1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
|
/*-------------------------------------------------------------------------
*
* latch.c
* Routines for inter-process latches
*
* The poll() implementation uses the so-called self-pipe trick to overcome the
* race condition involved with poll() and setting a global flag in the signal
* handler. When a latch is set and the current process is waiting for it, the
* signal handler wakes up the poll() in WaitLatch by writing a byte to a pipe.
* A signal by itself doesn't interrupt poll() on all platforms, and even on
* platforms where it does, a signal that arrives just before the poll() call
* does not prevent poll() from entering sleep. An incoming byte on a pipe
* however reliably interrupts the sleep, and causes poll() to return
* immediately even if the signal arrives before poll() begins.
*
* The epoll() implementation overcomes the race with a different technique: it
* keeps SIGURG blocked and consumes from a signalfd() descriptor instead. We
* don't need to register a signal handler or create our own self-pipe. We
* assume that any system that has Linux epoll() also has Linux signalfd().
*
* The kqueue() implementation waits for SIGURG with EVFILT_SIGNAL.
*
* The Windows implementation uses Windows events that are inherited by all
* postmaster child processes. There's no need for the self-pipe trick there.
*
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/storage/ipc/latch.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <fcntl.h>
#include <limits.h>
#include <signal.h>
#include <unistd.h>
#ifdef HAVE_SYS_EPOLL_H
#include <sys/epoll.h>
#endif
#ifdef HAVE_SYS_EVENT_H
#include <sys/event.h>
#endif
#ifdef HAVE_SYS_SIGNALFD_H
#include <sys/signalfd.h>
#endif
#ifdef HAVE_POLL_H
#include <poll.h>
#endif
#include "libpq/pqsignal.h"
#include "miscadmin.h"
#include "pgstat.h"
#include "port/atomics.h"
#include "portability/instr_time.h"
#include "postmaster/postmaster.h"
#include "storage/fd.h"
#include "storage/ipc.h"
#include "storage/latch.h"
#include "storage/pmsignal.h"
#include "storage/shmem.h"
#include "utils/memutils.h"
/*
* Select the fd readiness primitive to use. Normally the "most modern"
* primitive supported by the OS will be used, but for testing it can be
* useful to manually specify the used primitive. If desired, just add a
* define somewhere before this block.
*/
#if defined(WAIT_USE_EPOLL) || defined(WAIT_USE_POLL) || \
defined(WAIT_USE_KQUEUE) || defined(WAIT_USE_WIN32)
/* don't overwrite manual choice */
#elif defined(HAVE_SYS_EPOLL_H)
#define WAIT_USE_EPOLL
#elif defined(HAVE_KQUEUE)
#define WAIT_USE_KQUEUE
#elif defined(HAVE_POLL)
#define WAIT_USE_POLL
#elif WIN32
#define WAIT_USE_WIN32
#else
#error "no wait set implementation available"
#endif
/*
* By default, we use a self-pipe with poll() and a signalfd with epoll(), if
* available. We avoid signalfd on illumos for now based on problem reports.
* For testing the choice can also be manually specified.
*/
#if defined(WAIT_USE_POLL) || defined(WAIT_USE_EPOLL)
#if defined(WAIT_USE_SELF_PIPE) || defined(WAIT_USE_SIGNALFD)
/* don't overwrite manual choice */
#elif defined(WAIT_USE_EPOLL) && defined(HAVE_SYS_SIGNALFD_H) && \
!defined(__illumos__)
#define WAIT_USE_SIGNALFD
#else
#define WAIT_USE_SELF_PIPE
#endif
#endif
/* typedef in latch.h */
struct WaitEventSet
{
int nevents; /* number of registered events */
int nevents_space; /* maximum number of events in this set */
/*
* Array, of nevents_space length, storing the definition of events this
* set is waiting for.
*/
WaitEvent *events;
/*
* If WL_LATCH_SET is specified in any wait event, latch is a pointer to
* said latch, and latch_pos the offset in the ->events array. This is
* useful because we check the state of the latch before performing doing
* syscalls related to waiting.
*/
Latch *latch;
int latch_pos;
/*
* WL_EXIT_ON_PM_DEATH is converted to WL_POSTMASTER_DEATH, but this flag
* is set so that we'll exit immediately if postmaster death is detected,
* instead of returning.
*/
bool exit_on_postmaster_death;
#if defined(WAIT_USE_EPOLL)
int epoll_fd;
/* epoll_wait returns events in a user provided arrays, allocate once */
struct epoll_event *epoll_ret_events;
#elif defined(WAIT_USE_KQUEUE)
int kqueue_fd;
/* kevent returns events in a user provided arrays, allocate once */
struct kevent *kqueue_ret_events;
bool report_postmaster_not_running;
#elif defined(WAIT_USE_POLL)
/* poll expects events to be waited on every poll() call, prepare once */
struct pollfd *pollfds;
#elif defined(WAIT_USE_WIN32)
/*
* Array of windows events. The first element always contains
* pgwin32_signal_event, so the remaining elements are offset by one (i.e.
* event->pos + 1).
*/
HANDLE *handles;
#endif
};
/* A common WaitEventSet used to implement WatchLatch() */
static WaitEventSet *LatchWaitSet;
/* The position of the latch in LatchWaitSet. */
#define LatchWaitSetLatchPos 0
#ifndef WIN32
/* Are we currently in WaitLatch? The signal handler would like to know. */
static volatile sig_atomic_t waiting = false;
#endif
#ifdef WAIT_USE_SIGNALFD
/* On Linux, we'll receive SIGURG via a signalfd file descriptor. */
static int signal_fd = -1;
#endif
#ifdef WAIT_USE_SELF_PIPE
/* Read and write ends of the self-pipe */
static int selfpipe_readfd = -1;
static int selfpipe_writefd = -1;
/* Process owning the self-pipe --- needed for checking purposes */
static int selfpipe_owner_pid = 0;
/* Private function prototypes */
static void latch_sigurg_handler(SIGNAL_ARGS);
static void sendSelfPipeByte(void);
#endif
#if defined(WAIT_USE_SELF_PIPE) || defined(WAIT_USE_SIGNALFD)
static void drain(void);
#endif
#if defined(WAIT_USE_EPOLL)
static void WaitEventAdjustEpoll(WaitEventSet *set, WaitEvent *event, int action);
#elif defined(WAIT_USE_KQUEUE)
static void WaitEventAdjustKqueue(WaitEventSet *set, WaitEvent *event, int old_events);
#elif defined(WAIT_USE_POLL)
static void WaitEventAdjustPoll(WaitEventSet *set, WaitEvent *event);
#elif defined(WAIT_USE_WIN32)
static void WaitEventAdjustWin32(WaitEventSet *set, WaitEvent *event);
#endif
static inline int WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
WaitEvent *occurred_events, int nevents);
/*
* Initialize the process-local latch infrastructure.
*
* This must be called once during startup of any process that can wait on
* latches, before it issues any InitLatch() or OwnLatch() calls.
*/
void
InitializeLatchSupport(void)
{
#if defined(WAIT_USE_SELF_PIPE)
int pipefd[2];
if (IsUnderPostmaster)
{
/*
* We might have inherited connections to a self-pipe created by the
* postmaster. It's critical that child processes create their own
* self-pipes, of course, and we really want them to close the
* inherited FDs for safety's sake.
*/
if (selfpipe_owner_pid != 0)
{
/* Assert we go through here but once in a child process */
Assert(selfpipe_owner_pid != MyProcPid);
/* Release postmaster's pipe FDs; ignore any error */
(void) close(selfpipe_readfd);
(void) close(selfpipe_writefd);
/* Clean up, just for safety's sake; we'll set these below */
selfpipe_readfd = selfpipe_writefd = -1;
selfpipe_owner_pid = 0;
/* Keep fd.c's accounting straight */
ReleaseExternalFD();
ReleaseExternalFD();
}
else
{
/*
* Postmaster didn't create a self-pipe ... or else we're in an
* EXEC_BACKEND build, in which case it doesn't matter since the
* postmaster's pipe FDs were closed by the action of FD_CLOEXEC.
* fd.c won't have state to clean up, either.
