1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
|
/*-------------------------------------------------------------------------
*
* pg_list.h
* interface for PostgreSQL generic list package
*
* Once upon a time, parts of Postgres were written in Lisp and used real
* cons-cell lists for major data structures. When that code was rewritten
* in C, we initially had a faithful emulation of cons-cell lists, which
* unsurprisingly was a performance bottleneck. A couple of major rewrites
* later, these data structures are actually simple expansible arrays;
* but the "List" name and a lot of the notation survives.
*
* One important concession to the original implementation is that an empty
* list is always represented by a null pointer (preferentially written NIL).
* Non-empty lists have a header, which will not be relocated as long as the
* list remains non-empty, and an expansible data array.
*
* We support three types of lists:
*
* T_List: lists of pointers
* (in practice usually pointers to Nodes, but not always;
* declared as "void *" to minimize casting annoyances)
* T_IntList: lists of integers
* T_OidList: lists of Oids
*
* (At the moment, ints and Oids are the same size, but they may not
* always be so; try to be careful to maintain the distinction.)
*
*
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/nodes/pg_list.h
*
*-------------------------------------------------------------------------
*/
#ifndef PG_LIST_H
#define PG_LIST_H
#include "nodes/nodes.h"
typedef union ListCell
{
void *ptr_value;
int int_value;
Oid oid_value;
} ListCell;
typedef struct List
{
NodeTag type; /* T_List, T_IntList, or T_OidList */
int length; /* number of elements currently present */
int max_length; /* allocated length of elements[] */
ListCell *elements; /* re-allocatable array of cells */
/* We may allocate some cells along with the List header: */
ListCell initial_elements[FLEXIBLE_ARRAY_MEMBER];
/* If elements == initial_elements, it's not a separate allocation */
} List;
/*
* The *only* valid representation of an empty list is NIL; in other
* words, a non-NIL list is guaranteed to have length >= 1.
*/
#define NIL ((List *) NULL)
/*
* State structs for various looping macros below.
*/
typedef struct ForEachState
{
const List *l; /* list we're looping through */
int i; /* current element index */
} ForEachState;
typedef struct ForBothState
{
const List *l1; /* lists we're looping through */
const List *l2;
int i; /* common element index */
} ForBothState;
typedef struct ForBothCellState
{
const List *l1; /* lists we're looping through */
const List *l2;
int i1; /* current element indexes */
int i2;
} ForBothCellState;
typedef struct ForThreeState
{
const List *l1; /* lists we're looping through */
const List *l2;
const List *l3;
int i; /* common element index */
} ForThreeState;
typedef struct ForFourState
{
const List *l1; /* lists we're looping through */
const List *l2;
const List *l3;
const List *l4;
int i; /* common element index */
} ForFourState;
typedef struct ForFiveState
{
const List *l1; /* lists we're looping through */
const List *l2;
const List *l3;
const List *l4;
const List *l5;
int i; /* common element index */
} ForFiveState;
/*
* These routines are small enough, and used often enough, to justify being
* inline.
*/
/* Fetch address of list's first cell; NULL if empty list */
static inline ListCell *
list_head(const List *l)
{
return l ? &l->elements[0] : NULL;
}
/* Fetch address of list's last cell; NULL if empty list */
static inline ListCell *
list_tail(const List *l)
{
return l ? &l->elements[l->length - 1] : NULL;
}
/* Fetch address of list's second cell, if it has one, else NULL */
static inline ListCell *
list_second_cell(const List *l)
{
if (l && l->length >= 2)
return &l->elements[1];
else
return NULL;
}
/* Fetch list's length */
static inline int
list_length(const List *l)
{
return l ? l->length : 0;
}
/*
* Macros to access the data values within List cells.
*
* Note that with the exception of the "xxx_node" macros, these are
* lvalues and can be assigned to.
*
* NB: There is an unfortunate legacy from a previous incarnation of
* the List API: the macro lfirst() was used to mean "the data in this
* cons cell". To avoid changing every usage of lfirst(), that meaning
* has been kept. As a result, lfirst() takes a ListCell and returns
* the data it contains; to get the data in the first cell of a
* List, use linitial(). Worse, lsecond() is more closely related to
* linitial() than lfirst(): given a List, lsecond() returns the data
* in the second list cell.
