1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
-- Perform tests on the Memoize node.
-- The cache hits/misses/evictions from the Memoize node can vary between
-- machines. Let's just replace the number with an 'N'. In order to allow us
-- to perform validation when the measure was zero, we replace a zero value
-- with "Zero". All other numbers are replaced with 'N'.
create function explain_memoize(query text, hide_hitmiss bool) returns setof text
language plpgsql as
$$
declare
ln text;
begin
for ln in
execute format('explain (analyze, costs off, summary off, timing off) %s',
query)
loop
if hide_hitmiss = true then
ln := regexp_replace(ln, 'Hits: 0', 'Hits: Zero');
ln := regexp_replace(ln, 'Hits: \d+', 'Hits: N');
ln := regexp_replace(ln, 'Misses: 0', 'Misses: Zero');
ln := regexp_replace(ln, 'Misses: \d+', 'Misses: N');
end if;
ln := regexp_replace(ln, 'Evictions: 0', 'Evictions: Zero');
ln := regexp_replace(ln, 'Evictions: \d+', 'Evictions: N');
ln := regexp_replace(ln, 'Memory Usage: \d+', 'Memory Usage: N');
ln := regexp_replace(ln, 'Heap Fetches: \d+', 'Heap Fetches: N');
ln := regexp_replace(ln, 'loops=\d+', 'loops=N');
return next ln;
end loop;
end;
$$;
-- Ensure we get a memoize node on the inner side of the nested loop
SET enable_hashjoin TO off;
SET enable_bitmapscan TO off;
SELECT explain_memoize('
SELECT COUNT(*),AVG(t1.unique1) FROM tenk1 t1
INNER JOIN tenk1 t2 ON t1.unique1 = t2.twenty
WHERE t2.unique1 < 1000;', false);
explain_memoize
-------------------------------------------------------------------------------------------
Aggregate (actual rows=1 loops=N)
-> Nested Loop (actual rows=1000 loops=N)
-> Seq Scan on tenk1 t2 (actual rows=1000 loops=N)
Filter: (unique1 < 1000)
Rows Removed by Filter: 9000
-> Memoize (actual rows=1 loops=N)
Cache Key: t2.twenty
Cache Mode: logical
Hits: 980 Misses: 20 Evictions: Zero Overflows: 0 Memory Usage: NkB
-> Index Only Scan using tenk1_unique1 on tenk1 t1 (actual rows=1 loops=N)
Index Cond: (unique1 = t2.twenty)
Heap Fetches: N
(12 rows)
-- And check we get the expected results.
SELECT COUNT(*),AVG(t1.unique1) FROM tenk1 t1
INNER JOIN tenk1 t2 ON t1.unique1 = t2.twenty
WHERE t2.unique1 < 1000;
count | avg
-------+--------------------
1000 | 9.5000000000000000
(1 row)
-- Try with LATERAL joins
SELECT explain_memoize('
SELECT COUNT(*),AVG(t2.unique1) FROM tenk1 t1,
LATERAL (SELECT t2.unique1 FROM tenk1 t2 WHERE t1.twenty = t2.unique1) t2
WHERE t1.unique1 < 1000;', false);
explain_memoize
-------------------------------------------------------------------------------------------
Aggregate (actual rows=1 loops=N)
-> Nested Loop (actual rows=1000 loops=N)
-> Seq Scan on tenk1 t1 (actual rows=1000 loops=N)
Filter: (unique1 < 1000)
Rows Removed by Filter: 9000
-> Memoize (actual rows=1 loops=N)
Cache Key: t1.twenty
Cache Mode: logical
Hits: 980 Misses: 20 Evictions: Zero Overflows: 0 Memory Usage: NkB
-> Index Only Scan using tenk1_unique1 on tenk1 t2 (actual rows=1 loops=N)
Index Cond: (unique1 = t1.twenty)
Heap Fetches: N
(12 rows)
-- And check we get the expected results.
SELECT COUNT(*),AVG(t2.unique1) FROM tenk1 t1,
LATERAL (SELECT t2.unique1 FROM tenk1 t2 WHERE t1.twenty = t2.unique1) t2
WHERE t1.unique1 < 1000;
count | avg
-------+--------------------
1000 | 9.5000000000000000
(1 row)
-- Reduce work_mem so that we see some cache evictions
SET work_mem TO '64kB';
SET enable_mergejoin TO off;
-- Ensure we get some evictions. We're unable to validate the hits and misses
-- here as the number of entries that fit in the cache at once will vary
-- between different machines.
