statistics target (which is capped to 10k at the moment).
* We might increase this to 65k and still fit into uint16, so there's a bit of
* slack. Furthermore, this limit is on the number of distinct values per column,
* and we usually have few of those (and various combinations of them for the
* those MCV list). So uint16 seems fine for now.
*
* We don't really expect the serialization to save as much space as for
* histograms, as we are not doing any bucket splits (which is the source
* of high redundancy in histograms).
*
* TODO: Consider packing boolean flags (NULL) for each item into a single char
* (or a longer type) instead of using an array of bool items.
*/
bytea *
statext_mcv_serialize(MCVList *mcvlist, VacAttrStats **stats)
{
int i;
int dim;
int ndims = mcvlist->ndimensions;
SortSupport ssup;
DimensionInfo *info;
Size total_length;
/* serialized items (indexes into arrays, etc.) */
bytea *raw;
char *ptr;
char *endptr PG_USED_FOR_ASSERTS_ONLY;
/* values per dimension (and number of non-NULL values) */
Datum **values = (Datum **) palloc0(sizeof(Datum *) * ndims);
int *counts = (int *) palloc0(sizeof(int) * ndims);
/*
* We'll include some rudimentary information about the attribute types
* (length, by-val flag), so that we don't have to look them up while
* deserializing the MCV list (we already have the type OID in the
* header). This is safe because when changing the type of the attribute
* the statistics gets dropped automatically. We need to store the info
* about the arrays of deduplicated values anyway.
*/
info = (DimensionInfo *) palloc0(sizeof(DimensionInfo) * ndims);
/* sort support data for all attributes included in the MCV list */
ssup = (SortSupport) palloc0(sizeof(SortSupportData) * ndims);
/* collect and deduplicate values for each dimension (attribute) */
for (dim = 0; dim < ndims; dim++)
{
int ndistinct;
TypeCacheEntry *typentry;
/*
* Lookup the LT operator (can't get it from stats extra_data, as we
* don't know how to interpret that - scalar vs. array etc.).
*/
typentry = lookup_type_cache(stats[dim]->attrtypid, TYPECACHE_LT_OPR);
/* copy important info about the data type (length, by-value) */
info[dim].typlen = stats[dim]->attrtype->typlen;
info[dim].typbyval = stats[dim]->attrtype->typbyval;
/* allocate space for values in the attribute and collect them */
values[dim] = (Datum *) palloc0(sizeof(Datum) * mcvlist->nitems);
for (i = 0; i < mcvlist->nitems; i++)
{
/* skip NULL values - we don't need to deduplicate those */
if (mcvlist->items[i].isnull[dim])
continue;
/* append the value at the end */
values[dim][counts[dim]] = mcvlist->items[i].values[dim];
counts[dim] += 1;
}
/* if there are just NULL values in this dimension, we're done */
if (counts[dim] == 0)
continue;
/* sort and deduplicate the data */
ssup[dim].ssup_cxt = CurrentMemoryContext;
ssup[dim].ssup_collation = stats[dim]->attrcollid;
ssup[dim].ssup_nulls_first = false;
PrepareSortSupportFromOrderingOp(typentry->lt_opr, &ssup[dim]);
qsort_interruptible(values[dim], counts[dim], sizeof(Datum),
compare_scalars_simple, &ssup[dim]);
/*
* Walk through the array and eliminate duplicate values, but keep the
* ordering (so that we can do a binary search later). We know there's
* at least one item as (counts[dim] != 0), so we can skip the first
* element.
*/
ndistinct = 1; /* number of distinct values */
for (i = 1; i < counts[dim]; i++)
{
/* expect sorted array */
Assert(compare_datums_simple(values[dim][i - 1], values[dim][i], &ssup[dim]) <= 0);
/* if the value is the same as the previous one, we can skip it */
if (!compare_datums_simple(values[dim][i - 1], values[dim][i], &ssup[dim]))
continue;
values[dim][ndistinct] = values[dim][i];
ndistinct += 1;
}
/* we must not exceed PG_UINT16_MAX, as we use uint16 indexes */
Assert(ndistinct <= PG_UINT16_MAX);
/*
* Store additional info about the attribute - number of deduplicated
* values, and also size of the serialized data. For fixed-length data
* types this is trivial to compute, for varwidth types we need to
* actually walk the array and sum the sizes.
*/
info[dim].nvalues = ndistinct;
if (info[dim].typbyval) /* by-value data types */
{
info[dim].nbytes = info[dim].nvalues * info[dim].typlen;
/*
* We copy the data into the MCV item during deserialization, so
* we don't need to allocate any extra space.
*/
info[dim].nbytes_aligned = 0;
}
else if (info[dim].typlen > 0) /* fixed-length by-ref */
{
/*
* We don't care about alignment in the serialized data, so we
* pack the data as much as possible. But we also track how much
* data will be needed after deserialization, and in that case we
* need to account for alignment of each item.
*
* Note: As the items are fixed-length, we could easily compute
* this during deserialization, but we do it here anyway.
*/
info[dim].nbytes = info[dim].nvalues * info[dim].typlen;
info[dim].nbytes_aligned = info[dim].nvalues * MAXALIGN(info[dim].typlen);
}
else if (info[dim].typlen == -1) /* varlena */
{
info[dim].nbytes = 0;
info[dim].nbytes_aligned = 0;
for (i = 0; i < info[dim].nvalues; i++)
{
Size len;
/*
* For varlena values, we detoast the values and store the
* length and data separately. We don't bother with alignment
* here, which means that during deserialization we need to
* copy the fields and only access the copies.
*/
values[dim][i] = PointerGetDatum(PG_DETOAST_DATUM(values[dim][i]));
/* serialized length (uint32 length + data) */
len = VARSIZE_ANY_EXHDR(values[dim][i]);
info[dim].nbytes += sizeof(uint32); /* length */
info[dim].nbytes += len; /* value (no header) */
/*
* During deserialization we'll build regular varlena values
* with full headers, and we need to align them properly.