*/
#define lfirst(lc) ((lc)->ptr_value)
#define lfirst_int(lc) ((lc)->int_value)
#define lfirst_oid(lc) ((lc)->oid_value)
#define lfirst_node(type,lc) castNode(type, lfirst(lc))
#define linitial(l) lfirst(list_nth_cell(l, 0))
#define linitial_int(l) lfirst_int(list_nth_cell(l, 0))
#define linitial_oid(l) lfirst_oid(list_nth_cell(l, 0))
#define linitial_node(type,l) castNode(type, linitial(l))
#define lsecond(l) lfirst(list_nth_cell(l, 1))
#define lsecond_int(l) lfirst_int(list_nth_cell(l, 1))
#define lsecond_oid(l) lfirst_oid(list_nth_cell(l, 1))
#define lsecond_node(type,l) castNode(type, lsecond(l))
#define lthird(l) lfirst(list_nth_cell(l, 2))
#define lthird_int(l) lfirst_int(list_nth_cell(l, 2))
#define lthird_oid(l) lfirst_oid(list_nth_cell(l, 2))
#define lthird_node(type,l) castNode(type, lthird(l))
#define lfourth(l) lfirst(list_nth_cell(l, 3))
#define lfourth_int(l) lfirst_int(list_nth_cell(l, 3))
#define lfourth_oid(l) lfirst_oid(list_nth_cell(l, 3))
#define lfourth_node(type,l) castNode(type, lfourth(l))
#define llast(l) lfirst(list_last_cell(l))
#define llast_int(l) lfirst_int(list_last_cell(l))
#define llast_oid(l) lfirst_oid(list_last_cell(l))
#define llast_node(type,l) castNode(type, llast(l))
/*
* Convenience macros for building fixed-length lists
*/
#define list_make_ptr_cell(v) ((ListCell) {.ptr_value = (v)})
#define list_make_int_cell(v) ((ListCell) {.int_value = (v)})
#define list_make_oid_cell(v) ((ListCell) {.oid_value = (v)})
#define list_make1(x1) \
list_make1_impl(T_List, list_make_ptr_cell(x1))
#define list_make2(x1,x2) \
list_make2_impl(T_List, list_make_ptr_cell(x1), list_make_ptr_cell(x2))
#define list_make3(x1,x2,x3) \
list_make3_impl(T_List, list_make_ptr_cell(x1), list_make_ptr_cell(x2), \
list_make_ptr_cell(x3))
#define list_make4(x1,x2,x3,x4) \
list_make4_impl(T_List, list_make_ptr_cell(x1), list_make_ptr_cell(x2), \
list_make_ptr_cell(x3), list_make_ptr_cell(x4))
#define list_make5(x1,x2,x3,x4,x5) \
list_make5_impl(T_List, list_make_ptr_cell(x1), list_make_ptr_cell(x2), \
list_make_ptr_cell(x3), list_make_ptr_cell(x4), \
list_make_ptr_cell(x5))
#define list_make1_int(x1) \
list_make1_impl(T_IntList, list_make_int_cell(x1))
#define list_make2_int(x1,x2) \
list_make2_impl(T_IntList, list_make_int_cell(x1), list_make_int_cell(x2))
#define list_make3_int(x1,x2,x3) \
list_make3_impl(T_IntList, list_make_int_cell(x1), list_make_int_cell(x2), \
list_make_int_cell(x3))
#define list_make4_int(x1,x2,x3,x4) \
list_make4_impl(T_IntList, list_make_int_cell(x1), list_make_int_cell(x2), \
list_make_int_cell(x3), list_make_int_cell(x4))
#define list_make5_int(x1,x2,x3,x4,x5) \
list_make5_impl(T_IntList, list_make_int_cell(x1), list_make_int_cell(x2), \
list_make_int_cell(x3), list_make_int_cell(x4), \
list_make_int_cell(x5))
#define list_make1_oid(x1) \
list_make1_impl(T_OidList, list_make_oid_cell(x1))
#define list_make2_oid(x1,x2) \
list_make2_impl(T_OidList, list_make_oid_cell(x1), list_make_oid_cell(x2))
#define list_make3_oid(x1,x2,x3) \
list_make3_impl(T_OidList, list_make_oid_cell(x1), list_make_oid_cell(x2), \
list_make_oid_cell(x3))
#define list_make4_oid(x1,x2,x3,x4) \
list_make4_impl(T_OidList, list_make_oid_cell(x1), list_make_oid_cell(x2), \
list_make_oid_cell(x3), list_make_oid_cell(x4))
#define list_make5_oid(x1,x2,x3,x4,x5) \
list_make5_impl(T_OidList, list_make_oid_cell(x1), list_make_oid_cell(x2), \
list_make_oid_cell(x3), list_make_oid_cell(x4), \
list_make_oid_cell(x5))
/*
* Locate the n'th cell (counting from 0) of the list.