*/
Assert(selfpipe_readfd == -1);
}
}
else
{
/* In postmaster or standalone backend, assert we do this but once */
Assert(selfpipe_readfd == -1);
Assert(selfpipe_owner_pid == 0);
}
/*
* Set up the self-pipe that allows a signal handler to wake up the
* poll()/epoll_wait() in WaitLatch. Make the write-end non-blocking, so
* that SetLatch won't block if the event has already been set many times
* filling the kernel buffer. Make the read-end non-blocking too, so that
* we can easily clear the pipe by reading until EAGAIN or EWOULDBLOCK.
* Also, make both FDs close-on-exec, since we surely do not want any
* child processes messing with them.
*/
if (pipe(pipefd) < 0)
elog(FATAL, "pipe() failed: %m");
if (fcntl(pipefd[0], F_SETFL, O_NONBLOCK) == -1)
elog(FATAL, "fcntl(F_SETFL) failed on read-end of self-pipe: %m");
if (fcntl(pipefd[1], F_SETFL, O_NONBLOCK) == -1)
elog(FATAL, "fcntl(F_SETFL) failed on write-end of self-pipe: %m");
if (fcntl(pipefd[0], F_SETFD, FD_CLOEXEC) == -1)
elog(FATAL, "fcntl(F_SETFD) failed on read-end of self-pipe: %m");
if (fcntl(pipefd[1], F_SETFD, FD_CLOEXEC) == -1)
elog(FATAL, "fcntl(F_SETFD) failed on write-end of self-pipe: %m");
selfpipe_readfd = pipefd[0];
selfpipe_writefd = pipefd[1];
selfpipe_owner_pid = MyProcPid;
/* Tell fd.c about these two long-lived FDs */
ReserveExternalFD();
ReserveExternalFD();
pqsignal(SIGURG, latch_sigurg_handler);
#endif
#ifdef WAIT_USE_SIGNALFD
sigset_t signalfd_mask;
/* Block SIGURG, because we'll receive it through a signalfd. */
sigaddset(&UnBlockSig, SIGURG);
/* Set up the signalfd to receive SIGURG notifications. */
sigemptyset(&signalfd_mask);
sigaddset(&signalfd_mask, SIGURG);
signal_fd = signalfd(-1, &signalfd_mask, SFD_NONBLOCK | SFD_CLOEXEC);
if (signal_fd < 0)
elog(FATAL, "signalfd() failed");
ReserveExternalFD();
#endif
#ifdef WAIT_USE_KQUEUE
/* Ignore SIGURG, because we'll receive it via kqueue. */
pqsignal(SIGURG, SIG_IGN);
#endif
}
void
InitializeLatchWaitSet(void)
{
int latch_pos PG_USED_FOR_ASSERTS_ONLY;
Assert(LatchWaitSet == NULL);
/* Set up the WaitEventSet used by WaitLatch(). */
LatchWaitSet = CreateWaitEventSet(TopMemoryContext, 2);
latch_pos = AddWaitEventToSet(LatchWaitSet, WL_LATCH_SET, PGINVALID_SOCKET,
MyLatch, NULL);
if (IsUnderPostmaster)
AddWaitEventToSet(LatchWaitSet, WL_EXIT_ON_PM_DEATH,
PGINVALID_SOCKET, NULL, NULL);
Assert(latch_pos == LatchWaitSetLatchPos);
}
void
ShutdownLatchSupport(void)
{
#if defined(WAIT_USE_POLL)
pqsignal(SIGURG, SIG_IGN);
#endif
if (LatchWaitSet)
{
FreeWaitEventSet(LatchWaitSet);
LatchWaitSet = NULL;
}
#if defined(WAIT_USE_SELF_PIPE)
close(selfpipe_readfd);
close(selfpipe_writefd);
selfpipe_readfd = -1;
selfpipe_writefd = -1;
selfpipe_owner_pid = InvalidPid;
#endif
#if defined(WAIT_USE_SIGNALFD)
close(signal_fd);
signal_fd = -1;
#endif
}
/*
* Initialize a process-local latch.
*/
void
InitLatch(Latch *latch)
{
latch->is_set = false;
latch->maybe_sleeping = false;
latch->owner_pid = MyProcPid;
latch->is_shared = false;
#if defined(WAIT_USE_SELF_PIPE)
/* Assert InitializeLatchSupport has been called in this process */
Assert(selfpipe_readfd >= 0 && selfpipe_owner_pid == MyProcPid);
#elif defined(WAIT_USE_SIGNALFD)
/* Assert InitializeLatchSupport has been called in this process */
Assert(signal_fd >= 0);
#elif defined(WAIT_USE_WIN32)
latch->event = CreateEvent(NULL, TRUE, FALSE, NULL);
if (latch->event == NULL)
elog(ERROR, "CreateEvent failed: error code %lu", GetLastError());
#endif /* WIN32 */
}
/*
* Initialize a shared latch that can be set from other processes. The latch
* is initially owned by no-one; use OwnLatch to associate it with the
* current process.
*
* InitSharedLatch needs to be called in postmaster before forking child
* processes, usually right after allocating the shared memory block
* containing the latch with ShmemInitStruct. (The Unix implementation
* doesn't actually require that, but the Windows one does.) Because of
* this restriction, we have no concurrency issues to worry about here.
*
* Note that other handles created in this module are never marked as
* inheritable. Thus we do not need to worry about cleaning up child
* process references to postmaster-private latches or WaitEventSets.
*/
void
InitSharedLatch(Latch *latch)
{
#ifdef WIN32
SECURITY_ATTRIBUTES sa;
/*
* Set up security attributes to specify that the events are inherited.
*/
ZeroMemory(&sa, sizeof(sa));
sa.nLength = sizeof(sa);
sa.bInheritHandle = TRUE;
latch->event = CreateEvent(&sa, TRUE, FALSE, NULL);
if (latch->event == NULL)
elog(ERROR, "CreateEvent failed: error code %lu", GetLastError());
#endif
latch->is_set = false;
latch->maybe_sleeping = false;
latch->owner_pid = 0;
latch->is_shared = true;
}
/*
* Associate a shared latch with the current process, allowing it to
* wait on the latch.
*
* Although there is a sanity check for latch-already-owned, we don't do
* any sort of locking here, meaning that we could fail to detect the error
* if two processes try to own the same latch at about the same time. If
* there is any risk of that, caller must provide an interlock to prevent it.
*/
void
OwnLatch(Latch *latch)
{
/* Sanity checks */
Assert(latch->is_shared);
#if defined(WAIT_USE_SELF_PIPE)
/* Assert InitializeLatchSupport has been called in this process */
Assert(selfpipe_readfd >= 0 && selfpipe_owner_pid == MyProcPid);
#elif defined(WAIT_USE_SIGNALFD)
/* Assert InitializeLatchSupport has been called in this process */
Assert(signal_fd >= 0);
#endif
if (latch->owner_pid != 0)
elog(ERROR, "latch already owned");
latch->owner_pid = MyProcPid;
}
/*
* Disown a shared latch currently owned by the current process.
*/
void
DisownLatch(Latch *latch)
{
Assert(latch->is_shared);
Assert(latch->owner_pid == MyProcPid);
latch->owner_pid = 0;
}
/*
* Wait for a given latch to be set, or for postmaster death, or until timeout
* is exceeded. 'wakeEvents' is a bitmask that specifies which of those events
* to wait for. If the latch is already set (and WL_LATCH_SET is given), the
* function returns immediately.
*
* The "timeout" is given in milliseconds. It must be >= 0 if WL_TIMEOUT flag
* is given. Although it is declared as "long", we don't actually support
* timeouts longer than INT_MAX milliseconds. Note that some extra overhead
* is incurred when WL_TIMEOUT is given, so avoid using a timeout if possible.
*
* The latch must be owned by the current process, ie. it must be a
* process-local latch initialized with InitLatch, or a shared latch
* associated with the current process by calling OwnLatch.
*
* Returns bit mask indicating which condition(s) caused the wake-up. Note
* that if multiple wake-up conditions are true, there is no guarantee that
* we return all of them in one call, but we will return at least one.
