summaryrefslogtreecommitdiffstats
path: root/src/backend/optimizer/util/clauses.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/optimizer/util/clauses.c')
-rw-r--r--src/backend/optimizer/util/clauses.c5255
1 files changed, 5255 insertions, 0 deletions
diff --git a/src/backend/optimizer/util/clauses.c b/src/backend/optimizer/util/clauses.c
new file mode 100644
index 0000000..f2216f5
--- /dev/null
+++ b/src/backend/optimizer/util/clauses.c
@@ -0,0 +1,5255 @@
+/*-------------------------------------------------------------------------
+ *
+ * clauses.c
+ * routines to manipulate qualification clauses
+ *
+ * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/optimizer/util/clauses.c
+ *
+ * HISTORY
+ * AUTHOR DATE MAJOR EVENT
+ * Andrew Yu Nov 3, 1994 clause.c and clauses.c combined
+ *
+ *-------------------------------------------------------------------------
+ */
+
+#include "postgres.h"
+
+#include "access/htup_details.h"
+#include "catalog/pg_aggregate.h"
+#include "catalog/pg_class.h"
+#include "catalog/pg_language.h"
+#include "catalog/pg_operator.h"
+#include "catalog/pg_proc.h"
+#include "catalog/pg_type.h"
+#include "executor/executor.h"
+#include "executor/functions.h"
+#include "funcapi.h"
+#include "miscadmin.h"
+#include "nodes/makefuncs.h"
+#include "nodes/nodeFuncs.h"
+#include "nodes/subscripting.h"
+#include "nodes/supportnodes.h"
+#include "optimizer/clauses.h"
+#include "optimizer/cost.h"
+#include "optimizer/optimizer.h"
+#include "optimizer/plancat.h"
+#include "optimizer/planmain.h"
+#include "parser/analyze.h"
+#include "parser/parse_agg.h"
+#include "parser/parse_coerce.h"
+#include "parser/parse_func.h"
+#include "rewrite/rewriteHandler.h"
+#include "rewrite/rewriteManip.h"
+#include "tcop/tcopprot.h"
+#include "utils/acl.h"
+#include "utils/builtins.h"
+#include "utils/datum.h"
+#include "utils/fmgroids.h"
+#include "utils/lsyscache.h"
+#include "utils/memutils.h"
+#include "utils/syscache.h"
+#include "utils/typcache.h"
+
+typedef struct
+{
+ ParamListInfo boundParams;
+ PlannerInfo *root;
+ List *active_fns;
+ Node *case_val;
+ bool estimate;
+} eval_const_expressions_context;
+
+typedef struct
+{
+ int nargs;
+ List *args;
+ int *usecounts;
+} substitute_actual_parameters_context;
+
+typedef struct
+{
+ int nargs;
+ List *args;
+ int sublevels_up;
+} substitute_actual_srf_parameters_context;
+
+typedef struct
+{
+ char *proname;
+ char *prosrc;
+} inline_error_callback_arg;
+
+typedef struct
+{
+ char max_hazard; /* worst proparallel hazard found so far */
+ char max_interesting; /* worst proparallel hazard of interest */
+ List *safe_param_ids; /* PARAM_EXEC Param IDs to treat as safe */
+} max_parallel_hazard_context;
+
+static bool contain_agg_clause_walker(Node *node, void *context);
+static bool find_window_functions_walker(Node *node, WindowFuncLists *lists);
+static bool contain_subplans_walker(Node *node, void *context);
+static bool contain_mutable_functions_walker(Node *node, void *context);
+static bool contain_volatile_functions_walker(Node *node, void *context);
+static bool contain_volatile_functions_not_nextval_walker(Node *node, void *context);
+static bool max_parallel_hazard_walker(Node *node,
+ max_parallel_hazard_context *context);
+static bool contain_nonstrict_functions_walker(Node *node, void *context);
+static bool contain_exec_param_walker(Node *node, List *param_ids);
+static bool contain_context_dependent_node(Node *clause);
+static bool contain_context_dependent_node_walker(Node *node, int *flags);
+static bool contain_leaked_vars_walker(Node *node, void *context);
+static Relids find_nonnullable_rels_walker(Node *node, bool top_level);
+static List *find_nonnullable_vars_walker(Node *node, bool top_level);
+static bool is_strict_saop(ScalarArrayOpExpr *expr, bool falseOK);
+static bool convert_saop_to_hashed_saop_walker(Node *node, void *context);
+static Node *eval_const_expressions_mutator(Node *node,
+ eval_const_expressions_context *context);
+static bool contain_non_const_walker(Node *node, void *context);
+static bool ece_function_is_safe(Oid funcid,
+ eval_const_expressions_context *context);
+static List *simplify_or_arguments(List *args,
+ eval_const_expressions_context *context,
+ bool *haveNull, bool *forceTrue);
+static List *simplify_and_arguments(List *args,
+ eval_const_expressions_context *context,
+ bool *haveNull, bool *forceFalse);
+static Node *simplify_boolean_equality(Oid opno, List *args);
+static Expr *simplify_function(Oid funcid,
+ Oid result_type, int32 result_typmod,
+ Oid result_collid, Oid input_collid, List **args_p,
+ bool funcvariadic, bool process_args, bool allow_non_const,
+ eval_const_expressions_context *context);
+static List *reorder_function_arguments(List *args, int pronargs,
+ HeapTuple func_tuple);
+static List *add_function_defaults(List *args, int pronargs,
+ HeapTuple func_tuple);
+static List *fetch_function_defaults(HeapTuple func_tuple);
+static void recheck_cast_function_args(List *args, Oid result_type,
+ Oid *proargtypes, int pronargs,
+ HeapTuple func_tuple);
+static Expr *evaluate_function(Oid funcid, Oid result_type, int32 result_typmod,
+ Oid result_collid, Oid input_collid, List *args,
+ bool funcvariadic,
+ HeapTuple func_tuple,
+ eval_const_expressions_context *context);
+static Expr *inline_function(Oid funcid, Oid result_type, Oid result_collid,
+ Oid input_collid, List *args,
+ bool funcvariadic,
+ HeapTuple func_tuple,
+ eval_const_expressions_context *context);
+static Node *substitute_actual_parameters(Node *expr, int nargs, List *args,
+ int *usecounts);
+static Node *substitute_actual_parameters_mutator(Node *node,
+ substitute_actual_parameters_context *context);
+static void sql_inline_error_callback(void *arg);
+static Query *substitute_actual_srf_parameters(Query *expr,
+ int nargs, List *args);
+static Node *substitute_actual_srf_parameters_mutator(Node *node,
+ substitute_actual_srf_parameters_context *context);
+static bool pull_paramids_walker(Node *node, Bitmapset **context);
+
+
+/*****************************************************************************
+ * Aggregate-function clause manipulation
+ *****************************************************************************/
+
+/*
+ * contain_agg_clause
+ * Recursively search for Aggref/GroupingFunc nodes within a clause.
+ *
+ * Returns true if any aggregate found.
+ *
+ * This does not descend into subqueries, and so should be used only after
+ * reduction of sublinks to subplans, or in contexts where it's known there
+ * are no subqueries. There mustn't be outer-aggregate references either.
+ *
+ * (If you want something like this but able to deal with subqueries,
+ * see rewriteManip.c's contain_aggs_of_level().)
+ */
+bool
+contain_agg_clause(Node *clause)
+{
+ return contain_agg_clause_walker(clause, NULL);
+}
+
+static bool
+contain_agg_clause_walker(Node *node, void *context)
+{
+ if (node == NULL)
+ return false;
+ if (IsA(node, Aggref))
+ {
+ Assert(((Aggref *) node)->agglevelsup == 0);
+ return true; /* abort the tree traversal and return true */
+ }
+ if (IsA(node, GroupingFunc))
+ {
+ Assert(((GroupingFunc *) node)->agglevelsup == 0);
+ return true; /* abort the tree traversal and return true */
+ }
+ Assert(!IsA(node, SubLink));
+ return expression_tree_walker(node, contain_agg_clause_walker, context);
+}
+
+/*****************************************************************************
+ * Window-function clause manipulation
+ *****************************************************************************/
+
+/*
+ * contain_window_function
+ * Recursively search for WindowFunc nodes within a clause.
+ *
+ * Since window functions don't have level fields, but are hard-wired to
+ * be associated with the current query level, this is just the same as
+ * rewriteManip.c's function.
+ */
+bool
+contain_window_function(Node *clause)
+{
+ return contain_windowfuncs(clause);
+}
+
+/*
+ * find_window_functions
+ * Locate all the WindowFunc nodes in an expression tree, and organize
+ * them by winref ID number.
+ *
+ * Caller must provide an upper bound on the winref IDs expected in the tree.
+ */
+WindowFuncLists *
+find_window_functions(Node *clause, Index maxWinRef)
+{
+ WindowFuncLists *lists = palloc(sizeof(WindowFuncLists));
+
+ lists->numWindowFuncs = 0;
+ lists->maxWinRef = maxWinRef;
+ lists->windowFuncs = (List **) palloc0((maxWinRef + 1) * sizeof(List *));
+ (void) find_window_functions_walker(clause, lists);
+ return lists;
+}
+
+static bool
+find_window_functions_walker(Node *node, WindowFuncLists *lists)
+{
+ if (node == NULL)
+ return false;
+ if (IsA(node, WindowFunc))
+ {
+ WindowFunc *wfunc = (WindowFunc *) node;
+
+ /* winref is unsigned, so one-sided test is OK */
+ if (wfunc->winref > lists->maxWinRef)
+ elog(ERROR, "WindowFunc contains out-of-range winref %u",
+ wfunc->winref);
+ /* eliminate duplicates, so that we avoid repeated computation */
+ if (!list_member(lists->windowFuncs[wfunc->winref], wfunc))
+ {
+ lists->windowFuncs[wfunc->winref] =
+ lappend(lists->windowFuncs[wfunc->winref], wfunc);
+ lists->numWindowFuncs++;
+ }
+
+ /*
+ * We assume that the parser checked that there are no window
+ * functions in the arguments or filter clause. Hence, we need not
+ * recurse into them. (If either the parser or the planner screws up
+ * on this point, the executor will still catch it; see ExecInitExpr.)
+ */
+ return false;
+ }
+ Assert(!IsA(node, SubLink));
+ return expression_tree_walker(node, find_window_functions_walker,
+ (void *) lists);
+}
+
+
+/*****************************************************************************
+ * Support for expressions returning sets
+ *****************************************************************************/
+
+/*
+ * expression_returns_set_rows
+ * Estimate the number of rows returned by a set-returning expression.
+ * The result is 1 if it's not a set-returning expression.
+ *
+ * We should only examine the top-level function or operator; it used to be
+ * appropriate to recurse, but not anymore. (Even if there are more SRFs in
+ * the function's inputs, their multipliers are accounted for separately.)
+ *
+ * Note: keep this in sync with expression_returns_set() in nodes/nodeFuncs.c.
+ */
+double
+expression_returns_set_rows(PlannerInfo *root, Node *clause)
+{
+ if (clause == NULL)
+ return 1.0;
+ if (IsA(clause, FuncExpr))
+ {
+ FuncExpr *expr = (FuncExpr *) clause;
+
+ if (expr->funcretset)
+ return clamp_row_est(get_function_rows(root, expr->funcid, clause));
+ }
+ if (IsA(clause, OpExpr))
+ {
+ OpExpr *expr = (OpExpr *) clause;
+
+ if (expr->opretset)
+ {
+ set_opfuncid(expr);
+ return clamp_row_est(get_function_rows(root, expr->opfuncid, clause));
+ }
+ }
+ return 1.0;
+}
+
+
+/*****************************************************************************
+ * Subplan clause manipulation
+ *****************************************************************************/
+
+/*
+ * contain_subplans
+ * Recursively search for subplan nodes within a clause.
+ *
+ * If we see a SubLink node, we will return true. This is only possible if
+ * the expression tree hasn't yet been transformed by subselect.c. We do not
+ * know whether the node will produce a true subplan or just an initplan,
+ * but we make the conservative assumption that it will be a subplan.
+ *
+ * Returns true if any subplan found.
+ */
+bool
+contain_subplans(Node *clause)
+{
+ return contain_subplans_walker(clause, NULL);
+}
+
+static bool
+contain_subplans_walker(Node *node, void *context)
+{
+ if (node == NULL)
+ return false;
+ if (IsA(node, SubPlan) ||
+ IsA(node, AlternativeSubPlan) ||
+ IsA(node, SubLink))
+ return true; /* abort the tree traversal and return true */
+ return expression_tree_walker(node, contain_subplans_walker, context);
+}
+
+
+/*****************************************************************************
+ * Check clauses for mutable functions
+ *****************************************************************************/
+
+/*
+ * contain_mutable_functions
+ * Recursively search for mutable functions within a clause.
+ *
+ * Returns true if any mutable function (or operator implemented by a
+ * mutable function) is found. This test is needed so that we don't
+ * mistakenly think that something like "WHERE random() < 0.5" can be treated
+ * as a constant qualification.
+ *
+ * We will recursively look into Query nodes (i.e., SubLink sub-selects)
+ * but not into SubPlans. See comments for contain_volatile_functions().
+ */
+bool
+contain_mutable_functions(Node *clause)
+{
+ return contain_mutable_functions_walker(clause, NULL);
+}
+
+static bool
+contain_mutable_functions_checker(Oid func_id, void *context)
+{
+ return (func_volatile(func_id) != PROVOLATILE_IMMUTABLE);
+}
+
+static bool
+contain_mutable_functions_walker(Node *node, void *context)
+{
+ if (node == NULL)
+ return false;
+ /* Check for mutable functions in node itself */
+ if (check_functions_in_node(node, contain_mutable_functions_checker,
+ context))
+ return true;
+
+ if (IsA(node, SQLValueFunction))
+ {
+ /* all variants of SQLValueFunction are stable */
+ return true;
+ }
+
+ if (IsA(node, NextValueExpr))
+ {
+ /* NextValueExpr is volatile */
+ return true;
+ }
+
+ /*
+ * It should be safe to treat MinMaxExpr as immutable, because it will
+ * depend on a non-cross-type btree comparison function, and those should
+ * always be immutable. Treating XmlExpr as immutable is more dubious,
+ * and treating CoerceToDomain as immutable is outright dangerous. But we
+ * have done so historically, and changing this would probably cause more
+ * problems than it would fix. In practice, if you have a non-immutable
+ * domain constraint you are in for pain anyhow.
