summaryrefslogtreecommitdiffstats
path: root/src/backend/optimizer/geqo/geqo_erx.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/optimizer/geqo/geqo_erx.c')
-rw-r--r--src/backend/optimizer/geqo/geqo_erx.c468
1 files changed, 468 insertions, 0 deletions
diff --git a/src/backend/optimizer/geqo/geqo_erx.c b/src/backend/optimizer/geqo/geqo_erx.c
new file mode 100644
index 0000000..cc06613
--- /dev/null
+++ b/src/backend/optimizer/geqo/geqo_erx.c
@@ -0,0 +1,468 @@
+/*------------------------------------------------------------------------
+*
+* geqo_erx.c
+* edge recombination crossover [ER]
+*
+* src/backend/optimizer/geqo/geqo_erx.c
+*
+*-------------------------------------------------------------------------
+*/
+
+/* contributed by:
+ =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=
+ * Martin Utesch * Institute of Automatic Control *
+ = = University of Mining and Technology =
+ * utesch@aut.tu-freiberg.de * Freiberg, Germany *
+ =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=
+ */
+
+/* the edge recombination algorithm is adopted from Genitor : */
+/*************************************************************/
+/* */
+/* Copyright (c) 1990 */
+/* Darrell L. Whitley */
+/* Computer Science Department */
+/* Colorado State University */
+/* */
+/* Permission is hereby granted to copy all or any part of */
+/* this program for free distribution. The author's name */
+/* and this copyright notice must be included in any copy. */
+/* */
+/*************************************************************/
+
+
+#include "postgres.h"
+#include "optimizer/geqo_random.h"
+#include "optimizer/geqo_recombination.h"
+
+#if defined(ERX)
+
+static int gimme_edge(PlannerInfo *root, Gene gene1, Gene gene2, Edge *edge_table);
+static void remove_gene(PlannerInfo *root, Gene gene, Edge edge, Edge *edge_table);
+static Gene gimme_gene(PlannerInfo *root, Edge edge, Edge *edge_table);
+
+static Gene edge_failure(PlannerInfo *root, Gene *gene, int index, Edge *edge_table, int num_gene);
+
+
+/* alloc_edge_table
+ *
+ * allocate memory for edge table
+ *
+ */
+
+Edge *
+alloc_edge_table(PlannerInfo *root, int num_gene)
+{
+ Edge *edge_table;
+
+ /*
+ * palloc one extra location so that nodes numbered 1..n can be indexed
+ * directly; 0 will not be used
+ */
+
+ edge_table = (Edge *) palloc((num_gene + 1) * sizeof(Edge));
+
+ return edge_table;
+}
+
+/* free_edge_table
+ *
+ * deallocate memory of edge table
+ *
+ */
+void
+free_edge_table(PlannerInfo *root, Edge *edge_table)
+{
+ pfree(edge_table);
+}
+
+/* gimme_edge_table
+ *
+ * fills a data structure which represents the set of explicit
+ * edges between points in the (2) input genes
+ *
+ * assumes circular tours and bidirectional edges
+ *
+ * gimme_edge() will set "shared" edges to negative values
+ *
+ * returns average number edges/city in range 2.0 - 4.0
+ * where 2.0=homogeneous; 4.0=diverse
+ *
+ */
+float
+gimme_edge_table(PlannerInfo *root, Gene *tour1, Gene *tour2,
+ int num_gene, Edge *edge_table)
+{
+ int i,
+ index1,
+ index2;
+ int edge_total; /* total number of unique edges in two genes */
+
+ /* at first clear the edge table's old data */
+ for (i = 1; i <= num_gene; i++)
+ {
+ edge_table[i].total_edges = 0;
+ edge_table[i].unused_edges = 0;
+ }
+
+ /* fill edge table with new data */
+
+ edge_total = 0;
+
+ for (index1 = 0; index1 < num_gene; index1++)
+ {
+ /*
+ * presume the tour is circular, i.e. 1->2, 2->3, 3->1 this operation
+ * maps n back to 1
+ */
+
+ index2 = (index1 + 1) % num_gene;
+
+ /*
+ * edges are bidirectional, i.e. 1->2 is same as 2->1 call gimme_edge
+ * twice per edge
+ */
+
+ edge_total += gimme_edge(root, tour1[index1], tour1[index2], edge_table);
+ gimme_edge(root, tour1[index2], tour1[index1], edge_table);
+
+ edge_total += gimme_edge(root, tour2[index1], tour2[index2], edge_table);
+ gimme_edge(root, tour2[index2], tour2[index1], edge_table);