SELECT explain_memoize('
SELECT COUNT(*),AVG(t1.unique1) FROM tenk1 t1
INNER JOIN tenk1 t2 ON t1.unique1 = t2.thousand
WHERE t2.unique1 < 1200;', true);
explain_memoize
-------------------------------------------------------------------------------------------
Aggregate (actual rows=1 loops=N)
-> Nested Loop (actual rows=1200 loops=N)
-> Seq Scan on tenk1 t2 (actual rows=1200 loops=N)
Filter: (unique1 < 1200)
Rows Removed by Filter: 8800
-> Memoize (actual rows=1 loops=N)
Cache Key: t2.thousand
Cache Mode: logical
Hits: N Misses: N Evictions: N Overflows: 0 Memory Usage: NkB
-> Index Only Scan using tenk1_unique1 on tenk1 t1 (actual rows=1 loops=N)
Index Cond: (unique1 = t2.thousand)
Heap Fetches: N
(12 rows)
CREATE TABLE flt (f float);
CREATE INDEX flt_f_idx ON flt (f);
INSERT INTO flt VALUES('-0.0'::float),('+0.0'::float);
ANALYZE flt;
SET enable_seqscan TO off;
-- Ensure memoize operates in logical mode
SELECT explain_memoize('
SELECT * FROM flt f1 INNER JOIN flt f2 ON f1.f = f2.f;', false);
explain_memoize
-------------------------------------------------------------------------------
Nested Loop (actual rows=4 loops=N)
-> Index Only Scan using flt_f_idx on flt f1 (actual rows=2 loops=N)
Heap Fetches: N
-> Memoize (actual rows=2 loops=N)
Cache Key: f1.f
Cache Mode: logical
Hits: 1 Misses: 1 Evictions: Zero Overflows: 0 Memory Usage: NkB
-> Index Only Scan using flt_f_idx on flt f2 (actual rows=2 loops=N)
Index Cond: (f = f1.f)
Heap Fetches: N
(10 rows)
-- Ensure memoize operates in binary mode
SELECT explain_memoize('
SELECT * FROM flt f1 INNER JOIN flt f2 ON f1.f >= f2.f;', false);
explain_memoize
-------------------------------------------------------------------------------
Nested Loop (actual rows=4 loops=N)
-> Index Only Scan using flt_f_idx on flt f1 (actual rows=2 loops=N)
Heap Fetches: N
-> Memoize (actual rows=2 loops=N)
Cache Key: f1.f
Cache Mode: binary
Hits: 0 Misses: 2 Evictions: Zero Overflows: 0 Memory Usage: NkB
-> Index Only Scan using flt_f_idx on flt f2 (actual rows=2 loops=N)
Index Cond: (f <= f1.f)
Heap Fetches: N
(10 rows)
DROP TABLE flt;
-- Exercise Memoize in binary mode with a large fixed width type and a
-- varlena type.
CREATE TABLE strtest (n name, t text);
CREATE INDEX strtest_n_idx ON strtest (n);
CREATE INDEX strtest_t_idx ON strtest (t);
INSERT INTO strtest VALUES('one','one'),('two','two'),('three',repeat(md5('three'),100));
-- duplicate rows so we get some cache hits
INSERT INTO strtest SELECT * FROM strtest;
ANALYZE strtest;
-- Ensure we get 3 hits and 3 misses
SELECT explain_memoize('
SELECT * FROM strtest s1 INNER JOIN strtest s2 ON s1.n >= s2.n;', false);
explain_memoize
----------------------------------------------------------------------------------
Nested Loop (actual rows=24 loops=N)
-> Seq Scan on strtest s1 (actual rows=6 loops=N)
-> Memoize (actual rows=4 loops=N)
Cache Key: s1.n
Cache Mode: binary
Hits: 3 Misses: 3 Evictions: Zero Overflows: 0 Memory Usage: NkB
-> Index Scan using strtest_n_idx on strtest s2 (actual rows=4 loops=N)
Index Cond: (n <= s1.n)
(8 rows)
-- Ensure we get 3 hits and 3 misses
SELECT explain_memoize('
SELECT * FROM strtest s1 INNER JOIN strtest s2 ON s1.t >= s2.t;', false);
explain_memoize
----------------------------------------------------------------------------------
Nested Loop (actual rows=24 loops=N)
-> Seq Scan on strtest s1 (actual rows=6 loops=N)
-> Memoize (actual rows=4 loops=N)
Cache Key: s1.t
Cache Mode: binary
Hits: 3 Misses: 3 Evictions: Zero Overflows: 0 Memory Usage: NkB
-> Index Scan using strtest_t_idx on strtest s2 (actual rows=4 loops=N)
Index Cond: (t <= s1.t)
(8 rows)
DROP TABLE strtest;
-- Exercise Memoize code that flushes the cache when a parameter changes which
-- is not part of the cache key.