+ */
+
+ /* Recurse to check arguments */
+ if (IsA(node, Query))
+ {
+ /* Recurse into subselects */
+ return query_tree_walker((Query *) node,
+ contain_mutable_functions_walker,
+ context, 0);
+ }
+ return expression_tree_walker(node, contain_mutable_functions_walker,
+ context);
+}
+
+
+/*****************************************************************************
+ * Check clauses for volatile functions
+ *****************************************************************************/
+
+/*
+ * contain_volatile_functions
+ * Recursively search for volatile functions within a clause.
+ *
+ * Returns true if any volatile function (or operator implemented by a
+ * volatile function) is found. This test prevents, for example,
+ * invalid conversions of volatile expressions into indexscan quals.
+ *
+ * We will recursively look into Query nodes (i.e., SubLink sub-selects)
+ * but not into SubPlans. This is a bit odd, but intentional. If we are
+ * looking at a SubLink, we are probably deciding whether a query tree
+ * transformation is safe, and a contained sub-select should affect that;
+ * for example, duplicating a sub-select containing a volatile function
+ * would be bad. However, once we've got to the stage of having SubPlans,
+ * subsequent planning need not consider volatility within those, since
+ * the executor won't change its evaluation rules for a SubPlan based on
+ * volatility.
+ *
+ * For some node types, for example, RestrictInfo and PathTarget, we cache
+ * whether we found any volatile functions or not and reuse that value in any
+ * future checks for that node. All of the logic for determining if the
+ * cached value should be set to VOLATILITY_NOVOLATILE or VOLATILITY_VOLATILE
+ * belongs in this function. Any code which makes changes to these nodes
+ * which could change the outcome this function must set the cached value back
+ * to VOLATILITY_UNKNOWN. That allows this function to redetermine the
+ * correct value during the next call, should we need to redetermine if the
+ * node contains any volatile functions again in the future.
+ */
+bool
+contain_volatile_functions(Node *clause)
+{
+ return contain_volatile_functions_walker(clause, NULL);
+}
+
+static bool
+contain_volatile_functions_checker(Oid func_id, void *context)
+{
+ return (func_volatile(func_id) == PROVOLATILE_VOLATILE);
+}
+
+static bool
+contain_volatile_functions_walker(Node *node, void *context)
+{
+ if (node == NULL)
+ return false;
+ /* Check for volatile functions in node itself */
+ if (check_functions_in_node(node, contain_volatile_functions_checker,
+ context))
+ return true;
+
+ if (IsA(node, NextValueExpr))
+ {
+ /* NextValueExpr is volatile */
+ return true;
+ }
+
+ if (IsA(node, RestrictInfo))
+ {
+ RestrictInfo *rinfo = (RestrictInfo *) node;
+
+ /*
+ * For RestrictInfo, check if we've checked the volatility of it
+ * before. If so, we can just use the cached value and not bother
+ * checking it again. Otherwise, check it and cache if whether we
+ * found any volatile functions.
+ */
+ if (rinfo->has_volatile == VOLATILITY_NOVOLATILE)
+ return false;
+ else if (rinfo->has_volatile == VOLATILITY_VOLATILE)
+ return true;
+ else
+ {
+ bool hasvolatile;
+
+ hasvolatile = contain_volatile_functions_walker((Node *) rinfo->clause,
+ context);
+ if (hasvolatile)
+ rinfo->has_volatile = VOLATILITY_VOLATILE;
+ else
+ rinfo->has_volatile = VOLATILITY_NOVOLATILE;
+
+ return hasvolatile;
+ }
+ }
+
+ if (IsA(node, PathTarget))
+ {
+ PathTarget *target = (PathTarget *) node;
+
+ /*
+ * We also do caching for PathTarget the same as we do above for
+ * RestrictInfos.
+ */
+ if (target->has_volatile_expr == VOLATILITY_NOVOLATILE)
+ return false;
+ else if (target->has_volatile_expr == VOLATILITY_VOLATILE)
+ return true;
+ else
+ {
+ bool hasvolatile;
+
+ hasvolatile = contain_volatile_functions_walker((Node *) target->exprs,
+ context);
+
+ if (hasvolatile)
+ target->has_volatile_expr = VOLATILITY_VOLATILE;
+ else
+ target->has_volatile_expr = VOLATILITY_NOVOLATILE;
+
+ return hasvolatile;
+ }
+ }
+
+ /*
+ * See notes in contain_mutable_functions_walker about why we treat
+ * MinMaxExpr, XmlExpr, and CoerceToDomain as immutable, while
+ * SQLValueFunction is stable. Hence, none of them are of interest here.
+ */
+
+ /* Recurse to check arguments */
+ if (IsA(node, Query))
+ {
+ /* Recurse into subselects */
+ return query_tree_walker((Query *) node,
+ contain_volatile_functions_walker,
+ context, 0);
+ }
+ return expression_tree_walker(node, contain_volatile_functions_walker,
+ context);
+}
+
+/*
+ * Special purpose version of contain_volatile_functions() for use in COPY:
+ * ignore nextval(), but treat all other functions normally.
+ */
+bool
+contain_volatile_functions_not_nextval(Node *clause)
+{
+ return contain_volatile_functions_not_nextval_walker(clause, NULL);
+}
+
+static bool
+contain_volatile_functions_not_nextval_checker(Oid func_id, void *context)
+{
+ return (func_id != F_NEXTVAL &&
+ func_volatile(func_id) == PROVOLATILE_VOLATILE);
+}
+
+static bool
+contain_volatile_functions_not_nextval_walker(Node *node, void *context)
+{
+ if (node == NULL)
+ return false;
+ /* Check for volatile functions in node itself */
+ if (check_functions_in_node(node,
+ contain_volatile_functions_not_nextval_checker,
+ context))
+ return true;
+
+ /*
+ * See notes in contain_mutable_functions_walker about why we treat
+ * MinMaxExpr, XmlExpr, and CoerceToDomain as immutable, while
+ * SQLValueFunction is stable. Hence, none of them are of interest here.
+ * Also, since we're intentionally ignoring nextval(), presumably we
+ * should ignore NextValueExpr.
+ */
+
+ /* Recurse to check arguments */
+ if (IsA(node, Query))
+ {
+ /* Recurse into subselects */
+ return query_tree_walker((Query *) node,
+ contain_volatile_functions_not_nextval_walker,
+ context, 0);
+ }
+ return expression_tree_walker(node,
+ contain_volatile_functions_not_nextval_walker,
+ context);
+}
+
+
+/*****************************************************************************
+ * Check queries for parallel unsafe and/or restricted constructs
+ *****************************************************************************/
+
+/*
+ * max_parallel_hazard
+ * Find the worst parallel-hazard level in the given query
+ *
+ * Returns the worst function hazard property (the earliest in this list:
+ * PROPARALLEL_UNSAFE, PROPARALLEL_RESTRICTED, PROPARALLEL_SAFE) that can
+ * be found in the given parsetree. We use this to find out whether the query
+ * can be parallelized at all. The caller will also save the result in
+ * PlannerGlobal so as to short-circuit checks of portions of the querytree
+ * later, in the common case where everything is SAFE.
+ */
+char
+max_parallel_hazard(Query *parse)
+{
+ max_parallel_hazard_context context;
+
+ context.max_hazard = PROPARALLEL_SAFE;
+ context.max_interesting = PROPARALLEL_UNSAFE;
+ context.safe_param_ids = NIL;
+ (void) max_parallel_hazard_walker((Node *) parse, &context);
+ return context.max_hazard;
+}
+
+/*
+ * is_parallel_safe
+ * Detect whether the given expr contains only parallel-safe functions
+ *
+ * root->glob->maxParallelHazard must previously have been set to the
+ * result of max_parallel_hazard() on the whole query.
+ */
+bool
+is_parallel_safe(PlannerInfo *root, Node *node)
+{
+ max_parallel_hazard_context context;
+ PlannerInfo *proot;
+ ListCell *l;
+
+ /*
+ * Even if the original querytree contained nothing unsafe, we need to
+ * search the expression if we have generated any PARAM_EXEC Params while
+ * planning, because those are parallel-restricted and there might be one
+ * in this expression. But otherwise we don't need to look.
+ */
+ if (root->glob->maxParallelHazard == PROPARALLEL_SAFE &&
+ root->glob->paramExecTypes == NIL)
+ return true;
+ /* Else use max_parallel_hazard's search logic, but stop on RESTRICTED */
+ context.max_hazard = PROPARALLEL_SAFE;
+ context.max_interesting = PROPARALLEL_RESTRICTED;
+ context.safe_param_ids = NIL;
+
+ /*
+ * The params that refer to the same or parent query level are considered
+ * parallel-safe. The idea is that we compute such params at Gather or
+ * Gather Merge node and pass their value to workers.
+ */
+ for (proot = root; proot != NULL; proot = proot->parent_root)
+ {
+ foreach(l, proot->init_plans)
+ {
+ SubPlan *initsubplan = (SubPlan *) lfirst(l);
+
+ context.safe_param_ids = list_concat(context.safe_param_ids,
+ initsubplan->setParam);
+ }
+ }
+
+ return !max_parallel_hazard_walker(node, &context);
+}
+
+/* core logic for all parallel-hazard checks */
+static bool
+max_parallel_hazard_test(char proparallel, max_parallel_hazard_context *context)
+{
+ switch (proparallel)
+ {
+ case PROPARALLEL_SAFE:
+ /* nothing to see here, move along */
+ break;
+ case PROPARALLEL_RESTRICTED:
+ /* increase max_hazard to RESTRICTED */
+ Assert(context->max_hazard != PROPARALLEL_UNSAFE);
+ context->max_hazard = proparallel;
+ /* done if we are not expecting any unsafe functions */
+ if (context->max_interesting == proparallel)
+ return true;
+ break;
+ case PROPARALLEL_UNSAFE:
+ context->max_hazard = proparallel;
+ /* we're always done at the first unsafe construct */
+ return true;
+ default:
+ elog(ERROR, "unrecognized proparallel value \"%c\"", proparallel);
+ break;
+ }
+ return false;
+}
+
+/* check_functions_in_node callback */
+static bool
+max_parallel_hazard_checker(Oid func_id, void *context)
+{
+ return max_parallel_hazard_test(func_parallel(func_id),
+ (max_parallel_hazard_context *) context);
+}
+
+static bool
+max_parallel_hazard_walker(Node *node, max_parallel_hazard_context *context)
+{
+ if (node == NULL)
+ return false;
+
+ /* Check for hazardous functions in node itself */
+ if (check_functions_in_node(node, max_parallel_hazard_checker,
+ context))
+ return true;
+
+ /*
+ * It should be OK to treat MinMaxExpr as parallel-safe, since btree
+ * opclass support functions are generally parallel-safe. XmlExpr is a
+ * bit more dubious but we can probably get away with it. We err on the
+ * side of caution by treating CoerceToDomain as parallel-restricted.
+ * (Note: in principle that's wrong because a domain constraint could
+ * contain a parallel-unsafe function; but useful constraints probably
+ * never would have such, and assuming they do would cripple use of
+ * parallel query in the presence of domain types.) SQLValueFunction
+ * should be safe in all cases. NextValueExpr is parallel-unsafe.
+ */
+ if (IsA(node, CoerceToDomain))
+ {
+ if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
+ return true;
+ }
+
+ else if (IsA(node, NextValueExpr))
+ {
+ if (max_parallel_hazard_test(PROPARALLEL_UNSAFE, context))
+ return true;
+ }
+
+ /*
+ * Treat window functions as parallel-restricted because we aren't sure
+ * whether the input row ordering is fully deterministic, and the output
+ * of window functions might vary across workers if not. (In some cases,
+ * like where the window frame orders by a primary key, we could relax
+ * this restriction. But it doesn't currently seem worth expending extra
+ * effort to do so.)
+ */
+ else if (IsA(node, WindowFunc))
+ {
+ if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
+ return true;
+ }
+
+ /*
+ * As a notational convenience for callers, look through RestrictInfo.
+ */
+ else if (IsA(node, RestrictInfo))
+ {
+ RestrictInfo *rinfo = (RestrictInfo *) node;
+
+ return max_parallel_hazard_walker((Node *) rinfo->clause, context);
+ }
+
+ /*
+ * Really we should not see SubLink during a max_interesting == restricted
+ * scan, but if we do, return true.
+ */
+ else if (IsA(node, SubLink))
+ {
+ if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
+ return true;
+ }
+
+ /*
+ * Only parallel-safe SubPlans can be sent to workers. Within the
+ * testexpr of the SubPlan, Params representing the output columns of the
+ * subplan can be treated as parallel-safe, so temporarily add their IDs
+ * to the safe_param_ids list while examining the testexpr.
+ */
+ else if (IsA(node, SubPlan))
+ {
+ SubPlan *subplan = (SubPlan *) node;
+ List *save_safe_param_ids;
+
+ if (!subplan->parallel_safe &&
+ max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
+ return true;
+ save_safe_param_ids = context->safe_param_ids;
+ context->safe_param_ids = list_concat_copy(context->safe_param_ids,
+ subplan->paramIds);
+ if (max_parallel_hazard_walker(subplan->testexpr, context))
+ return true; /* no need to restore safe_param_ids */
+ list_free(context->safe_param_ids);
+ context->safe_param_ids = save_safe_param_ids;
+ /* we must also check args, but no special Param treatment there */
+ if (max_parallel_hazard_walker((Node *) subplan->args, context))
+ return true;
+ /* don't want to recurse normally, so we're done */
+ return false;
+ }
+
+ /*
+ * We can't pass Params to workers at the moment either, so they are also
+ * parallel-restricted, unless they are PARAM_EXTERN Params or are
+ * PARAM_EXEC Params listed in safe_param_ids, meaning they could be
+ * either generated within workers or can be computed by the leader and
+ * then their value can be passed to workers.
