summaryrefslogtreecommitdiffstats
path: root/src/include/lib/ilist.h
blob: ddbdb207afab0a1ba93739215574832160c949a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
/*-------------------------------------------------------------------------
 *
 * ilist.h
 *		integrated/inline doubly- and singly-linked lists
 *
 * These list types are useful when there are only a predetermined set of
 * lists that an object could be in.  List links are embedded directly into
 * the objects, and thus no extra memory management overhead is required.
 * (Of course, if only a small proportion of existing objects are in a list,
 * the link fields in the remainder would be wasted space.  But usually,
 * it saves space to not have separately-allocated list nodes.)
 *
 * None of the functions here allocate any memory; they just manipulate
 * externally managed memory.  The APIs for singly and doubly linked lists
 * are identical as far as capabilities of both allow.
 *
 * Each list has a list header, which exists even when the list is empty.
 * An empty singly-linked list has a NULL pointer in its header.
 * There are two kinds of empty doubly linked lists: those that have been
 * initialized to NULL, and those that have been initialized to circularity.
 * (If a dlist is modified and then all its elements are deleted, it will be
 * in the circular state.)	We prefer circular dlists because there are some
 * operations that can be done without branches (and thus faster) on lists
 * that use circular representation.  However, it is often convenient to
 * initialize list headers to zeroes rather than setting them up with an
 * explicit initialization function, so we also allow the other case.
 *
 * EXAMPLES
 *
 * Here's a simple example demonstrating how this can be used.  Let's assume
 * we want to store information about the tables contained in a database.
 *
 * #include "lib/ilist.h"
 *
 * // Define struct for the databases including a list header that will be
 * // used to access the nodes in the table list later on.
 * typedef struct my_database
 * {
 *		char	   *datname;
 *		dlist_head	tables;
 *		// ...
 * } my_database;
 *
 * // Define struct for the tables.  Note the list_node element which stores
 * // prev/next list links.  The list_node element need not be first.
 * typedef struct my_table
 * {
 *		char	   *tablename;
 *		dlist_node	list_node;
 *		perm_t		permissions;
 *		// ...
 * } my_table;
 *
 * // create a database
 * my_database *db = create_database();
 *
 * // and add a few tables to its table list
 * dlist_push_head(&db->tables, &create_table(db, "a")->list_node);
 * ...
 * dlist_push_head(&db->tables, &create_table(db, "b")->list_node);
 *
 *
 * To iterate over the table list, we allocate an iterator variable and use
 * a specialized looping construct.  Inside a dlist_foreach, the iterator's
 * 'cur' field can be used to access the current element.  iter.cur points to
 * a 'dlist_node', but most of the time what we want is the actual table
 * information; dlist_container() gives us that, like so:
 *
 * dlist_iter	iter;
 * dlist_foreach(iter, &db->tables)
 * {
 *		my_table   *tbl = dlist_container(my_table, list_node, iter.cur);
 *		printf("we have a table: %s in database %s\n",
 *			   tbl->tablename, db->datname);
 * }
 *
 *
 * While a simple iteration is useful, we sometimes also want to manipulate
 * the list while iterating.  There is a different iterator element and looping
 * construct for that.  Suppose we want to delete tables that meet a certain
 * criterion:
 *
 * dlist_mutable_iter miter;
 * dlist_foreach_modify(miter, &db->tables)
 * {
 *		my_table   *tbl = dlist_container(my_table, list_node, miter.cur);
 *
 *		if (!tbl->to_be_deleted)
 *			continue;		// don't touch this one
 *
 *		// unlink the current table from the linked list
 *		dlist_delete(miter.cur);
 *		// as these lists never manage memory, we can still access the table
 *		// after it's been unlinked
 *		drop_table(db, tbl);
 * }
 *
 *
 * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *		src/include/lib/ilist.h
 *-------------------------------------------------------------------------
 */
#ifndef ILIST_H
#define ILIST_H

/*
 * Enable for extra debugging. This is rather expensive, so it's not enabled by
 * default even when USE_ASSERT_CHECKING.
 */
/* #define ILIST_DEBUG */

/*
 * Node of a doubly linked list.
 *
 * Embed this in structs that need to be part of a doubly linked list.
 */
typedef struct dlist_node dlist_node;
struct dlist_node
{
	dlist_node *prev;
	dlist_node *next;
};