* It is an assertion failure if there is no such cell.
*/
static inline ListCell *
list_nth_cell(const List *list, int n)
{
Assert(list != NIL);
Assert(n >= 0 && n < list->length);
return &list->elements[n];
}
/*
* Return the last cell in a non-NIL List.
*/
static inline ListCell *
list_last_cell(const List *list)
{
Assert(list != NIL);
return &list->elements[list->length - 1];
}
/*
* Return the pointer value contained in the n'th element of the
* specified list. (List elements begin at 0.)
*/
static inline void *
list_nth(const List *list, int n)
{
Assert(IsA(list, List));
return lfirst(list_nth_cell(list, n));
}
/*
* Return the integer value contained in the n'th element of the
* specified list.
*/
static inline int
list_nth_int(const List *list, int n)
{
Assert(IsA(list, IntList));
return lfirst_int(list_nth_cell(list, n));
}
/*
* Return the OID value contained in the n'th element of the specified
* list.
*/
static inline Oid
list_nth_oid(const List *list, int n)
{
Assert(IsA(list, OidList));
return lfirst_oid(list_nth_cell(list, n));
}
#define list_nth_node(type,list,n) castNode(type, list_nth(list, n))
/*
* Get the given ListCell's index (from 0) in the given List.
*/
static inline int
list_cell_number(const List *l, const ListCell *c)
{
Assert(c >= &l->elements[0] && c < &l->elements[l->length]);
return c - l->elements;
}
/*
* Get the address of the next cell after "c" within list "l", or NULL if none.
*/
static inline ListCell *
lnext(const List *l, const ListCell *c)
{
Assert(c >= &l->elements[0] && c < &l->elements[l->length]);
c++;
if (c < &l->elements[l->length])
return (ListCell *) c;
else
return NULL;
}
/*
* foreach -
* a convenience macro for looping through a list
*
* "cell" must be the name of a "ListCell *" variable; it's made to point
* to each List element in turn. "cell" will be NULL after normal exit from
* the loop, but an early "break" will leave it pointing at the current
* List element.
*
* Beware of changing the List object while the loop is iterating.
* The current semantics are that we examine successive list indices in
* each iteration, so that insertion or deletion of list elements could
* cause elements to be re-visited or skipped unexpectedly. Previous
* implementations of foreach() behaved differently. However, it's safe
* to append elements to the List (or in general, insert them after the
* current element); such new elements are guaranteed to be visited.
* Also, the current element of the List can be deleted, if you use
* foreach_delete_current() to do so. BUT: either of these actions will
* invalidate the "cell" pointer for the remainder of the current iteration.
*/
#define foreach(cell, lst) \
for (ForEachState cell##__state = {(lst), 0}; \
(cell##__state.l != NIL && \
cell##__state.i < cell##__state.l->length) ? \
(cell = &cell##__state.l->elements[cell##__state.i], true) : \
(cell = NULL, false); \
cell##__state.i++)
/*
* foreach_delete_current -
* delete the current list element from the List associated with a
* surrounding foreach() loop, returning the new List pointer.
*
* This is equivalent to list_delete_cell(), but it also adjusts the foreach
* loop's state so that no list elements will be missed. Do not delete
* elements from an active foreach loop's list in any other way!
*/
#define foreach_delete_current(lst, cell) \
(cell##__state.i--, \
(List *) (cell##__state.l = list_delete_cell(lst, cell)))
/*
* foreach_current_index -
* get the zero-based list index of a surrounding foreach() loop's
* current element; pass the name of the "ListCell *" iterator variable.
*
* Beware of using this after foreach_delete_current(); the value will be
* out of sync for the rest of the current loop iteration. Anyway, since
* you just deleted the current element, the value is pretty meaningless.
*/
#define foreach_current_index(cell) (cell##__state.i)
/*
* for_each_from -
* Like foreach(), but start from the N'th (zero-based) list element,
* not necessarily the first one.
*
* It's okay for N to exceed the list length, but not for it to be negative.
*
* The caveats for foreach() apply equally here.
*/
#define for_each_from(cell, lst, N) \
for (ForEachState cell##__state = for_each_from_setup(lst, N); \
(cell##__state.l != NIL && \
cell##__state.i < cell##__state.l->length) ? \
(cell = &cell##__state.l->elements[cell##__state.i], true) : \
(cell = NULL, false); \
cell##__state.i++)
static inline ForEachState
for_each_from_setup(const List *lst, int N)
{
ForEachState r = {lst, N};
Assert(N >= 0);
return r;
}
/*
* for_each_cell -
* a convenience macro which loops through a list starting from a
* specified cell
*
* The caveats for foreach() apply equally here.