+ */
+ else if (IsA(node, Param))
+ {
+ Param *param = (Param *) node;
+
+ if (param->paramkind == PARAM_EXTERN)
+ return false;
+
+ if (param->paramkind != PARAM_EXEC ||
+ !list_member_int(context->safe_param_ids, param->paramid))
+ {
+ if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
+ return true;
+ }
+ return false; /* nothing to recurse to */
+ }
+
+ /*
+ * When we're first invoked on a completely unplanned tree, we must
+ * recurse into subqueries so to as to locate parallel-unsafe constructs
+ * anywhere in the tree.
+ */
+ else if (IsA(node, Query))
+ {
+ Query *query = (Query *) node;
+
+ /* SELECT FOR UPDATE/SHARE must be treated as unsafe */
+ if (query->rowMarks != NULL)
+ {
+ context->max_hazard = PROPARALLEL_UNSAFE;
+ return true;
+ }
+
+ /* Recurse into subselects */
+ return query_tree_walker(query,
+ max_parallel_hazard_walker,
+ context, 0);
+ }
+
+ /* Recurse to check arguments */
+ return expression_tree_walker(node,
+ max_parallel_hazard_walker,
+ context);
+}
+
+
+/*****************************************************************************
+ * Check clauses for nonstrict functions
+ *****************************************************************************/
+
+/*
+ * contain_nonstrict_functions
+ * Recursively search for nonstrict functions within a clause.
+ *
+ * Returns true if any nonstrict construct is found --- ie, anything that
+ * could produce non-NULL output with a NULL input.
+ *
+ * The idea here is that the caller has verified that the expression contains
+ * one or more Var or Param nodes (as appropriate for the caller's need), and
+ * now wishes to prove that the expression result will be NULL if any of these
+ * inputs is NULL. If we return false, then the proof succeeded.
+ */
+bool
+contain_nonstrict_functions(Node *clause)
+{
+ return contain_nonstrict_functions_walker(clause, NULL);
+}
+
+static bool
+contain_nonstrict_functions_checker(Oid func_id, void *context)
+{
+ return !func_strict(func_id);
+}
+
+static bool
+contain_nonstrict_functions_walker(Node *node, void *context)
+{
+ if (node == NULL)
+ return false;
+ if (IsA(node, Aggref))
+ {
+ /* an aggregate could return non-null with null input */
+ return true;
+ }
+ if (IsA(node, GroupingFunc))
+ {
+ /*
+ * A GroupingFunc doesn't evaluate its arguments, and therefore must
+ * be treated as nonstrict.
+ */
+ return true;
+ }
+ if (IsA(node, WindowFunc))
+ {
+ /* a window function could return non-null with null input */
+ return true;
+ }
+ if (IsA(node, SubscriptingRef))
+ {
+ SubscriptingRef *sbsref = (SubscriptingRef *) node;
+ const SubscriptRoutines *sbsroutines;
+
+ /* Subscripting assignment is always presumed nonstrict */
+ if (sbsref->refassgnexpr != NULL)
+ return true;
+ /* Otherwise we must look up the subscripting support methods */
+ sbsroutines = getSubscriptingRoutines(sbsref->refcontainertype, NULL);
+ if (!(sbsroutines && sbsroutines->fetch_strict))
+ return true;
+ /* else fall through to check args */
+ }
+ if (IsA(node, DistinctExpr))
+ {
+ /* IS DISTINCT FROM is inherently non-strict */
+ return true;
+ }
+ if (IsA(node, NullIfExpr))
+ {
+ /* NULLIF is inherently non-strict */
+ return true;
+ }
+ if (IsA(node, BoolExpr))
+ {
+ BoolExpr *expr = (BoolExpr *) node;
+
+ switch (expr->boolop)
+ {
+ case AND_EXPR:
+ case OR_EXPR:
+ /* AND, OR are inherently non-strict */
+ return true;
+ default:
+ break;
+ }
+ }
+ if (IsA(node, SubLink))
+ {
+ /* In some cases a sublink might be strict, but in general not */
+ return true;
+ }
+ if (IsA(node, SubPlan))
+ return true;
+ if (IsA(node, AlternativeSubPlan))
+ return true;
+ if (IsA(node, FieldStore))
+ return true;
+ if (IsA(node, CoerceViaIO))
+ {
+ /*
+ * CoerceViaIO is strict regardless of whether the I/O functions are,
+ * so just go look at its argument; asking check_functions_in_node is
+ * useless expense and could deliver the wrong answer.
+ */
+ return contain_nonstrict_functions_walker((Node *) ((CoerceViaIO *) node)->arg,
+ context);
+ }
+ if (IsA(node, ArrayCoerceExpr))
+ {
+ /*
+ * ArrayCoerceExpr is strict at the array level, regardless of what
+ * the per-element expression is; so we should ignore elemexpr and
+ * recurse only into the arg.
+ */
+ return contain_nonstrict_functions_walker((Node *) ((ArrayCoerceExpr *) node)->arg,
+ context);
+ }
+ if (IsA(node, CaseExpr))
+ return true;
+ if (IsA(node, ArrayExpr))
+ return true;
+ if (IsA(node, RowExpr))
+ return true;
+ if (IsA(node, RowCompareExpr))
+ return true;
+ if (IsA(node, CoalesceExpr))
+ return true;
+ if (IsA(node, MinMaxExpr))
+ return true;
+ if (IsA(node, XmlExpr))
+ return true;
+ if (IsA(node, NullTest))
+ return true;
+ if (IsA(node, BooleanTest))
+ return true;
+
+ /* Check other function-containing nodes */
+ if (check_functions_in_node(node, contain_nonstrict_functions_checker,
+ context))
+ return true;
+
+ return expression_tree_walker(node, contain_nonstrict_functions_walker,
+ context);
+}
+
+/*****************************************************************************
+ * Check clauses for Params
+ *****************************************************************************/
+
+/*
+ * contain_exec_param
+ * Recursively search for PARAM_EXEC Params within a clause.
+ *
+ * Returns true if the clause contains any PARAM_EXEC Param with a paramid
+ * appearing in the given list of Param IDs. Does not descend into
+ * subqueries!
+ */
+bool
+contain_exec_param(Node *clause, List *param_ids)
+{
+ return contain_exec_param_walker(clause, param_ids);
+}
+
+static bool
+contain_exec_param_walker(Node *node, List *param_ids)
+{
+ if (node == NULL)
+ return false;
+ if (IsA(node, Param))
+ {
+ Param *p = (Param *) node;
+
+ if (p->paramkind == PARAM_EXEC &&
+ list_member_int(param_ids, p->paramid))
+ return true;
+ }
+ return expression_tree_walker(node, contain_exec_param_walker, param_ids);
+}
+
+/*****************************************************************************
+ * Check clauses for context-dependent nodes
+ *****************************************************************************/
+
+/*
+ * contain_context_dependent_node
+ * Recursively search for context-dependent nodes within a clause.
+ *
+ * CaseTestExpr nodes must appear directly within the corresponding CaseExpr,
+ * not nested within another one, or they'll see the wrong test value. If one
+ * appears "bare" in the arguments of a SQL function, then we can't inline the
+ * SQL function for fear of creating such a situation. The same applies for
+ * CaseTestExpr used within the elemexpr of an ArrayCoerceExpr.
+ *
+ * CoerceToDomainValue would have the same issue if domain CHECK expressions
+ * could get inlined into larger expressions, but presently that's impossible.
+ * Still, it might be allowed in future, or other node types with similar
+ * issues might get invented. So give this function a generic name, and set
+ * up the recursion state to allow multiple flag bits.
+ */
+static bool
+contain_context_dependent_node(Node *clause)
+{
+ int flags = 0;
+
+ return contain_context_dependent_node_walker(clause, &flags);
+}
+
+#define CCDN_CASETESTEXPR_OK 0x0001 /* CaseTestExpr okay here? */
+
+static bool
+contain_context_dependent_node_walker(Node *node, int *flags)
+{
+ if (node == NULL)
+ return false;
+ if (IsA(node, CaseTestExpr))
+ return !(*flags & CCDN_CASETESTEXPR_OK);
+ else if (IsA(node, CaseExpr))
+ {
+ CaseExpr *caseexpr = (CaseExpr *) node;
+
+ /*
+ * If this CASE doesn't have a test expression, then it doesn't create
+ * a context in which CaseTestExprs should appear, so just fall
+ * through and treat it as a generic expression node.
+ */
+ if (caseexpr->arg)
+ {
+ int save_flags = *flags;
+ bool res;
+
+ /*
+ * Note: in principle, we could distinguish the various sub-parts
+ * of a CASE construct and set the flag bit only for some of them,
+ * since we are only expecting CaseTestExprs to appear in the
+ * "expr" subtree of the CaseWhen nodes. But it doesn't really
+ * seem worth any extra code. If there are any bare CaseTestExprs
+ * elsewhere in the CASE, something's wrong already.
+ */
+ *flags |= CCDN_CASETESTEXPR_OK;
+ res = expression_tree_walker(node,
+ contain_context_dependent_node_walker,
+ (void *) flags);
+ *flags = save_flags;
+ return res;
+ }
+ }
+ else if (IsA(node, ArrayCoerceExpr))
+ {
+ ArrayCoerceExpr *ac = (ArrayCoerceExpr *) node;
+ int save_flags;
+ bool res;
+
+ /* Check the array expression */
+ if (contain_context_dependent_node_walker((Node *) ac->arg, flags))
+ return true;
+
+ /* Check the elemexpr, which is allowed to contain CaseTestExpr */
+ save_flags = *flags;
+ *flags |= CCDN_CASETESTEXPR_OK;
+ res = contain_context_dependent_node_walker((Node *) ac->elemexpr,
+ flags);
+ *flags = save_flags;
+ return res;
+ }
+ return expression_tree_walker(node, contain_context_dependent_node_walker,
+ (void *) flags);
+}
+
+/*****************************************************************************
+ * Check clauses for Vars passed to non-leakproof functions
+ *****************************************************************************/
+
+/*
+ * contain_leaked_vars
+ * Recursively scan a clause to discover whether it contains any Var
+ * nodes (of the current query level) that are passed as arguments to
+ * leaky functions.
+ *
+ * Returns true if the clause contains any non-leakproof functions that are
+ * passed Var nodes of the current query level, and which might therefore leak
+ * data. Such clauses must be applied after any lower-level security barrier
+ * clauses.
+ */
+bool
+contain_leaked_vars(Node *clause)
+{
+ return contain_leaked_vars_walker(clause, NULL);
+}
+
+static bool
+contain_leaked_vars_checker(Oid func_id, void *context)
+{
+ return !get_func_leakproof(func_id);
+}
+
+static bool
+contain_leaked_vars_walker(Node *node, void *context)
+{
+ if (node == NULL)
+ return false;
+
+ switch (nodeTag(node))
+ {
+ case T_Var:
+ case T_Const:
+ case T_Param:
+ case T_ArrayExpr:
+ case T_FieldSelect:
+ case T_FieldStore:
+ case T_NamedArgExpr:
+ case T_BoolExpr:
+ case T_RelabelType:
+ case T_CollateExpr:
+ case T_CaseExpr:
+ case T_CaseTestExpr:
+ case T_RowExpr:
+ case T_SQLValueFunction:
+ case T_NullTest:
+ case T_BooleanTest:
+ case T_NextValueExpr:
+ case T_List:
+
+ /*
+ * We know these node types don't contain function calls; but
+ * something further down in the node tree might.
+ */
+ break;
+
+ case T_FuncExpr:
+ case T_OpExpr:
+ case T_DistinctExpr:
+ case T_NullIfExpr:
+ case T_ScalarArrayOpExpr:
+ case T_CoerceViaIO:
+ case T_ArrayCoerceExpr:
+
+ /*
+ * If node contains a leaky function call, and there's any Var
+ * underneath it, reject.
+ */
+ if (check_functions_in_node(node, contain_leaked_vars_checker,
+ context) &&
+ contain_var_clause(node))
+ return true;
+ break;
+
+ case T_SubscriptingRef:
+ {
+ SubscriptingRef *sbsref = (SubscriptingRef *) node;
+ const SubscriptRoutines *sbsroutines;
+
+ /* Consult the subscripting support method info */
+ sbsroutines = getSubscriptingRoutines(sbsref->refcontainertype,
+ NULL);
+ if (!sbsroutines ||
+ !(sbsref->refassgnexpr != NULL ?
+ sbsroutines->store_leakproof :
+ sbsroutines->fetch_leakproof))
+ {
+ /* Node is leaky, so reject if it contains Vars */
+ if (contain_var_clause(node))
+ return true;
+ }
+ }
+ break;
+
+ case T_RowCompareExpr:
+ {
+ /*
+ * It's worth special-casing this because a leaky comparison
+ * function only compromises one pair of row elements, which
+ * might not contain Vars while others do.
+ */
+ RowCompareExpr *rcexpr = (RowCompareExpr *) node;
+ ListCell *opid;
+ ListCell *larg;
+ ListCell *rarg;
+
+ forthree(opid, rcexpr->opnos,
+ larg, rcexpr->largs,
+ rarg, rcexpr->rargs)
+ {
+ Oid funcid = get_opcode(lfirst_oid(opid));
+
+ if (!get_func_leakproof(funcid) &&
+ (contain_var_clause((Node *) lfirst(larg)) ||
+ contain_var_clause((Node *) lfirst(rarg))))
+ return true;
+ }
+ }
+ break;
+
+ case T_MinMaxExpr:
+ {
+ /*
+ * MinMaxExpr is leakproof if the comparison function it calls
+ * is leakproof.
+ */
+ MinMaxExpr *minmaxexpr = (MinMaxExpr *) node;
+ TypeCacheEntry *typentry;
+ bool leakproof;
+
+ /* Look up the btree comparison function for the datatype */
+ typentry = lookup_type_cache(minmaxexpr->minmaxtype,
+ TYPECACHE_CMP_PROC);
+ if (OidIsValid(typentry->cmp_proc))
+ leakproof = get_func_leakproof(typentry->cmp_proc);
+ else
+ {
+ /*
+ * The executor will throw an error, but here we just
+ * treat the missing function as leaky.