/*
 * Head of a doubly linked list.
 *
 * Non-empty lists are internally circularly linked.  Circular lists have the
 * advantage of not needing any branches in the most common list manipulations.
 * An empty list can also be represented as a pair of NULL pointers, making
 * initialization easier.
 */
typedef struct dlist_head
{
	/*
	 * head.next either points to the first element of the list; to &head if
	 * it's a circular empty list; or to NULL if empty and not circular.
	 *
	 * head.prev either points to the last element of the list; to &head if
	 * it's a circular empty list; or to NULL if empty and not circular.
	 */
	dlist_node	head;
} dlist_head;


/*
 * Doubly linked list iterator.
 *
 * Used as state in dlist_foreach() and dlist_reverse_foreach(). To get the
 * current element of the iteration use the 'cur' member.
 *
 * Iterations using this are *not* allowed to change the list while iterating!
 *
 * NB: We use an extra "end" field here to avoid multiple evaluations of
 * arguments in the dlist_foreach() macro.
 */
typedef struct dlist_iter
{
	dlist_node *cur;			/* current element */
	dlist_node *end;			/* last node we'll iterate to */
} dlist_iter;

/*
 * Doubly linked list iterator allowing some modifications while iterating.
 *
 * Used as state in dlist_foreach_modify(). To get the current element of the
 * iteration use the 'cur' member.
 *
 * Iterations using this are only allowed to change the list at the current
 * point of iteration. It is fine to delete the current node, but it is *not*
 * fine to insert or delete adjacent nodes.
 *
 * NB: We need a separate type for mutable iterations so that we can store
 * the 'next' node of the current node in case it gets deleted or modified.
 */
typedef struct dlist_mutable_iter
{
	dlist_node *cur;			/* current element */
	dlist_node *next;			/* next node we'll iterate to */
	dlist_node *end;			/* last node we'll iterate to */
} dlist_mutable_iter;

/*
 * Node of a singly linked list.
 *
 * Embed this in structs that need to be part of a singly linked list.
 */
typedef struct slist_node slist_node;
struct slist_node
{
	slist_node *next;
};

/*
 * Head of a singly linked list.
 *
 * Singly linked lists are not circularly linked, in contrast to doubly linked
 * lists; we just set head.next to NULL if empty.  This doesn't incur any
 * additional branches in the usual manipulations.
 */
typedef struct slist_head
{
	slist_node	head;
} slist_head;

/*
 * Singly linked list iterator.
 *
 * Used as state in slist_foreach(). To get the current element of the
 * iteration use the 'cur' member.
 *
 * It's allowed to modify the list while iterating, with the exception of
 * deleting the iterator's current node; deletion of that node requires
 * care if the iteration is to be continued afterward.  (Doing so and also
 * deleting or inserting adjacent list elements might misbehave; also, if
 * the user frees the current node's storage, continuing the iteration is
 * not safe.)
 *
 * NB: this wouldn't really need to be an extra struct, we could use an
 * slist_node * directly. We prefer a separate type for consistency.
 */
typedef struct slist_iter
{
	slist_node *cur;
} slist_iter;

/*
 * Singly linked list iterator allowing some modifications while iterating.
 *
 * Used as state in slist_foreach_modify(). To get the current element of the
 * iteration use the 'cur' member.
 *
 * The only list modification allowed while iterating is to remove the current
 * node via slist_delete_current() (*not* slist_delete()).  Insertion or
 * deletion of nodes adjacent to the current node would misbehave.
 */
typedef struct slist_mutable_iter
{
	slist_node *cur;			/* current element */
	slist_node *next;			/* next node we'll iterate to */
	slist_node *prev;			/* prev node, for deletions */
} slist_mutable_iter;


/* Static initializers */
#define DLIST_STATIC_INIT(name) {{&(name).head, &(name).head}}
#define SLIST_STATIC_INIT(name) {{NULL}}


/* Prototypes for functions too big to be inline */

/* Caution: this is O(n); consider using slist_delete_current() instead */
extern void slist_delete(slist_head *head, slist_node *node);

#ifdef ILIST_DEBUG
extern void dlist_check(dlist_head *head);
extern void slist_check(slist_head *head);
#else
/*
 * These seemingly useless casts to void are here to keep the compiler quiet
 * about the argument being unused in many functions in a non-debug compile,
 * in which functions the only point of passing the list head pointer is to be
 * able to run these checks.
 */
#define dlist_check(head)	((void) (head))
#define slist_check(head)	((void) (head))
#endif							/* ILIST_DEBUG */