*/
int
WaitLatch(Latch *latch, int wakeEvents, long timeout,
uint32 wait_event_info)
{
WaitEvent event;
/* Postmaster-managed callers must handle postmaster death somehow. */
Assert(!IsUnderPostmaster ||
(wakeEvents & WL_EXIT_ON_PM_DEATH) ||
(wakeEvents & WL_POSTMASTER_DEATH));
/*
* Some callers may have a latch other than MyLatch, or no latch at all,
* or want to handle postmaster death differently. It's cheap to assign
* those, so just do it every time.
*/
if (!(wakeEvents & WL_LATCH_SET))
latch = NULL;
ModifyWaitEvent(LatchWaitSet, LatchWaitSetLatchPos, WL_LATCH_SET, latch);
LatchWaitSet->exit_on_postmaster_death =
((wakeEvents & WL_EXIT_ON_PM_DEATH) != 0);
if (WaitEventSetWait(LatchWaitSet,
(wakeEvents & WL_TIMEOUT) ? timeout : -1,
&event, 1,
wait_event_info) == 0)
return WL_TIMEOUT;
else
return event.events;
}
/*
* Like WaitLatch, but with an extra socket argument for WL_SOCKET_*
* conditions.
*
* When waiting on a socket, EOF and error conditions always cause the socket
* to be reported as readable/writable/connected, so that the caller can deal
* with the condition.
*
* wakeEvents must include either WL_EXIT_ON_PM_DEATH for automatic exit
* if the postmaster dies or WL_POSTMASTER_DEATH for a flag set in the
* return value if the postmaster dies. The latter is useful for rare cases
* where some behavior other than immediate exit is needed.
*
* NB: These days this is just a wrapper around the WaitEventSet API. When
* using a latch very frequently, consider creating a longer living
* WaitEventSet instead; that's more efficient.
*/
int
WaitLatchOrSocket(Latch *latch, int wakeEvents, pgsocket sock,
long timeout, uint32 wait_event_info)
{
int ret = 0;
int rc;
WaitEvent event;
WaitEventSet *set = CreateWaitEventSet(CurrentMemoryContext, 3);
if (wakeEvents & WL_TIMEOUT)
Assert(timeout >= 0);
else
timeout = -1;
if (wakeEvents & WL_LATCH_SET)
AddWaitEventToSet(set, WL_LATCH_SET, PGINVALID_SOCKET,
latch, NULL);
/* Postmaster-managed callers must handle postmaster death somehow. */
Assert(!IsUnderPostmaster ||
(wakeEvents & WL_EXIT_ON_PM_DEATH) ||
(wakeEvents & WL_POSTMASTER_DEATH));
if ((wakeEvents & WL_POSTMASTER_DEATH) && IsUnderPostmaster)
AddWaitEventToSet(set, WL_POSTMASTER_DEATH, PGINVALID_SOCKET,
NULL, NULL);
if ((wakeEvents & WL_EXIT_ON_PM_DEATH) && IsUnderPostmaster)
AddWaitEventToSet(set, WL_EXIT_ON_PM_DEATH, PGINVALID_SOCKET,
NULL, NULL);
if (wakeEvents & WL_SOCKET_MASK)
{
int ev;
ev = wakeEvents & WL_SOCKET_MASK;
AddWaitEventToSet(set, ev, sock, NULL, NULL);
}
rc = WaitEventSetWait(set, timeout, &event, 1, wait_event_info);
if (rc == 0)
ret |= WL_TIMEOUT;
else
{
ret |= event.events & (WL_LATCH_SET |
WL_POSTMASTER_DEATH |
WL_SOCKET_MASK);
}
FreeWaitEventSet(set);
return ret;
}
/*
* Sets a latch and wakes up anyone waiting on it.
*
* This is cheap if the latch is already set, otherwise not so much.
*
* NB: when calling this in a signal handler, be sure to save and restore
* errno around it. (That's standard practice in most signal handlers, of
* course, but we used to omit it in handlers that only set a flag.)
*
* NB: this function is called from critical sections and signal handlers so
* throwing an error is not a good idea.
*/
void
SetLatch(Latch *latch)
{
#ifndef WIN32
pid_t owner_pid;
#else
HANDLE handle;
#endif
/*
* The memory barrier has to be placed here to ensure that any flag
* variables possibly changed by this process have been flushed to main
* memory, before we check/set is_set.
*/
pg_memory_barrier();
/* Quick exit if already set */
if (latch->is_set)
return;
latch->is_set = true;
pg_memory_barrier();
if (!latch->maybe_sleeping)
return;
#ifndef WIN32
/*
* See if anyone's waiting for the latch. It can be the current process if
* we're in a signal handler. We use the self-pipe or SIGURG to ourselves
* to wake up WaitEventSetWaitBlock() without races in that case. If it's
* another process, send a signal.
*
* Fetch owner_pid only once, in case the latch is concurrently getting
* owned or disowned. XXX: This assumes that pid_t is atomic, which isn't
* guaranteed to be true! In practice, the effective range of pid_t fits
* in a 32 bit integer, and so should be atomic. In the worst case, we
* might end up signaling the wrong process. Even then, you're very
* unlucky if a process with that bogus pid exists and belongs to
* Postgres; and PG database processes should handle excess SIGUSR1
* interrupts without a problem anyhow.
*
* Another sort of race condition that's possible here is for a new
* process to own the latch immediately after we look, so we don't signal
* it. This is okay so long as all callers of ResetLatch/WaitLatch follow
* the standard coding convention of waiting at the bottom of their loops,
* not the top, so that they'll correctly process latch-setting events
* that happen before they enter the loop.
*/
owner_pid = latch->owner_pid;
if (owner_pid == 0)
return;
else if (owner_pid == MyProcPid)
{
#if defined(WAIT_USE_SELF_PIPE)
if (waiting)
sendSelfPipeByte();
#else
if (waiting)
kill(MyProcPid, SIGURG);
#endif
}
else
kill(owner_pid, SIGURG);
#else
/*
* See if anyone's waiting for the latch. It can be the current process if
* we're in a signal handler.
*
* Use a local variable here just in case somebody changes the event field
* concurrently (which really should not happen).
*/
handle = latch->event;
if (handle)
{
SetEvent(handle);
/*
* Note that we silently ignore any errors. We might be in a signal
* handler or other critical path where it's not safe to call elog().
*/
}
#endif
}
/*
* Clear the latch. Calling WaitLatch after this will sleep, unless
* the latch is set again before the WaitLatch call.
*/
void
ResetLatch(Latch *latch)
{
/* Only the owner should reset the latch */
Assert(latch->owner_pid == MyProcPid);
Assert(latch->maybe_sleeping == false);
latch->is_set = false;
/*
* Ensure that the write to is_set gets flushed to main memory before we
* examine any flag variables. Otherwise a concurrent SetLatch might
* falsely conclude that it needn't signal us, even though we have missed
* seeing some flag updates that SetLatch was supposed to inform us of.
*/
pg_memory_barrier();
}
/*
* Create a WaitEventSet with space for nevents different events to wait for.
*
* These events can then be efficiently waited upon together, using
* WaitEventSetWait().
*/
WaitEventSet *
CreateWaitEventSet(MemoryContext context, int nevents)
{
WaitEventSet *set;
char *data;
Size sz = 0;
/*
* Use MAXALIGN size/alignment to guarantee that later uses of memory are
* aligned correctly. E.g. epoll_event might need 8 byte alignment on some
* platforms, but earlier allocations like WaitEventSet and WaitEvent
* might not be sized to guarantee that when purely using sizeof().