+ */
+ leakproof = false;
+ }
+
+ if (!leakproof &&
+ contain_var_clause((Node *) minmaxexpr->args))
+ return true;
+ }
+ break;
+
+ case T_CurrentOfExpr:
+
+ /*
+ * WHERE CURRENT OF doesn't contain leaky function calls.
+ * Moreover, it is essential that this is considered non-leaky,
+ * since the planner must always generate a TID scan when CURRENT
+ * OF is present -- cf. cost_tidscan.
+ */
+ return false;
+
+ default:
+
+ /*
+ * If we don't recognize the node tag, assume it might be leaky.
+ * This prevents an unexpected security hole if someone adds a new
+ * node type that can call a function.
+ */
+ return true;
+ }
+ return expression_tree_walker(node, contain_leaked_vars_walker,
+ context);
+}
+
+/*
+ * find_nonnullable_rels
+ * Determine which base rels are forced nonnullable by given clause.
+ *
+ * Returns the set of all Relids that are referenced in the clause in such
+ * a way that the clause cannot possibly return TRUE if any of these Relids
+ * is an all-NULL row. (It is OK to err on the side of conservatism; hence
+ * the analysis here is simplistic.)
+ *
+ * The semantics here are subtly different from contain_nonstrict_functions:
+ * that function is concerned with NULL results from arbitrary expressions,
+ * but here we assume that the input is a Boolean expression, and wish to
+ * see if NULL inputs will provably cause a FALSE-or-NULL result. We expect
+ * the expression to have been AND/OR flattened and converted to implicit-AND
+ * format.
+ *
+ * Note: this function is largely duplicative of find_nonnullable_vars().
+ * The reason not to simplify this function into a thin wrapper around
+ * find_nonnullable_vars() is that the tested conditions really are different:
+ * a clause like "t1.v1 IS NOT NULL OR t1.v2 IS NOT NULL" does not prove
+ * that either v1 or v2 can't be NULL, but it does prove that the t1 row
+ * as a whole can't be all-NULL. Also, the behavior for PHVs is different.
+ *
+ * top_level is true while scanning top-level AND/OR structure; here, showing
+ * the result is either FALSE or NULL is good enough. top_level is false when
+ * we have descended below a NOT or a strict function: now we must be able to
+ * prove that the subexpression goes to NULL.
+ *
+ * We don't use expression_tree_walker here because we don't want to descend
+ * through very many kinds of nodes; only the ones we can be sure are strict.
+ */
+Relids
+find_nonnullable_rels(Node *clause)
+{
+ return find_nonnullable_rels_walker(clause, true);
+}
+
+static Relids
+find_nonnullable_rels_walker(Node *node, bool top_level)
+{
+ Relids result = NULL;
+ ListCell *l;
+
+ if (node == NULL)
+ return NULL;
+ if (IsA(node, Var))
+ {
+ Var *var = (Var *) node;
+
+ if (var->varlevelsup == 0)
+ result = bms_make_singleton(var->varno);
+ }
+ else if (IsA(node, List))
+ {
+ /*
+ * At top level, we are examining an implicit-AND list: if any of the
+ * arms produces FALSE-or-NULL then the result is FALSE-or-NULL. If
+ * not at top level, we are examining the arguments of a strict
+ * function: if any of them produce NULL then the result of the
+ * function must be NULL. So in both cases, the set of nonnullable
+ * rels is the union of those found in the arms, and we pass down the
+ * top_level flag unmodified.
+ */
+ foreach(l, (List *) node)
+ {
+ result = bms_join(result,
+ find_nonnullable_rels_walker(lfirst(l),
+ top_level));
+ }
+ }
+ else if (IsA(node, FuncExpr))
+ {
+ FuncExpr *expr = (FuncExpr *) node;
+
+ if (func_strict(expr->funcid))
+ result = find_nonnullable_rels_walker((Node *) expr->args, false);
+ }
+ else if (IsA(node, OpExpr))
+ {
+ OpExpr *expr = (OpExpr *) node;
+
+ set_opfuncid(expr);
+ if (func_strict(expr->opfuncid))
+ result = find_nonnullable_rels_walker((Node *) expr->args, false);
+ }
+ else if (IsA(node, ScalarArrayOpExpr))
+ {
+ ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node;
+
+ if (is_strict_saop(expr, true))
+ result = find_nonnullable_rels_walker((Node *) expr->args, false);
+ }
+ else if (IsA(node, BoolExpr))
+ {
+ BoolExpr *expr = (BoolExpr *) node;
+
+ switch (expr->boolop)
+ {
+ case AND_EXPR:
+ /* At top level we can just recurse (to the List case) */
+ if (top_level)
+ {
+ result = find_nonnullable_rels_walker((Node *) expr->args,
+ top_level);
+ break;
+ }
+
+ /*
+ * Below top level, even if one arm produces NULL, the result
+ * could be FALSE (hence not NULL). However, if *all* the
+ * arms produce NULL then the result is NULL, so we can take
+ * the intersection of the sets of nonnullable rels, just as
+ * for OR. Fall through to share code.
+ */
+ /* FALL THRU */
+ case OR_EXPR:
+
+ /*
+ * OR is strict if all of its arms are, so we can take the
+ * intersection of the sets of nonnullable rels for each arm.
+ * This works for both values of top_level.
+ */
+ foreach(l, expr->args)
+ {
+ Relids subresult;
+
+ subresult = find_nonnullable_rels_walker(lfirst(l),
+ top_level);
+ if (result == NULL) /* first subresult? */
+ result = subresult;
+ else
+ result = bms_int_members(result, subresult);
+
+ /*
+ * If the intersection is empty, we can stop looking. This
+ * also justifies the test for first-subresult above.
+ */
+ if (bms_is_empty(result))
+ break;
+ }
+ break;
+ case NOT_EXPR:
+ /* NOT will return null if its arg is null */
+ result = find_nonnullable_rels_walker((Node *) expr->args,
+ false);
+ break;
+ default:
+ elog(ERROR, "unrecognized boolop: %d", (int) expr->boolop);
+ break;
+ }
+ }
+ else if (IsA(node, RelabelType))
+ {
+ RelabelType *expr = (RelabelType *) node;
+
+ result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
+ }
+ else if (IsA(node, CoerceViaIO))
+ {
+ /* not clear this is useful, but it can't hurt */
+ CoerceViaIO *expr = (CoerceViaIO *) node;
+
+ result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
+ }
+ else if (IsA(node, ArrayCoerceExpr))
+ {
+ /* ArrayCoerceExpr is strict at the array level; ignore elemexpr */
+ ArrayCoerceExpr *expr = (ArrayCoerceExpr *) node;
+
+ result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
+ }
+ else if (IsA(node, ConvertRowtypeExpr))
+ {
+ /* not clear this is useful, but it can't hurt */
+ ConvertRowtypeExpr *expr = (ConvertRowtypeExpr *) node;
+
+ result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
+ }
+ else if (IsA(node, CollateExpr))
+ {
+ CollateExpr *expr = (CollateExpr *) node;
+
+ result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
+ }
+ else if (IsA(node, NullTest))
+ {
+ /* IS NOT NULL can be considered strict, but only at top level */
+ NullTest *expr = (NullTest *) node;
+
+ if (top_level && expr->nulltesttype == IS_NOT_NULL && !expr->argisrow)
+ result = find_nonnullable_rels_walker((Node *) expr->arg, false);
+ }
+ else if (IsA(node, BooleanTest))
+ {
+ /* Boolean tests that reject NULL are strict at top level */
+ BooleanTest *expr = (BooleanTest *) node;
+
+ if (top_level &&
+ (expr->booltesttype == IS_TRUE ||
+ expr->booltesttype == IS_FALSE ||
+ expr->booltesttype == IS_NOT_UNKNOWN))
+ result = find_nonnullable_rels_walker((Node *) expr->arg, false);
+ }
+ else if (IsA(node, PlaceHolderVar))
+ {
+ PlaceHolderVar *phv = (PlaceHolderVar *) node;
+
+ /*
+ * If the contained expression forces any rels non-nullable, so does
+ * the PHV.
+ */
+ result = find_nonnullable_rels_walker((Node *) phv->phexpr, top_level);
+
+ /*
+ * If the PHV's syntactic scope is exactly one rel, it will be forced
+ * to be evaluated at that rel, and so it will behave like a Var of
+ * that rel: if the rel's entire output goes to null, so will the PHV.
+ * (If the syntactic scope is a join, we know that the PHV will go to
+ * null if the whole join does; but that is AND semantics while we
+ * need OR semantics for find_nonnullable_rels' result, so we can't do
+ * anything with the knowledge.)
+ */
+ if (phv->phlevelsup == 0 &&
+ bms_membership(phv->phrels) == BMS_SINGLETON)
+ result = bms_add_members(result, phv->phrels);
+ }
+ return result;
+}
+
+/*
+ * find_nonnullable_vars
+ * Determine which Vars are forced nonnullable by given clause.
+ *
+ * Returns a list of all level-zero Vars that are referenced in the clause in
+ * such a way that the clause cannot possibly return TRUE if any of these Vars
+ * is NULL. (It is OK to err on the side of conservatism; hence the analysis
+ * here is simplistic.)
+ *
+ * The semantics here are subtly different from contain_nonstrict_functions:
+ * that function is concerned with NULL results from arbitrary expressions,
+ * but here we assume that the input is a Boolean expression, and wish to
+ * see if NULL inputs will provably cause a FALSE-or-NULL result. We expect
+ * the expression to have been AND/OR flattened and converted to implicit-AND
+ * format.
+ *
+ * The result is a palloc'd List, but we have not copied the member Var nodes.
+ * Also, we don't bother trying to eliminate duplicate entries.
+ *
+ * top_level is true while scanning top-level AND/OR structure; here, showing
+ * the result is either FALSE or NULL is good enough. top_level is false when
+ * we have descended below a NOT or a strict function: now we must be able to
+ * prove that the subexpression goes to NULL.
+ *
+ * We don't use expression_tree_walker here because we don't want to descend
+ * through very many kinds of nodes; only the ones we can be sure are strict.
+ */
+List *
+find_nonnullable_vars(Node *clause)
+{
+ return find_nonnullable_vars_walker(clause, true);
+}
+
+static List *
+find_nonnullable_vars_walker(Node *node, bool top_level)
+{
+ List *result = NIL;
+ ListCell *l;
+
+ if (node == NULL)
+ return NIL;
+ if (IsA(node, Var))
+ {
+ Var *var = (Var *) node;
+
+ if (var->varlevelsup == 0)
+ result = list_make1(var);
+ }
+ else if (IsA(node, List))
+ {
+ /*
+ * At top level, we are examining an implicit-AND list: if any of the
+ * arms produces FALSE-or-NULL then the result is FALSE-or-NULL. If
+ * not at top level, we are examining the arguments of a strict
+ * function: if any of them produce NULL then the result of the
+ * function must be NULL. So in both cases, the set of nonnullable
+ * vars is the union of those found in the arms, and we pass down the
+ * top_level flag unmodified.
+ */
+ foreach(l, (List *) node)
+ {
+ result = list_concat(result,
+ find_nonnullable_vars_walker(lfirst(l),
+ top_level));
+ }
+ }
+ else if (IsA(node, FuncExpr))
+ {
+ FuncExpr *expr = (FuncExpr *) node;
+
+ if (func_strict(expr->funcid))
+ result = find_nonnullable_vars_walker((Node *) expr->args, false);
+ }
+ else if (IsA(node, OpExpr))
+ {
+ OpExpr *expr = (OpExpr *) node;
+
+ set_opfuncid(expr);
+ if (func_strict(expr->opfuncid))
+ result = find_nonnullable_vars_walker((Node *) expr->args, false);
+ }
+ else if (IsA(node, ScalarArrayOpExpr))
+ {
+ ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node;
+
+ if (is_strict_saop(expr, true))
+ result = find_nonnullable_vars_walker((Node *) expr->args, false);
+ }
+ else if (IsA(node, BoolExpr))
+ {
+ BoolExpr *expr = (BoolExpr *) node;
+
+ switch (expr->boolop)
+ {
+ case AND_EXPR:
+ /* At top level we can just recurse (to the List case) */
+ if (top_level)
+ {
+ result = find_nonnullable_vars_walker((Node *) expr->args,
+ top_level);
+ break;
+ }
+
+ /*
+ * Below top level, even if one arm produces NULL, the result
+ * could be FALSE (hence not NULL). However, if *all* the
+ * arms produce NULL then the result is NULL, so we can take
+ * the intersection of the sets of nonnullable vars, just as
+ * for OR. Fall through to share code.
+ */
+ /* FALL THRU */
+ case OR_EXPR:
+
+ /*
+ * OR is strict if all of its arms are, so we can take the
+ * intersection of the sets of nonnullable vars for each arm.
+ * This works for both values of top_level.
+ */
+ foreach(l, expr->args)
+ {
+ List *subresult;
+
+ subresult = find_nonnullable_vars_walker(lfirst(l),
+ top_level);
+ if (result == NIL) /* first subresult? */
+ result = subresult;
+ else
+ result = list_intersection(result, subresult);
+
+ /*
+ * If the intersection is empty, we can stop looking. This
+ * also justifies the test for first-subresult above.
