summaryrefslogtreecommitdiffstats
path: root/src/include/nodes/primnodes.h
blob: 9ae851d847715956fa87c2044898b21f37fa293b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
/*-------------------------------------------------------------------------
 *
 * primnodes.h
 *	  Definitions for "primitive" node types, those that are used in more
 *	  than one of the parse/plan/execute stages of the query pipeline.
 *	  Currently, these are mostly nodes for executable expressions
 *	  and join trees.
 *
 *
 * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * src/include/nodes/primnodes.h
 *
 *-------------------------------------------------------------------------
 */
#ifndef PRIMNODES_H
#define PRIMNODES_H

#include "access/attnum.h"
#include "nodes/bitmapset.h"
#include "nodes/pg_list.h"


/* ----------------------------------------------------------------
 *						node definitions
 * ----------------------------------------------------------------
 */

/*
 * Alias -
 *	  specifies an alias for a range variable; the alias might also
 *	  specify renaming of columns within the table.
 *
 * Note: colnames is a list of Value nodes (always strings).  In Alias structs
 * associated with RTEs, there may be entries corresponding to dropped
 * columns; these are normally empty strings ("").  See parsenodes.h for info.
 */
typedef struct Alias
{
	NodeTag		type;
	char	   *aliasname;		/* aliased rel name (never qualified) */
	List	   *colnames;		/* optional list of column aliases */
} Alias;

/* What to do at commit time for temporary relations */
typedef enum OnCommitAction
{
	ONCOMMIT_NOOP,				/* No ON COMMIT clause (do nothing) */
	ONCOMMIT_PRESERVE_ROWS,		/* ON COMMIT PRESERVE ROWS (do nothing) */
	ONCOMMIT_DELETE_ROWS,		/* ON COMMIT DELETE ROWS */
	ONCOMMIT_DROP				/* ON COMMIT DROP */
} OnCommitAction;

/*
 * RangeVar - range variable, used in FROM clauses
 *
 * Also used to represent table names in utility statements; there, the alias
 * field is not used, and inh tells whether to apply the operation
 * recursively to child tables.  In some contexts it is also useful to carry
 * a TEMP table indication here.
 */
typedef struct RangeVar
{
	NodeTag		type;
	char	   *catalogname;	/* the catalog (database) name, or NULL */
	char	   *schemaname;		/* the schema name, or NULL */
	char	   *relname;		/* the relation/sequence name */
	bool		inh;			/* expand rel by inheritance? recursively act
								 * on children? */
	char		relpersistence; /* see RELPERSISTENCE_* in pg_class.h */
	Alias	   *alias;			/* table alias & optional column aliases */
	int			location;		/* token location, or -1 if unknown */
} RangeVar;

/*
 * TableFunc - node for a table function, such as XMLTABLE.
 *
 * Entries in the ns_names list are either string Value nodes containing
 * literal namespace names, or NULL pointers to represent DEFAULT.
 */
typedef struct TableFunc
{
	NodeTag		type;
	List	   *ns_uris;		/* list of namespace URI expressions */
	List	   *ns_names;		/* list of namespace names or NULL */
	Node	   *docexpr;		/* input document expression */
	Node	   *rowexpr;		/* row filter expression */
	List	   *colnames;		/* column names (list of String) */
	List	   *coltypes;		/* OID list of column type OIDs */
	List	   *coltypmods;		/* integer list of column typmods */
	List	   *colcollations;	/* OID list of column collation OIDs */
	List	   *colexprs;		/* list of column filter expressions */
	List	   *coldefexprs;	/* list of column default expressions */
	Bitmapset  *notnulls;		/* nullability flag for each output column */
	int			ordinalitycol;	/* counts from 0; -1 if none specified */
	int			location;		/* token location, or -1 if unknown */
} TableFunc;

/*
 * IntoClause - target information for SELECT INTO, CREATE TABLE AS, and
 * CREATE MATERIALIZED VIEW
 *
 * For CREATE MATERIALIZED VIEW, viewQuery is the parsed-but-not-rewritten
 * SELECT Query for the view; otherwise it's NULL.  (Although it's actually
 * Query*, we declare it as Node* to avoid a forward reference.)
 */
typedef struct IntoClause
{
	NodeTag		type;

	RangeVar   *rel;			/* target relation name */
	List	   *colNames;		/* column names to assign, or NIL */
	char	   *accessMethod;	/* table access method */
	List	   *options;		/* options from WITH clause */
	OnCommitAction onCommit;	/* what do we do at COMMIT? */
	char	   *tableSpaceName; /* table space to use, or NULL */
	Node	   *viewQuery;		/* materialized view's SELECT query */
	bool		skipData;		/* true for WITH NO DATA */
} IntoClause;


/* ----------------------------------------------------------------
 *					node types for executable expressions
 * ----------------------------------------------------------------
 */

/*
 * Expr - generic superclass for executable-expression nodes
 *
 * All node types that are used in executable expression trees should derive
 * from Expr (that is, have Expr as their first field).  Since Expr only
 * contains NodeTag, this is a formality, but it is an easy form of
 * documentation.  See also the ExprState node types in execnodes.h.
 */
typedef struct Expr
{
	NodeTag		type;
} Expr;

/*
 * Var - expression node representing a variable (ie, a table column)
 *
 * In the parser and planner, varno and varattno identify the semantic
 * referent, which is a base-relation column unless the reference is to a join
 * USING column that isn't semantically equivalent to either join input column
 * (because it is a FULL join or the input column requires a type coercion).
 * In those cases varno and varattno refer to the JOIN RTE.  (Early in the
 * planner, we replace such join references by the implied expression; but up
 * till then we want join reference Vars to keep their original identity for
 * query-printing purposes.)
 *
 * At the end of planning, Var nodes appearing in upper-level plan nodes are
 * reassigned to point to the outputs of their subplans; for example, in a
 * join node varno becomes INNER_VAR or OUTER_VAR and varattno becomes the
 * index of the proper element of that subplan's target list.  Similarly,
 * INDEX_VAR is used to identify Vars that reference an index column rather
 * than a heap column.  (In ForeignScan and CustomScan plan nodes, INDEX_VAR
 * is abused to signify references to columns of a custom scan tuple type.)
 *
 * ROWID_VAR is used in the planner to identify nonce variables that carry
 * row identity information during UPDATE/DELETE.  This value should never
 * be seen outside the planner.
 *
 * In the parser, varnosyn and varattnosyn are either identical to
 * varno/varattno, or they specify the column's position in an aliased JOIN
 * RTE that hides the semantic referent RTE's refname.  This is a syntactic
 * identifier as opposed to the semantic identifier; it tells ruleutils.c
 * how to print the Var properly.  varnosyn/varattnosyn retain their values
 * throughout planning and execution, so they are particularly helpful to
 * identify Vars when debugging.  Note, however, that a Var that is generated
 * in the planner and doesn't correspond to any simple relation column may
 * have varnosyn = varattnosyn = 0.
 */
#define    INNER_VAR		65000	/* reference to inner subplan */
#define    OUTER_VAR		65001	/* reference to outer subplan */
#define    INDEX_VAR		65002	/* reference to index column */
#define    ROWID_VAR		65003	/* row identity column during planning */

#define IS_SPECIAL_VARNO(varno)		((varno) >= INNER_VAR)

/* Symbols for the indexes of the special RTE entries in rules */
#define    PRS2_OLD_VARNO			1
#define    PRS2_NEW_VARNO			2

typedef struct Var
{
	Expr		xpr;
	Index		varno;			/* index of this var's relation in the range
								 * table, or INNER_VAR/OUTER_VAR/INDEX_VAR */
	AttrNumber	varattno;		/* attribute number of this var, or zero for
								 * all attrs ("whole-row Var") */
	Oid			vartype;		/* pg_type OID for the type of this var */
	int32		vartypmod;		/* pg_attribute typmod value */
	Oid			varcollid;		/* OID of collation, or InvalidOid if none */
	Index		varlevelsup;	/* for subquery variables referencing outer
								 * relations; 0 in a normal var, >0 means N
								 * levels up */
	Index		varnosyn;		/* syntactic relation index (0 if unknown) */
	AttrNumber	varattnosyn;	/* syntactic attribute number */
	int			location;		/* token location, or -1 if unknown */
} Var;