*/
info[dim].nbytes_aligned += MAXALIGN(VARHDRSZ + len);
}
}
else if (info[dim].typlen == -2) /* cstring */
{
info[dim].nbytes = 0;
info[dim].nbytes_aligned = 0;
for (i = 0; i < info[dim].nvalues; i++)
{
Size len;
/*
* cstring is handled similar to varlena - first we store the
* length as uint32 and then the data. We don't care about
* alignment, which means that during deserialization we need
* to copy the fields and only access the copies.
*/
/* c-strings include terminator, so +1 byte */
len = strlen(DatumGetCString(values[dim][i])) + 1;
info[dim].nbytes += sizeof(uint32); /* length */
info[dim].nbytes += len; /* value */
/* space needed for properly aligned deserialized copies */
info[dim].nbytes_aligned += MAXALIGN(len);
}
}
/* we know (count>0) so there must be some data */
Assert(info[dim].nbytes > 0);
}
/*
* Now we can finally compute how much space we'll actually need for the
* whole serialized MCV list (varlena header, MCV header, dimension info
* for each attribute, deduplicated values and items).
*/
total_length = (3 * sizeof(uint32)) /* magic + type + nitems */
+ sizeof(AttrNumber) /* ndimensions */
+ (ndims * sizeof(Oid)); /* attribute types */
/* dimension info */
total_length += ndims * sizeof(DimensionInfo);
/* add space for the arrays of deduplicated values */
for (i = 0; i < ndims; i++)
total_length += info[i].nbytes;
/*
* And finally account for the items (those are fixed-length, thanks to
* replacing values with uint16 indexes into the deduplicated arrays).
*/
total_length += mcvlist->nitems * ITEM_SIZE(dim);
/*
* Allocate space for the whole serialized MCV list (we'll skip bytes, so
* we set them to zero to make the result more compressible).
*/
raw = (bytea *) palloc0(VARHDRSZ + total_length);
SET_VARSIZE(raw, VARHDRSZ + total_length);
ptr = VARDATA(raw);
endptr = ptr + total_length;
/* copy the MCV list header fields, one by one */
memcpy(ptr, &mcvlist->magic, sizeof(uint32));
ptr += sizeof(uint32);
memcpy(ptr, &mcvlist->type, sizeof(uint32));
ptr += sizeof(uint32);
memcpy(ptr, &mcvlist->nitems, sizeof(uint32));
ptr += sizeof(uint32);
memcpy(ptr, &mcvlist->ndimensions, sizeof(AttrNumber));
ptr += sizeof(AttrNumber);
memcpy(ptr, mcvlist->types, sizeof(Oid) * ndims);
ptr += (sizeof(Oid) * ndims);
/* store information about the attributes (data amounts, ...) */
memcpy(ptr, info, sizeof(DimensionInfo) * ndims);
ptr += sizeof(DimensionInfo) * ndims;
/* Copy the deduplicated values for all attributes to the output. */
for (dim = 0; dim < ndims; dim++)
{
/* remember the starting point for Asserts later */
char *start PG_USED_FOR_ASSERTS_ONLY = ptr;
for (i = 0; i < info[dim].nvalues; i++)
{
Datum value = values[dim][i];
if (info[dim].typbyval) /* passed by value */
{
Datum tmp;
/*
* For byval types, we need to copy just the significant bytes
* - we can't use memcpy directly, as that assumes
* little-endian behavior. store_att_byval does almost what
* we need, but it requires a properly aligned buffer - the
* output buffer does not guarantee that. So we simply use a
* local Datum variable (which guarantees proper alignment),
* and then copy the value from it.
*/
store_att_byval(&tmp, value, info[dim].typlen);
memcpy(ptr, &tmp, info[dim].typlen);
ptr += info[dim].typlen;
}
else if (info[dim].typlen > 0) /* passed by reference */
{
/* no special alignment needed, treated as char array */
memcpy(ptr, DatumGetPointer(value), info[dim].typlen);
ptr += info[dim].typlen;
}
else if (info[dim].typlen == -1) /* varlena */
{
uint32 len = VARSIZE_ANY_EXHDR(DatumGetPointer(value));
/* copy the length */
memcpy(ptr, &len, sizeof(uint32));
ptr += sizeof(uint32);
/* data from the varlena value (without the header) */
memcpy(ptr, VARDATA_ANY(DatumGetPointer(value)), len);
ptr += len;
}
else if (info[dim].typlen == -2) /* cstring */
{
uint32 len = (uint32) strlen(DatumGetCString(value)) + 1;
/* copy the length */
memcpy(ptr, &len, sizeof(uint32));
ptr += sizeof(uint32);
/* value */
memcpy(ptr, DatumGetCString(value), len);
ptr += len;
}
/* no underflows or overflows */
Assert((ptr > start) && ((ptr - start) <= info[dim].nbytes));
}
/* we should get exactly nbytes of data for this dimension */
Assert((ptr - start) == info[dim].nbytes);
}
/* Serialize the items, with uint16 indexes instead of the values. */
for (i = 0; i < mcvlist->nitems; i++)
{
MCVItem *mcvitem = &mcvlist->items[i];
/* don't write beyond the allocated space */
Assert(ptr <= (endptr - ITEM_SIZE(dim)));
/* copy NULL and frequency flags into the serialized MCV */
memcpy(ptr, mcvitem->isnull, sizeof(bool) * ndims);
ptr += sizeof(bool) * ndims;
memcpy(ptr, &mcvitem->frequency, sizeof(double));
ptr += sizeof(double);
memcpy(ptr, &mcvitem->base_frequency, sizeof(double));
ptr += sizeof(double);
/* store the indexes last */
for (dim = 0; dim < ndims; dim++)
{
uint16 index = 0;
Datum *value;
/* do the lookup only for non-NULL values */
if (!mcvitem->isnull[dim])
{
value = (Datum *) bsearch_arg(&mcvitem->values[dim], values[dim],
info[dim].nvalues, sizeof(Datum),
compare_scalars_simple, &ssup[dim]);
Assert(value != NULL); /* serialization or deduplication
* error */
/* compute index within the deduplicated array */
index = (uint16) (value - values[dim]);
/* check the index is within expected bounds */
Assert(index < info[dim].nvalues);
}
/* copy the index into the serialized MCV */
memcpy(ptr, &index, sizeof(uint16));
ptr += sizeof(uint16);
}
/* make sure we don't overflow the allocated value */
Assert(ptr <= endptr);
}
/* at this point we expect to match the total_length exactly */
Assert(ptr == endptr);
pfree(values);
pfree(counts);
return raw;
}
/*
* statext_mcv_deserialize
* Reads serialized MCV list into MCVList structure.