+ */
+ if (result == NIL)
+ break;
+ }
+ break;
+ case NOT_EXPR:
+ /* NOT will return null if its arg is null */
+ result = find_nonnullable_vars_walker((Node *) expr->args,
+ false);
+ break;
+ default:
+ elog(ERROR, "unrecognized boolop: %d", (int) expr->boolop);
+ break;
+ }
+ }
+ else if (IsA(node, RelabelType))
+ {
+ RelabelType *expr = (RelabelType *) node;
+
+ result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
+ }
+ else if (IsA(node, CoerceViaIO))
+ {
+ /* not clear this is useful, but it can't hurt */
+ CoerceViaIO *expr = (CoerceViaIO *) node;
+
+ result = find_nonnullable_vars_walker((Node *) expr->arg, false);
+ }
+ else if (IsA(node, ArrayCoerceExpr))
+ {
+ /* ArrayCoerceExpr is strict at the array level; ignore elemexpr */
+ ArrayCoerceExpr *expr = (ArrayCoerceExpr *) node;
+
+ result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
+ }
+ else if (IsA(node, ConvertRowtypeExpr))
+ {
+ /* not clear this is useful, but it can't hurt */
+ ConvertRowtypeExpr *expr = (ConvertRowtypeExpr *) node;
+
+ result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
+ }
+ else if (IsA(node, CollateExpr))
+ {
+ CollateExpr *expr = (CollateExpr *) node;
+
+ result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
+ }
+ else if (IsA(node, NullTest))
+ {
+ /* IS NOT NULL can be considered strict, but only at top level */
+ NullTest *expr = (NullTest *) node;
+
+ if (top_level && expr->nulltesttype == IS_NOT_NULL && !expr->argisrow)
+ result = find_nonnullable_vars_walker((Node *) expr->arg, false);
+ }
+ else if (IsA(node, BooleanTest))
+ {
+ /* Boolean tests that reject NULL are strict at top level */
+ BooleanTest *expr = (BooleanTest *) node;
+
+ if (top_level &&
+ (expr->booltesttype == IS_TRUE ||
+ expr->booltesttype == IS_FALSE ||
+ expr->booltesttype == IS_NOT_UNKNOWN))
+ result = find_nonnullable_vars_walker((Node *) expr->arg, false);
+ }
+ else if (IsA(node, PlaceHolderVar))
+ {
+ PlaceHolderVar *phv = (PlaceHolderVar *) node;
+
+ result = find_nonnullable_vars_walker((Node *) phv->phexpr, top_level);
+ }
+ return result;
+}
+
+/*
+ * find_forced_null_vars
+ * Determine which Vars must be NULL for the given clause to return TRUE.
+ *
+ * This is the complement of find_nonnullable_vars: find the level-zero Vars
+ * that must be NULL for the clause to return TRUE. (It is OK to err on the
+ * side of conservatism; hence the analysis here is simplistic. In fact,
+ * we only detect simple "var IS NULL" tests at the top level.)
+ *
+ * The result is a palloc'd List, but we have not copied the member Var nodes.
+ * Also, we don't bother trying to eliminate duplicate entries.
+ */
+List *
+find_forced_null_vars(Node *node)
+{
+ List *result = NIL;
+ Var *var;
+ ListCell *l;
+
+ if (node == NULL)
+ return NIL;
+ /* Check single-clause cases using subroutine */
+ var = find_forced_null_var(node);
+ if (var)
+ {
+ result = list_make1(var);
+ }
+ /* Otherwise, handle AND-conditions */
+ else if (IsA(node, List))
+ {
+ /*
+ * At top level, we are examining an implicit-AND list: if any of the
+ * arms produces FALSE-or-NULL then the result is FALSE-or-NULL.
+ */
+ foreach(l, (List *) node)
+ {
+ result = list_concat(result,
+ find_forced_null_vars(lfirst(l)));
+ }
+ }
+ else if (IsA(node, BoolExpr))
+ {
+ BoolExpr *expr = (BoolExpr *) node;
+
+ /*
+ * We don't bother considering the OR case, because it's fairly
+ * unlikely anyone would write "v1 IS NULL OR v1 IS NULL". Likewise,
+ * the NOT case isn't worth expending code on.
+ */
+ if (expr->boolop == AND_EXPR)
+ {
+ /* At top level we can just recurse (to the List case) */
+ result = find_forced_null_vars((Node *) expr->args);
+ }
+ }
+ return result;
+}
+
+/*
+ * find_forced_null_var
+ * Return the Var forced null by the given clause, or NULL if it's
+ * not an IS NULL-type clause. For success, the clause must enforce
+ * *only* nullness of the particular Var, not any other conditions.
+ *
+ * This is just the single-clause case of find_forced_null_vars(), without
+ * any allowance for AND conditions. It's used by initsplan.c on individual
+ * qual clauses. The reason for not just applying find_forced_null_vars()
+ * is that if an AND of an IS NULL clause with something else were to somehow
+ * survive AND/OR flattening, initsplan.c might get fooled into discarding
+ * the whole clause when only the IS NULL part of it had been proved redundant.
+ */
+Var *
+find_forced_null_var(Node *node)
+{
+ if (node == NULL)
+ return NULL;
+ if (IsA(node, NullTest))
+ {
+ /* check for var IS NULL */
+ NullTest *expr = (NullTest *) node;
+
+ if (expr->nulltesttype == IS_NULL && !expr->argisrow)
+ {
+ Var *var = (Var *) expr->arg;
+
+ if (var && IsA(var, Var) &&
+ var->varlevelsup == 0)
+ return var;
+ }
+ }
+ else if (IsA(node, BooleanTest))
+ {
+ /* var IS UNKNOWN is equivalent to var IS NULL */
+ BooleanTest *expr = (BooleanTest *) node;
+
+ if (expr->booltesttype == IS_UNKNOWN)
+ {
+ Var *var = (Var *) expr->arg;
+
+ if (var && IsA(var, Var) &&
+ var->varlevelsup == 0)
+ return var;
+ }
+ }
+ return NULL;
+}
+
+/*
+ * Can we treat a ScalarArrayOpExpr as strict?
+ *
+ * If "falseOK" is true, then a "false" result can be considered strict,
+ * else we need to guarantee an actual NULL result for NULL input.
+ *
+ * "foo op ALL array" is strict if the op is strict *and* we can prove
+ * that the array input isn't an empty array. We can check that
+ * for the cases of an array constant and an ARRAY[] construct.
+ *
+ * "foo op ANY array" is strict in the falseOK sense if the op is strict.
+ * If not falseOK, the test is the same as for "foo op ALL array".
+ */
+static bool
+is_strict_saop(ScalarArrayOpExpr *expr, bool falseOK)
+{
+ Node *rightop;
+
+ /* The contained operator must be strict. */
+ set_sa_opfuncid(expr);
+ if (!func_strict(expr->opfuncid))
+ return false;
+ /* If ANY and falseOK, that's all we need to check. */
+ if (expr->useOr && falseOK)
+ return true;
+ /* Else, we have to see if the array is provably non-empty. */
+ Assert(list_length(expr->args) == 2);
+ rightop = (Node *) lsecond(expr->args);
+ if (rightop && IsA(rightop, Const))
+ {
+ Datum arraydatum = ((Const *) rightop)->constvalue;
+ bool arrayisnull = ((Const *) rightop)->constisnull;
+ ArrayType *arrayval;
+ int nitems;
+
+ if (arrayisnull)
+ return false;
+ arrayval = DatumGetArrayTypeP(arraydatum);
+ nitems = ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval));
+ if (nitems > 0)
+ return true;
+ }
+ else if (rightop && IsA(rightop, ArrayExpr))
+ {
+ ArrayExpr *arrayexpr = (ArrayExpr *) rightop;
+
+ if (arrayexpr->elements != NIL && !arrayexpr->multidims)
+ return true;
+ }
+ return false;
+}
+
+
+/*****************************************************************************
+ * Check for "pseudo-constant" clauses
+ *****************************************************************************/
+
+/*
+ * is_pseudo_constant_clause
+ * Detect whether an expression is "pseudo constant", ie, it contains no
+ * variables of the current query level and no uses of volatile functions.
+ * Such an expr is not necessarily a true constant: it can still contain
+ * Params and outer-level Vars, not to mention functions whose results
+ * may vary from one statement to the next. However, the expr's value
+ * will be constant over any one scan of the current query, so it can be
+ * used as, eg, an indexscan key. (Actually, the condition for indexscan
+ * keys is weaker than this; see is_pseudo_constant_for_index().)
+ *
+ * CAUTION: this function omits to test for one very important class of
+ * not-constant expressions, namely aggregates (Aggrefs). In current usage
+ * this is only applied to WHERE clauses and so a check for Aggrefs would be
+ * a waste of cycles; but be sure to also check contain_agg_clause() if you
+ * want to know about pseudo-constness in other contexts. The same goes
+ * for window functions (WindowFuncs).
+ */
+bool
+is_pseudo_constant_clause(Node *clause)
+{
+ /*
+ * We could implement this check in one recursive scan. But since the
+ * check for volatile functions is both moderately expensive and unlikely
+ * to fail, it seems better to look for Vars first and only check for
+ * volatile functions if we find no Vars.
+ */
+ if (!contain_var_clause(clause) &&
+ !contain_volatile_functions(clause))
+ return true;
+ return false;
+}
+
+/*
+ * is_pseudo_constant_clause_relids
+ * Same as above, except caller already has available the var membership
+ * of the expression; this lets us avoid the contain_var_clause() scan.
+ */
+bool
+is_pseudo_constant_clause_relids(Node *clause, Relids relids)
+{
+ if (bms_is_empty(relids) &&
+ !contain_volatile_functions(clause))
+ return true;
+ return false;
+}
+
+
+/*****************************************************************************
+ * *
+ * General clause-manipulating routines *
+ * *
+ *****************************************************************************/
+
+/*
+ * NumRelids
+ * (formerly clause_relids)
+ *
+ * Returns the number of different relations referenced in 'clause'.
+ */
+int
+NumRelids(PlannerInfo *root, Node *clause)
+{
+ Relids varnos = pull_varnos(root, clause);
+ int result = bms_num_members(varnos);
+
+ bms_free(varnos);
+ return result;
+}
+
+/*
+ * CommuteOpExpr: commute a binary operator clause
+ *
+ * XXX the clause is destructively modified!
+ */
+void
+CommuteOpExpr(OpExpr *clause)
+{
+ Oid opoid;
+ Node *temp;
+
+ /* Sanity checks: caller is at fault if these fail */
+ if (!is_opclause(clause) ||
+ list_length(clause->args) != 2)
+ elog(ERROR, "cannot commute non-binary-operator clause");
+
+ opoid = get_commutator(clause->opno);
+
+ if (!OidIsValid(opoid))
+ elog(ERROR, "could not find commutator for operator %u",
+ clause->opno);
+
+ /*
+ * modify the clause in-place!
+ */
+ clause->opno = opoid;
+ clause->opfuncid = InvalidOid;
+ /* opresulttype, opretset, opcollid, inputcollid need not change */
+
+ temp = linitial(clause->args);
+ linitial(clause->args) = lsecond(clause->args);
+ lsecond(clause->args) = temp;
+}
+
+/*
+ * Helper for eval_const_expressions: check that datatype of an attribute
+ * is still what it was when the expression was parsed. This is needed to
+ * guard against improper simplification after ALTER COLUMN TYPE. (XXX we
+ * may well need to make similar checks elsewhere?)
+ *
+ * rowtypeid may come from a whole-row Var, and therefore it can be a domain
+ * over composite, but for this purpose we only care about checking the type
+ * of a contained field.
+ */
+static bool
+rowtype_field_matches(Oid rowtypeid, int fieldnum,
+ Oid expectedtype, int32 expectedtypmod,
+ Oid expectedcollation)
+{
+ TupleDesc tupdesc;
+ Form_pg_attribute attr;
+
+ /* No issue for RECORD, since there is no way to ALTER such a type */
+ if (rowtypeid == RECORDOID)
+ return true;
+ tupdesc = lookup_rowtype_tupdesc_domain(rowtypeid, -1, false);
+ if (fieldnum <= 0 || fieldnum > tupdesc->natts)
+ {
+ ReleaseTupleDesc(tupdesc);
+ return false;
+ }
+ attr = TupleDescAttr(tupdesc, fieldnum - 1);
+ if (attr->attisdropped ||
+ attr->atttypid != expectedtype ||
+ attr->atttypmod != expectedtypmod ||
+ attr->attcollation != expectedcollation)
+ {
+ ReleaseTupleDesc(tupdesc);
+ return false;
+ }
+ ReleaseTupleDesc(tupdesc);
+ return true;
+}
+
+
+/*--------------------
+ * eval_const_expressions
+ *
+ * Reduce any recognizably constant subexpressions of the given
+ * expression tree, for example "2 + 2" => "4". More interestingly,
+ * we can reduce certain boolean expressions even when they contain
+ * non-constant subexpressions: "x OR true" => "true" no matter what
+ * the subexpression x is. (XXX We assume that no such subexpression
+ * will have important side-effects, which is not necessarily a good
+ * assumption in the presence of user-defined functions; do we need a
+ * pg_proc flag that prevents discarding the execution of a function?)
+ *
+ * We do understand that certain functions may deliver non-constant
+ * results even with constant inputs, "nextval()" being the classic
+ * example. Functions that are not marked "immutable" in pg_proc
+ * will not be pre-evaluated here, although we will reduce their
+ * arguments as far as possible.
+ *
+ * Whenever a function is eliminated from the expression by means of
+ * constant-expression evaluation or inlining, we add the function to
+ * root->glob->invalItems. This ensures the plan is known to depend on
+ * such functions, even though they aren't referenced anymore.
+ *
+ * We assume that the tree has already been type-checked and contains
+ * only operators and functions that are reasonable to try to execute.
+ *
+ * NOTE: "root" can be passed as NULL if the caller never wants to do any
+ * Param substitutions nor receive info about inlined functions.
+ *
+ * NOTE: the planner assumes that this will always flatten nested AND and
+ * OR clauses into N-argument form. See comments in prepqual.c.
+ *
+ * NOTE: another critical effect is that any function calls that require
+ * default arguments will be expanded, and named-argument calls will be
+ * converted to positional notation. The executor won't handle either.