/* doubly linked list implementation */

/*
 * Initialize a doubly linked list.
 * Previous state will be thrown away without any cleanup.
 */
static inline void
dlist_init(dlist_head *head)
{
	head->head.next = head->head.prev = &head->head;
}

/*
 * Is the list empty?
 *
 * An empty list has either its first 'next' pointer set to NULL, or to itself.
 */
static inline bool
dlist_is_empty(dlist_head *head)
{
	dlist_check(head);

	return head->head.next == NULL || head->head.next == &(head->head);
}

/*
 * Insert a node at the beginning of the list.
 */
static inline void
dlist_push_head(dlist_head *head, dlist_node *node)
{
	if (head->head.next == NULL)	/* convert NULL header to circular */
		dlist_init(head);

	node->next = head->head.next;
	node->prev = &head->head;
	node->next->prev = node;
	head->head.next = node;

	dlist_check(head);
}

/*
 * Insert a node at the end of the list.
 */
static inline void
dlist_push_tail(dlist_head *head, dlist_node *node)
{
	if (head->head.next == NULL)	/* convert NULL header to circular */
		dlist_init(head);

	node->next = &head->head;
	node->prev = head->head.prev;
	node->prev->next = node;
	head->head.prev = node;

	dlist_check(head);
}

/*
 * Insert a node after another *in the same list*
 */
static inline void
dlist_insert_after(dlist_node *after, dlist_node *node)
{
	node->prev = after;
	node->next = after->next;
	after->next = node;
	node->next->prev = node;
}

/*
 * Insert a node before another *in the same list*
 */
static inline void
dlist_insert_before(dlist_node *before, dlist_node *node)
{
	node->prev = before->prev;
	node->next = before;
	before->prev = node;
	node->prev->next = node;
}

/*
 * Delete 'node' from its list (it must be in one).
 */
static inline void
dlist_delete(dlist_node *node)
{
	node->prev->next = node->next;
	node->next->prev = node->prev;
}

/*
 * Remove and return the first node from a list (there must be one).
 */
static inline dlist_node *
dlist_pop_head_node(dlist_head *head)
{
	dlist_node *node;

	Assert(!dlist_is_empty(head));
	node = head->head.next;
	dlist_delete(node);
	return node;
}

/*
 * Move element from its current position in the list to the head position in
 * the same list.
 *
 * Undefined behaviour if 'node' is not already part of the list.
 */
static inline void
dlist_move_head(dlist_head *head, dlist_node *node)
{
	/* fast path if it's already at the head */
	if (head->head.next == node)
		return;

	dlist_delete(node);
	dlist_push_head(head, node);

	dlist_check(head);
}

/*
 * Move element from its current position in the list to the tail position in
 * the same list.
 *
 * Undefined behaviour if 'node' is not already part of the list.
 */
static inline void
dlist_move_tail(dlist_head *head, dlist_node *node)
{
	/* fast path if it's already at the tail */
	if (head->head.prev == node)
		return;

	dlist_delete(node);
	dlist_push_tail(head, node);

	dlist_check(head);
}

/*
 * Check whether 'node' has a following node.
 * Caution: unreliable if 'node' is not in the list.
 */
static inline bool
dlist_has_next(dlist_head *head, dlist_node *node)
{
	return node->next != &head->head;
}

/*
 * Check whether 'node' has a preceding node.
 * Caution: unreliable if 'node' is not in the list.
 */
static inline bool
dlist_has_prev(dlist_head *head, dlist_node *node)
{
	return node->prev != &head->head;
}

/*
 * Return the next node in the list (there must be one).
 */
static inline dlist_node *
dlist_next_node(dlist_head *head, dlist_node *node)
{
	Assert(dlist_has_next(head, node));
	return node->next;
}

/*
 * Return previous node in the list (there must be one).
 */
static inline dlist_node *
dlist_prev_node(dlist_head *head, dlist_node *node)
{
	Assert(dlist_has_prev(head, node));
	return node->prev;
}

/* internal support function to get address of head element's struct */
static inline void *
dlist_head_element_off(dlist_head *head, size_t off)
{
	Assert(!dlist_is_empty(head));
	return (char *) head->head.next - off;
}