*/
sz += MAXALIGN(sizeof(WaitEventSet));
sz += MAXALIGN(sizeof(WaitEvent) * nevents);
#if defined(WAIT_USE_EPOLL)
sz += MAXALIGN(sizeof(struct epoll_event) * nevents);
#elif defined(WAIT_USE_KQUEUE)
sz += MAXALIGN(sizeof(struct kevent) * nevents);
#elif defined(WAIT_USE_POLL)
sz += MAXALIGN(sizeof(struct pollfd) * nevents);
#elif defined(WAIT_USE_WIN32)
/* need space for the pgwin32_signal_event */
sz += MAXALIGN(sizeof(HANDLE) * (nevents + 1));
#endif
data = (char *) MemoryContextAllocZero(context, sz);
set = (WaitEventSet *) data;
data += MAXALIGN(sizeof(WaitEventSet));
set->events = (WaitEvent *) data;
data += MAXALIGN(sizeof(WaitEvent) * nevents);
#if defined(WAIT_USE_EPOLL)
set->epoll_ret_events = (struct epoll_event *) data;
data += MAXALIGN(sizeof(struct epoll_event) * nevents);
#elif defined(WAIT_USE_KQUEUE)
set->kqueue_ret_events = (struct kevent *) data;
data += MAXALIGN(sizeof(struct kevent) * nevents);
#elif defined(WAIT_USE_POLL)
set->pollfds = (struct pollfd *) data;
data += MAXALIGN(sizeof(struct pollfd) * nevents);
#elif defined(WAIT_USE_WIN32)
set->handles = (HANDLE) data;
data += MAXALIGN(sizeof(HANDLE) * nevents);
#endif
set->latch = NULL;
set->nevents_space = nevents;
set->exit_on_postmaster_death = false;
#if defined(WAIT_USE_EPOLL)
if (!AcquireExternalFD())
{
/* treat this as though epoll_create1 itself returned EMFILE */
elog(ERROR, "epoll_create1 failed: %m");
}
set->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
if (set->epoll_fd < 0)
{
ReleaseExternalFD();
elog(ERROR, "epoll_create1 failed: %m");
}
#elif defined(WAIT_USE_KQUEUE)
if (!AcquireExternalFD())
{
/* treat this as though kqueue itself returned EMFILE */
elog(ERROR, "kqueue failed: %m");
}
set->kqueue_fd = kqueue();
if (set->kqueue_fd < 0)
{
ReleaseExternalFD();
elog(ERROR, "kqueue failed: %m");
}
if (fcntl(set->kqueue_fd, F_SETFD, FD_CLOEXEC) == -1)
{
int save_errno = errno;
close(set->kqueue_fd);
ReleaseExternalFD();
errno = save_errno;
elog(ERROR, "fcntl(F_SETFD) failed on kqueue descriptor: %m");
}
set->report_postmaster_not_running = false;
#elif defined(WAIT_USE_WIN32)
/*
* To handle signals while waiting, we need to add a win32 specific event.
* We accounted for the additional event at the top of this routine. See
* port/win32/signal.c for more details.
*
* Note: pgwin32_signal_event should be first to ensure that it will be
* reported when multiple events are set. We want to guarantee that
* pending signals are serviced.
*/
set->handles[0] = pgwin32_signal_event;
StaticAssertStmt(WSA_INVALID_EVENT == NULL, "");
#endif
return set;
}
/*
* Free a previously created WaitEventSet.
*
* Note: preferably, this shouldn't have to free any resources that could be
* inherited across an exec(). If it did, we'd likely leak those resources in
* many scenarios. For the epoll case, we ensure that by setting EPOLL_CLOEXEC
* when the FD is created. For the Windows case, we assume that the handles
* involved are non-inheritable.
*/
void
FreeWaitEventSet(WaitEventSet *set)
{
#if defined(WAIT_USE_EPOLL)
close(set->epoll_fd);
ReleaseExternalFD();
#elif defined(WAIT_USE_KQUEUE)
close(set->kqueue_fd);
ReleaseExternalFD();
#elif defined(WAIT_USE_WIN32)
WaitEvent *cur_event;
for (cur_event = set->events;
cur_event < (set->events + set->nevents);
cur_event++)
{
if (cur_event->events & WL_LATCH_SET)
{
/* uses the latch's HANDLE */
}
else if (cur_event->events & WL_POSTMASTER_DEATH)
{
/* uses PostmasterHandle */
}
else
{
/* Clean up the event object we created for the socket */
WSAEventSelect(cur_event->fd, NULL, 0);
WSACloseEvent(set->handles[cur_event->pos + 1]);
}
}
#endif
pfree(set);
}
/* ---
* Add an event to the set. Possible events are:
* - WL_LATCH_SET: Wait for the latch to be set
* - WL_POSTMASTER_DEATH: Wait for postmaster to die
* - WL_SOCKET_READABLE: Wait for socket to become readable,
* can be combined in one event with other WL_SOCKET_* events
* - WL_SOCKET_WRITEABLE: Wait for socket to become writeable,
* can be combined with other WL_SOCKET_* events
* - WL_SOCKET_CONNECTED: Wait for socket connection to be established,
* can be combined with other WL_SOCKET_* events (on non-Windows
* platforms, this is the same as WL_SOCKET_WRITEABLE)
* - WL_EXIT_ON_PM_DEATH: Exit immediately if the postmaster dies
*
* Returns the offset in WaitEventSet->events (starting from 0), which can be
* used to modify previously added wait events using ModifyWaitEvent().
*
* In the WL_LATCH_SET case the latch must be owned by the current process,
* i.e. it must be a process-local latch initialized with InitLatch, or a
* shared latch associated with the current process by calling OwnLatch.
*
* In the WL_SOCKET_READABLE/WRITEABLE/CONNECTED cases, EOF and error
* conditions cause the socket to be reported as readable/writable/connected,
* so that the caller can deal with the condition.
*
* The user_data pointer specified here will be set for the events returned
* by WaitEventSetWait(), allowing to easily associate additional data with
* events.
*/
int
AddWaitEventToSet(WaitEventSet *set, uint32 events, pgsocket fd, Latch *latch,
void *user_data)
{
WaitEvent *event;
/* not enough space */
Assert(set->nevents < set->nevents_space);
if (events == WL_EXIT_ON_PM_DEATH)
{
events = WL_POSTMASTER_DEATH;
set->exit_on_postmaster_death = true;
}
if (latch)
{
if (latch->owner_pid != MyProcPid)
elog(ERROR, "cannot wait on a latch owned by another process");
if (set->latch)
elog(ERROR, "cannot wait on more than one latch");
if ((events & WL_LATCH_SET) != WL_LATCH_SET)
elog(ERROR, "latch events only support being set");
}
else
{
if (events & WL_LATCH_SET)
elog(ERROR, "cannot wait on latch without a specified latch");
}
/* waiting for socket readiness without a socket indicates a bug */
if (fd == PGINVALID_SOCKET && (events & WL_SOCKET_MASK))
elog(ERROR, "cannot wait on socket event without a socket");
event = &set->events[set->nevents];
event->pos = set->nevents++;
event->fd = fd;
event->events = events;
event->user_data = user_data;
#ifdef WIN32
event->reset = false;
#endif
if (events == WL_LATCH_SET)
{
set->latch = latch;
set->latch_pos = event->pos;
#if defined(WAIT_USE_SELF_PIPE)
event->fd = selfpipe_readfd;
#elif defined(WAIT_USE_SIGNALFD)
event->fd = signal_fd;
#else
event->fd = PGINVALID_SOCKET;
#ifdef WAIT_USE_EPOLL
return event->pos;
#endif
#endif
}
else if (events == WL_POSTMASTER_DEATH)
{
#ifndef WIN32
event->fd = postmaster_alive_fds[POSTMASTER_FD_WATCH];
#endif
}
/* perform wait primitive specific initialization, if needed */
#if defined(WAIT_USE_EPOLL)
WaitEventAdjustEpoll(set, event, EPOLL_CTL_ADD);
#elif defined(WAIT_USE_KQUEUE)
WaitEventAdjustKqueue(set, event, 0);
#elif defined(WAIT_USE_POLL)
WaitEventAdjustPoll(set, event);
#elif defined(WAIT_USE_WIN32)
WaitEventAdjustWin32(set, event);
#endif
return event->pos;
}
/*
* Change the event mask and, in the WL_LATCH_SET case, the latch associated
* with the WaitEvent. The latch may be changed to NULL to disable the latch
* temporarily, and then set back to a latch later.
*
* 'pos' is the id returned by AddWaitEventToSet.
*/
void
ModifyWaitEvent(WaitEventSet *set, int pos, uint32 events, Latch *latch)
{
WaitEvent *event;
#if defined(WAIT_USE_KQUEUE)
int old_events;
#endif
Assert(pos < set->nevents);
event = &set->events[pos];
#if defined(WAIT_USE_KQUEUE)
old_events = event->events;
#endif
/*
* If neither the event mask nor the associated latch changes, return
* early. That's an important optimization for some sockets, where
* ModifyWaitEvent is frequently used to switch from waiting for reads to
* waiting on writes.