+ *--------------------
+ */
+Node *
+eval_const_expressions(PlannerInfo *root, Node *node)
+{
+ eval_const_expressions_context context;
+
+ if (root)
+ context.boundParams = root->glob->boundParams; /* bound Params */
+ else
+ context.boundParams = NULL;
+ context.root = root; /* for inlined-function dependencies */
+ context.active_fns = NIL; /* nothing being recursively simplified */
+ context.case_val = NULL; /* no CASE being examined */
+ context.estimate = false; /* safe transformations only */
+ return eval_const_expressions_mutator(node, &context);
+}
+
+#define MIN_ARRAY_SIZE_FOR_HASHED_SAOP 9
+/*--------------------
+ * convert_saop_to_hashed_saop
+ *
+ * Recursively search 'node' for ScalarArrayOpExprs and fill in the hash
+ * function for any ScalarArrayOpExpr that looks like it would be useful to
+ * evaluate using a hash table rather than a linear search.
+ *
+ * We'll use a hash table if all of the following conditions are met:
+ * 1. The 2nd argument of the array contain only Consts.
+ * 2. useOr is true or there is a valid negator operator for the
+ * ScalarArrayOpExpr's opno.
+ * 3. There's valid hash function for both left and righthand operands and
+ * these hash functions are the same.
+ * 4. If the array contains enough elements for us to consider it to be
+ * worthwhile using a hash table rather than a linear search.
+ */
+void
+convert_saop_to_hashed_saop(Node *node)
+{
+ (void) convert_saop_to_hashed_saop_walker(node, NULL);
+}
+
+static bool
+convert_saop_to_hashed_saop_walker(Node *node, void *context)
+{
+ if (node == NULL)
+ return false;
+
+ if (IsA(node, ScalarArrayOpExpr))
+ {
+ ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) node;
+ Expr *arrayarg = (Expr *) lsecond(saop->args);
+ Oid lefthashfunc;
+ Oid righthashfunc;
+
+ if (arrayarg && IsA(arrayarg, Const) &&
+ !((Const *) arrayarg)->constisnull)
+ {
+ if (saop->useOr)
+ {
+ if (get_op_hash_functions(saop->opno, &lefthashfunc, &righthashfunc) &&
+ lefthashfunc == righthashfunc)
+ {
+ Datum arrdatum = ((Const *) arrayarg)->constvalue;
+ ArrayType *arr = (ArrayType *) DatumGetPointer(arrdatum);
+ int nitems;
+
+ /*
+ * Only fill in the hash functions if the array looks
+ * large enough for it to be worth hashing instead of
+ * doing a linear search.
+ */
+ nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr));
+
+ if (nitems >= MIN_ARRAY_SIZE_FOR_HASHED_SAOP)
+ {
+ /* Looks good. Fill in the hash functions */
+ saop->hashfuncid = lefthashfunc;
+ }
+ return true;
+ }
+ }
+ else /* !saop->useOr */
+ {
+ Oid negator = get_negator(saop->opno);
+
+ /*
+ * Check if this is a NOT IN using an operator whose negator
+ * is hashable. If so we can still build a hash table and
+ * just ensure the lookup items are not in the hash table.
+ */
+ if (OidIsValid(negator) &&
+ get_op_hash_functions(negator, &lefthashfunc, &righthashfunc) &&
+ lefthashfunc == righthashfunc)
+ {
+ Datum arrdatum = ((Const *) arrayarg)->constvalue;
+ ArrayType *arr = (ArrayType *) DatumGetPointer(arrdatum);
+ int nitems;
+
+ /*
+ * Only fill in the hash functions if the array looks
+ * large enough for it to be worth hashing instead of
+ * doing a linear search.
+ */
+ nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr));
+
+ if (nitems >= MIN_ARRAY_SIZE_FOR_HASHED_SAOP)
+ {
+ /* Looks good. Fill in the hash functions */
+ saop->hashfuncid = lefthashfunc;
+
+ /*
+ * Also set the negfuncid. The executor will need
+ * that to perform hashtable lookups.
+ */
+ saop->negfuncid = get_opcode(negator);
+ }
+ return true;
+ }
+ }
+ }
+ }
+
+ return expression_tree_walker(node, convert_saop_to_hashed_saop_walker, NULL);
+}
+
+
+/*--------------------
+ * estimate_expression_value
+ *
+ * This function attempts to estimate the value of an expression for
+ * planning purposes. It is in essence a more aggressive version of
+ * eval_const_expressions(): we will perform constant reductions that are
+ * not necessarily 100% safe, but are reasonable for estimation purposes.
+ *
+ * Currently the extra steps that are taken in this mode are:
+ * 1. Substitute values for Params, where a bound Param value has been made
+ * available by the caller of planner(), even if the Param isn't marked
+ * constant. This effectively means that we plan using the first supplied
+ * value of the Param.
+ * 2. Fold stable, as well as immutable, functions to constants.
+ * 3. Reduce PlaceHolderVar nodes to their contained expressions.
+ *--------------------
+ */
+Node *
+estimate_expression_value(PlannerInfo *root, Node *node)
+{
+ eval_const_expressions_context context;
+
+ context.boundParams = root->glob->boundParams; /* bound Params */
+ /* we do not need to mark the plan as depending on inlined functions */
+ context.root = NULL;
+ context.active_fns = NIL; /* nothing being recursively simplified */
+ context.case_val = NULL; /* no CASE being examined */
+ context.estimate = true; /* unsafe transformations OK */
+ return eval_const_expressions_mutator(node, &context);
+}
+
+/*
+ * The generic case in eval_const_expressions_mutator is to recurse using
+ * expression_tree_mutator, which will copy the given node unchanged but
+ * const-simplify its arguments (if any) as far as possible. If the node
+ * itself does immutable processing, and each of its arguments were reduced
+ * to a Const, we can then reduce it to a Const using evaluate_expr. (Some
+ * node types need more complicated logic; for example, a CASE expression
+ * might be reducible to a constant even if not all its subtrees are.)
+ */
+#define ece_generic_processing(node) \
+ expression_tree_mutator((Node *) (node), eval_const_expressions_mutator, \
+ (void *) context)
+
+/*
+ * Check whether all arguments of the given node were reduced to Consts.
+ * By going directly to expression_tree_walker, contain_non_const_walker
+ * is not applied to the node itself, only to its children.
+ */
+#define ece_all_arguments_const(node) \
+ (!expression_tree_walker((Node *) (node), contain_non_const_walker, NULL))
+
+/* Generic macro for applying evaluate_expr */
+#define ece_evaluate_expr(node) \
+ ((Node *) evaluate_expr((Expr *) (node), \
+ exprType((Node *) (node)), \
+ exprTypmod((Node *) (node)), \
+ exprCollation((Node *) (node))))
+
+/*
+ * Recursive guts of eval_const_expressions/estimate_expression_value
+ */
+static Node *
+eval_const_expressions_mutator(Node *node,
+ eval_const_expressions_context *context)
+{
+ if (node == NULL)
+ return NULL;
+ switch (nodeTag(node))
+ {
+ case T_Param:
+ {
+ Param *param = (Param *) node;
+ ParamListInfo paramLI = context->boundParams;
+
+ /* Look to see if we've been given a value for this Param */
+ if (param->paramkind == PARAM_EXTERN &&
+ paramLI != NULL &&
+ param->paramid > 0 &&
+ param->paramid <= paramLI->numParams)
+ {
+ ParamExternData *prm;
+ ParamExternData prmdata;
+
+ /*
+ * Give hook a chance in case parameter is dynamic. Tell
+ * it that this fetch is speculative, so it should avoid
+ * erroring out if parameter is unavailable.
+ */
+ if (paramLI->paramFetch != NULL)
+ prm = paramLI->paramFetch(paramLI, param->paramid,
+ true, &prmdata);
+ else
+ prm = &paramLI->params[param->paramid - 1];
+
+ /*
+ * We don't just check OidIsValid, but insist that the
+ * fetched type match the Param, just in case the hook did
+ * something unexpected. No need to throw an error here
+ * though; leave that for runtime.
+ */
+ if (OidIsValid(prm->ptype) &&
+ prm->ptype == param->paramtype)
+ {
+ /* OK to substitute parameter value? */
+ if (context->estimate ||
+ (prm->pflags & PARAM_FLAG_CONST))
+ {
+ /*
+ * Return a Const representing the param value.
+ * Must copy pass-by-ref datatypes, since the
+ * Param might be in a memory context
+ * shorter-lived than our output plan should be.
+ */
+ int16 typLen;
+ bool typByVal;
+ Datum pval;
+ Const *con;
+
+ get_typlenbyval(param->paramtype,
+ &typLen, &typByVal);
+ if (prm->isnull || typByVal)
+ pval = prm->value;
+ else
+ pval = datumCopy(prm->value, typByVal, typLen);
+ con = makeConst(param->paramtype,
+ param->paramtypmod,
+ param->paramcollid,
+ (int) typLen,
+ pval,
+ prm->isnull,
+ typByVal);
+ con->location = param->location;
+ return (Node *) con;
+ }
+ }
+ }
+
+ /*
+ * Not replaceable, so just copy the Param (no need to
+ * recurse)
+ */
+ return (Node *) copyObject(param);
+ }
+ case T_WindowFunc:
+ {
+ WindowFunc *expr = (WindowFunc *) node;
+ Oid funcid = expr->winfnoid;
+ List *args;
+ Expr *aggfilter;
+ HeapTuple func_tuple;
+ WindowFunc *newexpr;
+
+ /*
+ * We can't really simplify a WindowFunc node, but we mustn't
+ * just fall through to the default processing, because we
+ * have to apply expand_function_arguments to its argument
+ * list. That takes care of inserting default arguments and
+ * expanding named-argument notation.
+ */
+ func_tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
+ if (!HeapTupleIsValid(func_tuple))
+ elog(ERROR, "cache lookup failed for function %u", funcid);
+
+ args = expand_function_arguments(expr->args,
+ false, expr->wintype,
+ func_tuple);
+
+ ReleaseSysCache(func_tuple);
+
+ /* Now, recursively simplify the args (which are a List) */
+ args = (List *)
+ expression_tree_mutator((Node *) args,
+ eval_const_expressions_mutator,
+ (void *) context);
+ /* ... and the filter expression, which isn't */
+ aggfilter = (Expr *)
+ eval_const_expressions_mutator((Node *) expr->aggfilter,
+ context);
+
+ /* And build the replacement WindowFunc node */
+ newexpr = makeNode(WindowFunc);
+ newexpr->winfnoid = expr->winfnoid;
+ newexpr->wintype = expr->wintype;
+ newexpr->wincollid = expr->wincollid;
+ newexpr->inputcollid = expr->inputcollid;
+ newexpr->args = args;
+ newexpr->aggfilter = aggfilter;
+ newexpr->winref = expr->winref;
+ newexpr->winstar = expr->winstar;
+ newexpr->winagg = expr->winagg;
+ newexpr->location = expr->location;
+
+ return (Node *) newexpr;
+ }
+ case T_FuncExpr:
+ {
+ FuncExpr *expr = (FuncExpr *) node;
+ List *args = expr->args;
+ Expr *simple;
+ FuncExpr *newexpr;
+
+ /*
+ * Code for op/func reduction is pretty bulky, so split it out
+ * as a separate function. Note: exprTypmod normally returns
+ * -1 for a FuncExpr, but not when the node is recognizably a
+ * length coercion; we want to preserve the typmod in the
+ * eventual Const if so.
+ */
+ simple = simplify_function(expr->funcid,
+ expr->funcresulttype,
+ exprTypmod(node),
+ expr->funccollid,
+ expr->inputcollid,
+ &args,
+ expr->funcvariadic,
+ true,
+ true,
+ context);
+ if (simple) /* successfully simplified it */
+ return (Node *) simple;
+
+ /*
+ * The expression cannot be simplified any further, so build
+ * and return a replacement FuncExpr node using the
+ * possibly-simplified arguments. Note that we have also
+ * converted the argument list to positional notation.
+ */
+ newexpr = makeNode(FuncExpr);
+ newexpr->funcid = expr->funcid;
+ newexpr->funcresulttype = expr->funcresulttype;
+ newexpr->funcretset = expr->funcretset;
+ newexpr->funcvariadic = expr->funcvariadic;
+ newexpr->funcformat = expr->funcformat;
+ newexpr->funccollid = expr->funccollid;
+ newexpr->inputcollid = expr->inputcollid;
+ newexpr->args = args;
+ newexpr->location = expr->location;
+ return (Node *) newexpr;
+ }
+ case T_OpExpr:
+ {
+ OpExpr *expr = (OpExpr *) node;
+ List *args = expr->args;
+ Expr *simple;
+ OpExpr *newexpr;
+
+ /*
+ * Need to get OID of underlying function. Okay to scribble
+ * on input to this extent.
+ */
+ set_opfuncid(expr);
+
+ /*
+ * Code for op/func reduction is pretty bulky, so split it out
+ * as a separate function.
+ */
+ simple = simplify_function(expr->opfuncid,
+ expr->opresulttype, -1,
+ expr->opcollid,
+ expr->inputcollid,
+ &args,
+ false,
+ true,
+ true,
+ context);
+ if (simple) /* successfully simplified it */
+ return (Node *) simple;
+
+ /*
+ * If the operator is boolean equality or inequality, we know
+ * how to simplify cases involving one constant and one
+ * non-constant argument.
+ */
+ if (expr->opno == BooleanEqualOperator ||
+ expr->opno == BooleanNotEqualOperator)
+ {
+ simple = (Expr *) simplify_boolean_equality(expr->opno,
+ args);
+ if (simple) /* successfully simplified it */
+ return (Node *) simple;
+ }
+
+ /*
+ * The expression cannot be simplified any further, so build
+ * and return a replacement OpExpr node using the
+ * possibly-simplified arguments.
+ */
+ newexpr = makeNode(OpExpr);
+ newexpr->opno = expr->opno;
+ newexpr->opfuncid = expr->opfuncid;
+ newexpr->opresulttype = expr->opresulttype;
+ newexpr->opretset = expr->opretset;
+ newexpr->opcollid = expr->opcollid;
+ newexpr->inputcollid = expr->inputcollid;
+ newexpr->args = args;
+ newexpr->location = expr->location;
+ return (Node *) newexpr;
+ }
+ case T_DistinctExpr:
+ {
+ DistinctExpr *expr = (DistinctExpr *) node;
+ List *args;
+ ListCell *arg;
+ bool has_null_input = false;
+ bool all_null_input = true;
+ bool has_nonconst_input = false;
+ Expr *simple;
+ DistinctExpr *newexpr;
+
+ /*
+ * Reduce constants in the DistinctExpr's arguments. We know
+ * args is either NIL or a List node, so we can call
+ * expression_tree_mutator directly rather than recursing to
+ * self.