/*
 * Const
 *
 * Note: for varlena data types, we make a rule that a Const node's value
 * must be in non-extended form (4-byte header, no compression or external
 * references).  This ensures that the Const node is self-contained and makes
 * it more likely that equal() will see logically identical values as equal.
 */
typedef struct Const
{
	Expr		xpr;
	Oid			consttype;		/* pg_type OID of the constant's datatype */
	int32		consttypmod;	/* typmod value, if any */
	Oid			constcollid;	/* OID of collation, or InvalidOid if none */
	int			constlen;		/* typlen of the constant's datatype */
	Datum		constvalue;		/* the constant's value */
	bool		constisnull;	/* whether the constant is null (if true,
								 * constvalue is undefined) */
	bool		constbyval;		/* whether this datatype is passed by value.
								 * If true, then all the information is stored
								 * in the Datum. If false, then the Datum
								 * contains a pointer to the information. */
	int			location;		/* token location, or -1 if unknown */
} Const;

/*
 * Param
 *
 *		paramkind specifies the kind of parameter. The possible values
 *		for this field are:
 *
 *		PARAM_EXTERN:  The parameter value is supplied from outside the plan.
 *				Such parameters are numbered from 1 to n.
 *
 *		PARAM_EXEC:  The parameter is an internal executor parameter, used
 *				for passing values into and out of sub-queries or from
 *				nestloop joins to their inner scans.
 *				For historical reasons, such parameters are numbered from 0.
 *				These numbers are independent of PARAM_EXTERN numbers.
 *
 *		PARAM_SUBLINK:	The parameter represents an output column of a SubLink
 *				node's sub-select.  The column number is contained in the
 *				`paramid' field.  (This type of Param is converted to
 *				PARAM_EXEC during planning.)
 *
 *		PARAM_MULTIEXPR:  Like PARAM_SUBLINK, the parameter represents an
 *				output column of a SubLink node's sub-select, but here, the
 *				SubLink is always a MULTIEXPR SubLink.  The high-order 16 bits
 *				of the `paramid' field contain the SubLink's subLinkId, and
 *				the low-order 16 bits contain the column number.  (This type
 *				of Param is also converted to PARAM_EXEC during planning.)
 */
typedef enum ParamKind
{
	PARAM_EXTERN,
	PARAM_EXEC,
	PARAM_SUBLINK,
	PARAM_MULTIEXPR
} ParamKind;

typedef struct Param
{
	Expr		xpr;
	ParamKind	paramkind;		/* kind of parameter. See above */
	int			paramid;		/* numeric ID for parameter */
	Oid			paramtype;		/* pg_type OID of parameter's datatype */
	int32		paramtypmod;	/* typmod value, if known */
	Oid			paramcollid;	/* OID of collation, or InvalidOid if none */
	int			location;		/* token location, or -1 if unknown */
} Param;

/*
 * Aggref
 *
 * The aggregate's args list is a targetlist, ie, a list of TargetEntry nodes.
 *
 * For a normal (non-ordered-set) aggregate, the non-resjunk TargetEntries
 * represent the aggregate's regular arguments (if any) and resjunk TLEs can
 * be added at the end to represent ORDER BY expressions that are not also
 * arguments.  As in a top-level Query, the TLEs can be marked with
 * ressortgroupref indexes to let them be referenced by SortGroupClause
 * entries in the aggorder and/or aggdistinct lists.  This represents ORDER BY
 * and DISTINCT operations to be applied to the aggregate input rows before
 * they are passed to the transition function.  The grammar only allows a
 * simple "DISTINCT" specifier for the arguments, but we use the full
 * query-level representation to allow more code sharing.
 *
 * For an ordered-set aggregate, the args list represents the WITHIN GROUP
 * (aggregated) arguments, all of which will be listed in the aggorder list.
 * DISTINCT is not supported in this case, so aggdistinct will be NIL.
 * The direct arguments appear in aggdirectargs (as a list of plain
 * expressions, not TargetEntry nodes).
 *
 * aggtranstype is the data type of the state transition values for this
 * aggregate (resolved to an actual type, if agg's transtype is polymorphic).
 * This is determined during planning and is InvalidOid before that.
 *
 * aggargtypes is an OID list of the data types of the direct and regular
 * arguments.  Normally it's redundant with the aggdirectargs and args lists,
 * but in a combining aggregate, it's not because the args list has been
 * replaced with a single argument representing the partial-aggregate
 * transition values.
 *
 * aggsplit indicates the expected partial-aggregation mode for the Aggref's
 * parent plan node.  It's always set to AGGSPLIT_SIMPLE in the parser, but
 * the planner might change it to something else.  We use this mainly as
 * a crosscheck that the Aggrefs match the plan; but note that when aggsplit
 * indicates a non-final mode, aggtype reflects the transition data type
 * not the SQL-level output type of the aggregate.
 *
 * aggno and aggtransno are -1 in the parse stage, and are set in planning.
 * Aggregates with the same 'aggno' represent the same aggregate expression,
 * and can share the result.  Aggregates with same 'transno' but different
 * 'aggno' can share the same transition state, only the final function needs
 * to be called separately.
 */
typedef struct Aggref
{
	Expr		xpr;
	Oid			aggfnoid;		/* pg_proc Oid of the aggregate */
	Oid			aggtype;		/* type Oid of result of the aggregate */
	Oid			aggcollid;		/* OID of collation of result */
	Oid			inputcollid;	/* OID of collation that function should use */
	Oid			aggtranstype;	/* type Oid of aggregate's transition value */
	List	   *aggargtypes;	/* type Oids of direct and aggregated args */
	List	   *aggdirectargs;	/* direct arguments, if an ordered-set agg */
	List	   *args;			/* aggregated arguments and sort expressions */
	List	   *aggorder;		/* ORDER BY (list of SortGroupClause) */
	List	   *aggdistinct;	/* DISTINCT (list of SortGroupClause) */
	Expr	   *aggfilter;		/* FILTER expression, if any */
	bool		aggstar;		/* true if argument list was really '*' */
	bool		aggvariadic;	/* true if variadic arguments have been
								 * combined into an array last argument */
	char		aggkind;		/* aggregate kind (see pg_aggregate.h) */
	Index		agglevelsup;	/* > 0 if agg belongs to outer query */
	AggSplit	aggsplit;		/* expected agg-splitting mode of parent Agg */
	int			aggno;			/* unique ID within the Agg node */
	int			aggtransno;		/* unique ID of transition state in the Agg */
	int			location;		/* token location, or -1 if unknown */
} Aggref;

/*
 * GroupingFunc
 *
 * A GroupingFunc is a GROUPING(...) expression, which behaves in many ways
 * like an aggregate function (e.g. it "belongs" to a specific query level,
 * which might not be the one immediately containing it), but also differs in
 * an important respect: it never evaluates its arguments, they merely
 * designate expressions from the GROUP BY clause of the query level to which
 * it belongs.
 *
 * The spec defines the evaluation of GROUPING() purely by syntactic
 * replacement, but we make it a real expression for optimization purposes so
 * that one Agg node can handle multiple grouping sets at once.  Evaluating the
 * result only needs the column positions to check against the grouping set
 * being projected.  However, for EXPLAIN to produce meaningful output, we have
 * to keep the original expressions around, since expression deparse does not
 * give us any feasible way to get at the GROUP BY clause.
 *
 * Also, we treat two GroupingFunc nodes as equal if they have equal arguments
 * lists and agglevelsup, without comparing the refs and cols annotations.
 *
 * In raw parse output we have only the args list; parse analysis fills in the
 * refs list, and the planner fills in the cols list.
 */
typedef struct GroupingFunc
{
	Expr		xpr;
	List	   *args;			/* arguments, not evaluated but kept for
								 * benefit of EXPLAIN etc. */
	List	   *refs;			/* ressortgrouprefs of arguments */
	List	   *cols;			/* actual column positions set by planner */
	Index		agglevelsup;	/* same as Aggref.agglevelsup */
	int			location;		/* token location */
} GroupingFunc;