*
* All the memory needed by the MCV list is allocated as a single chunk, so
* it's possible to simply pfree() it at once.
*/
MCVList *
statext_mcv_deserialize(bytea *data)
{
int dim,
i;
Size expected_size;
MCVList *mcvlist;
char *raw;
char *ptr;
char *endptr PG_USED_FOR_ASSERTS_ONLY;
int ndims,
nitems;
DimensionInfo *info = NULL;
/* local allocation buffer (used only for deserialization) */
Datum **map = NULL;
/* MCV list */
Size mcvlen;
/* buffer used for the result */
Size datalen;
char *dataptr;
char *valuesptr;
char *isnullptr;
if (data == NULL)
return NULL;
/*
* We can't possibly deserialize a MCV list if there's not even a complete
* header. We need an explicit formula here, because we serialize the
* header fields one by one, so we need to ignore struct alignment.
*/
if (VARSIZE_ANY(data) < MinSizeOfMCVList)
elog(ERROR, "invalid MCV size %zd (expected at least %zu)",
VARSIZE_ANY(data), MinSizeOfMCVList);
/* read the MCV list header */
mcvlist = (MCVList *) palloc0(offsetof(MCVList, items));
/* pointer to the data part (skip the varlena header) */
raw = (char *) data;
ptr = VARDATA_ANY(raw);
endptr = (char *) raw + VARSIZE_ANY(data);
/* get the header and perform further sanity checks */
memcpy(&mcvlist->magic, ptr, sizeof(uint32));
ptr += sizeof(uint32);
memcpy(&mcvlist->type, ptr, sizeof(uint32));
ptr += sizeof(uint32);
memcpy(&mcvlist->nitems, ptr, sizeof(uint32));
ptr += sizeof(uint32);
memcpy(&mcvlist->ndimensions, ptr, sizeof(AttrNumber));
ptr += sizeof(AttrNumber);
if (mcvlist->magic != STATS_MCV_MAGIC)
elog(ERROR, "invalid MCV magic %u (expected %u)",
mcvlist->magic, STATS_MCV_MAGIC);
if (mcvlist->type != STATS_MCV_TYPE_BASIC)
elog(ERROR, "invalid MCV type %u (expected %u)",
mcvlist->type, STATS_MCV_TYPE_BASIC);
if (mcvlist->ndimensions == 0)
elog(ERROR, "invalid zero-length dimension array in MCVList");
else if ((mcvlist->ndimensions > STATS_MAX_DIMENSIONS) ||
(mcvlist->ndimensions < 0))
elog(ERROR, "invalid length (%d) dimension array in MCVList",
mcvlist->ndimensions);
if (mcvlist->nitems == 0)
elog(ERROR, "invalid zero-length item array in MCVList");
else if (mcvlist->nitems > STATS_MCVLIST_MAX_ITEMS)
elog(ERROR, "invalid length (%u) item array in MCVList",
mcvlist->nitems);
nitems = mcvlist->nitems;
ndims = mcvlist->ndimensions;
/*
* Check amount of data including DimensionInfo for all dimensions and
* also the serialized items (including uint16 indexes). Also, walk
* through the dimension information and add it to the sum.
*/
expected_size = SizeOfMCVList(ndims, nitems);
/*
* Check that we have at least the dimension and info records, along with
* the items. We don't know the size of the serialized values yet. We need
* to do this check first, before accessing the dimension info.
*/
if (VARSIZE_ANY(data) < expected_size)
elog(ERROR, "invalid MCV size %zd (expected %zu)",
VARSIZE_ANY(data), expected_size);
/* Now copy the array of type Oids. */
memcpy(mcvlist->types, ptr, sizeof(Oid) * ndims);
ptr += (sizeof(Oid) * ndims);
/* Now it's safe to access the dimension info. */
info = palloc(ndims * sizeof(DimensionInfo));
memcpy(info, ptr, ndims * sizeof(DimensionInfo));
ptr += (ndims * sizeof(DimensionInfo));
/* account for the value arrays */
for (dim = 0; dim < ndims; dim++)
{
/*
* XXX I wonder if we can/should rely on asserts here. Maybe those
* checks should be done every time?
*/
Assert(info[dim].nvalues >= 0);
Assert(info[dim].nbytes >= 0);
expected_size += info[dim].nbytes;
}
/*
* Now we know the total expected MCV size, including all the pieces
* (header, dimension info. items and deduplicated data). So do the final
* check on size.
*/
if (VARSIZE_ANY(data) != expected_size)
elog(ERROR, "invalid MCV size %zd (expected %zu)",
VARSIZE_ANY(data), expected_size);
/*
* We need an array of Datum values for each dimension, so that we can
* easily translate the uint16 indexes later. We also need a top-level
* array of pointers to those per-dimension arrays.
*
* While allocating the arrays for dimensions, compute how much space we
* need for a copy of the by-ref data, as we can't simply point to the
* original values (it might go away).
*/
datalen = 0; /* space for by-ref data */
map = (Datum **) palloc(ndims * sizeof(Datum *));
for (dim = 0; dim < ndims; dim++)
{
map[dim] = (Datum *) palloc(sizeof(Datum) * info[dim].nvalues);
/* space needed for a copy of data for by-ref types */
datalen += info[dim].nbytes_aligned;
}
/*
* Now resize the MCV list so that the allocation includes all the data.