+ */
+ args = (List *) expression_tree_mutator((Node *) expr->args,
+ eval_const_expressions_mutator,
+ (void *) context);
+
+ /*
+ * We must do our own check for NULLs because DistinctExpr has
+ * different results for NULL input than the underlying
+ * operator does.
+ */
+ foreach(arg, args)
+ {
+ if (IsA(lfirst(arg), Const))
+ {
+ has_null_input |= ((Const *) lfirst(arg))->constisnull;
+ all_null_input &= ((Const *) lfirst(arg))->constisnull;
+ }
+ else
+ has_nonconst_input = true;
+ }
+
+ /* all constants? then can optimize this out */
+ if (!has_nonconst_input)
+ {
+ /* all nulls? then not distinct */
+ if (all_null_input)
+ return makeBoolConst(false, false);
+
+ /* one null? then distinct */
+ if (has_null_input)
+ return makeBoolConst(true, false);
+
+ /* otherwise try to evaluate the '=' operator */
+ /* (NOT okay to try to inline it, though!) */
+
+ /*
+ * Need to get OID of underlying function. Okay to
+ * scribble on input to this extent.
+ */
+ set_opfuncid((OpExpr *) expr); /* rely on struct
+ * equivalence */
+
+ /*
+ * Code for op/func reduction is pretty bulky, so split it
+ * out as a separate function.
+ */
+ simple = simplify_function(expr->opfuncid,
+ expr->opresulttype, -1,
+ expr->opcollid,
+ expr->inputcollid,
+ &args,
+ false,
+ false,
+ false,
+ context);
+ if (simple) /* successfully simplified it */
+ {
+ /*
+ * Since the underlying operator is "=", must negate
+ * its result
+ */
+ Const *csimple = castNode(Const, simple);
+
+ csimple->constvalue =
+ BoolGetDatum(!DatumGetBool(csimple->constvalue));
+ return (Node *) csimple;
+ }
+ }
+
+ /*
+ * The expression cannot be simplified any further, so build
+ * and return a replacement DistinctExpr node using the
+ * possibly-simplified arguments.
+ */
+ newexpr = makeNode(DistinctExpr);
+ newexpr->opno = expr->opno;
+ newexpr->opfuncid = expr->opfuncid;
+ newexpr->opresulttype = expr->opresulttype;
+ newexpr->opretset = expr->opretset;
+ newexpr->opcollid = expr->opcollid;
+ newexpr->inputcollid = expr->inputcollid;
+ newexpr->args = args;
+ newexpr->location = expr->location;
+ return (Node *) newexpr;
+ }
+ case T_NullIfExpr:
+ {
+ NullIfExpr *expr;
+ ListCell *arg;
+ bool has_nonconst_input = false;
+
+ /* Copy the node and const-simplify its arguments */
+ expr = (NullIfExpr *) ece_generic_processing(node);
+
+ /* If either argument is NULL they can't be equal */
+ foreach(arg, expr->args)
+ {
+ if (!IsA(lfirst(arg), Const))
+ has_nonconst_input = true;
+ else if (((Const *) lfirst(arg))->constisnull)
+ return (Node *) linitial(expr->args);
+ }
+
+ /*
+ * Need to get OID of underlying function before checking if
+ * the function is OK to evaluate.
+ */
+ set_opfuncid((OpExpr *) expr);
+
+ if (!has_nonconst_input &&
+ ece_function_is_safe(expr->opfuncid, context))
+ return ece_evaluate_expr(expr);
+
+ return (Node *) expr;
+ }
+ case T_ScalarArrayOpExpr:
+ {
+ ScalarArrayOpExpr *saop;
+
+ /* Copy the node and const-simplify its arguments */
+ saop = (ScalarArrayOpExpr *) ece_generic_processing(node);
+
+ /* Make sure we know underlying function */
+ set_sa_opfuncid(saop);
+
+ /*
+ * If all arguments are Consts, and it's a safe function, we
+ * can fold to a constant
+ */
+ if (ece_all_arguments_const(saop) &&
+ ece_function_is_safe(saop->opfuncid, context))
+ return ece_evaluate_expr(saop);
+ return (Node *) saop;
+ }
+ case T_BoolExpr:
+ {
+ BoolExpr *expr = (BoolExpr *) node;
+
+ switch (expr->boolop)
+ {
+ case OR_EXPR:
+ {
+ List *newargs;
+ bool haveNull = false;
+ bool forceTrue = false;
+
+ newargs = simplify_or_arguments(expr->args,
+ context,
+ &haveNull,
+ &forceTrue);
+ if (forceTrue)
+ return makeBoolConst(true, false);
+ if (haveNull)
+ newargs = lappend(newargs,
+ makeBoolConst(false, true));
+ /* If all the inputs are FALSE, result is FALSE */
+ if (newargs == NIL)
+ return makeBoolConst(false, false);
+
+ /*
+ * If only one nonconst-or-NULL input, it's the
+ * result
+ */
+ if (list_length(newargs) == 1)
+ return (Node *) linitial(newargs);
+ /* Else we still need an OR node */
+ return (Node *) make_orclause(newargs);
+ }
+ case AND_EXPR:
+ {
+ List *newargs;
+ bool haveNull = false;
+ bool forceFalse = false;
+
+ newargs = simplify_and_arguments(expr->args,
+ context,
+ &haveNull,
+ &forceFalse);
+ if (forceFalse)
+ return makeBoolConst(false, false);
+ if (haveNull)
+ newargs = lappend(newargs,
+ makeBoolConst(false, true));
+ /* If all the inputs are TRUE, result is TRUE */
+ if (newargs == NIL)
+ return makeBoolConst(true, false);
+
+ /*
+ * If only one nonconst-or-NULL input, it's the
+ * result
+ */
+ if (list_length(newargs) == 1)
+ return (Node *) linitial(newargs);
+ /* Else we still need an AND node */
+ return (Node *) make_andclause(newargs);
+ }
+ case NOT_EXPR:
+ {
+ Node *arg;
+
+ Assert(list_length(expr->args) == 1);
+ arg = eval_const_expressions_mutator(linitial(expr->args),
+ context);
+
+ /*
+ * Use negate_clause() to see if we can simplify
+ * away the NOT.
+ */
+ return negate_clause(arg);
+ }
+ default:
+ elog(ERROR, "unrecognized boolop: %d",
+ (int) expr->boolop);
+ break;
+ }
+ break;
+ }
+ case T_SubPlan:
+ case T_AlternativeSubPlan:
+
+ /*
+ * Return a SubPlan unchanged --- too late to do anything with it.
+ *
+ * XXX should we ereport() here instead? Probably this routine
+ * should never be invoked after SubPlan creation.
+ */
+ return node;
+ case T_RelabelType:
+ {
+ RelabelType *relabel = (RelabelType *) node;
+ Node *arg;
+
+ /* Simplify the input ... */
+ arg = eval_const_expressions_mutator((Node *) relabel->arg,
+ context);
+ /* ... and attach a new RelabelType node, if needed */
+ return applyRelabelType(arg,
+ relabel->resulttype,
+ relabel->resulttypmod,
+ relabel->resultcollid,
+ relabel->relabelformat,
+ relabel->location,
+ true);
+ }
+ case T_CoerceViaIO:
+ {
+ CoerceViaIO *expr = (CoerceViaIO *) node;
+ List *args;
+ Oid outfunc;
+ bool outtypisvarlena;
+ Oid infunc;
+ Oid intypioparam;
+ Expr *simple;
+ CoerceViaIO *newexpr;
+
+ /* Make a List so we can use simplify_function */
+ args = list_make1(expr->arg);
+
+ /*
+ * CoerceViaIO represents calling the source type's output
+ * function then the result type's input function. So, try to
+ * simplify it as though it were a stack of two such function
+ * calls. First we need to know what the functions are.
+ *
+ * Note that the coercion functions are assumed not to care
+ * about input collation, so we just pass InvalidOid for that.
+ */
+ getTypeOutputInfo(exprType((Node *) expr->arg),
+ &outfunc, &outtypisvarlena);
+ getTypeInputInfo(expr->resulttype,
+ &infunc, &intypioparam);
+
+ simple = simplify_function(outfunc,
+ CSTRINGOID, -1,
+ InvalidOid,
+ InvalidOid,
+ &args,
+ false,
+ true,
+ true,
+ context);
+ if (simple) /* successfully simplified output fn */
+ {
+ /*
+ * Input functions may want 1 to 3 arguments. We always
+ * supply all three, trusting that nothing downstream will
+ * complain.
+ */
+ args = list_make3(simple,
+ makeConst(OIDOID,
+ -1,
+ InvalidOid,
+ sizeof(Oid),
+ ObjectIdGetDatum(intypioparam),
+ false,
+ true),
+ makeConst(INT4OID,
+ -1,
+ InvalidOid,
+ sizeof(int32),
+ Int32GetDatum(-1),
+ false,
+ true));
+
+ simple = simplify_function(infunc,
+ expr->resulttype, -1,
+ expr->resultcollid,
+ InvalidOid,
+ &args,
+ false,
+ false,
+ true,
+ context);
+ if (simple) /* successfully simplified input fn */
+ return (Node *) simple;
+ }
+
+ /*
+ * The expression cannot be simplified any further, so build
+ * and return a replacement CoerceViaIO node using the
+ * possibly-simplified argument.
+ */
+ newexpr = makeNode(CoerceViaIO);
+ newexpr->arg = (Expr *) linitial(args);
+ newexpr->resulttype = expr->resulttype;
+ newexpr->resultcollid = expr->resultcollid;
+ newexpr->coerceformat = expr->coerceformat;
+ newexpr->location = expr->location;
+ return (Node *) newexpr;
+ }
+ case T_ArrayCoerceExpr:
+ {
+ ArrayCoerceExpr *ac = makeNode(ArrayCoerceExpr);
+ Node *save_case_val;
+
+ /*
+ * Copy the node and const-simplify its arguments. We can't
+ * use ece_generic_processing() here because we need to mess
+ * with case_val only while processing the elemexpr.
+ */
+ memcpy(ac, node, sizeof(ArrayCoerceExpr));
+ ac->arg = (Expr *)
+ eval_const_expressions_mutator((Node *) ac->arg,
+ context);
+
+ /*
+ * Set up for the CaseTestExpr node contained in the elemexpr.
+ * We must prevent it from absorbing any outer CASE value.
+ */
+ save_case_val = context->case_val;
+ context->case_val = NULL;
+
+ ac->elemexpr = (Expr *)
+ eval_const_expressions_mutator((Node *) ac->elemexpr,
+ context);
+
+ context->case_val = save_case_val;
+
+ /*
+ * If constant argument and the per-element expression is
+ * immutable, we can simplify the whole thing to a constant.
+ * Exception: although contain_mutable_functions considers
+ * CoerceToDomain immutable for historical reasons, let's not
+ * do so here; this ensures coercion to an array-over-domain
+ * does not apply the domain's constraints until runtime.
+ */
+ if (ac->arg && IsA(ac->arg, Const) &&
+ ac->elemexpr && !IsA(ac->elemexpr, CoerceToDomain) &&
+ !contain_mutable_functions((Node *) ac->elemexpr))
+ return ece_evaluate_expr(ac);
+
+ return (Node *) ac;
+ }
+ case T_CollateExpr:
+ {
+ /*
+ * We replace CollateExpr with RelabelType, so as to improve
+ * uniformity of expression representation and thus simplify
+ * comparison of expressions. Hence this looks very nearly
+ * the same as the RelabelType case, and we can apply the same
+ * optimizations to avoid unnecessary RelabelTypes.
+ */
+ CollateExpr *collate = (CollateExpr *) node;
+ Node *arg;
+
+ /* Simplify the input ... */
+ arg = eval_const_expressions_mutator((Node *) collate->arg,
+ context);
+ /* ... and attach a new RelabelType node, if needed */
+ return applyRelabelType(arg,
+ exprType(arg),
+ exprTypmod(arg),
+ collate->collOid,
+ COERCE_IMPLICIT_CAST,
+ collate->location,
+ true);
+ }
+ case T_CaseExpr:
+ {
+ /*----------
+ * CASE expressions can be simplified if there are constant
+ * condition clauses:
+ * FALSE (or NULL): drop the alternative
+ * TRUE: drop all remaining alternatives
+ * If the first non-FALSE alternative is a constant TRUE,
+ * we can simplify the entire CASE to that alternative's
+ * expression. If there are no non-FALSE alternatives,
+ * we simplify the entire CASE to the default result (ELSE).
+ *
+ * If we have a simple-form CASE with constant test
+ * expression, we substitute the constant value for contained
+ * CaseTestExpr placeholder nodes, so that we have the
+ * opportunity to reduce constant test conditions. For
+ * example this allows
+ * CASE 0 WHEN 0 THEN 1 ELSE 1/0 END
+ * to reduce to 1 rather than drawing a divide-by-0 error.
+ * Note that when the test expression is constant, we don't
+ * have to include it in the resulting CASE; for example
+ * CASE 0 WHEN x THEN y ELSE z END
+ * is transformed by the parser to
+ * CASE 0 WHEN CaseTestExpr = x THEN y ELSE z END
+ * which we can simplify to
+ * CASE WHEN 0 = x THEN y ELSE z END
+ * It is not necessary for the executor to evaluate the "arg"
+ * expression when executing the CASE, since any contained
+ * CaseTestExprs that might have referred to it will have been
+ * replaced by the constant.