/*
 * WindowFunc
 */
typedef struct WindowFunc
{
	Expr		xpr;
	Oid			winfnoid;		/* pg_proc Oid of the function */
	Oid			wintype;		/* type Oid of result of the window function */
	Oid			wincollid;		/* OID of collation of result */
	Oid			inputcollid;	/* OID of collation that function should use */
	List	   *args;			/* arguments to the window function */
	Expr	   *aggfilter;		/* FILTER expression, if any */
	Index		winref;			/* index of associated WindowClause */
	bool		winstar;		/* true if argument list was really '*' */
	bool		winagg;			/* is function a simple aggregate? */
	int			location;		/* token location, or -1 if unknown */
} WindowFunc;

/*
 * SubscriptingRef: describes a subscripting operation over a container
 * (array, etc).
 *
 * A SubscriptingRef can describe fetching a single element from a container,
 * fetching a part of a container (e.g. an array slice), storing a single
 * element into a container, or storing a slice.  The "store" cases work with
 * an initial container value and a source value that is inserted into the
 * appropriate part of the container; the result of the operation is an
 * entire new modified container value.
 *
 * If reflowerindexpr = NIL, then we are fetching or storing a single container
 * element at the subscripts given by refupperindexpr. Otherwise we are
 * fetching or storing a container slice, that is a rectangular subcontainer
 * with lower and upper bounds given by the index expressions.
 * reflowerindexpr must be the same length as refupperindexpr when it
 * is not NIL.
 *
 * In the slice case, individual expressions in the subscript lists can be
 * NULL, meaning "substitute the array's current lower or upper bound".
 * (Non-array containers may or may not support this.)
 *
 * refcontainertype is the actual container type that determines the
 * subscripting semantics.  (This will generally be either the exposed type of
 * refexpr, or the base type if that is a domain.)  refelemtype is the type of
 * the container's elements; this is saved for the use of the subscripting
 * functions, but is not used by the core code.  refrestype, reftypmod, and
 * refcollid describe the type of the SubscriptingRef's result.  In a store
 * expression, refrestype will always match refcontainertype; in a fetch,
 * it could be refelemtype for an element fetch, or refcontainertype for a
 * slice fetch, or possibly something else as determined by type-specific
 * subscripting logic.  Likewise, reftypmod and refcollid will match the
 * container's properties in a store, but could be different in a fetch.
 *
 * Note: for the cases where a container is returned, if refexpr yields a R/W
 * expanded container, then the implementation is allowed to modify that
 * object in-place and return the same object.
 */
typedef struct SubscriptingRef
{
	Expr		xpr;
	Oid			refcontainertype;	/* type of the container proper */
	Oid			refelemtype;	/* the container type's pg_type.typelem */
	Oid			refrestype;		/* type of the SubscriptingRef's result */
	int32		reftypmod;		/* typmod of the result */
	Oid			refcollid;		/* collation of result, or InvalidOid if none */
	List	   *refupperindexpr;	/* expressions that evaluate to upper
									 * container indexes */
	List	   *reflowerindexpr;	/* expressions that evaluate to lower
									 * container indexes, or NIL for single
									 * container element */
	Expr	   *refexpr;		/* the expression that evaluates to a
								 * container value */
	Expr	   *refassgnexpr;	/* expression for the source value, or NULL if
								 * fetch */
} SubscriptingRef;

/*
 * CoercionContext - distinguishes the allowed set of type casts
 *
 * NB: ordering of the alternatives is significant; later (larger) values
 * allow more casts than earlier ones.
 */
typedef enum CoercionContext
{
	COERCION_IMPLICIT,			/* coercion in context of expression */
	COERCION_ASSIGNMENT,		/* coercion in context of assignment */
	COERCION_PLPGSQL,			/* if no assignment cast, use CoerceViaIO */
	COERCION_EXPLICIT			/* explicit cast operation */
} CoercionContext;

/*
 * CoercionForm - how to display a FuncExpr or related node
 *
 * "Coercion" is a bit of a misnomer, since this value records other
 * special syntaxes besides casts, but for now we'll keep this naming.
 *
 * NB: equal() ignores CoercionForm fields, therefore this *must* not carry
 * any semantically significant information.  We need that behavior so that
 * the planner will consider equivalent implicit and explicit casts to be
 * equivalent.  In cases where those actually behave differently, the coercion
 * function's arguments will be different.
 */
typedef enum CoercionForm
{
	COERCE_EXPLICIT_CALL,		/* display as a function call */
	COERCE_EXPLICIT_CAST,		/* display as an explicit cast */
	COERCE_IMPLICIT_CAST,		/* implicit cast, so hide it */
	COERCE_SQL_SYNTAX			/* display with SQL-mandated special syntax */
} CoercionForm;

/*
 * FuncExpr - expression node for a function call
 */
typedef struct FuncExpr
{
	Expr		xpr;
	Oid			funcid;			/* PG_PROC OID of the function */
	Oid			funcresulttype; /* PG_TYPE OID of result value */
	bool		funcretset;		/* true if function returns set */
	bool		funcvariadic;	/* true if variadic arguments have been
								 * combined into an array last argument */
	CoercionForm funcformat;	/* how to display this function call */
	Oid			funccollid;		/* OID of collation of result */
	Oid			inputcollid;	/* OID of collation that function should use */
	List	   *args;			/* arguments to the function */
	int			location;		/* token location, or -1 if unknown */
} FuncExpr;

/*
 * NamedArgExpr - a named argument of a function
 *
 * This node type can only appear in the args list of a FuncCall or FuncExpr
 * node.  We support pure positional call notation (no named arguments),
 * named notation (all arguments are named), and mixed notation (unnamed
 * arguments followed by named ones).
 *
 * Parse analysis sets argnumber to the positional index of the argument,
 * but doesn't rearrange the argument list.
 *
 * The planner will convert argument lists to pure positional notation
 * during expression preprocessing, so execution never sees a NamedArgExpr.
 */
typedef struct NamedArgExpr
{
	Expr		xpr;
	Expr	   *arg;			/* the argument expression */
	char	   *name;			/* the name */
	int			argnumber;		/* argument's number in positional notation */
	int			location;		/* argument name location, or -1 if unknown */
} NamedArgExpr;

/*
 * OpExpr - expression node for an operator invocation
 *
 * Semantically, this is essentially the same as a function call.
 *
 * Note that opfuncid is not necessarily filled in immediately on creation
 * of the node.  The planner makes sure it is valid before passing the node
 * tree to the executor, but during parsing/planning opfuncid can be 0.
 */
typedef struct OpExpr
{
	Expr		xpr;
	Oid			opno;			/* PG_OPERATOR OID of the operator */
	Oid			opfuncid;		/* PG_PROC OID of underlying function */
	Oid			opresulttype;	/* PG_TYPE OID of result value */
	bool		opretset;		/* true if operator returns set */
	Oid			opcollid;		/* OID of collation of result */
	Oid			inputcollid;	/* OID of collation that operator should use */
	List	   *args;			/* arguments to the operator (1 or 2) */
	int			location;		/* token location, or -1 if unknown */
} OpExpr;

/*
 * DistinctExpr - expression node for "x IS DISTINCT FROM y"
 *
 * Except for the nodetag, this is represented identically to an OpExpr
 * referencing the "=" operator for x and y.
 * We use "=", not the more obvious "<>", because more datatypes have "="
 * than "<>".  This means the executor must invert the operator result.
 * Note that the operator function won't be called at all if either input
 * is NULL, since then the result can be determined directly.
 */
typedef OpExpr DistinctExpr;

/*
 * NullIfExpr - a NULLIF expression
 *
 * Like DistinctExpr, this is represented the same as an OpExpr referencing
 * the "=" operator for x and y.
 */
typedef OpExpr NullIfExpr;

/*
 * ScalarArrayOpExpr - expression node for "scalar op ANY/ALL (array)"
 *
 * The operator must yield boolean.  It is applied to the left operand
 * and each element of the righthand array, and the results are combined
 * with OR or AND (for ANY or ALL respectively).  The node representation
 * is almost the same as for the underlying operator, but we need a useOr
 * flag to remember whether it's ANY or ALL, and we don't have to store
 * the result type (or the collation) because it must be boolean.
 *
 * A ScalarArrayOpExpr with a valid hashfuncid is evaluated during execution
 * by building a hash table containing the Const values from the rhs arg.
 * This table is probed during expression evaluation.  Only useOr=true
 * ScalarArrayOpExpr with Const arrays on the rhs can have the hashfuncid
 * field set. See convert_saop_to_hashed_saop().
 */
typedef struct ScalarArrayOpExpr
{
	Expr		xpr;
	Oid			opno;			/* PG_OPERATOR OID of the operator */
	Oid			opfuncid;		/* PG_PROC OID of comparison function */
	Oid			hashfuncid;		/* PG_PROC OID of hash func or InvalidOid */
	bool		useOr;			/* true for ANY, false for ALL */
	Oid			inputcollid;	/* OID of collation that operator should use */
	List	   *args;			/* the scalar and array operands */
	int			location;		/* token location, or -1 if unknown */
} ScalarArrayOpExpr;