+ }
+
+ /* return average number of edges per index */
+ return ((float) (edge_total * 2) / (float) num_gene);
+}
+
+/* gimme_edge
+ *
+ * registers edge from city1 to city2 in input edge table
+ *
+ * no assumptions about directionality are made;
+ * therefore it is up to the calling routine to
+ * call gimme_edge twice to make a bi-directional edge
+ * between city1 and city2;
+ * uni-directional edges are possible as well (just call gimme_edge
+ * once with the direction from city1 to city2)
+ *
+ * returns 1 if edge was not already registered and was just added;
+ * 0 if edge was already registered and edge_table is unchanged
+ */
+static int
+gimme_edge(PlannerInfo *root, Gene gene1, Gene gene2, Edge *edge_table)
+{
+ int i;
+ int edges;
+ int city1 = (int) gene1;
+ int city2 = (int) gene2;
+
+
+ /* check whether edge city1->city2 already exists */
+ edges = edge_table[city1].total_edges;
+
+ for (i = 0; i < edges; i++)
+ {
+ if ((Gene) Abs(edge_table[city1].edge_list[i]) == city2)
+ {
+
+ /* mark shared edges as negative */
+ edge_table[city1].edge_list[i] = 0 - city2;
+
+ return 0;
+ }
+ }
+
+ /* add city1->city2; */
+ edge_table[city1].edge_list[edges] = city2;
+
+ /* increment the number of edges from city1 */
+ edge_table[city1].total_edges++;
+ edge_table[city1].unused_edges++;
+
+ return 1;
+}
+
+/* gimme_tour
+ *
+ * creates a new tour using edges from the edge table.
+ * priority is given to "shared" edges (i.e. edges which
+ * all parent genes possess and are marked as negative
+ * in the edge table.)
+ *
+ */
+int
+gimme_tour(PlannerInfo *root, Edge *edge_table, Gene *new_gene, int num_gene)
+{
+ int i;
+ int edge_failures = 0;
+
+ /* choose int between 1 and num_gene */
+ new_gene[0] = (Gene) geqo_randint(root, num_gene, 1);
+
+ for (i = 1; i < num_gene; i++)
+ {
+ /*
+ * as each point is entered into the tour, remove it from the edge
+ * table
+ */
+
+ remove_gene(root, new_gene[i - 1], edge_table[(int) new_gene[i - 1]], edge_table);
+
+ /* find destination for the newly entered point */
+
+ if (edge_table[new_gene[i - 1]].unused_edges > 0)
+ new_gene[i] = gimme_gene(root, edge_table[(int) new_gene[i - 1]], edge_table);
+
+ else
+ { /* cope with fault */
+ edge_failures++;
+
+ new_gene[i] = edge_failure(root, new_gene, i - 1, edge_table, num_gene);
+ }
+
+ /* mark this node as incorporated */
+ edge_table[(int) new_gene[i - 1]].unused_edges = -1;
+ } /* for (i=1; i<num_gene; i++) */
+
+ return edge_failures;
+}
+
+/* remove_gene
+ *
+ * removes input gene from edge_table.
+ * input edge is used
+ * to identify deletion locations within edge table.
+ *
+ */
+static void
+remove_gene(PlannerInfo *root, Gene gene, Edge edge, Edge *edge_table)
+{
+ int i,
+ j;
+ int possess_edge;
+ int genes_remaining;
+
+ /*
+ * do for every gene known to have an edge to input gene (i.e. in
+ * edge_list for input edge)
+ */
+
+ for (i = 0; i < edge.unused_edges; i++)
+ {
+ possess_edge = (int) Abs(edge.edge_list[i]);
+ genes_remaining = edge_table[possess_edge].unused_edges;
+
+ /* find the input gene in all edge_lists and delete it */
+ for (j = 0; j < genes_remaining; j++)
+ {
+
+ if ((Gene) Abs(edge_table[possess_edge].edge_list[j]) == gene)
+ {
+
+ edge_table[possess_edge].unused_edges--;
+
+ edge_table[possess_edge].edge_list[j] =
+ edge_table[possess_edge].edge_list[genes_remaining - 1];
+
+ break;
+ }
+ }
+ }
+}
+
+/* gimme_gene
+ *
+ * priority is given to "shared" edges
+ * (i.e. edges which both genes possess)
+ *
+ */
+static Gene
+gimme_gene(PlannerInfo *root, Edge edge, Edge *edge_table)
+{
+ int i;
+ Gene friend;
+ int minimum_edges;
+ int minimum_count = -1;
+ int rand_decision;
+
+ /*
+ * no point has edges to more than 4 other points thus, this contrived
+ * minimum will be replaced
+ */
+
+ minimum_edges = 5;
+
+ /* consider candidate destination points in edge list */
+
+ for (i = 0; i < edge.unused_edges; i++)