*
* Allocate space for a copy of the data, as we can't simply reference the
* serialized data - it's not aligned properly, and it may disappear while
* we're still using the MCV list, e.g. due to catcache release.
*
* We do care about alignment here, because we will allocate all the
* pieces at once, but then use pointers to different parts.
*/
mcvlen = MAXALIGN(offsetof(MCVList, items) + (sizeof(MCVItem) * nitems));
/* arrays of values and isnull flags for all MCV items */
mcvlen += nitems * MAXALIGN(sizeof(Datum) * ndims);
mcvlen += nitems * MAXALIGN(sizeof(bool) * ndims);
/* we don't quite need to align this, but it makes some asserts easier */
mcvlen += MAXALIGN(datalen);
/* now resize the deserialized MCV list, and compute pointers to parts */
mcvlist = repalloc(mcvlist, mcvlen);
/* pointer to the beginning of values/isnull arrays */
valuesptr = (char *) mcvlist
+ MAXALIGN(offsetof(MCVList, items) + (sizeof(MCVItem) * nitems));
isnullptr = valuesptr + (nitems * MAXALIGN(sizeof(Datum) * ndims));
dataptr = isnullptr + (nitems * MAXALIGN(sizeof(bool) * ndims));
/*
* Build mapping (index => value) for translating the serialized data into
* the in-memory representation.
*/
for (dim = 0; dim < ndims; dim++)
{
/* remember start position in the input array */
char *start PG_USED_FOR_ASSERTS_ONLY = ptr;
if (info[dim].typbyval)
{
/* for by-val types we simply copy data into the mapping */
for (i = 0; i < info[dim].nvalues; i++)
{
Datum v = 0;
memcpy(&v, ptr, info[dim].typlen);
ptr += info[dim].typlen;
map[dim][i] = fetch_att(&v, true, info[dim].typlen);
/* no under/overflow of input array */
Assert(ptr <= (start + info[dim].nbytes));
}
}
else
{
/* for by-ref types we need to also make a copy of the data */
/* passed by reference, but fixed length (name, tid, ...) */
if (info[dim].typlen > 0)
{
for (i = 0; i < info[dim].nvalues; i++)
{
memcpy(dataptr, ptr, info[dim].typlen);
ptr += info[dim].typlen;
/* just point into the array */
map[dim][i] = PointerGetDatum(dataptr);
dataptr += MAXALIGN(info[dim].typlen);
}
}
else if (info[dim].typlen == -1)
{
/* varlena */
for (i = 0; i < info[dim].nvalues; i++)
{
uint32 len;
/* read the uint32 length */
memcpy(&len, ptr, sizeof(uint32));
ptr += sizeof(uint32);
/* the length is data-only */
SET_VARSIZE(dataptr, len + VARHDRSZ);
memcpy(VARDATA(dataptr), ptr, len);
ptr += len;
/* just point into the array */
map[dim][i] = PointerGetDatum(dataptr);
/* skip to place of the next deserialized value */
dataptr += MAXALIGN(len + VARHDRSZ);
}
}
else if (info[dim].typlen == -2)
{
/* cstring */
for (i = 0; i < info[dim].nvalues; i++)
{
uint32 len;
memcpy(&len, ptr, sizeof(uint32));
ptr += sizeof(uint32);
memcpy(dataptr, ptr, len);
ptr += len;
/* just point into the array */
map[dim][i] = PointerGetDatum(dataptr);
dataptr += MAXALIGN(len);
}
}
/* no under/overflow of input array */
Assert(ptr <= (start + info[dim].nbytes));
/* no overflow of the output mcv value */
Assert(dataptr <= ((char *) mcvlist + mcvlen));
}
/* check we consumed input data for this dimension exactly */
Assert(ptr == (start + info[dim].nbytes));
}
/* we should have also filled the MCV list exactly */
Assert(dataptr == ((char *) mcvlist + mcvlen));
/* deserialize the MCV items and translate the indexes to Datums */
for (i = 0; i < nitems; i++)
{
MCVItem *item = &mcvlist->items[i];
item->values = (Datum *) valuesptr;
valuesptr += MAXALIGN(sizeof(Datum) * ndims);
item->isnull = (bool *) isnullptr;
isnullptr += MAXALIGN(sizeof(bool) * ndims);
memcpy(item->isnull, ptr, sizeof(bool) * ndims);
ptr += sizeof(bool) * ndims;
memcpy(&item->frequency, ptr, sizeof(double));
ptr += sizeof(double);
memcpy(&item->base_frequency, ptr, sizeof(double));
ptr += sizeof(double);
/* finally translate the indexes (for non-NULL only) */
for (dim = 0; dim < ndims; dim++)
{
uint16 index;
memcpy(&index, ptr, sizeof(uint16));
ptr += sizeof(uint16);
if (item->isnull[dim])
continue;
item->values[dim] = map[dim][index];
}
/* check we're not overflowing the input */
Assert(ptr <= endptr);
}
/* check that we processed all the data */
Assert(ptr == endptr);
/* release the buffers used for mapping */
for (dim = 0; dim < ndims; dim++)
pfree(map[dim]);
pfree(map);
return mcvlist;
}
/*
* SRF with details about buckets of a histogram:
*
* - item ID (0...nitems)
* - values (string array)
* - nulls only (boolean array)
* - frequency (double precision)
* - base_frequency (double precision)
*
* The input is the OID of the statistics, and there are no rows returned if
* the statistics contains no histogram.
