summaryrefslogtreecommitdiffstats
path: root/doc/src/sgml/html/geqo-intro.html
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:17:33 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:17:33 +0000
commit5e45211a64149b3c659b90ff2de6fa982a5a93ed (patch)
tree739caf8c461053357daa9f162bef34516c7bf452 /doc/src/sgml/html/geqo-intro.html
parentInitial commit. (diff)
downloadpostgresql-15-5e45211a64149b3c659b90ff2de6fa982a5a93ed.tar.xz
postgresql-15-5e45211a64149b3c659b90ff2de6fa982a5a93ed.zip
Adding upstream version 15.5.upstream/15.5
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'doc/src/sgml/html/geqo-intro.html')
-rw-r--r--doc/src/sgml/html/geqo-intro.html36
1 files changed, 36 insertions, 0 deletions
diff --git a/doc/src/sgml/html/geqo-intro.html b/doc/src/sgml/html/geqo-intro.html
new file mode 100644
index 0000000..bfbf675
--- /dev/null
+++ b/doc/src/sgml/html/geqo-intro.html
@@ -0,0 +1,36 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>62.1. Query Handling as a Complex Optimization Problem</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><link rel="prev" href="geqo.html" title="Chapter 62. Genetic Query Optimizer" /><link rel="next" href="geqo-intro2.html" title="62.2. Genetic Algorithms" /></head><body id="docContent" class="container-fluid col-10"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">62.1. Query Handling as a Complex Optimization Problem</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="geqo.html" title="Chapter 62. Genetic Query Optimizer">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="geqo.html" title="Chapter 62. Genetic Query Optimizer">Up</a></td><th width="60%" align="center">Chapter 62. Genetic Query Optimizer</th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 15.5 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="geqo-intro2.html" title="62.2. Genetic Algorithms">Next</a></td></tr></table><hr /></div><div class="sect1" id="GEQO-INTRO"><div class="titlepage"><div><div><h2 class="title" style="clear: both">62.1. Query Handling as a Complex Optimization Problem</h2></div></div></div><p>
+ Among all relational operators the most difficult one to process
+ and optimize is the <em class="firstterm">join</em>. The number of
+ possible query plans grows exponentially with the
+ number of joins in the query. Further optimization effort is
+ caused by the support of a variety of <em class="firstterm">join
+ methods</em> (e.g., nested loop, hash join, merge join in
+ <span class="productname">PostgreSQL</span>) to process individual joins
+ and a diversity of <em class="firstterm">indexes</em> (e.g.,
+ B-tree, hash, GiST and GIN in <span class="productname">PostgreSQL</span>) as
+ access paths for relations.
+ </p><p>
+ The normal <span class="productname">PostgreSQL</span> query optimizer
+ performs a <em class="firstterm">near-exhaustive search</em> over the
+ space of alternative strategies. This algorithm, first introduced
+ in IBM's System R database, produces a near-optimal join order,
+ but can take an enormous amount of time and memory space when the
+ number of joins in the query grows large. This makes the ordinary
+ <span class="productname">PostgreSQL</span> query optimizer
+ inappropriate for queries that join a large number of tables.
+ </p><p>
+ The Institute of Automatic Control at the University of Mining and
+ Technology, in Freiberg, Germany, encountered some problems when
+ it wanted to use <span class="productname">PostgreSQL</span> as the
+ backend for a decision support knowledge based system for the
+ maintenance of an electrical power grid. The DBMS needed to handle
+ large join queries for the inference machine of the knowledge
+ based system. The number of joins in these queries made using the
+ normal query optimizer infeasible.
+ </p><p>
+ In the following we describe the implementation of a
+ <em class="firstterm">genetic algorithm</em> to solve the join
+ ordering problem in a manner that is efficient for queries
+ involving large numbers of joins.
+ </p></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="geqo.html" title="Chapter 62. Genetic Query Optimizer">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="geqo.html" title="Chapter 62. Genetic Query Optimizer">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="geqo-intro2.html" title="62.2. Genetic Algorithms">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 62. Genetic Query Optimizer </td><td width="20%" align="center"><a accesskey="h" href="index.html" title="PostgreSQL 15.5 Documentation">Home</a></td><td width="40%" align="right" valign="top"> 62.2. Genetic Algorithms</td></tr></table></div></body></html> \ No newline at end of file