/*
 * Return the first node in the list (there must be one).
 */
static inline dlist_node *
dlist_head_node(dlist_head *head)
{
	return (dlist_node *) dlist_head_element_off(head, 0);
}

/* internal support function to get address of tail element's struct */
static inline void *
dlist_tail_element_off(dlist_head *head, size_t off)
{
	Assert(!dlist_is_empty(head));
	return (char *) head->head.prev - off;
}

/*
 * Return the last node in the list (there must be one).
 */
static inline dlist_node *
dlist_tail_node(dlist_head *head)
{
	return (dlist_node *) dlist_tail_element_off(head, 0);
}

/*
 * Return the containing struct of 'type' where 'membername' is the dlist_node
 * pointed at by 'ptr'.
 *
 * This is used to convert a dlist_node * back to its containing struct.
 */
#define dlist_container(type, membername, ptr)								\
	(AssertVariableIsOfTypeMacro(ptr, dlist_node *),						\
	 AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node),	\
	 ((type *) ((char *) (ptr) - offsetof(type, membername))))

/*
 * Return the address of the first element in the list.
 *
 * The list must not be empty.
 */
#define dlist_head_element(type, membername, lhead)							\
	(AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node),	\
	 (type *) dlist_head_element_off(lhead, offsetof(type, membername)))

/*
 * Return the address of the last element in the list.
 *
 * The list must not be empty.
 */
#define dlist_tail_element(type, membername, lhead)							\
	(AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node),	\
	 ((type *) dlist_tail_element_off(lhead, offsetof(type, membername))))

/*
 * Iterate through the list pointed at by 'lhead' storing the state in 'iter'.
 *
 * Access the current element with iter.cur.
 *
 * It is *not* allowed to manipulate the list during iteration.
 */
#define dlist_foreach(iter, lhead)											\
	for (AssertVariableIsOfTypeMacro(iter, dlist_iter),						\
		 AssertVariableIsOfTypeMacro(lhead, dlist_head *),					\
		 (iter).end = &(lhead)->head,										\
		 (iter).cur = (iter).end->next ? (iter).end->next : (iter).end;		\
		 (iter).cur != (iter).end;											\
		 (iter).cur = (iter).cur->next)

/*
 * Iterate through the list pointed at by 'lhead' storing the state in 'iter'.
 *
 * Access the current element with iter.cur.
 *
 * Iterations using this are only allowed to change the list at the current
 * point of iteration. It is fine to delete the current node, but it is *not*
 * fine to insert or delete adjacent nodes.
 */
#define dlist_foreach_modify(iter, lhead)									\
	for (AssertVariableIsOfTypeMacro(iter, dlist_mutable_iter),				\
		 AssertVariableIsOfTypeMacro(lhead, dlist_head *),					\
		 (iter).end = &(lhead)->head,										\
		 (iter).cur = (iter).end->next ? (iter).end->next : (iter).end,		\
		 (iter).next = (iter).cur->next;									\
		 (iter).cur != (iter).end;											\
		 (iter).cur = (iter).next, (iter).next = (iter).cur->next)

/*
 * Iterate through the list in reverse order.
 *
 * It is *not* allowed to manipulate the list during iteration.
 */
#define dlist_reverse_foreach(iter, lhead)									\
	for (AssertVariableIsOfTypeMacro(iter, dlist_iter),						\
		 AssertVariableIsOfTypeMacro(lhead, dlist_head *),					\
		 (iter).end = &(lhead)->head,										\
		 (iter).cur = (iter).end->prev ? (iter).end->prev : (iter).end;		\
		 (iter).cur != (iter).end;											\
		 (iter).cur = (iter).cur->prev)


/* singly linked list implementation */

/*
 * Initialize a singly linked list.
 * Previous state will be thrown away without any cleanup.
 */
static inline void
slist_init(slist_head *head)
{
	head->head.next = NULL;
}

/*
 * Is the list empty?
 */
static inline bool
slist_is_empty(slist_head *head)
{
	slist_check(head);

	return head->head.next == NULL;
}

/*
 * Insert a node at the beginning of the list.
 */
static inline void
slist_push_head(slist_head *head, slist_node *node)
{
	node->next = head->head.next;
	head->head.next = node;

	slist_check(head);
}

/*
 * Insert a node after another *in the same list*
 */
static inline void
slist_insert_after(slist_node *after, slist_node *node)
{
	node->next = after->next;
	after->next = node;
}