*/
Datum
pg_stats_ext_mcvlist_items(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{
MemoryContext oldcontext;
MCVList *mcvlist;
TupleDesc tupdesc;
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/* switch to memory context appropriate for multiple function calls */
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
mcvlist = statext_mcv_deserialize(PG_GETARG_BYTEA_P(0));
funcctx->user_fctx = mcvlist;
/* total number of tuples to be returned */
funcctx->max_calls = 0;
if (funcctx->user_fctx != NULL)
funcctx->max_calls = mcvlist->nitems;
/* Build a tuple descriptor for our result type */
if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("function returning record called in context "
"that cannot accept type record")));
tupdesc = BlessTupleDesc(tupdesc);
/*
* generate attribute metadata needed later to produce tuples from raw
* C strings
*/
funcctx->attinmeta = TupleDescGetAttInMetadata(tupdesc);
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
if (funcctx->call_cntr < funcctx->max_calls) /* do when there is more
* left to send */
{
Datum values[5];
bool nulls[5];
HeapTuple tuple;
Datum result;
ArrayBuildState *astate_values = NULL;
ArrayBuildState *astate_nulls = NULL;
int i;
MCVList *mcvlist;
MCVItem *item;
mcvlist = (MCVList *) funcctx->user_fctx;
Assert(funcctx->call_cntr < mcvlist->nitems);
item = &mcvlist->items[funcctx->call_cntr];
for (i = 0; i < mcvlist->ndimensions; i++)
{
astate_nulls = accumArrayResult(astate_nulls,
BoolGetDatum(item->isnull[i]),
false,
BOOLOID,
CurrentMemoryContext);
if (!item->isnull[i])
{
bool isvarlena;
Oid outfunc;
FmgrInfo fmgrinfo;
Datum val;
text *txt;
/* lookup output func for the type */
getTypeOutputInfo(mcvlist->types[i], &outfunc, &isvarlena);
fmgr_info(outfunc, &fmgrinfo);
val = FunctionCall1(&fmgrinfo, item->values[i]);
txt = cstring_to_text(DatumGetPointer(val));
astate_values = accumArrayResult(astate_values,
PointerGetDatum(txt),
false,
TEXTOID,
CurrentMemoryContext);
}
else
astate_values = accumArrayResult(astate_values,
(Datum) 0,
true,
TEXTOID,
CurrentMemoryContext);
}
values[0] = Int32GetDatum(funcctx->call_cntr);
values[1] = PointerGetDatum(makeArrayResult(astate_values, CurrentMemoryContext));
values[2] = PointerGetDatum(makeArrayResult(astate_nulls, CurrentMemoryContext));
values[3] = Float8GetDatum(item->frequency);
values[4] = Float8GetDatum(item->base_frequency);
/* no NULLs in the tuple */
memset(nulls, 0, sizeof(nulls));
/* build a tuple */
tuple = heap_form_tuple(funcctx->attinmeta->tupdesc, values, nulls);
/* make the tuple into a datum */
result = HeapTupleGetDatum(tuple);
SRF_RETURN_NEXT(funcctx, result);
}
else /* do when there is no more left */
{
SRF_RETURN_DONE(funcctx);
}
}
/*
* pg_mcv_list_in - input routine for type pg_mcv_list.
*
* pg_mcv_list is real enough to be a table column, but it has no operations
* of its own, and disallows input too
*/
Datum
pg_mcv_list_in(PG_FUNCTION_ARGS)
{
/*
* pg_mcv_list stores the data in binary form and parsing text input is
* not needed, so disallow this.
*/
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot accept a value of type %s", "pg_mcv_list")));
PG_RETURN_VOID(); /* keep compiler quiet */
}
/*
* pg_mcv_list_out - output routine for type pg_mcv_list.
*
* MCV lists are serialized into a bytea value, so we simply call byteaout()
* to serialize the value into text. But it'd be nice to serialize that into
* a meaningful representation (e.g. for inspection by people).
*
* XXX This should probably return something meaningful, similar to what
* pg_dependencies_out does. Not sure how to deal with the deduplicated
* values, though - do we want to expand that or not?
*/
Datum
pg_mcv_list_out(PG_FUNCTION_ARGS)
{
return byteaout(fcinfo);
}
/*
* pg_mcv_list_recv - binary input routine for type pg_mcv_list.
*/
Datum
pg_mcv_list_recv(PG_FUNCTION_ARGS)
{
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot accept a value of type %s", "pg_mcv_list")));
PG_RETURN_VOID(); /* keep compiler quiet */
}
/*
* pg_mcv_list_send - binary output routine for type pg_mcv_list.
*
* MCV lists are serialized in a bytea value (although the type is named
* differently), so let's just send that.
*/
Datum
pg_mcv_list_send(PG_FUNCTION_ARGS)
{
return byteasend(fcinfo);
}
/*
* match the attribute/expression to a dimension of the statistic
*
* Returns the zero-based index of the matching statistics dimension.
* Optionally determines the collation.
*/
static int
mcv_match_expression(Node *expr, Bitmapset *keys, List *exprs, Oid *collid)
{
int idx;
if (IsA(expr, Var))
{
/* simple Var, so just lookup using varattno */
Var *var = (Var *) expr;
if (collid)
*collid = var->varcollid;
idx = bms_member_index(keys, var->varattno);
if (idx < 0)
elog(ERROR, "variable not found in statistics object");
}
else
{
/* expression - lookup in stats expressions */
ListCell *lc;
if (collid)
*collid = exprCollation(expr);
/* expressions are stored after the simple columns */
idx = bms_num_members(keys);
foreach(lc, exprs)
{
Node *stat_expr = (Node *) lfirst(lc);
if (equal(expr, stat_expr))
break;
idx++;
}
if (lc == NULL)
elog(ERROR, "expression not found in statistics object");
}
return idx;
}
/*
* mcv_get_match_bitmap
* Evaluate clauses using the MCV list, and update the match bitmap.
*
* A match bitmap keeps match/mismatch status for each MCV item, and we
* update it based on additional clauses. We also use it to skip items
* that can't possibly match (e.g. item marked as "mismatch" can't change
* to "match" when evaluating AND clause list).
*
* The function also returns a flag indicating whether there was an
* equality condition for all attributes, the minimum frequency in the MCV
* list, and a total MCV frequency (sum of frequencies for all items).
*
* XXX Currently the match bitmap uses a bool for each MCV item, which is
* somewhat wasteful as we could do with just a single bit, thus reducing
* the size to ~1/8. It would also allow us to combine bitmaps simply using
* & and |, which should be faster than min/max. The bitmaps are fairly
* small, though (thanks to the cap on the MCV list size).