*/
if (events == event->events &&
(!(event->events & WL_LATCH_SET) || set->latch == latch))
return;
if (event->events & WL_LATCH_SET &&
events != event->events)
{
elog(ERROR, "cannot modify latch event");
}
if (event->events & WL_POSTMASTER_DEATH)
{
elog(ERROR, "cannot modify postmaster death event");
}
/* FIXME: validate event mask */
event->events = events;
if (events == WL_LATCH_SET)
{
if (latch && latch->owner_pid != MyProcPid)
elog(ERROR, "cannot wait on a latch owned by another process");
set->latch = latch;
/*
* On Unix, we don't need to modify the kernel object because the
* underlying pipe (if there is one) is the same for all latches so we
* can return immediately. On Windows, we need to update our array of
* handles, but we leave the old one in place and tolerate spurious
* wakeups if the latch is disabled.
*/
#if defined(WAIT_USE_WIN32)
if (!latch)
return;
#else
return;
#endif
}
#if defined(WAIT_USE_EPOLL)
WaitEventAdjustEpoll(set, event, EPOLL_CTL_MOD);
#elif defined(WAIT_USE_KQUEUE)
WaitEventAdjustKqueue(set, event, old_events);
#elif defined(WAIT_USE_POLL)
WaitEventAdjustPoll(set, event);
#elif defined(WAIT_USE_WIN32)
WaitEventAdjustWin32(set, event);
#endif
}
#if defined(WAIT_USE_EPOLL)
/*
* action can be one of EPOLL_CTL_ADD | EPOLL_CTL_MOD | EPOLL_CTL_DEL
*/
static void
WaitEventAdjustEpoll(WaitEventSet *set, WaitEvent *event, int action)
{
struct epoll_event epoll_ev;
int rc;
/* pointer to our event, returned by epoll_wait */
epoll_ev.data.ptr = event;
/* always wait for errors */
epoll_ev.events = EPOLLERR | EPOLLHUP;
/* prepare pollfd entry once */
if (event->events == WL_LATCH_SET)
{
Assert(set->latch != NULL);
epoll_ev.events |= EPOLLIN;
}
else if (event->events == WL_POSTMASTER_DEATH)
{
epoll_ev.events |= EPOLLIN;
}
else
{
Assert(event->fd != PGINVALID_SOCKET);
Assert(event->events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE));
if (event->events & WL_SOCKET_READABLE)
epoll_ev.events |= EPOLLIN;
if (event->events & WL_SOCKET_WRITEABLE)
epoll_ev.events |= EPOLLOUT;
}
/*
* Even though unused, we also pass epoll_ev as the data argument if
* EPOLL_CTL_DEL is passed as action. There used to be an epoll bug
* requiring that, and actually it makes the code simpler...
*/
rc = epoll_ctl(set->epoll_fd, action, event->fd, &epoll_ev);
if (rc < 0)
ereport(ERROR,
(errcode_for_socket_access(),
errmsg("%s() failed: %m",
"epoll_ctl")));
}
#endif
#if defined(WAIT_USE_POLL)
static void
WaitEventAdjustPoll(WaitEventSet *set, WaitEvent *event)
{
struct pollfd *pollfd = &set->pollfds[event->pos];
pollfd->revents = 0;
pollfd->fd = event->fd;
/* prepare pollfd entry once */
if (event->events == WL_LATCH_SET)
{
Assert(set->latch != NULL);
pollfd->events = POLLIN;
}
else if (event->events == WL_POSTMASTER_DEATH)
{
pollfd->events = POLLIN;
}
else
{
Assert(event->events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE));
pollfd->events = 0;
if (event->events & WL_SOCKET_READABLE)
pollfd->events |= POLLIN;
if (event->events & WL_SOCKET_WRITEABLE)
pollfd->events |= POLLOUT;
}
Assert(event->fd != PGINVALID_SOCKET);
}
#endif
#if defined(WAIT_USE_KQUEUE)
/*
* On most BSD family systems, the udata member of struct kevent is of type
* void *, so we could directly convert to/from WaitEvent *. Unfortunately,
* NetBSD has it as intptr_t, so here we wallpaper over that difference with
* an lvalue cast.
*/
#define AccessWaitEvent(k_ev) (*((WaitEvent **)(&(k_ev)->udata)))
static inline void
WaitEventAdjustKqueueAdd(struct kevent *k_ev, int filter, int action,
WaitEvent *event)
{
k_ev->ident = event->fd;
k_ev->filter = filter;
k_ev->flags = action;
k_ev->fflags = 0;
k_ev->data = 0;
AccessWaitEvent(k_ev) = event;
}
static inline void
WaitEventAdjustKqueueAddPostmaster(struct kevent *k_ev, WaitEvent *event)
{
/* For now postmaster death can only be added, not removed. */
k_ev->ident = PostmasterPid;
k_ev->filter = EVFILT_PROC;
k_ev->flags = EV_ADD;
k_ev->fflags = NOTE_EXIT;
k_ev->data = 0;
AccessWaitEvent(k_ev) = event;
}
static inline void
WaitEventAdjustKqueueAddLatch(struct kevent *k_ev, WaitEvent *event)
{
/* For now latch can only be added, not removed. */
k_ev->ident = SIGURG;
k_ev->filter = EVFILT_SIGNAL;
k_ev->flags = EV_ADD;
k_ev->fflags = 0;
k_ev->data = 0;
AccessWaitEvent(k_ev) = event;
}
/*
* old_events is the previous event mask, used to compute what has changed.
*/
static void
WaitEventAdjustKqueue(WaitEventSet *set, WaitEvent *event, int old_events)
{
int rc;
struct kevent k_ev[2];
int count = 0;
bool new_filt_read = false;
bool old_filt_read = false;
bool new_filt_write = false;
bool old_filt_write = false;
if (old_events == event->events)
return;
Assert(event->events != WL_LATCH_SET || set->latch != NULL);
Assert(event->events == WL_LATCH_SET ||
event->events == WL_POSTMASTER_DEATH ||
(event->events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE)));
if (event->events == WL_POSTMASTER_DEATH)
{
/*
* Unlike all the other implementations, we detect postmaster death
* using process notification instead of waiting on the postmaster
* alive pipe.
*/
WaitEventAdjustKqueueAddPostmaster(&k_ev[count++], event);
}
else if (event->events == WL_LATCH_SET)
{
/* We detect latch wakeup using a signal event. */
WaitEventAdjustKqueueAddLatch(&k_ev[count++], event);
}
else
{
/*
* We need to compute the adds and deletes required to get from the
* old event mask to the new event mask, since kevent treats readable
* and writable as separate events.
*/
if (old_events & WL_SOCKET_READABLE)
old_filt_read = true;
if (event->events & WL_SOCKET_READABLE)
new_filt_read = true;
if (old_events & WL_SOCKET_WRITEABLE)
old_filt_write = true;
if (event->events & WL_SOCKET_WRITEABLE)
new_filt_write = true;
if (old_filt_read && !new_filt_read)
WaitEventAdjustKqueueAdd(&k_ev[count++], EVFILT_READ, EV_DELETE,
event);
else if (!old_filt_read && new_filt_read)
WaitEventAdjustKqueueAdd(&k_ev[count++], EVFILT_READ, EV_ADD,
event);
if (old_filt_write && !new_filt_write)
WaitEventAdjustKqueueAdd(&k_ev[count++], EVFILT_WRITE, EV_DELETE,
event);
else if (!old_filt_write && new_filt_write)
WaitEventAdjustKqueueAdd(&k_ev[count++], EVFILT_WRITE, EV_ADD,
event);
}
Assert(count > 0);
Assert(count <= 2);
rc = kevent(set->kqueue_fd, &k_ev[0], count, NULL, 0, NULL);
/*
* When adding the postmaster's pid, we have to consider that it might
* already have exited and perhaps even been replaced by another process
* with the same pid. If so, we have to defer reporting this as an event
* until the next call to WaitEventSetWaitBlock().