/*
 * Remove and return the first node from a list (there must be one).
 */
static inline slist_node *
slist_pop_head_node(slist_head *head)
{
	slist_node *node;

	Assert(!slist_is_empty(head));
	node = head->head.next;
	head->head.next = node->next;
	slist_check(head);
	return node;
}

/*
 * Check whether 'node' has a following node.
 */
static inline bool
slist_has_next(slist_head *head, slist_node *node)
{
	slist_check(head);

	return node->next != NULL;
}

/*
 * Return the next node in the list (there must be one).
 */
static inline slist_node *
slist_next_node(slist_head *head, slist_node *node)
{
	Assert(slist_has_next(head, node));
	return node->next;
}

/* internal support function to get address of head element's struct */
static inline void *
slist_head_element_off(slist_head *head, size_t off)
{
	Assert(!slist_is_empty(head));
	return (char *) head->head.next - off;
}

/*
 * Return the first node in the list (there must be one).
 */
static inline slist_node *
slist_head_node(slist_head *head)
{
	return (slist_node *) slist_head_element_off(head, 0);
}

/*
 * Delete the list element the iterator currently points to.
 *
 * Caution: this modifies iter->cur, so don't use that again in the current
 * loop iteration.
 */
static inline void
slist_delete_current(slist_mutable_iter *iter)
{
	/*
	 * Update previous element's forward link.  If the iteration is at the
	 * first list element, iter->prev will point to the list header's "head"
	 * field, so we don't need a special case for that.
	 */
	iter->prev->next = iter->next;

	/*
	 * Reset cur to prev, so that prev will continue to point to the prior
	 * valid list element after slist_foreach_modify() advances to the next.
	 */
	iter->cur = iter->prev;
}

/*
 * Return the containing struct of 'type' where 'membername' is the slist_node
 * pointed at by 'ptr'.
 *
 * This is used to convert a slist_node * back to its containing struct.
 */
#define slist_container(type, membername, ptr)								\
	(AssertVariableIsOfTypeMacro(ptr, slist_node *),						\
	 AssertVariableIsOfTypeMacro(((type *) NULL)->membername, slist_node),	\
	 ((type *) ((char *) (ptr) - offsetof(type, membername))))

/*
 * Return the address of the first element in the list.
 *
 * The list must not be empty.
 */
#define slist_head_element(type, membername, lhead)							\
	(AssertVariableIsOfTypeMacro(((type *) NULL)->membername, slist_node),	\
	 (type *) slist_head_element_off(lhead, offsetof(type, membername)))

/*
 * Iterate through the list pointed at by 'lhead' storing the state in 'iter'.
 *
 * Access the current element with iter.cur.
 *
 * It's allowed to modify the list while iterating, with the exception of
 * deleting the iterator's current node; deletion of that node requires
 * care if the iteration is to be continued afterward.  (Doing so and also
 * deleting or inserting adjacent list elements might misbehave; also, if
 * the user frees the current node's storage, continuing the iteration is
 * not safe.)
 */
#define slist_foreach(iter, lhead)											\
	for (AssertVariableIsOfTypeMacro(iter, slist_iter),						\
		 AssertVariableIsOfTypeMacro(lhead, slist_head *),					\
		 (iter).cur = (lhead)->head.next;									\
		 (iter).cur != NULL;												\
		 (iter).cur = (iter).cur->next)

/*
 * Iterate through the list pointed at by 'lhead' storing the state in 'iter'.
 *
 * Access the current element with iter.cur.
 *
 * The only list modification allowed while iterating is to remove the current
 * node via slist_delete_current() (*not* slist_delete()).  Insertion or
 * deletion of nodes adjacent to the current node would misbehave.
 */
#define slist_foreach_modify(iter, lhead)									\
	for (AssertVariableIsOfTypeMacro(iter, slist_mutable_iter),				\
		 AssertVariableIsOfTypeMacro(lhead, slist_head *),					\
		 (iter).prev = &(lhead)->head,										\
		 (iter).cur = (iter).prev->next,									\
		 (iter).next = (iter).cur ? (iter).cur->next : NULL;				\
		 (iter).cur != NULL;												\
		 (iter).prev = (iter).cur,											\
		 (iter).cur = (iter).next,											\
		 (iter).next = (iter).next ? (iter).next->next : NULL)

#endif							/* ILIST_H */