*/
static bool *
mcv_get_match_bitmap(PlannerInfo *root, List *clauses,
Bitmapset *keys, List *exprs,
MCVList *mcvlist, bool is_or)
{
int i;
ListCell *l;
bool *matches;
/* The bitmap may be partially built. */
Assert(clauses != NIL);
Assert(list_length(clauses) >= 1);
Assert(mcvlist != NULL);
Assert(mcvlist->nitems > 0);
Assert(mcvlist->nitems <= STATS_MCVLIST_MAX_ITEMS);
matches = palloc(sizeof(bool) * mcvlist->nitems);
memset(matches, (is_or) ? false : true,
sizeof(bool) * mcvlist->nitems);
/*
* Loop through the list of clauses, and for each of them evaluate all the
* MCV items not yet eliminated by the preceding clauses.
*/
foreach(l, clauses)
{
Node *clause = (Node *) lfirst(l);
/* if it's a RestrictInfo, then extract the clause */
if (IsA(clause, RestrictInfo))
clause = (Node *) ((RestrictInfo *) clause)->clause;
/*
* Handle the various types of clauses - OpClause, NullTest and
* AND/OR/NOT
*/
if (is_opclause(clause))
{
OpExpr *expr = (OpExpr *) clause;
FmgrInfo opproc;
/* valid only after examine_opclause_args returns true */
Node *clause_expr;
Const *cst;
bool expronleft;
int idx;
Oid collid;
fmgr_info(get_opcode(expr->opno), &opproc);
/* extract the var/expr and const from the expression */
if (!examine_opclause_args(expr->args, &clause_expr, &cst, &expronleft))
elog(ERROR, "incompatible clause");
/* match the attribute/expression to a dimension of the statistic */
idx = mcv_match_expression(clause_expr, keys, exprs, &collid);
/*
* Walk through the MCV items and evaluate the current clause. We
* can skip items that were already ruled out, and terminate if
* there are no remaining MCV items that might possibly match.
*/
for (i = 0; i < mcvlist->nitems; i++)
{
bool match = true;
MCVItem *item = &mcvlist->items[i];
Assert(idx >= 0);
/*
* When the MCV item or the Const value is NULL we can treat
* this as a mismatch. We must not call the operator because
* of strictness.
*/
if (item->isnull[idx] || cst->constisnull)
{
matches[i] = RESULT_MERGE(matches[i], is_or, false);
continue;
}
/*
* Skip MCV items that can't change result in the bitmap. Once
* the value gets false for AND-lists, or true for OR-lists,
* we don't need to look at more clauses.
*/
if (RESULT_IS_FINAL(matches[i], is_or))
continue;
/*
* First check whether the constant is below the lower
* boundary (in that case we can skip the bucket, because
* there's no overlap).
*
* We don't store collations used to build the statistics, but
* we can use the collation for the attribute itself, as
* stored in varcollid. We do reset the statistics after a
* type change (including collation change), so this is OK.
* For expressions, we use the collation extracted from the
* expression itself.
*/
if (expronleft)
match = DatumGetBool(FunctionCall2Coll(&opproc,
collid,
item->values[idx],
cst->constvalue));
else
match = DatumGetBool(FunctionCall2Coll(&opproc,
collid,
cst->constvalue,
item->values[idx]));
/* update the match bitmap with the result */
matches[i] = RESULT_MERGE(matches[i], is_or, match);
}
}
else if (IsA(clause, ScalarArrayOpExpr))
{
ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) clause;
FmgrInfo opproc;
/* valid only after examine_opclause_args returns true */
Node *clause_expr;
Const *cst;
bool expronleft;
Oid collid;
int idx;
/* array evaluation */
ArrayType *arrayval;
int16 elmlen;
bool elmbyval;
char elmalign;
int num_elems;
Datum *elem_values;
bool *elem_nulls;
fmgr_info(get_opcode(expr->opno), &opproc);
/* extract the var/expr and const from the expression */
if (!examine_opclause_args(expr->args, &clause_expr, &cst, &expronleft))
elog(ERROR, "incompatible clause");
/* We expect Var on left */
if (!expronleft)
elog(ERROR, "incompatible clause");
/*
* Deconstruct the array constant, unless it's NULL (we'll cover
* that case below)
*/
if (!cst->constisnull)
{
arrayval = DatumGetArrayTypeP(cst->constvalue);
get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
&elmlen, &elmbyval, &elmalign);
deconstruct_array(arrayval,
ARR_ELEMTYPE(arrayval),
elmlen, elmbyval, elmalign,
&elem_values, &elem_nulls, &num_elems);
}
/* match the attribute/expression to a dimension of the statistic */
idx = mcv_match_expression(clause_expr, keys, exprs, &collid);
/*
* Walk through the MCV items and evaluate the current clause. We
* can skip items that were already ruled out, and terminate if
* there are no remaining MCV items that might possibly match.
*/
for (i = 0; i < mcvlist->nitems; i++)
{
int j;
bool match = (expr->useOr ? false : true);
MCVItem *item = &mcvlist->items[i];
/*
* When the MCV item or the Const value is NULL we can treat
* this as a mismatch. We must not call the operator because
* of strictness.
*/
if (item->isnull[idx] || cst->constisnull)
{
matches[i] = RESULT_MERGE(matches[i], is_or, false);
continue;
}
/*
* Skip MCV items that can't change result in the bitmap. Once
* the value gets false for AND-lists, or true for OR-lists,
* we don't need to look at more clauses.
*/
if (RESULT_IS_FINAL(matches[i], is_or))
continue;
for (j = 0; j < num_elems; j++)
{
Datum elem_value = elem_values[j];
bool elem_isnull = elem_nulls[j];
bool elem_match;
/* NULL values always evaluate as not matching. */
if (elem_isnull)
{
match = RESULT_MERGE(match, expr->useOr, false);
continue;
}
/*
* Stop evaluating the array elements once we reach a
* matching value that can't change - ALL() is the same as
* AND-list, ANY() is the same as OR-list.