*/
#define for_each_cell(cell, lst, initcell) \
for (ForEachState cell##__state = for_each_cell_setup(lst, initcell); \
(cell##__state.l != NIL && \
cell##__state.i < cell##__state.l->length) ? \
(cell = &cell##__state.l->elements[cell##__state.i], true) : \
(cell = NULL, false); \
cell##__state.i++)
static inline ForEachState
for_each_cell_setup(const List *lst, const ListCell *initcell)
{
ForEachState r = {lst,
initcell ? list_cell_number(lst, initcell) : list_length(lst)};
return r;
}
/*
* forboth -
* a convenience macro for advancing through two linked lists
* simultaneously. This macro loops through both lists at the same
* time, stopping when either list runs out of elements. Depending
* on the requirements of the call site, it may also be wise to
* assert that the lengths of the two lists are equal. (But, if they
* are not, some callers rely on the ending cell values being separately
* NULL or non-NULL as defined here; don't try to optimize that.)
*
* The caveats for foreach() apply equally here.
*/
#define forboth(cell1, list1, cell2, list2) \
for (ForBothState cell1##__state = {(list1), (list2), 0}; \
multi_for_advance_cell(cell1, cell1##__state, l1, i), \
multi_for_advance_cell(cell2, cell1##__state, l2, i), \
(cell1 != NULL && cell2 != NULL); \
cell1##__state.i++)
#define multi_for_advance_cell(cell, state, l, i) \
(cell = (state.l != NIL && state.i < state.l->length) ? \
&state.l->elements[state.i] : NULL)
/*
* for_both_cell -
* a convenience macro which loops through two lists starting from the
* specified cells of each. This macro loops through both lists at the same
* time, stopping when either list runs out of elements. Depending on the
* requirements of the call site, it may also be wise to assert that the
* lengths of the two lists are equal, and initcell1 and initcell2 are at
* the same position in the respective lists.
*
* The caveats for foreach() apply equally here.
*/
#define for_both_cell(cell1, list1, initcell1, cell2, list2, initcell2) \
for (ForBothCellState cell1##__state = \
for_both_cell_setup(list1, initcell1, list2, initcell2); \
multi_for_advance_cell(cell1, cell1##__state, l1, i1), \
multi_for_advance_cell(cell2, cell1##__state, l2, i2), \
(cell1 != NULL && cell2 != NULL); \
cell1##__state.i1++, cell1##__state.i2++)
static inline ForBothCellState
for_both_cell_setup(const List *list1, const ListCell *initcell1,
const List *list2, const ListCell *initcell2)
{
ForBothCellState r = {list1, list2,
initcell1 ? list_cell_number(list1, initcell1) : list_length(list1),
initcell2 ? list_cell_number(list2, initcell2) : list_length(list2)};
return r;
}
/*
* forthree -
* the same for three lists
*/
#define forthree(cell1, list1, cell2, list2, cell3, list3) \
for (ForThreeState cell1##__state = {(list1), (list2), (list3), 0}; \
multi_for_advance_cell(cell1, cell1##__state, l1, i), \
multi_for_advance_cell(cell2, cell1##__state, l2, i), \
multi_for_advance_cell(cell3, cell1##__state, l3, i), \
(cell1 != NULL && cell2 != NULL && cell3 != NULL); \
cell1##__state.i++)
/*
* forfour -
* the same for four lists
*/
#define forfour(cell1, list1, cell2, list2, cell3, list3, cell4, list4) \
for (ForFourState cell1##__state = {(list1), (list2), (list3), (list4), 0}; \
multi_for_advance_cell(cell1, cell1##__state, l1, i), \
multi_for_advance_cell(cell2, cell1##__state, l2, i), \
multi_for_advance_cell(cell3, cell1##__state, l3, i), \
multi_for_advance_cell(cell4, cell1##__state, l4, i), \
(cell1 != NULL && cell2 != NULL && cell3 != NULL && cell4 != NULL); \
cell1##__state.i++)
/*
* forfive -
* the same for five lists
*/
#define forfive(cell1, list1, cell2, list2, cell3, list3, cell4, list4, cell5, list5) \
for (ForFiveState cell1##__state = {(list1), (list2), (list3), (list4), (list5), 0}; \
multi_for_advance_cell(cell1, cell1##__state, l1, i), \
multi_for_advance_cell(cell2, cell1##__state, l2, i), \
multi_for_advance_cell(cell3, cell1##__state, l3, i), \
multi_for_advance_cell(cell4, cell1##__state, l4, i), \
multi_for_advance_cell(cell5, cell1##__state, l5, i), \
(cell1 != NULL && cell2 != NULL && cell3 != NULL && \
cell4 != NULL && cell5 != NULL); \