*/
if (rc < 0)
{
if (event->events == WL_POSTMASTER_DEATH &&
(errno == ESRCH || errno == EACCES))
set->report_postmaster_not_running = true;
else
ereport(ERROR,
(errcode_for_socket_access(),
errmsg("%s() failed: %m",
"kevent")));
}
else if (event->events == WL_POSTMASTER_DEATH &&
PostmasterPid != getppid() &&
!PostmasterIsAlive())
{
/*
* The extra PostmasterIsAliveInternal() check prevents false alarms
* on systems that give a different value for getppid() while being
* traced by a debugger.
*/
set->report_postmaster_not_running = true;
}
}
#endif
#if defined(WAIT_USE_WIN32)
static void
WaitEventAdjustWin32(WaitEventSet *set, WaitEvent *event)
{
HANDLE *handle = &set->handles[event->pos + 1];
if (event->events == WL_LATCH_SET)
{
Assert(set->latch != NULL);
*handle = set->latch->event;
}
else if (event->events == WL_POSTMASTER_DEATH)
{
*handle = PostmasterHandle;
}
else
{
int flags = FD_CLOSE; /* always check for errors/EOF */
if (event->events & WL_SOCKET_READABLE)
flags |= FD_READ;
if (event->events & WL_SOCKET_WRITEABLE)
flags |= FD_WRITE;
if (event->events & WL_SOCKET_CONNECTED)
flags |= FD_CONNECT;
if (*handle == WSA_INVALID_EVENT)
{
*handle = WSACreateEvent();
if (*handle == WSA_INVALID_EVENT)
elog(ERROR, "failed to create event for socket: error code %d",
WSAGetLastError());
}
if (WSAEventSelect(event->fd, *handle, flags) != 0)
elog(ERROR, "failed to set up event for socket: error code %d",
WSAGetLastError());
Assert(event->fd != PGINVALID_SOCKET);
}
}
#endif
/*
* Wait for events added to the set to happen, or until the timeout is
* reached. At most nevents occurred events are returned.
*
* If timeout = -1, block until an event occurs; if 0, check sockets for
* readiness, but don't block; if > 0, block for at most timeout milliseconds.
*
* Returns the number of events occurred, or 0 if the timeout was reached.
*
* Returned events will have the fd, pos, user_data fields set to the
* values associated with the registered event.
*/
int
WaitEventSetWait(WaitEventSet *set, long timeout,
WaitEvent *occurred_events, int nevents,
uint32 wait_event_info)
{
int returned_events = 0;
instr_time start_time;
instr_time cur_time;
long cur_timeout = -1;
Assert(nevents > 0);
/*
* Initialize timeout if requested. We must record the current time so
* that we can determine the remaining timeout if interrupted.
*/
if (timeout >= 0)
{
INSTR_TIME_SET_CURRENT(start_time);
Assert(timeout >= 0 && timeout <= INT_MAX);
cur_timeout = timeout;
}
pgstat_report_wait_start(wait_event_info);
#ifndef WIN32
waiting = true;
#else
/* Ensure that signals are serviced even if latch is already set */
pgwin32_dispatch_queued_signals();
#endif
while (returned_events == 0)
{
int rc;
/*
* Check if the latch is set already. If so, leave the loop
* immediately, avoid blocking again. We don't attempt to report any
* other events that might also be satisfied.
*
* If someone sets the latch between this and the
* WaitEventSetWaitBlock() below, the setter will write a byte to the
* pipe (or signal us and the signal handler will do that), and the
* readiness routine will return immediately.
*
* On unix, If there's a pending byte in the self pipe, we'll notice
* whenever blocking. Only clearing the pipe in that case avoids
* having to drain it every time WaitLatchOrSocket() is used. Should
* the pipe-buffer fill up we're still ok, because the pipe is in
* nonblocking mode. It's unlikely for that to happen, because the
* self pipe isn't filled unless we're blocking (waiting = true), or
* from inside a signal handler in latch_sigurg_handler().
*
* On windows, we'll also notice if there's a pending event for the
* latch when blocking, but there's no danger of anything filling up,
* as "Setting an event that is already set has no effect.".
*
* Note: we assume that the kernel calls involved in latch management
* will provide adequate synchronization on machines with weak memory
* ordering, so that we cannot miss seeing is_set if a notification
* has already been queued.
*/
if (set->latch && !set->latch->is_set)
{
/* about to sleep on a latch */
set->latch->maybe_sleeping = true;
pg_memory_barrier();
/* and recheck */
}
if (set->latch && set->latch->is_set)
{
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->pos = set->latch_pos;
occurred_events->user_data =
set->events[set->latch_pos].user_data;
occurred_events->events = WL_LATCH_SET;
occurred_events++;
returned_events++;
/* could have been set above */
set->latch->maybe_sleeping = false;
break;
}
/*
* Wait for events using the readiness primitive chosen at the top of
* this file. If -1 is returned, a timeout has occurred, if 0 we have
* to retry, everything >= 1 is the number of returned events.
*/
rc = WaitEventSetWaitBlock(set, cur_timeout,
occurred_events, nevents);
if (set->latch)
{
Assert(set->latch->maybe_sleeping);
set->latch->maybe_sleeping = false;
}
if (rc == -1)
break; /* timeout occurred */
else
returned_events = rc;
/* If we're not done, update cur_timeout for next iteration */
if (returned_events == 0 && timeout >= 0)
{
INSTR_TIME_SET_CURRENT(cur_time);
INSTR_TIME_SUBTRACT(cur_time, start_time);
cur_timeout = timeout - (long) INSTR_TIME_GET_MILLISEC(cur_time);
if (cur_timeout <= 0)
break;
}
}
#ifndef WIN32
waiting = false;
#endif
pgstat_report_wait_end();
return returned_events;
}
#if defined(WAIT_USE_EPOLL)
/*
* Wait using linux's epoll_wait(2).
*
* This is the preferable wait method, as several readiness notifications are
* delivered, without having to iterate through all of set->events. The return
* epoll_event struct contain a pointer to our events, making association
* easy.
*/
static inline int
WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
WaitEvent *occurred_events, int nevents)
{
int returned_events = 0;
int rc;
WaitEvent *cur_event;
struct epoll_event *cur_epoll_event;
/* Sleep */
rc = epoll_wait(set->epoll_fd, set->epoll_ret_events,
nevents, cur_timeout);
/* Check return code */
if (rc < 0)
{
/* EINTR is okay, otherwise complain */
if (errno != EINTR)
{
waiting = false;
ereport(ERROR,
(errcode_for_socket_access(),
errmsg("%s() failed: %m",
"epoll_wait")));
}
return 0;
}
else if (rc == 0)
{
/* timeout exceeded */
return -1;
}
/*
* At least one event occurred, iterate over the returned epoll events
* until they're either all processed, or we've returned all the events
* the caller desired.
*/
for (cur_epoll_event = set->epoll_ret_events;
cur_epoll_event < (set->epoll_ret_events + rc) &&
returned_events < nevents;
cur_epoll_event++)
{
/* epoll's data pointer is set to the associated WaitEvent */
cur_event = (WaitEvent *) cur_epoll_event->data.ptr;
occurred_events->pos = cur_event->pos;
occurred_events->user_data = cur_event->user_data;
occurred_events->events = 0;
if (cur_event->events == WL_LATCH_SET &&
cur_epoll_event->events & (EPOLLIN | EPOLLERR | EPOLLHUP))
{
/* Drain the signalfd. */
drain();
if (set->latch && set->latch->is_set)
{
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->events = WL_LATCH_SET;
occurred_events++;
returned_events++;
}
}
else if (cur_event->events == WL_POSTMASTER_DEATH &&
cur_epoll_event->events & (EPOLLIN | EPOLLERR | EPOLLHUP))
{
/*
* We expect an EPOLLHUP when the remote end is closed, but
* because we don't expect the pipe to become readable or to have
* any errors either, treat those cases as postmaster death, too.
*
* Be paranoid about a spurious event signaling the postmaster as
* being dead. There have been reports about that happening with
* older primitives (select(2) to be specific), and a spurious
* WL_POSTMASTER_DEATH event would be painful. Re-checking doesn't
* cost much.