/*
 * BoolExpr - expression node for the basic Boolean operators AND, OR, NOT
 *
 * Notice the arguments are given as a List.  For NOT, of course the list
 * must always have exactly one element.  For AND and OR, there can be two
 * or more arguments.
 */
typedef enum BoolExprType
{
	AND_EXPR, OR_EXPR, NOT_EXPR
} BoolExprType;

typedef struct BoolExpr
{
	Expr		xpr;
	BoolExprType boolop;
	List	   *args;			/* arguments to this expression */
	int			location;		/* token location, or -1 if unknown */
} BoolExpr;

/*
 * SubLink
 *
 * A SubLink represents a subselect appearing in an expression, and in some
 * cases also the combining operator(s) just above it.  The subLinkType
 * indicates the form of the expression represented:
 *	EXISTS_SUBLINK		EXISTS(SELECT ...)
 *	ALL_SUBLINK			(lefthand) op ALL (SELECT ...)
 *	ANY_SUBLINK			(lefthand) op ANY (SELECT ...)
 *	ROWCOMPARE_SUBLINK	(lefthand) op (SELECT ...)
 *	EXPR_SUBLINK		(SELECT with single targetlist item ...)
 *	MULTIEXPR_SUBLINK	(SELECT with multiple targetlist items ...)
 *	ARRAY_SUBLINK		ARRAY(SELECT with single targetlist item ...)
 *	CTE_SUBLINK			WITH query (never actually part of an expression)
 * For ALL, ANY, and ROWCOMPARE, the lefthand is a list of expressions of the
 * same length as the subselect's targetlist.  ROWCOMPARE will *always* have
 * a list with more than one entry; if the subselect has just one target
 * then the parser will create an EXPR_SUBLINK instead (and any operator
 * above the subselect will be represented separately).
 * ROWCOMPARE, EXPR, and MULTIEXPR require the subselect to deliver at most
 * one row (if it returns no rows, the result is NULL).
 * ALL, ANY, and ROWCOMPARE require the combining operators to deliver boolean
 * results.  ALL and ANY combine the per-row results using AND and OR
 * semantics respectively.
 * ARRAY requires just one target column, and creates an array of the target
 * column's type using any number of rows resulting from the subselect.
 *
 * SubLink is classed as an Expr node, but it is not actually executable;
 * it must be replaced in the expression tree by a SubPlan node during
 * planning.
 *
 * NOTE: in the raw output of gram.y, testexpr contains just the raw form
 * of the lefthand expression (if any), and operName is the String name of
 * the combining operator.  Also, subselect is a raw parsetree.  During parse
 * analysis, the parser transforms testexpr into a complete boolean expression
 * that compares the lefthand value(s) to PARAM_SUBLINK nodes representing the
 * output columns of the subselect.  And subselect is transformed to a Query.
 * This is the representation seen in saved rules and in the rewriter.
 *
 * In EXISTS, EXPR, MULTIEXPR, and ARRAY SubLinks, testexpr and operName
 * are unused and are always null.
 *
 * subLinkId is currently used only for MULTIEXPR SubLinks, and is zero in
 * other SubLinks.  This number identifies different multiple-assignment
 * subqueries within an UPDATE statement's SET list.  It is unique only
 * within a particular targetlist.  The output column(s) of the MULTIEXPR
 * are referenced by PARAM_MULTIEXPR Params appearing elsewhere in the tlist.
 *
 * The CTE_SUBLINK case never occurs in actual SubLink nodes, but it is used
 * in SubPlans generated for WITH subqueries.
 */
typedef enum SubLinkType
{
	EXISTS_SUBLINK,
	ALL_SUBLINK,
	ANY_SUBLINK,
	ROWCOMPARE_SUBLINK,
	EXPR_SUBLINK,
	MULTIEXPR_SUBLINK,
	ARRAY_SUBLINK,
	CTE_SUBLINK					/* for SubPlans only */
} SubLinkType;


typedef struct SubLink
{
	Expr		xpr;
	SubLinkType subLinkType;	/* see above */
	int			subLinkId;		/* ID (1..n); 0 if not MULTIEXPR */
	Node	   *testexpr;		/* outer-query test for ALL/ANY/ROWCOMPARE */
	List	   *operName;		/* originally specified operator name */
	Node	   *subselect;		/* subselect as Query* or raw parsetree */
	int			location;		/* token location, or -1 if unknown */
} SubLink;

/*
 * SubPlan - executable expression node for a subplan (sub-SELECT)
 *
 * The planner replaces SubLink nodes in expression trees with SubPlan
 * nodes after it has finished planning the subquery.  SubPlan references
 * a sub-plantree stored in the subplans list of the toplevel PlannedStmt.
 * (We avoid a direct link to make it easier to copy expression trees
 * without causing multiple processing of the subplan.)
 *
 * In an ordinary subplan, testexpr points to an executable expression
 * (OpExpr, an AND/OR tree of OpExprs, or RowCompareExpr) for the combining
 * operator(s); the left-hand arguments are the original lefthand expressions,
 * and the right-hand arguments are PARAM_EXEC Param nodes representing the
 * outputs of the sub-select.  (NOTE: runtime coercion functions may be
 * inserted as well.)  This is just the same expression tree as testexpr in
 * the original SubLink node, but the PARAM_SUBLINK nodes are replaced by
 * suitably numbered PARAM_EXEC nodes.
 *
 * If the sub-select becomes an initplan rather than a subplan, the executable
 * expression is part of the outer plan's expression tree (and the SubPlan
 * node itself is not, but rather is found in the outer plan's initPlan
 * list).  In this case testexpr is NULL to avoid duplication.
 *
 * The planner also derives lists of the values that need to be passed into
 * and out of the subplan.  Input values are represented as a list "args" of
 * expressions to be evaluated in the outer-query context (currently these
 * args are always just Vars, but in principle they could be any expression).
 * The values are assigned to the global PARAM_EXEC params indexed by parParam
 * (the parParam and args lists must have the same ordering).  setParam is a
 * list of the PARAM_EXEC params that are computed by the sub-select, if it
 * is an initplan; they are listed in order by sub-select output column
 * position.  (parParam and setParam are integer Lists, not Bitmapsets,
 * because their ordering is significant.)
 *
 * Also, the planner computes startup and per-call costs for use of the
 * SubPlan.  Note that these include the cost of the subquery proper,
 * evaluation of the testexpr if any, and any hashtable management overhead.
 */
typedef struct SubPlan
{
	Expr		xpr;
	/* Fields copied from original SubLink: */
	SubLinkType subLinkType;	/* see above */
	/* The combining operators, transformed to an executable expression: */
	Node	   *testexpr;		/* OpExpr or RowCompareExpr expression tree */
	List	   *paramIds;		/* IDs of Params embedded in the above */
	/* Identification of the Plan tree to use: */
	int			plan_id;		/* Index (from 1) in PlannedStmt.subplans */
	/* Identification of the SubPlan for EXPLAIN and debugging purposes: */
	char	   *plan_name;		/* A name assigned during planning */
	/* Extra data useful for determining subplan's output type: */
	Oid			firstColType;	/* Type of first column of subplan result */
	int32		firstColTypmod; /* Typmod of first column of subplan result */
	Oid			firstColCollation;	/* Collation of first column of subplan
									 * result */
	/* Information about execution strategy: */
	bool		useHashTable;	/* true to store subselect output in a hash
								 * table (implies we are doing "IN") */
	bool		unknownEqFalse; /* true if it's okay to return FALSE when the
								 * spec result is UNKNOWN; this allows much
								 * simpler handling of null values */
	bool		parallel_safe;	/* is the subplan parallel-safe? */
	/* Note: parallel_safe does not consider contents of testexpr or args */
	/* Information for passing params into and out of the subselect: */
	/* setParam and parParam are lists of integers (param IDs) */
	List	   *setParam;		/* initplan subqueries have to set these
								 * Params for parent plan */
	List	   *parParam;		/* indices of input Params from parent plan */
	List	   *args;			/* exprs to pass as parParam values */
	/* Estimated execution costs: */
	Cost		startup_cost;	/* one-time setup cost */
	Cost		per_call_cost;	/* cost for each subplan evaluation */
} SubPlan;