cell1##__state.i++)
/* Functions in src/backend/nodes/list.c */
extern List *list_make1_impl(NodeTag t, ListCell datum1);
extern List *list_make2_impl(NodeTag t, ListCell datum1, ListCell datum2);
extern List *list_make3_impl(NodeTag t, ListCell datum1, ListCell datum2,
ListCell datum3);
extern List *list_make4_impl(NodeTag t, ListCell datum1, ListCell datum2,
ListCell datum3, ListCell datum4);
extern List *list_make5_impl(NodeTag t, ListCell datum1, ListCell datum2,
ListCell datum3, ListCell datum4,
ListCell datum5);
extern pg_nodiscard List *lappend(List *list, void *datum);
extern pg_nodiscard List *lappend_int(List *list, int datum);
extern pg_nodiscard List *lappend_oid(List *list, Oid datum);
extern pg_nodiscard List *list_insert_nth(List *list, int pos, void *datum);
extern pg_nodiscard List *list_insert_nth_int(List *list, int pos, int datum);
extern pg_nodiscard List *list_insert_nth_oid(List *list, int pos, Oid datum);
extern pg_nodiscard List *lcons(void *datum, List *list);
extern pg_nodiscard List *lcons_int(int datum, List *list);
extern pg_nodiscard List *lcons_oid(Oid datum, List *list);
extern pg_nodiscard List *list_concat(List *list1, const List *list2);
extern pg_nodiscard List *list_concat_copy(const List *list1, const List *list2);
extern pg_nodiscard List *list_truncate(List *list, int new_size);
extern bool list_member(const List *list, const void *datum);
extern bool list_member_ptr(const List *list, const void *datum);
extern bool list_member_int(const List *list, int datum);
extern bool list_member_oid(const List *list, Oid datum);
extern pg_nodiscard List *list_delete(List *list, void *datum);
extern pg_nodiscard List *list_delete_ptr(List *list, void *datum);
extern pg_nodiscard List *list_delete_int(List *list, int datum);
extern pg_nodiscard List *list_delete_oid(List *list, Oid datum);
extern pg_nodiscard List *list_delete_first(List *list);
extern pg_nodiscard List *list_delete_last(List *list);
extern pg_nodiscard List *list_delete_first_n(List *list, int n);
extern pg_nodiscard List *list_delete_nth_cell(List *list, int n);
extern pg_nodiscard List *list_delete_cell(List *list, ListCell *cell);
extern List *list_union(const List *list1, const List *list2);
extern List *list_union_ptr(const List *list1, const List *list2);
extern List *list_union_int(const List *list1, const List *list2);
extern List *list_union_oid(const List *list1, const List *list2);
extern List *list_intersection(const List *list1, const List *list2);
extern List *list_intersection_int(const List *list1, const List *list2);
/* currently, there's no need for list_intersection_ptr etc */
extern List *list_difference(const List *list1, const List *list2);
extern List *list_difference_ptr(const List *list1, const List *list2);
extern List *list_difference_int(const List *list1, const List *list2);
extern List *list_difference_oid(const List *list1, const List *list2);
extern pg_nodiscard List *list_append_unique(List *list, void *datum);
extern pg_nodiscard List *list_append_unique_ptr(List *list, void *datum);
extern pg_nodiscard List *list_append_unique_int(List *list, int datum);
extern pg_nodiscard List *list_append_unique_oid(List *list, Oid datum);
extern pg_nodiscard List *list_concat_unique(List *list1, const List *list2);
extern pg_nodiscard List *list_concat_unique_ptr(List *list1, const List *list2);
extern pg_nodiscard List *list_concat_unique_int(List *list1, const List *list2);
extern pg_nodiscard List *list_concat_unique_oid(List *list1, const List *list2);
extern void list_deduplicate_oid(List *list);
extern void list_free(List *list);
extern void list_free_deep(List *list);
extern pg_nodiscard List *list_copy(const List *list);
extern pg_nodiscard List *list_copy_tail(const List *list, int nskip);
extern pg_nodiscard List *list_copy_deep(const List *oldlist);
typedef int (*list_sort_comparator) (const ListCell *a, const ListCell *b);
extern void list_sort(List *list, list_sort_comparator cmp);
extern int list_int_cmp(const ListCell *p1, const ListCell *p2);
extern int list_oid_cmp(const ListCell *p1, const ListCell *p2);
#endif /* PG_LIST_H */
|