*/
if (!PostmasterIsAliveInternal())
{
if (set->exit_on_postmaster_death)
proc_exit(1);
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->events = WL_POSTMASTER_DEATH;
occurred_events++;
returned_events++;
}
}
else if (cur_event->events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE))
{
Assert(cur_event->fd != PGINVALID_SOCKET);
if ((cur_event->events & WL_SOCKET_READABLE) &&
(cur_epoll_event->events & (EPOLLIN | EPOLLERR | EPOLLHUP)))
{
/* data available in socket, or EOF */
occurred_events->events |= WL_SOCKET_READABLE;
}
if ((cur_event->events & WL_SOCKET_WRITEABLE) &&
(cur_epoll_event->events & (EPOLLOUT | EPOLLERR | EPOLLHUP)))
{
/* writable, or EOF */
occurred_events->events |= WL_SOCKET_WRITEABLE;
}
if (occurred_events->events != 0)
{
occurred_events->fd = cur_event->fd;
occurred_events++;
returned_events++;
}
}
}
return returned_events;
}
#elif defined(WAIT_USE_KQUEUE)
/*
* Wait using kevent(2) on BSD-family systems and macOS.
*
* For now this mirrors the epoll code, but in future it could modify the fd
* set in the same call to kevent as it uses for waiting instead of doing that
* with separate system calls.
*/
static int
WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
WaitEvent *occurred_events, int nevents)
{
int returned_events = 0;
int rc;
WaitEvent *cur_event;
struct kevent *cur_kqueue_event;
struct timespec timeout;
struct timespec *timeout_p;
if (cur_timeout < 0)
timeout_p = NULL;
else
{
timeout.tv_sec = cur_timeout / 1000;
timeout.tv_nsec = (cur_timeout % 1000) * 1000000;
timeout_p = &timeout;
}
/*
* Report postmaster events discovered by WaitEventAdjustKqueue() or an
* earlier call to WaitEventSetWait().
*/
if (unlikely(set->report_postmaster_not_running))
{
if (set->exit_on_postmaster_death)
proc_exit(1);
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->events = WL_POSTMASTER_DEATH;
return 1;
}
/* Sleep */
rc = kevent(set->kqueue_fd, NULL, 0,
set->kqueue_ret_events, nevents,
timeout_p);
/* Check return code */
if (rc < 0)
{
/* EINTR is okay, otherwise complain */
if (errno != EINTR)
{
waiting = false;
ereport(ERROR,
(errcode_for_socket_access(),
errmsg("%s() failed: %m",
"kevent")));
}
return 0;
}
else if (rc == 0)
{
/* timeout exceeded */
return -1;
}
/*
* At least one event occurred, iterate over the returned kqueue events
* until they're either all processed, or we've returned all the events
* the caller desired.
*/
for (cur_kqueue_event = set->kqueue_ret_events;
cur_kqueue_event < (set->kqueue_ret_events + rc) &&
returned_events < nevents;
cur_kqueue_event++)
{
/* kevent's udata points to the associated WaitEvent */
cur_event = AccessWaitEvent(cur_kqueue_event);
occurred_events->pos = cur_event->pos;
occurred_events->user_data = cur_event->user_data;
occurred_events->events = 0;
if (cur_event->events == WL_LATCH_SET &&
cur_kqueue_event->filter == EVFILT_SIGNAL)
{
if (set->latch && set->latch->is_set)
{
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->events = WL_LATCH_SET;
occurred_events++;
returned_events++;
}
}
else if (cur_event->events == WL_POSTMASTER_DEATH &&
cur_kqueue_event->filter == EVFILT_PROC &&
(cur_kqueue_event->fflags & NOTE_EXIT) != 0)
{
/*
* The kernel will tell this kqueue object only once about the
* exit of the postmaster, so let's remember that for next time so
* that we provide level-triggered semantics.
*/
set->report_postmaster_not_running = true;
if (set->exit_on_postmaster_death)
proc_exit(1);
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->events = WL_POSTMASTER_DEATH;
occurred_events++;
returned_events++;
}
else if (cur_event->events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE))
{
Assert(cur_event->fd >= 0);
if ((cur_event->events & WL_SOCKET_READABLE) &&
(cur_kqueue_event->filter == EVFILT_READ))
{
/* readable, or EOF */
occurred_events->events |= WL_SOCKET_READABLE;
}
if ((cur_event->events & WL_SOCKET_WRITEABLE) &&
(cur_kqueue_event->filter == EVFILT_WRITE))
{
/* writable, or EOF */
occurred_events->events |= WL_SOCKET_WRITEABLE;
}
if (occurred_events->events != 0)
{
occurred_events->fd = cur_event->fd;
occurred_events++;
returned_events++;
}
}
}
return returned_events;
}
#elif defined(WAIT_USE_POLL)
/*
* Wait using poll(2).
*
* This allows to receive readiness notifications for several events at once,
* but requires iterating through all of set->pollfds.
*/
static inline int
WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
WaitEvent *occurred_events, int nevents)
{
int returned_events = 0;
int rc;
WaitEvent *cur_event;
struct pollfd *cur_pollfd;
/* Sleep */
rc = poll(set->pollfds, set->nevents, (int) cur_timeout);
/* Check return code */
if (rc < 0)
{
/* EINTR is okay, otherwise complain */
if (errno != EINTR)
{
waiting = false;
ereport(ERROR,
(errcode_for_socket_access(),
errmsg("%s() failed: %m",
"poll")));
}
return 0;
}
else if (rc == 0)
{
/* timeout exceeded */
return -1;
}
for (cur_event = set->events, cur_pollfd = set->pollfds;
cur_event < (set->events + set->nevents) &&
returned_events < nevents;
cur_event++, cur_pollfd++)
{
/* no activity on this FD, skip */
if (cur_pollfd->revents == 0)
continue;
occurred_events->pos = cur_event->pos;
occurred_events->user_data = cur_event->user_data;
occurred_events->events = 0;
if (cur_event->events == WL_LATCH_SET &&
(cur_pollfd->revents & (POLLIN | POLLHUP | POLLERR | POLLNVAL)))
{
/* There's data in the self-pipe, clear it. */
drain();
if (set->latch && set->latch->is_set)
{
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->events = WL_LATCH_SET;
occurred_events++;
returned_events++;
}
}
else if (cur_event->events == WL_POSTMASTER_DEATH &&
(cur_pollfd->revents & (POLLIN | POLLHUP | POLLERR | POLLNVAL)))
{
/*
* We expect an POLLHUP when the remote end is closed, but because
* we don't expect the pipe to become readable or to have any
* errors either, treat those cases as postmaster death, too.
*
* Be paranoid about a spurious event signaling the postmaster as
* being dead. There have been reports about that happening with
* older primitives (select(2) to be specific), and a spurious
* WL_POSTMASTER_DEATH event would be painful. Re-checking doesn't
* cost much.
*/
if (!PostmasterIsAliveInternal())
{
if (set->exit_on_postmaster_death)
proc_exit(1);
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->events = WL_POSTMASTER_DEATH;
occurred_events++;
returned_events++;
}
}
else if (cur_event->events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE))
{
int errflags = POLLHUP | POLLERR | POLLNVAL;
Assert(cur_event->fd >= PGINVALID_SOCKET);
if ((cur_event->events & WL_SOCKET_READABLE) &&
(cur_pollfd->revents & (POLLIN | errflags)))
{
/* data available in socket, or EOF */
occurred_events->events |= WL_SOCKET_READABLE;
}
if ((cur_event->events & WL_SOCKET_WRITEABLE) &&
(cur_pollfd->revents & (POLLOUT | errflags)))
{
/* writeable, or EOF */
occurred_events->events |= WL_SOCKET_WRITEABLE;
}
if (occurred_events->events != 0)
{
occurred_events->fd = cur_event->fd;
occurred_events++;
returned_events++;
}
}
}
return returned_events;
}
#elif defined(WAIT_USE_WIN32)
/*
* Wait using Windows' WaitForMultipleObjects().
*
* Unfortunately this will only ever return a single readiness notification at
* a time. Note that while the official documentation for
* WaitForMultipleObjects is ambiguous about multiple events being "consumed"
* with a single bWaitAll = FALSE call,
* https://blogs.msdn.microsoft.com/oldnewthing/20150409-00/?p=44273 confirms
* that only one event is "consumed".