*/
if (RESULT_IS_FINAL(match, expr->useOr))
break;
elem_match = DatumGetBool(FunctionCall2Coll(&opproc,
collid,
item->values[idx],
elem_value));
match = RESULT_MERGE(match, expr->useOr, elem_match);
}
/* update the match bitmap with the result */
matches[i] = RESULT_MERGE(matches[i], is_or, match);
}
}
else if (IsA(clause, NullTest))
{
NullTest *expr = (NullTest *) clause;
Node *clause_expr = (Node *) (expr->arg);
/* match the attribute/expression to a dimension of the statistic */
int idx = mcv_match_expression(clause_expr, keys, exprs, NULL);
/*
* Walk through the MCV items and evaluate the current clause. We
* can skip items that were already ruled out, and terminate if
* there are no remaining MCV items that might possibly match.
*/
for (i = 0; i < mcvlist->nitems; i++)
{
bool match = false; /* assume mismatch */
MCVItem *item = &mcvlist->items[i];
/* if the clause mismatches the MCV item, update the bitmap */
switch (expr->nulltesttype)
{
case IS_NULL:
match = (item->isnull[idx]) ? true : match;
break;
case IS_NOT_NULL:
match = (!item->isnull[idx]) ? true : match;
break;
}
/* now, update the match bitmap, depending on OR/AND type */
matches[i] = RESULT_MERGE(matches[i], is_or, match);
}
}
else if (is_orclause(clause) || is_andclause(clause))
{
/* AND/OR clause, with all subclauses being compatible */
int i;
BoolExpr *bool_clause = ((BoolExpr *) clause);
List *bool_clauses = bool_clause->args;
/* match/mismatch bitmap for each MCV item */
bool *bool_matches = NULL;
Assert(bool_clauses != NIL);
Assert(list_length(bool_clauses) >= 2);
/* build the match bitmap for the OR-clauses */
bool_matches = mcv_get_match_bitmap(root, bool_clauses, keys, exprs,
mcvlist, is_orclause(clause));
/*
* Merge the bitmap produced by mcv_get_match_bitmap into the
* current one. We need to consider if we're evaluating AND or OR
* condition when merging the results.
*/
for (i = 0; i < mcvlist->nitems; i++)
matches[i] = RESULT_MERGE(matches[i], is_or, bool_matches[i]);
pfree(bool_matches);
}
else if (is_notclause(clause))
{
/* NOT clause, with all subclauses compatible */
int i;
BoolExpr *not_clause = ((BoolExpr *) clause);
List *not_args = not_clause->args;
/* match/mismatch bitmap for each MCV item */
bool *not_matches = NULL;
Assert(not_args != NIL);
Assert(list_length(not_args) == 1);
/* build the match bitmap for the NOT-clause */
not_matches = mcv_get_match_bitmap(root, not_args, keys, exprs,
mcvlist, false);
/*
* Merge the bitmap produced by mcv_get_match_bitmap into the
* current one. We're handling a NOT clause, so invert the result
* before merging it into the global bitmap.
*/
for (i = 0; i < mcvlist->nitems; i++)
matches[i] = RESULT_MERGE(matches[i], is_or, !not_matches[i]);
pfree(not_matches);
}
else if (IsA(clause, Var))
{
/* Var (has to be a boolean Var, possibly from below NOT) */
Var *var = (Var *) (clause);
/* match the attribute to a dimension of the statistic */
int idx = bms_member_index(keys, var->varattno);
Assert(var->vartype == BOOLOID);
/*
* Walk through the MCV items and evaluate the current clause. We
* can skip items that were already ruled out, and terminate if
* there are no remaining MCV items that might possibly match.
*/
for (i = 0; i < mcvlist->nitems; i++)
{
MCVItem *item = &mcvlist->items[i];
bool match = false;
/* if the item is NULL, it's a mismatch */
if (!item->isnull[idx] && DatumGetBool(item->values[idx]))
match = true;
/* update the result bitmap */
matches[i] = RESULT_MERGE(matches[i], is_or, match);
}
}
else
{
/* Otherwise, it must be a bare boolean-returning expression */
int idx;
/* match the expression to a dimension of the statistic */
idx = mcv_match_expression(clause, keys, exprs, NULL);
/*
* Walk through the MCV items and evaluate the current clause. We
* can skip items that were already ruled out, and terminate if
* there are no remaining MCV items that might possibly match.
*/
for (i = 0; i < mcvlist->nitems; i++)
{
bool match;
MCVItem *item = &mcvlist->items[i];
/* "match" just means it's bool TRUE */
match = !item->isnull[idx] && DatumGetBool(item->values[idx]);
/* now, update the match bitmap, depending on OR/AND type */
matches[i] = RESULT_MERGE(matches[i], is_or, match);
}
}
}
return matches;
}
/*
* mcv_combine_selectivities
* Combine per-column and multi-column MCV selectivity estimates.
*
* simple_sel is a "simple" selectivity estimate (produced without using any
* extended statistics, essentially assuming independence of columns/clauses).
*
* mcv_sel and mcv_basesel are sums of the frequencies and base frequencies of
* all matching MCV items. The difference (mcv_sel - mcv_basesel) is then
* essentially interpreted as a correction to be added to simple_sel, as
* described below.
*
* mcv_totalsel is the sum of the frequencies of all MCV items (not just the
* matching ones). This is used as an upper bound on the portion of the
* selectivity estimates not covered by the MCV statistics.
*
* Note: While simple and base selectivities are defined in a quite similar
* way, the values are computed differently and are not therefore equal. The
* simple selectivity is computed as a product of per-clause estimates, while
* the base selectivity is computed by adding up base frequencies of matching
* items of the multi-column MCV list. So the values may differ for two main
* reasons - (a) the MCV list may not cover 100% of the data and (b) some of
* the MCV items did not match the estimated clauses.
*
* As both (a) and (b) reduce the base selectivity value, it generally holds
* that (simple_sel >= mcv_basesel). If the MCV list covers all the data, the
* values may be equal.