/*
 * AlternativeSubPlan - expression node for a choice among SubPlans
 *
 * This is used only transiently during planning: by the time the plan
 * reaches the executor, all AlternativeSubPlan nodes have been removed.
 *
 * The subplans are given as a List so that the node definition need not
 * change if there's ever more than two alternatives.  For the moment,
 * though, there are always exactly two; and the first one is the fast-start
 * plan.
 */
typedef struct AlternativeSubPlan
{
	Expr		xpr;
	List	   *subplans;		/* SubPlan(s) with equivalent results */
} AlternativeSubPlan;

/* ----------------
 * FieldSelect
 *
 * FieldSelect represents the operation of extracting one field from a tuple
 * value.  At runtime, the input expression is expected to yield a rowtype
 * Datum.  The specified field number is extracted and returned as a Datum.
 * ----------------
 */

typedef struct FieldSelect
{
	Expr		xpr;
	Expr	   *arg;			/* input expression */
	AttrNumber	fieldnum;		/* attribute number of field to extract */
	Oid			resulttype;		/* type of the field (result type of this
								 * node) */
	int32		resulttypmod;	/* output typmod (usually -1) */
	Oid			resultcollid;	/* OID of collation of the field */
} FieldSelect;

/* ----------------
 * FieldStore
 *
 * FieldStore represents the operation of modifying one field in a tuple
 * value, yielding a new tuple value (the input is not touched!).  Like
 * the assign case of SubscriptingRef, this is used to implement UPDATE of a
 * portion of a column.
 *
 * resulttype is always a named composite type (not a domain).  To update
 * a composite domain value, apply CoerceToDomain to the FieldStore.
 *
 * A single FieldStore can actually represent updates of several different
 * fields.  The parser only generates FieldStores with single-element lists,
 * but the planner will collapse multiple updates of the same base column
 * into one FieldStore.
 * ----------------
 */

typedef struct FieldStore
{
	Expr		xpr;
	Expr	   *arg;			/* input tuple value */
	List	   *newvals;		/* new value(s) for field(s) */
	List	   *fieldnums;		/* integer list of field attnums */
	Oid			resulttype;		/* type of result (same as type of arg) */
	/* Like RowExpr, we deliberately omit a typmod and collation here */
} FieldStore;

/* ----------------
 * RelabelType
 *
 * RelabelType represents a "dummy" type coercion between two binary-
 * compatible datatypes, such as reinterpreting the result of an OID
 * expression as an int4.  It is a no-op at runtime; we only need it
 * to provide a place to store the correct type to be attributed to
 * the expression result during type resolution.  (We can't get away
 * with just overwriting the type field of the input expression node,
 * so we need a separate node to show the coercion's result type.)
 * ----------------
 */

typedef struct RelabelType
{
	Expr		xpr;
	Expr	   *arg;			/* input expression */
	Oid			resulttype;		/* output type of coercion expression */
	int32		resulttypmod;	/* output typmod (usually -1) */
	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
	CoercionForm relabelformat; /* how to display this node */
	int			location;		/* token location, or -1 if unknown */
} RelabelType;

/* ----------------
 * CoerceViaIO
 *
 * CoerceViaIO represents a type coercion between two types whose textual
 * representations are compatible, implemented by invoking the source type's
 * typoutput function then the destination type's typinput function.
 * ----------------
 */

typedef struct CoerceViaIO
{
	Expr		xpr;
	Expr	   *arg;			/* input expression */
	Oid			resulttype;		/* output type of coercion */
	/* output typmod is not stored, but is presumed -1 */
	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
	CoercionForm coerceformat;	/* how to display this node */
	int			location;		/* token location, or -1 if unknown */
} CoerceViaIO;

/* ----------------
 * ArrayCoerceExpr
 *
 * ArrayCoerceExpr represents a type coercion from one array type to another,
 * which is implemented by applying the per-element coercion expression
 * "elemexpr" to each element of the source array.  Within elemexpr, the
 * source element is represented by a CaseTestExpr node.  Note that even if
 * elemexpr is a no-op (that is, just CaseTestExpr + RelabelType), the
 * coercion still requires some effort: we have to fix the element type OID
 * stored in the array header.
 * ----------------
 */

typedef struct ArrayCoerceExpr
{
	Expr		xpr;
	Expr	   *arg;			/* input expression (yields an array) */
	Expr	   *elemexpr;		/* expression representing per-element work */
	Oid			resulttype;		/* output type of coercion (an array type) */
	int32		resulttypmod;	/* output typmod (also element typmod) */
	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
	CoercionForm coerceformat;	/* how to display this node */
	int			location;		/* token location, or -1 if unknown */
} ArrayCoerceExpr;

/* ----------------
 * ConvertRowtypeExpr
 *
 * ConvertRowtypeExpr represents a type coercion from one composite type
 * to another, where the source type is guaranteed to contain all the columns
 * needed for the destination type plus possibly others; the columns need not
 * be in the same positions, but are matched up by name.  This is primarily
 * used to convert a whole-row value of an inheritance child table into a
 * valid whole-row value of its parent table's rowtype.  Both resulttype
 * and the exposed type of "arg" must be named composite types (not domains).
 * ----------------
 */

typedef struct ConvertRowtypeExpr
{
	Expr		xpr;
	Expr	   *arg;			/* input expression */
	Oid			resulttype;		/* output type (always a composite type) */
	/* Like RowExpr, we deliberately omit a typmod and collation here */
	CoercionForm convertformat; /* how to display this node */
	int			location;		/* token location, or -1 if unknown */
} ConvertRowtypeExpr;

/*----------
 * CollateExpr - COLLATE
 *
 * The planner replaces CollateExpr with RelabelType during expression
 * preprocessing, so execution never sees a CollateExpr.
 *----------
 */
typedef struct CollateExpr
{
	Expr		xpr;
	Expr	   *arg;			/* input expression */
	Oid			collOid;		/* collation's OID */
	int			location;		/* token location, or -1 if unknown */
} CollateExpr;

/*----------
 * CaseExpr - a CASE expression
 *
 * We support two distinct forms of CASE expression:
 *		CASE WHEN boolexpr THEN expr [ WHEN boolexpr THEN expr ... ]
 *		CASE testexpr WHEN compexpr THEN expr [ WHEN compexpr THEN expr ... ]
 * These are distinguishable by the "arg" field being NULL in the first case
 * and the testexpr in the second case.
 *
 * In the raw grammar output for the second form, the condition expressions
 * of the WHEN clauses are just the comparison values.  Parse analysis
 * converts these to valid boolean expressions of the form
 *		CaseTestExpr '=' compexpr
 * where the CaseTestExpr node is a placeholder that emits the correct
 * value at runtime.  This structure is used so that the testexpr need be
 * evaluated only once.  Note that after parse analysis, the condition
 * expressions always yield boolean.
 *
 * Note: we can test whether a CaseExpr has been through parse analysis
 * yet by checking whether casetype is InvalidOid or not.
 *----------
 */
typedef struct CaseExpr
{
	Expr		xpr;
	Oid			casetype;		/* type of expression result */
	Oid			casecollid;		/* OID of collation, or InvalidOid if none */
	Expr	   *arg;			/* implicit equality comparison argument */
	List	   *args;			/* the arguments (list of WHEN clauses) */
	Expr	   *defresult;		/* the default result (ELSE clause) */
	int			location;		/* token location, or -1 if unknown */
} CaseExpr;

/*
 * CaseWhen - one arm of a CASE expression
 */
typedef struct CaseWhen
{
	Expr		xpr;
	Expr	   *expr;			/* condition expression */
	Expr	   *result;			/* substitution result */
	int			location;		/* token location, or -1 if unknown */
} CaseWhen;