*/
static inline int
WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
WaitEvent *occurred_events, int nevents)
{
int returned_events = 0;
DWORD rc;
WaitEvent *cur_event;
/* Reset any wait events that need it */
for (cur_event = set->events;
cur_event < (set->events + set->nevents);
cur_event++)
{
if (cur_event->reset)
{
WaitEventAdjustWin32(set, cur_event);
cur_event->reset = false;
}
/*
* Windows does not guarantee to log an FD_WRITE network event
* indicating that more data can be sent unless the previous send()
* failed with WSAEWOULDBLOCK. While our caller might well have made
* such a call, we cannot assume that here. Therefore, if waiting for
* write-ready, force the issue by doing a dummy send(). If the dummy
* send() succeeds, assume that the socket is in fact write-ready, and
* return immediately. Also, if it fails with something other than
* WSAEWOULDBLOCK, return a write-ready indication to let our caller
* deal with the error condition.
*/
if (cur_event->events & WL_SOCKET_WRITEABLE)
{
char c;
WSABUF buf;
DWORD sent;
int r;
buf.buf = &c;
buf.len = 0;
r = WSASend(cur_event->fd, &buf, 1, &sent, 0, NULL, NULL);
if (r == 0 || WSAGetLastError() != WSAEWOULDBLOCK)
{
occurred_events->pos = cur_event->pos;
occurred_events->user_data = cur_event->user_data;
occurred_events->events = WL_SOCKET_WRITEABLE;
occurred_events->fd = cur_event->fd;
return 1;
}
}
}
/*
* Sleep.
*
* Need to wait for ->nevents + 1, because signal handle is in [0].
*/
rc = WaitForMultipleObjects(set->nevents + 1, set->handles, FALSE,
cur_timeout);
/* Check return code */
if (rc == WAIT_FAILED)
elog(ERROR, "WaitForMultipleObjects() failed: error code %lu",
GetLastError());
else if (rc == WAIT_TIMEOUT)
{
/* timeout exceeded */
return -1;
}
if (rc == WAIT_OBJECT_0)
{
/* Service newly-arrived signals */
pgwin32_dispatch_queued_signals();
return 0; /* retry */
}
/*
* With an offset of one, due to the always present pgwin32_signal_event,
* the handle offset directly corresponds to a wait event.
*/
cur_event = (WaitEvent *) &set->events[rc - WAIT_OBJECT_0 - 1];
occurred_events->pos = cur_event->pos;
occurred_events->user_data = cur_event->user_data;
occurred_events->events = 0;
if (cur_event->events == WL_LATCH_SET)
{
/*
* We cannot use set->latch->event to reset the fired event if we
* aren't waiting on this latch now.
*/
if (!ResetEvent(set->handles[cur_event->pos + 1]))
elog(ERROR, "ResetEvent failed: error code %lu", GetLastError());
if (set->latch && set->latch->is_set)
{
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->events = WL_LATCH_SET;
occurred_events++;
returned_events++;
}
}
else if (cur_event->events == WL_POSTMASTER_DEATH)
{
/*
* Postmaster apparently died. Since the consequences of falsely
* returning WL_POSTMASTER_DEATH could be pretty unpleasant, we take
* the trouble to positively verify this with PostmasterIsAlive(),
* even though there is no known reason to think that the event could
* be falsely set on Windows.
*/
if (!PostmasterIsAliveInternal())
{
if (set->exit_on_postmaster_death)
proc_exit(1);
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->events = WL_POSTMASTER_DEATH;
occurred_events++;
returned_events++;
}
}
else if (cur_event->events & WL_SOCKET_MASK)
{
WSANETWORKEVENTS resEvents;
HANDLE handle = set->handles[cur_event->pos + 1];
Assert(cur_event->fd);
occurred_events->fd = cur_event->fd;
ZeroMemory(&resEvents, sizeof(resEvents));
if (WSAEnumNetworkEvents(cur_event->fd, handle, &resEvents) != 0)
elog(ERROR, "failed to enumerate network events: error code %d",
WSAGetLastError());
if ((cur_event->events & WL_SOCKET_READABLE) &&
(resEvents.lNetworkEvents & FD_READ))
{
/* data available in socket */
occurred_events->events |= WL_SOCKET_READABLE;
/*------
* WaitForMultipleObjects doesn't guarantee that a read event will
* be returned if the latch is set at the same time. Even if it
* did, the caller might drop that event expecting it to reoccur
* on next call. So, we must force the event to be reset if this
* WaitEventSet is used again in order to avoid an indefinite
* hang. Refer https://msdn.microsoft.com/en-us/library/windows/desktop/ms741576(v=vs.85).aspx
* for the behavior of socket events.
*------
*/
cur_event->reset = true;
}
if ((cur_event->events & WL_SOCKET_WRITEABLE) &&
(resEvents.lNetworkEvents & FD_WRITE))
{
/* writeable */
occurred_events->events |= WL_SOCKET_WRITEABLE;
}
if ((cur_event->events & WL_SOCKET_CONNECTED) &&
(resEvents.lNetworkEvents & FD_CONNECT))
{
/* connected */
occurred_events->events |= WL_SOCKET_CONNECTED;
}
if (resEvents.lNetworkEvents & FD_CLOSE)
{
/* EOF/error, so signal all caller-requested socket flags */
occurred_events->events |= (cur_event->events & WL_SOCKET_MASK);
}
if (occurred_events->events != 0)
{
occurred_events++;
returned_events++;
}
}
return returned_events;
}
#endif
/*
* Get the number of wait events registered in a given WaitEventSet.
*/
int
GetNumRegisteredWaitEvents(WaitEventSet *set)
{
return set->nevents;
}
#if defined(WAIT_USE_SELF_PIPE)
/*
* SetLatch uses SIGURG to wake up the process waiting on the latch.
*
* Wake up WaitLatch, if we're waiting.
*/
static void
latch_sigurg_handler(SIGNAL_ARGS)
{
int save_errno = errno;
if (waiting)
sendSelfPipeByte();
errno = save_errno;
}
/* Send one byte to the self-pipe, to wake up WaitLatch */
static void
sendSelfPipeByte(void)
{
int rc;
char dummy = 0;
retry:
rc = write(selfpipe_writefd, &dummy, 1);
if (rc < 0)
{
/* If interrupted by signal, just retry */
if (errno == EINTR)
goto retry;
/*
* If the pipe is full, we don't need to retry, the data that's there
* already is enough to wake up WaitLatch.
*/
if (errno == EAGAIN || errno == EWOULDBLOCK)
return;
/*
* Oops, the write() failed for some other reason. We might be in a
* signal handler, so it's not safe to elog(). We have no choice but
* silently ignore the error.
*/
return;
}
}
#endif
#if defined(WAIT_USE_SELF_PIPE) || defined(WAIT_USE_SIGNALFD)
/*
* Read all available data from self-pipe or signalfd.
*
* Note: this is only called when waiting = true. If it fails and doesn't
* return, it must reset that flag first (though ideally, this will never
* happen).
*/
static void
drain(void)
{
char buf[1024];
int rc;
int fd;
#ifdef WAIT_USE_SELF_PIPE
fd = selfpipe_readfd;
#else
fd = signal_fd;
#endif
for (;;)
{
rc = read(fd, buf, sizeof(buf));
if (rc < 0)
{
if (errno == EAGAIN || errno == EWOULDBLOCK)
break; /* the descriptor is empty */
else if (errno == EINTR)
continue; /* retry */
else
{
waiting = false;
#ifdef WAIT_USE_SELF_PIPE
elog(ERROR, "read() on self-pipe failed: %m");
#else
elog(ERROR, "read() on signalfd failed: %m");
#endif
}
}
else if (rc == 0)
{
waiting = false;
#ifdef WAIT_USE_SELF_PIPE
elog(ERROR, "unexpected EOF on self-pipe");
#else
elog(ERROR, "unexpected EOF on signalfd");
#endif
}
else if (rc < sizeof(buf))
{
/* we successfully drained the pipe; no need to read() again */
break;
}
/* else buffer wasn't big enough, so read again */
}
}
#endif
|