+ {
+ friend = (Gene) edge.edge_list[i];
+
+ /*
+ * give priority to shared edges that are negative; so return 'em
+ */
+
+ /*
+ * negative values are caught here so we need not worry about
+ * converting to absolute values
+ */
+ if (friend < 0)
+ return (Gene) Abs(friend);
+
+
+ /*
+ * give priority to candidates with fewest remaining unused edges;
+ * find out what the minimum number of unused edges is
+ * (minimum_edges); if there is more than one candidate with the
+ * minimum number of unused edges keep count of this number
+ * (minimum_count);
+ */
+
+ /*
+ * The test for minimum_count can probably be removed at some point
+ * but comments should probably indicate exactly why it is guaranteed
+ * that the test will always succeed the first time around. If it can
+ * fail then the code is in error
+ */
+
+
+ if (edge_table[(int) friend].unused_edges < minimum_edges)
+ {
+ minimum_edges = edge_table[(int) friend].unused_edges;
+ minimum_count = 1;
+ }
+ else if (minimum_count == -1)
+ elog(ERROR, "minimum_count not set");
+ else if (edge_table[(int) friend].unused_edges == minimum_edges)
+ minimum_count++;
+ } /* for (i=0; i<edge.unused_edges; i++) */
+
+
+ /* random decision of the possible candidates to use */
+ rand_decision = geqo_randint(root, minimum_count - 1, 0);
+
+
+ for (i = 0; i < edge.unused_edges; i++)
+ {
+ friend = (Gene) edge.edge_list[i];
+
+ /* return the chosen candidate point */
+ if (edge_table[(int) friend].unused_edges == minimum_edges)
+ {
+ minimum_count--;
+
+ if (minimum_count == rand_decision)
+ return friend;
+ }
+ }
+
+ /* ... should never be reached */
+ elog(ERROR, "neither shared nor minimum number nor random edge found");
+ return 0; /* to keep the compiler quiet */
+}
+
+/* edge_failure
+ *
+ * routine for handling edge failure
+ *
+ */
+static Gene
+edge_failure(PlannerInfo *root, Gene *gene, int index, Edge *edge_table, int num_gene)
+{
+ int i;
+ Gene fail_gene = gene[index];
+ int remaining_edges = 0;
+ int four_count = 0;
+ int rand_decision;
+
+
+ /*
+ * how many edges remain? how many gene with four total (initial) edges
+ * remain?
+ */
+
+ for (i = 1; i <= num_gene; i++)
+ {
+ if ((edge_table[i].unused_edges != -1) && (i != (int) fail_gene))
+ {
+ remaining_edges++;
+
+ if (edge_table[i].total_edges == 4)
+ four_count++;
+ }
+ }
+
+ /*
+ * random decision of the gene with remaining edges and whose total_edges
+ * == 4
+ */
+
+ if (four_count != 0)
+ {
+
+ rand_decision = geqo_randint(root, four_count - 1, 0);
+
+ for (i = 1; i <= num_gene; i++)
+ {
+
+ if ((Gene) i != fail_gene &&
+ edge_table[i].unused_edges != -1 &&
+ edge_table[i].total_edges == 4)
+ {
+
+ four_count--;
+
+ if (rand_decision == four_count)
+ return (Gene) i;
+ }
+ }
+
+ elog(LOG, "no edge found via random decision and total_edges == 4");
+ }
+ else if (remaining_edges != 0)
+ {
+ /* random decision of the gene with remaining edges */
+ rand_decision = geqo_randint(root, remaining_edges - 1, 0);
+
+ for (i = 1; i <= num_gene; i++)
+ {
+
+ if ((Gene) i != fail_gene &&
+ edge_table[i].unused_edges != -1)
+ {
+
+ remaining_edges--;
+
+ if (rand_decision == remaining_edges)
+ return i;
+ }
+ }
+
+ elog(LOG, "no edge found via random decision with remaining edges");
+ }
+
+ /*
+ * edge table seems to be empty; this happens sometimes on the last point
+ * due to the fact that the first point is removed from the table even
+ * though only one of its edges has been determined
+ */
+
+ else
+ { /* occurs only at the last point in the tour;
+ * simply look for the point which is not yet
+ * used */
+
+ for (i = 1; i <= num_gene; i++)
+ if (edge_table[i].unused_edges >= 0)
+ return (Gene) i;
+
+ elog(LOG, "no edge found via looking for the last unused point");
+ }
+
+
+ /* ... should never be reached */
+ elog(ERROR, "no edge found");
+ return 0; /* to keep the compiler quiet */
+}
+
+#endif /* defined(ERX) */