/*
 * Placeholder node for the test value to be processed by a CASE expression.
 * This is effectively like a Param, but can be implemented more simply
 * since we need only one replacement value at a time.
 *
 * We also abuse this node type for some other purposes, including:
 *	* Placeholder for the current array element value in ArrayCoerceExpr;
 *	  see build_coercion_expression().
 *	* Nested FieldStore/SubscriptingRef assignment expressions in INSERT/UPDATE;
 *	  see transformAssignmentIndirection().
 *
 * The uses in CaseExpr and ArrayCoerceExpr are safe only to the extent that
 * there is not any other CaseExpr or ArrayCoerceExpr between the value source
 * node and its child CaseTestExpr(s).  This is true in the parse analysis
 * output, but the planner's function-inlining logic has to be careful not to
 * break it.
 *
 * The nested-assignment-expression case is safe because the only node types
 * that can be above such CaseTestExprs are FieldStore and SubscriptingRef.
 */
typedef struct CaseTestExpr
{
	Expr		xpr;
	Oid			typeId;			/* type for substituted value */
	int32		typeMod;		/* typemod for substituted value */
	Oid			collation;		/* collation for the substituted value */
} CaseTestExpr;

/*
 * ArrayExpr - an ARRAY[] expression
 *
 * Note: if multidims is false, the constituent expressions all yield the
 * scalar type identified by element_typeid.  If multidims is true, the
 * constituent expressions all yield arrays of element_typeid (ie, the same
 * type as array_typeid); at runtime we must check for compatible subscripts.
 */
typedef struct ArrayExpr
{
	Expr		xpr;
	Oid			array_typeid;	/* type of expression result */
	Oid			array_collid;	/* OID of collation, or InvalidOid if none */
	Oid			element_typeid; /* common type of array elements */
	List	   *elements;		/* the array elements or sub-arrays */
	bool		multidims;		/* true if elements are sub-arrays */
	int			location;		/* token location, or -1 if unknown */
} ArrayExpr;

/*
 * RowExpr - a ROW() expression
 *
 * Note: the list of fields must have a one-for-one correspondence with
 * physical fields of the associated rowtype, although it is okay for it
 * to be shorter than the rowtype.  That is, the N'th list element must
 * match up with the N'th physical field.  When the N'th physical field
 * is a dropped column (attisdropped) then the N'th list element can just
 * be a NULL constant.  (This case can only occur for named composite types,
 * not RECORD types, since those are built from the RowExpr itself rather
 * than vice versa.)  It is important not to assume that length(args) is
 * the same as the number of columns logically present in the rowtype.
 *
 * colnames provides field names in cases where the names can't easily be
 * obtained otherwise.  Names *must* be provided if row_typeid is RECORDOID.
 * If row_typeid identifies a known composite type, colnames can be NIL to
 * indicate the type's cataloged field names apply.  Note that colnames can
 * be non-NIL even for a composite type, and typically is when the RowExpr
 * was created by expanding a whole-row Var.  This is so that we can retain
 * the column alias names of the RTE that the Var referenced (which would
 * otherwise be very difficult to extract from the parsetree).  Like the
 * args list, colnames is one-for-one with physical fields of the rowtype.
 */
typedef struct RowExpr
{
	Expr		xpr;
	List	   *args;			/* the fields */
	Oid			row_typeid;		/* RECORDOID or a composite type's ID */

	/*
	 * row_typeid cannot be a domain over composite, only plain composite.  To
	 * create a composite domain value, apply CoerceToDomain to the RowExpr.
	 *
	 * Note: we deliberately do NOT store a typmod.  Although a typmod will be
	 * associated with specific RECORD types at runtime, it will differ for
	 * different backends, and so cannot safely be stored in stored
	 * parsetrees.  We must assume typmod -1 for a RowExpr node.
	 *
	 * We don't need to store a collation either.  The result type is
	 * necessarily composite, and composite types never have a collation.
	 */
	CoercionForm row_format;	/* how to display this node */
	List	   *colnames;		/* list of String, or NIL */
	int			location;		/* token location, or -1 if unknown */
} RowExpr;

/*
 * RowCompareExpr - row-wise comparison, such as (a, b) <= (1, 2)
 *
 * We support row comparison for any operator that can be determined to
 * act like =, <>, <, <=, >, or >= (we determine this by looking for the
 * operator in btree opfamilies).  Note that the same operator name might
 * map to a different operator for each pair of row elements, since the
 * element datatypes can vary.
 *
 * A RowCompareExpr node is only generated for the < <= > >= cases;
 * the = and <> cases are translated to simple AND or OR combinations
 * of the pairwise comparisons.  However, we include = and <> in the
 * RowCompareType enum for the convenience of parser logic.
 */
typedef enum RowCompareType
{
	/* Values of this enum are chosen to match btree strategy numbers */
	ROWCOMPARE_LT = 1,			/* BTLessStrategyNumber */
	ROWCOMPARE_LE = 2,			/* BTLessEqualStrategyNumber */
	ROWCOMPARE_EQ = 3,			/* BTEqualStrategyNumber */
	ROWCOMPARE_GE = 4,			/* BTGreaterEqualStrategyNumber */
	ROWCOMPARE_GT = 5,			/* BTGreaterStrategyNumber */
	ROWCOMPARE_NE = 6			/* no such btree strategy */
} RowCompareType;

typedef struct RowCompareExpr
{
	Expr		xpr;
	RowCompareType rctype;		/* LT LE GE or GT, never EQ or NE */
	List	   *opnos;			/* OID list of pairwise comparison ops */
	List	   *opfamilies;		/* OID list of containing operator families */
	List	   *inputcollids;	/* OID list of collations for comparisons */
	List	   *largs;			/* the left-hand input arguments */
	List	   *rargs;			/* the right-hand input arguments */
} RowCompareExpr;

/*
 * CoalesceExpr - a COALESCE expression
 */
typedef struct CoalesceExpr
{
	Expr		xpr;
	Oid			coalescetype;	/* type of expression result */
	Oid			coalescecollid; /* OID of collation, or InvalidOid if none */
	List	   *args;			/* the arguments */
	int			location;		/* token location, or -1 if unknown */
} CoalesceExpr;

/*
 * MinMaxExpr - a GREATEST or LEAST function
 */
typedef enum MinMaxOp
{
	IS_GREATEST,
	IS_LEAST
} MinMaxOp;

typedef struct MinMaxExpr
{
	Expr		xpr;
	Oid			minmaxtype;		/* common type of arguments and result */
	Oid			minmaxcollid;	/* OID of collation of result */
	Oid			inputcollid;	/* OID of collation that function should use */
	MinMaxOp	op;				/* function to execute */
	List	   *args;			/* the arguments */
	int			location;		/* token location, or -1 if unknown */
} MinMaxExpr;

/*
 * SQLValueFunction - parameterless functions with special grammar productions
 *
 * The SQL standard categorizes some of these as <datetime value function>
 * and others as <general value specification>.  We call 'em SQLValueFunctions
 * for lack of a better term.  We store type and typmod of the result so that
 * some code doesn't need to know each function individually, and because
 * we would need to store typmod anyway for some of the datetime functions.
 * Note that currently, all variants return non-collating datatypes, so we do
 * not need a collation field; also, all these functions are stable.
 */
typedef enum SQLValueFunctionOp
{
	SVFOP_CURRENT_DATE,
	SVFOP_CURRENT_TIME,
	SVFOP_CURRENT_TIME_N,
	SVFOP_CURRENT_TIMESTAMP,
	SVFOP_CURRENT_TIMESTAMP_N,
	SVFOP_LOCALTIME,
	SVFOP_LOCALTIME_N,
	SVFOP_LOCALTIMESTAMP,
	SVFOP_LOCALTIMESTAMP_N,
	SVFOP_CURRENT_ROLE,
	SVFOP_CURRENT_USER,
	SVFOP_USER,
	SVFOP_SESSION_USER,
	SVFOP_CURRENT_CATALOG,
	SVFOP_CURRENT_SCHEMA
} SQLValueFunctionOp;

typedef struct SQLValueFunction
{
	Expr		xpr;
	SQLValueFunctionOp op;		/* which function this is */
	Oid			type;			/* result type/typmod */
	int32		typmod;
	int			location;		/* token location, or -1 if unknown */
} SQLValueFunction;