*
* So, other_sel = (simple_sel - mcv_basesel) is an estimate for the part not
* covered by the MCV list, and (mcv_sel - mcv_basesel) may be seen as a
* correction for the part covered by the MCV list. Those two statements are
* actually equivalent.
*/
Selectivity
mcv_combine_selectivities(Selectivity simple_sel,
Selectivity mcv_sel,
Selectivity mcv_basesel,
Selectivity mcv_totalsel)
{
Selectivity other_sel;
Selectivity sel;
/* estimated selectivity of values not covered by MCV matches */
other_sel = simple_sel - mcv_basesel;
CLAMP_PROBABILITY(other_sel);
/* this non-MCV selectivity cannot exceed 1 - mcv_totalsel */
if (other_sel > 1.0 - mcv_totalsel)
other_sel = 1.0 - mcv_totalsel;
/* overall selectivity is the sum of the MCV and non-MCV parts */
sel = mcv_sel + other_sel;
CLAMP_PROBABILITY(sel);
return sel;
}
/*
* mcv_clauselist_selectivity
* Use MCV statistics to estimate the selectivity of an implicitly-ANDed
* list of clauses.
*
* This determines which MCV items match every clause in the list and returns
* the sum of the frequencies of those items.
*
* In addition, it returns the sum of the base frequencies of each of those
* items (that is the sum of the selectivities that each item would have if
* the columns were independent of one another), and the total selectivity of
* all the MCV items (not just the matching ones). These are expected to be
* used together with a "simple" selectivity estimate (one based only on
* per-column statistics) to produce an overall selectivity estimate that
* makes use of both per-column and multi-column statistics --- see
* mcv_combine_selectivities().
*/
Selectivity
mcv_clauselist_selectivity(PlannerInfo *root, StatisticExtInfo *stat,
List *clauses, int varRelid,
JoinType jointype, SpecialJoinInfo *sjinfo,
RelOptInfo *rel,
Selectivity *basesel, Selectivity *totalsel)
{
int i;
MCVList *mcv;
Selectivity s = 0.0;
/* match/mismatch bitmap for each MCV item */
bool *matches = NULL;
/* load the MCV list stored in the statistics object */
mcv = statext_mcv_load(stat->statOid);
/* build a match bitmap for the clauses */
matches = mcv_get_match_bitmap(root, clauses, stat->keys, stat->exprs,
mcv, false);
/* sum frequencies for all the matching MCV items */
*basesel = 0.0;
*totalsel = 0.0;
for (i = 0; i < mcv->nitems; i++)
{
*totalsel += mcv->items[i].frequency;
if (matches[i] != false)
{
*basesel += mcv->items[i].base_frequency;
s += mcv->items[i].frequency;
}
}
return s;
}
/*
* mcv_clause_selectivity_or
* Use MCV statistics to estimate the selectivity of a clause that
* appears in an ORed list of clauses.
*
* As with mcv_clauselist_selectivity() this determines which MCV items match
* the clause and returns both the sum of the frequencies and the sum of the
* base frequencies of those items, as well as the sum of the frequencies of
* all MCV items (not just the matching ones) so that this information can be
* used by mcv_combine_selectivities() to produce a selectivity estimate that
* makes use of both per-column and multi-column statistics.
*
* Additionally, we return information to help compute the overall selectivity
* of the ORed list of clauses assumed to contain this clause. This function
* is intended to be called for each clause in the ORed list of clauses,
* allowing the overall selectivity to be computed using the following
* algorithm:
*
* Suppose P[n] = P(C[1] OR C[2] OR ... OR C[n]) is the combined selectivity
* of the first n clauses in the list. Then the combined selectivity taking
* into account the next clause C[n+1] can be written as
*
* P[n+1] = P[n] + P(C[n+1]) - P((C[1] OR ... OR C[n]) AND C[n+1])
*
* The final term above represents the overlap between the clauses examined so
* far and the (n+1)'th clause. To estimate its selectivity, we track the
* match bitmap for the ORed list of clauses examined so far and examine its
* intersection with the match bitmap for the (n+1)'th clause.
*
* We then also return the sums of the MCV item frequencies and base
* frequencies for the match bitmap intersection corresponding to the overlap
* term above, so that they can be combined with a simple selectivity estimate
* for that term.
*
* The parameter "or_matches" is an in/out parameter tracking the match bitmap
* for the clauses examined so far. The caller is expected to set it to NULL
* the first time it calls this function.
*/
Selectivity
mcv_clause_selectivity_or(PlannerInfo *root, StatisticExtInfo *stat,
MCVList *mcv, Node *clause, bool **or_matches,
Selectivity *basesel, Selectivity *overlap_mcvsel,
Selectivity *overlap_basesel, Selectivity *totalsel)
{
Selectivity s = 0.0;
bool *new_matches;
int i;
/* build the OR-matches bitmap, if not built already */
if (*or_matches == NULL)
*or_matches = palloc0(sizeof(bool) * mcv->nitems);
/* build the match bitmap for the new clause */
new_matches = mcv_get_match_bitmap(root, list_make1(clause), stat->keys,
stat->exprs, mcv, false);
/*
* Sum the frequencies for all the MCV items matching this clause and also
* those matching the overlap between this clause and any of the preceding
* clauses as described above.
*/
*basesel = 0.0;
*overlap_mcvsel = 0.0;
*overlap_basesel = 0.0;
*totalsel = 0.0;
for (i = 0; i < mcv->nitems; i++)
{
*totalsel += mcv->items[i].frequency;
if (new_matches[i])
{
s += mcv->items[i].frequency;
*basesel += mcv->items[i].base_frequency;
if ((*or_matches)[i])
{
*overlap_mcvsel += mcv->items[i].frequency;
*overlap_basesel += mcv->items[i].base_frequency;
}
}
/* update the OR-matches bitmap for the next clause */
(*or_matches)[i] = (*or_matches)[i] || new_matches[i];
}
pfree(new_matches);
return s;
}
|