-- Ensure we get a Memoize plan
EXPLAIN (COSTS OFF)
SELECT unique1 FROM tenk1 t0
WHERE unique1 < 3
AND EXISTS (
SELECT 1 FROM tenk1 t1
INNER JOIN tenk1 t2 ON t1.unique1 = t2.hundred
WHERE t0.ten = t1.twenty AND t0.two <> t2.four OFFSET 0);
QUERY PLAN
----------------------------------------------------------------
Index Scan using tenk1_unique1 on tenk1 t0
Index Cond: (unique1 < 3)
Filter: (SubPlan 1)
SubPlan 1
-> Nested Loop
-> Index Scan using tenk1_hundred on tenk1 t2
Filter: (t0.two <> four)
-> Memoize
Cache Key: t2.hundred
Cache Mode: logical
-> Index Scan using tenk1_unique1 on tenk1 t1
Index Cond: (unique1 = t2.hundred)
Filter: (t0.ten = twenty)
(13 rows)
-- Ensure the above query returns the correct result
SELECT unique1 FROM tenk1 t0
WHERE unique1 < 3
AND EXISTS (
SELECT 1 FROM tenk1 t1
INNER JOIN tenk1 t2 ON t1.unique1 = t2.hundred
WHERE t0.ten = t1.twenty AND t0.two <> t2.four OFFSET 0);
unique1
---------
2
(1 row)
RESET enable_seqscan;
RESET enable_mergejoin;
RESET work_mem;
RESET enable_bitmapscan;
RESET enable_hashjoin;
-- Test parallel plans with Memoize
SET min_parallel_table_scan_size TO 0;
SET parallel_setup_cost TO 0;
SET parallel_tuple_cost TO 0;
SET max_parallel_workers_per_gather TO 2;
-- Ensure we get a parallel plan.
EXPLAIN (COSTS OFF)
SELECT COUNT(*),AVG(t2.unique1) FROM tenk1 t1,
LATERAL (SELECT t2.unique1 FROM tenk1 t2 WHERE t1.twenty = t2.unique1) t2
WHERE t1.unique1 < 1000;
QUERY PLAN
-------------------------------------------------------------------------------
Finalize Aggregate
-> Gather
Workers Planned: 2
-> Partial Aggregate
-> Nested Loop
-> Parallel Bitmap Heap Scan on tenk1 t1
Recheck Cond: (unique1 < 1000)
-> Bitmap Index Scan on tenk1_unique1
Index Cond: (unique1 < 1000)
-> Memoize
Cache Key: t1.twenty
Cache Mode: logical
-> Index Only Scan using tenk1_unique1 on tenk1 t2
Index Cond: (unique1 = t1.twenty)
(14 rows)
-- And ensure the parallel plan gives us the correct results.
SELECT COUNT(*),AVG(t2.unique1) FROM tenk1 t1,
LATERAL (SELECT t2.unique1 FROM tenk1 t2 WHERE t1.twenty = t2.unique1) t2
WHERE t1.unique1 < 1000;
count | avg
-------+--------------------
1000 | 9.5000000000000000
(1 row)
RESET max_parallel_workers_per_gather;
RESET parallel_tuple_cost;
RESET parallel_setup_cost;
RESET min_parallel_table_scan_size;
|