/*
 * XmlExpr - various SQL/XML functions requiring special grammar productions
 *
 * 'name' carries the "NAME foo" argument (already XML-escaped).
 * 'named_args' and 'arg_names' represent an xml_attribute list.
 * 'args' carries all other arguments.
 *
 * Note: result type/typmod/collation are not stored, but can be deduced
 * from the XmlExprOp.  The type/typmod fields are just used for display
 * purposes, and are NOT necessarily the true result type of the node.
 */
typedef enum XmlExprOp
{
	IS_XMLCONCAT,				/* XMLCONCAT(args) */
	IS_XMLELEMENT,				/* XMLELEMENT(name, xml_attributes, args) */
	IS_XMLFOREST,				/* XMLFOREST(xml_attributes) */
	IS_XMLPARSE,				/* XMLPARSE(text, is_doc, preserve_ws) */
	IS_XMLPI,					/* XMLPI(name [, args]) */
	IS_XMLROOT,					/* XMLROOT(xml, version, standalone) */
	IS_XMLSERIALIZE,			/* XMLSERIALIZE(is_document, xmlval) */
	IS_DOCUMENT					/* xmlval IS DOCUMENT */
} XmlExprOp;

typedef enum
{
	XMLOPTION_DOCUMENT,
	XMLOPTION_CONTENT
} XmlOptionType;

typedef struct XmlExpr
{
	Expr		xpr;
	XmlExprOp	op;				/* xml function ID */
	char	   *name;			/* name in xml(NAME foo ...) syntaxes */
	List	   *named_args;		/* non-XML expressions for xml_attributes */
	List	   *arg_names;		/* parallel list of Value strings */
	List	   *args;			/* list of expressions */
	XmlOptionType xmloption;	/* DOCUMENT or CONTENT */
	Oid			type;			/* target type/typmod for XMLSERIALIZE */
	int32		typmod;
	int			location;		/* token location, or -1 if unknown */
} XmlExpr;

/* ----------------
 * NullTest
 *
 * NullTest represents the operation of testing a value for NULLness.
 * The appropriate test is performed and returned as a boolean Datum.
 *
 * When argisrow is false, this simply represents a test for the null value.
 *
 * When argisrow is true, the input expression must yield a rowtype, and
 * the node implements "row IS [NOT] NULL" per the SQL standard.  This
 * includes checking individual fields for NULLness when the row datum
 * itself isn't NULL.
 *
 * NOTE: the combination of a rowtype input and argisrow==false does NOT
 * correspond to the SQL notation "row IS [NOT] NULL"; instead, this case
 * represents the SQL notation "row IS [NOT] DISTINCT FROM NULL".
 * ----------------
 */

typedef enum NullTestType
{
	IS_NULL, IS_NOT_NULL
} NullTestType;

typedef struct NullTest
{
	Expr		xpr;
	Expr	   *arg;			/* input expression */
	NullTestType nulltesttype;	/* IS NULL, IS NOT NULL */
	bool		argisrow;		/* T to perform field-by-field null checks */
	int			location;		/* token location, or -1 if unknown */
} NullTest;

/*
 * BooleanTest
 *
 * BooleanTest represents the operation of determining whether a boolean
 * is TRUE, FALSE, or UNKNOWN (ie, NULL).  All six meaningful combinations
 * are supported.  Note that a NULL input does *not* cause a NULL result.
 * The appropriate test is performed and returned as a boolean Datum.
 */

typedef enum BoolTestType
{
	IS_TRUE, IS_NOT_TRUE, IS_FALSE, IS_NOT_FALSE, IS_UNKNOWN, IS_NOT_UNKNOWN
} BoolTestType;

typedef struct BooleanTest
{
	Expr		xpr;
	Expr	   *arg;			/* input expression */
	BoolTestType booltesttype;	/* test type */
	int			location;		/* token location, or -1 if unknown */
} BooleanTest;

/*
 * CoerceToDomain
 *
 * CoerceToDomain represents the operation of coercing a value to a domain
 * type.  At runtime (and not before) the precise set of constraints to be
 * checked will be determined.  If the value passes, it is returned as the
 * result; if not, an error is raised.  Note that this is equivalent to
 * RelabelType in the scenario where no constraints are applied.
 */
typedef struct CoerceToDomain
{
	Expr		xpr;
	Expr	   *arg;			/* input expression */
	Oid			resulttype;		/* domain type ID (result type) */
	int32		resulttypmod;	/* output typmod (currently always -1) */
	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
	CoercionForm coercionformat;	/* how to display this node */
	int			location;		/* token location, or -1 if unknown */
} CoerceToDomain;

/*
 * Placeholder node for the value to be processed by a domain's check
 * constraint.  This is effectively like a Param, but can be implemented more
 * simply since we need only one replacement value at a time.
 *
 * Note: the typeId/typeMod/collation will be set from the domain's base type,
 * not the domain itself.  This is because we shouldn't consider the value
 * to be a member of the domain if we haven't yet checked its constraints.
 */
typedef struct CoerceToDomainValue
{
	Expr		xpr;
	Oid			typeId;			/* type for substituted value */
	int32		typeMod;		/* typemod for substituted value */
	Oid			collation;		/* collation for the substituted value */
	int			location;		/* token location, or -1 if unknown */
} CoerceToDomainValue;

/*
 * Placeholder node for a DEFAULT marker in an INSERT or UPDATE command.
 *
 * This is not an executable expression: it must be replaced by the actual
 * column default expression during rewriting.  But it is convenient to
 * treat it as an expression node during parsing and rewriting.
 */
typedef struct SetToDefault
{
	Expr		xpr;
	Oid			typeId;			/* type for substituted value */
	int32		typeMod;		/* typemod for substituted value */
	Oid			collation;		/* collation for the substituted value */
	int			location;		/* token location, or -1 if unknown */
} SetToDefault;

/*
 * Node representing [WHERE] CURRENT OF cursor_name
 *
 * CURRENT OF is a bit like a Var, in that it carries the rangetable index
 * of the target relation being constrained; this aids placing the expression
 * correctly during planning.  We can assume however that its "levelsup" is
 * always zero, due to the syntactic constraints on where it can appear.
 *
 * The referenced cursor can be represented either as a hardwired string
 * or as a reference to a run-time parameter of type REFCURSOR.  The latter
 * case is for the convenience of plpgsql.
 */
typedef struct CurrentOfExpr
{
	Expr		xpr;
	Index		cvarno;			/* RT index of target relation */
	char	   *cursor_name;	/* name of referenced cursor, or NULL */
	int			cursor_param;	/* refcursor parameter number, or 0 */
} CurrentOfExpr;

/*
 * NextValueExpr - get next value from sequence
 *
 * This has the same effect as calling the nextval() function, but it does not
 * check permissions on the sequence.  This is used for identity columns,
 * where the sequence is an implicit dependency without its own permissions.
 */
typedef struct NextValueExpr
{
	Expr		xpr;
	Oid			seqid;
	Oid			typeId;
} NextValueExpr;

/*
 * InferenceElem - an element of a unique index inference specification
 *
 * This mostly matches the structure of IndexElems, but having a dedicated
 * primnode allows for a clean separation between the use of index parameters
 * by utility commands, and this node.
 */
typedef struct InferenceElem
{
	Expr		xpr;
	Node	   *expr;			/* expression to infer from, or NULL */
	Oid			infercollid;	/* OID of collation, or InvalidOid */
	Oid			inferopclass;	/* OID of att opclass, or InvalidOid */
} InferenceElem;

/*--------------------
 * TargetEntry -
 *	   a target entry (used in query target lists)
 *
 * Strictly speaking, a TargetEntry isn't an expression node (since it can't
 * be evaluated by ExecEvalExpr).  But we treat it as one anyway, since in
 * very many places it's convenient to process a whole query targetlist as a
 * single expression tree.
 *
 * In a SELECT's targetlist, resno should always be equal to the item's
 * ordinal position (counting from 1).  However, in an INSERT or UPDATE
 * targetlist, resno represents the attribute number of the destination
 * column for the item; so there may be missing or out-of-order resnos.
 * It is even legal to have duplicated resnos; consider
 *		UPDATE table SET arraycol[1] = ..., arraycol[2] = ..., ...
 * In an INSERT, the rewriter and planner will normalize the tlist by
 * reordering it into physical column order and filling in default values
 * for any columns not assigned values by the original query.  In an UPDATE,
 * after the rewriter merges multiple assignments for the same column, the
 * planner extracts the target-column numbers into a separate "update_colnos"
 * list, and then renumbers the tlist elements serially.  Thus, tlist resnos
 * match ordinal position in all tlists seen by the executor; but it is wrong
 * to assume that before planning has happened.
 *
 * resname is required to represent the correct column name in non-resjunk
 * entries of top-level SELECT targetlists, since it will be used as the
 * column title sent to the frontend.  In most other contexts it is only
 * a debugging aid, and may be wrong or even NULL.  (In particular, it may
 * be wrong in a tlist from a stored rule, if the referenced column has been
 * renamed by ALTER TABLE since the rule was made.  Also, the planner tends
 * to store NULL rather than look up a valid name for tlist entries in
 * non-toplevel plan nodes.)  In resjunk entries, resname should be either
 * a specific system-generated name (such as "ctid") or NULL; anything else
 * risks confusing ExecGetJunkAttribute!
 *
 * ressortgroupref is used in the representation of ORDER BY, GROUP BY, and
 * DISTINCT items.  Targetlist entries with ressortgroupref=0 are not
 * sort/group items.  If ressortgroupref>0, then this item is an ORDER BY,
 * GROUP BY, and/or DISTINCT target value.  No two entries in a targetlist
 * may have the same nonzero ressortgroupref --- but there is no particular
 * meaning to the nonzero values, except as tags.  (For example, one must
 * not assume that lower ressortgroupref means a more significant sort key.)
 * The order of the associated SortGroupClause lists determine the semantics.
 *
 * resorigtbl/resorigcol identify the source of the column, if it is a
 * simple reference to a column of a base table (or view).  If it is not
 * a simple reference, these fields are zeroes.
 *
 * If resjunk is true then the column is a working column (such as a sort key)
 * that should be removed from the final output of the query.  Resjunk columns
 * must have resnos that cannot duplicate any regular column's resno.  Also
 * note that there are places that assume resjunk columns come after non-junk
 * columns.
 *--------------------
 */
typedef struct TargetEntry
{
	Expr		xpr;
	Expr	   *expr;			/* expression to evaluate */
	AttrNumber	resno;			/* attribute number (see notes above) */
	char	   *resname;		/* name of the column (could be NULL) */
	Index		ressortgroupref;	/* nonzero if referenced by a sort/group
									 * clause */
	Oid			resorigtbl;		/* OID of column's source table */
	AttrNumber	resorigcol;		/* column's number in source table */
	bool		resjunk;		/* set to true to eliminate the attribute from
								 * final target list */
} TargetEntry;


/* ----------------------------------------------------------------
 *					node types for join trees
 *
 * The leaves of a join tree structure are RangeTblRef nodes.  Above
 * these, JoinExpr nodes can appear to denote a specific kind of join
 * or qualified join.  Also, FromExpr nodes can appear to denote an
 * ordinary cross-product join ("FROM foo, bar, baz WHERE ...").
 * FromExpr is like a JoinExpr of jointype JOIN_INNER, except that it
 * may have any number of child nodes, not just two.
 *
 * NOTE: the top level of a Query's jointree is always a FromExpr.
 * Even if the jointree contains no rels, there will be a FromExpr.
 *
 * NOTE: the qualification expressions present in JoinExpr nodes are
 * *in addition to* the query's main WHERE clause, which appears as the
 * qual of the top-level FromExpr.  The reason for associating quals with
 * specific nodes in the jointree is that the position of a qual is critical
 * when outer joins are present.  (If we enforce a qual too soon or too late,
 * that may cause the outer join to produce the wrong set of NULL-extended
 * rows.)  If all joins are inner joins then all the qual positions are
 * semantically interchangeable.
 *
 * NOTE: in the raw output of gram.y, a join tree contains RangeVar,
 * RangeSubselect, and RangeFunction nodes, which are all replaced by
 * RangeTblRef nodes during the parse analysis phase.  Also, the top-level
 * FromExpr is added during parse analysis; the grammar regards FROM and
 * WHERE as separate.
 * ----------------------------------------------------------------
 */

/*
 * RangeTblRef - reference to an entry in the query's rangetable
 *
 * We could use direct pointers to the RT entries and skip having these
 * nodes, but multiple pointers to the same node in a querytree cause
 * lots of headaches, so it seems better to store an index into the RT.
 */
typedef struct RangeTblRef
{
	NodeTag		type;
	int			rtindex;
} RangeTblRef;

/*----------
 * JoinExpr - for SQL JOIN expressions
 *
 * isNatural, usingClause, and quals are interdependent.  The user can write
 * only one of NATURAL, USING(), or ON() (this is enforced by the grammar).
 * If he writes NATURAL then parse analysis generates the equivalent USING()
 * list, and from that fills in "quals" with the right equality comparisons.
 * If he writes USING() then "quals" is filled with equality comparisons.
 * If he writes ON() then only "quals" is set.  Note that NATURAL/USING
 * are not equivalent to ON() since they also affect the output column list.
 *
 * alias is an Alias node representing the AS alias-clause attached to the
 * join expression, or NULL if no clause.  NB: presence or absence of the
 * alias has a critical impact on semantics, because a join with an alias
 * restricts visibility of the tables/columns inside it.
 *
 * join_using_alias is an Alias node representing the join correlation
 * name that SQL:2016 and later allow to be attached to JOIN/USING.
 * Its column alias list includes only the common column names from USING,
 * and it does not restrict visibility of the join's input tables.
 *
 * During parse analysis, an RTE is created for the Join, and its index
 * is filled into rtindex.  This RTE is present mainly so that Vars can
 * be created that refer to the outputs of the join.  The planner sometimes
 * generates JoinExprs internally; these can have rtindex = 0 if there are
 * no join alias variables referencing such joins.
 *----------
 */
typedef struct JoinExpr
{
	NodeTag		type;
	JoinType	jointype;		/* type of join */
	bool		isNatural;		/* Natural join? Will need to shape table */
	Node	   *larg;			/* left subtree */
	Node	   *rarg;			/* right subtree */
	List	   *usingClause;	/* USING clause, if any (list of String) */
	Alias	   *join_using_alias;	/* alias attached to USING clause, if any */
	Node	   *quals;			/* qualifiers on join, if any */
	Alias	   *alias;			/* user-written alias clause, if any */
	int			rtindex;		/* RT index assigned for join, or 0 */
} JoinExpr;

/*----------
 * FromExpr - represents a FROM ... WHERE ... construct
 *
 * This is both more flexible than a JoinExpr (it can have any number of
 * children, including zero) and less so --- we don't need to deal with
 * aliases and so on.  The output column set is implicitly just the union
 * of the outputs of the children.
 *----------
 */
typedef struct FromExpr
{
	NodeTag		type;
	List	   *fromlist;		/* List of join subtrees */
	Node	   *quals;			/* qualifiers on join, if any */
} FromExpr;

/*----------
 * OnConflictExpr - represents an ON CONFLICT DO ... expression
 *
 * The optimizer requires a list of inference elements, and optionally a WHERE
 * clause to infer a unique index.  The unique index (or, occasionally,
 * indexes) inferred are used to arbitrate whether or not the alternative ON
 * CONFLICT path is taken.
 *----------
 */
typedef struct OnConflictExpr
{
	NodeTag		type;
	OnConflictAction action;	/* DO NOTHING or UPDATE? */

	/* Arbiter */
	List	   *arbiterElems;	/* unique index arbiter list (of
								 * InferenceElem's) */
	Node	   *arbiterWhere;	/* unique index arbiter WHERE clause */
	Oid			constraint;		/* pg_constraint OID for arbiter */

	/* ON CONFLICT UPDATE */
	List	   *onConflictSet;	/* List of ON CONFLICT SET TargetEntrys */
	Node	   *onConflictWhere;	/* qualifiers to restrict UPDATE to */
	int			exclRelIndex;	/* RT index of 'excluded' relation */
	List	   *exclRelTlist;	/* tlist of the EXCLUDED pseudo relation */
} OnConflictExpr;

#endif							/* PRIMNODES_H */