+ *----------
+ */
+ CaseExpr *caseexpr = (CaseExpr *) node;
+ CaseExpr *newcase;
+ Node *save_case_val;
+ Node *newarg;
+ List *newargs;
+ bool const_true_cond;
+ Node *defresult = NULL;
+ ListCell *arg;
+
+ /* Simplify the test expression, if any */
+ newarg = eval_const_expressions_mutator((Node *) caseexpr->arg,
+ context);
+
+ /* Set up for contained CaseTestExpr nodes */
+ save_case_val = context->case_val;
+ if (newarg && IsA(newarg, Const))
+ {
+ context->case_val = newarg;
+ newarg = NULL; /* not needed anymore, see above */
+ }
+ else
+ context->case_val = NULL;
+
+ /* Simplify the WHEN clauses */
+ newargs = NIL;
+ const_true_cond = false;
+ foreach(arg, caseexpr->args)
+ {
+ CaseWhen *oldcasewhen = lfirst_node(CaseWhen, arg);
+ Node *casecond;
+ Node *caseresult;
+
+ /* Simplify this alternative's test condition */
+ casecond = eval_const_expressions_mutator((Node *) oldcasewhen->expr,
+ context);
+
+ /*
+ * If the test condition is constant FALSE (or NULL), then
+ * drop this WHEN clause completely, without processing
+ * the result.
+ */
+ if (casecond && IsA(casecond, Const))
+ {
+ Const *const_input = (Const *) casecond;
+
+ if (const_input->constisnull ||
+ !DatumGetBool(const_input->constvalue))
+ continue; /* drop alternative with FALSE cond */
+ /* Else it's constant TRUE */
+ const_true_cond = true;
+ }
+
+ /* Simplify this alternative's result value */
+ caseresult = eval_const_expressions_mutator((Node *) oldcasewhen->result,
+ context);
+
+ /* If non-constant test condition, emit a new WHEN node */
+ if (!const_true_cond)
+ {
+ CaseWhen *newcasewhen = makeNode(CaseWhen);
+
+ newcasewhen->expr = (Expr *) casecond;
+ newcasewhen->result = (Expr *) caseresult;
+ newcasewhen->location = oldcasewhen->location;
+ newargs = lappend(newargs, newcasewhen);
+ continue;
+ }
+
+ /*
+ * Found a TRUE condition, so none of the remaining
+ * alternatives can be reached. We treat the result as
+ * the default result.
+ */
+ defresult = caseresult;
+ break;
+ }
+
+ /* Simplify the default result, unless we replaced it above */
+ if (!const_true_cond)
+ defresult = eval_const_expressions_mutator((Node *) caseexpr->defresult,
+ context);
+
+ context->case_val = save_case_val;
+
+ /*
+ * If no non-FALSE alternatives, CASE reduces to the default
+ * result
+ */
+ if (newargs == NIL)
+ return defresult;
+ /* Otherwise we need a new CASE node */
+ newcase = makeNode(CaseExpr);
+ newcase->casetype = caseexpr->casetype;
+ newcase->casecollid = caseexpr->casecollid;
+ newcase->arg = (Expr *) newarg;
+ newcase->args = newargs;
+ newcase->defresult = (Expr *) defresult;
+ newcase->location = caseexpr->location;
+ return (Node *) newcase;
+ }
+ case T_CaseTestExpr:
+ {
+ /*
+ * If we know a constant test value for the current CASE
+ * construct, substitute it for the placeholder. Else just
+ * return the placeholder as-is.
+ */
+ if (context->case_val)
+ return copyObject(context->case_val);
+ else
+ return copyObject(node);
+ }
+ case T_SubscriptingRef:
+ case T_ArrayExpr:
+ case T_RowExpr:
+ case T_MinMaxExpr:
+ {
+ /*
+ * Generic handling for node types whose own processing is
+ * known to be immutable, and for which we need no smarts
+ * beyond "simplify if all inputs are constants".
+ *
+ * Treating SubscriptingRef this way assumes that subscripting
+ * fetch and assignment are both immutable. This constrains
+ * type-specific subscripting implementations; maybe we should
+ * relax it someday.
+ *
+ * Treating MinMaxExpr this way amounts to assuming that the
+ * btree comparison function it calls is immutable; see the
+ * reasoning in contain_mutable_functions_walker.
+ */
+
+ /* Copy the node and const-simplify its arguments */
+ node = ece_generic_processing(node);
+ /* If all arguments are Consts, we can fold to a constant */
+ if (ece_all_arguments_const(node))
+ return ece_evaluate_expr(node);
+ return node;
+ }
+ case T_CoalesceExpr:
+ {
+ CoalesceExpr *coalesceexpr = (CoalesceExpr *) node;
+ CoalesceExpr *newcoalesce;
+ List *newargs;
+ ListCell *arg;
+
+ newargs = NIL;
+ foreach(arg, coalesceexpr->args)
+ {
+ Node *e;
+
+ e = eval_const_expressions_mutator((Node *) lfirst(arg),
+ context);
+
+ /*
+ * We can remove null constants from the list. For a
+ * non-null constant, if it has not been preceded by any
+ * other non-null-constant expressions then it is the
+ * result. Otherwise, it's the next argument, but we can
+ * drop following arguments since they will never be
+ * reached.
+ */
+ if (IsA(e, Const))
+ {
+ if (((Const *) e)->constisnull)
+ continue; /* drop null constant */
+ if (newargs == NIL)
+ return e; /* first expr */
+ newargs = lappend(newargs, e);
+ break;
+ }
+ newargs = lappend(newargs, e);
+ }
+
+ /*
+ * If all the arguments were constant null, the result is just
+ * null
+ */
+ if (newargs == NIL)
+ return (Node *) makeNullConst(coalesceexpr->coalescetype,
+ -1,
+ coalesceexpr->coalescecollid);
+
+ newcoalesce = makeNode(CoalesceExpr);
+ newcoalesce->coalescetype = coalesceexpr->coalescetype;
+ newcoalesce->coalescecollid = coalesceexpr->coalescecollid;
+ newcoalesce->args = newargs;
+ newcoalesce->location = coalesceexpr->location;
+ return (Node *) newcoalesce;
+ }
+ case T_SQLValueFunction:
+ {
+ /*
+ * All variants of SQLValueFunction are stable, so if we are
+ * estimating the expression's value, we should evaluate the
+ * current function value. Otherwise just copy.
+ */
+ SQLValueFunction *svf = (SQLValueFunction *) node;
+
+ if (context->estimate)
+ return (Node *) evaluate_expr((Expr *) svf,
+ svf->type,
+ svf->typmod,
+ InvalidOid);
+ else
+ return copyObject((Node *) svf);
+ }
+ case T_FieldSelect:
+ {
+ /*
+ * We can optimize field selection from a whole-row Var into a
+ * simple Var. (This case won't be generated directly by the
+ * parser, because ParseComplexProjection short-circuits it.
+ * But it can arise while simplifying functions.) Also, we
+ * can optimize field selection from a RowExpr construct, or
+ * of course from a constant.
+ *
+ * However, replacing a whole-row Var in this way has a
+ * pitfall: if we've already built the rel targetlist for the
+ * source relation, then the whole-row Var is scheduled to be
+ * produced by the relation scan, but the simple Var probably
+ * isn't, which will lead to a failure in setrefs.c. This is
+ * not a problem when handling simple single-level queries, in
+ * which expression simplification always happens first. It
+ * is a risk for lateral references from subqueries, though.
+ * To avoid such failures, don't optimize uplevel references.
+ *
+ * We must also check that the declared type of the field is
+ * still the same as when the FieldSelect was created --- this
+ * can change if someone did ALTER COLUMN TYPE on the rowtype.
+ * If it isn't, we skip the optimization; the case will
+ * probably fail at runtime, but that's not our problem here.
+ */
+ FieldSelect *fselect = (FieldSelect *) node;
+ FieldSelect *newfselect;
+ Node *arg;
+
+ arg = eval_const_expressions_mutator((Node *) fselect->arg,
+ context);
+ if (arg && IsA(arg, Var) &&
+ ((Var *) arg)->varattno == InvalidAttrNumber &&
+ ((Var *) arg)->varlevelsup == 0)
+ {
+ if (rowtype_field_matches(((Var *) arg)->vartype,
+ fselect->fieldnum,
+ fselect->resulttype,
+ fselect->resulttypmod,
+ fselect->resultcollid))
+ return (Node *) makeVar(((Var *) arg)->varno,
+ fselect->fieldnum,
+ fselect->resulttype,
+ fselect->resulttypmod,
+ fselect->resultcollid,
+ ((Var *) arg)->varlevelsup);
+ }
+ if (arg && IsA(arg, RowExpr))
+ {
+ RowExpr *rowexpr = (RowExpr *) arg;
+
+ if (fselect->fieldnum > 0 &&
+ fselect->fieldnum <= list_length(rowexpr->args))
+ {
+ Node *fld = (Node *) list_nth(rowexpr->args,
+ fselect->fieldnum - 1);
+
+ if (rowtype_field_matches(rowexpr->row_typeid,
+ fselect->fieldnum,
+ fselect->resulttype,
+ fselect->resulttypmod,
+ fselect->resultcollid) &&
+ fselect->resulttype == exprType(fld) &&
+ fselect->resulttypmod == exprTypmod(fld) &&
+ fselect->resultcollid == exprCollation(fld))
+ return fld;
+ }
+ }
+ newfselect = makeNode(FieldSelect);
+ newfselect->arg = (Expr *) arg;
+ newfselect->fieldnum = fselect->fieldnum;
+ newfselect->resulttype = fselect->resulttype;
+ newfselect->resulttypmod = fselect->resulttypmod;
+ newfselect->resultcollid = fselect->resultcollid;
+ if (arg && IsA(arg, Const))
+ {
+ Const *con = (Const *) arg;
+
+ if (rowtype_field_matches(con->consttype,
+ newfselect->fieldnum,
+ newfselect->resulttype,
+ newfselect->resulttypmod,
+ newfselect->resultcollid))
+ return ece_evaluate_expr(newfselect);
+ }
+ return (Node *) newfselect;
+ }
+ case T_NullTest:
+ {
+ NullTest *ntest = (NullTest *) node;
+ NullTest *newntest;
+ Node *arg;
+
+ arg = eval_const_expressions_mutator((Node *) ntest->arg,
+ context);
+ if (ntest->argisrow && arg && IsA(arg, RowExpr))
+ {
+ /*
+ * We break ROW(...) IS [NOT] NULL into separate tests on
+ * its component fields. This form is usually more
+ * efficient to evaluate, as well as being more amenable
+ * to optimization.
+ */
+ RowExpr *rarg = (RowExpr *) arg;
+ List *newargs = NIL;
+ ListCell *l;
+
+ foreach(l, rarg->args)
+ {
+ Node *relem = (Node *) lfirst(l);
+
+ /*
+ * A constant field refutes the whole NullTest if it's
+ * of the wrong nullness; else we can discard it.
+ */
+ if (relem && IsA(relem, Const))
+ {
+ Const *carg = (Const *) relem;
+
+ if (carg->constisnull ?
+ (ntest->nulltesttype == IS_NOT_NULL) :
+ (ntest->nulltesttype == IS_NULL))
+ return makeBoolConst(false, false);
+ continue;
+ }
+
+ /*
+ * Else, make a scalar (argisrow == false) NullTest
+ * for this field. Scalar semantics are required
+ * because IS [NOT] NULL doesn't recurse; see comments
+ * in ExecEvalRowNullInt().
+ */
+ newntest = makeNode(NullTest);
+ newntest->arg = (Expr *) relem;
+ newntest->nulltesttype = ntest->nulltesttype;
+ newntest->argisrow = false;
+ newntest->location = ntest->location;
+ newargs = lappend(newargs, newntest);
+ }
+ /* If all the inputs were constants, result is TRUE */
+ if (newargs == NIL)
+ return makeBoolConst(true, false);
+ /* If only one nonconst input, it's the result */
+ if (list_length(newargs) == 1)
+ return (Node *) linitial(newargs);
+ /* Else we need an AND node */
+ return (Node *) make_andclause(newargs);
+ }
+ if (!ntest->argisrow && arg && IsA(arg, Const))
+ {
+ Const *carg = (Const *) arg;
+ bool result;
+
+ switch (ntest->nulltesttype)
+ {
+ case IS_NULL:
+ result = carg->constisnull;
+ break;
+ case IS_NOT_NULL:
+ result = !carg->constisnull;
+ break;
+ default:
+ elog(ERROR, "unrecognized nulltesttype: %d",
+ (int) ntest->nulltesttype);
+ result = false; /* keep compiler quiet */
+ break;
+ }
+
+ return makeBoolConst(result, false);
+ }
+
+ newntest = makeNode(NullTest);
+ newntest->arg = (Expr *) arg;
+ newntest->nulltesttype = ntest->nulltesttype;
+ newntest->argisrow = ntest->argisrow;
+ newntest->location = ntest->location;
+ return (Node *) newntest;
+ }
+ case T_BooleanTest:
+ {
+ /*
+ * This case could be folded into the generic handling used
+ * for ArrayExpr etc. But because the simplification logic is
+ * so trivial, applying evaluate_expr() to perform it would be
+ * a heavy overhead. BooleanTest is probably common enough to
+ * justify keeping this bespoke implementation.
+ */
+ BooleanTest *btest = (BooleanTest *) node;
+ BooleanTest *newbtest;
+ Node *arg;
+
+ arg = eval_const_expressions_mutator((Node *) btest->arg,
+ context);
+ if (arg && IsA(arg, Const))
+ {
+ Const *carg = (Const *) arg;
+ bool result;
+
+ switch (btest->booltesttype)
+ {
+ case IS_TRUE:
+ result = (!carg->constisnull &&
+ DatumGetBool(carg->constvalue));
+ break;
+ case IS_NOT_TRUE:
+ result = (carg->constisnull ||
+ !DatumGetBool(carg->constvalue));
+ break;
+ case IS_FALSE:
+ result = (!carg->constisnull &&
+ !DatumGetBool(carg->constvalue));
+ break;
+ case IS_NOT_FALSE:
+ result = (carg->constisnull ||
+ DatumGetBool(carg->constvalue));
+ break;
+ case IS_UNKNOWN:
+ result = carg->constisnull;
+ break;
+ case IS_NOT_UNKNOWN:
+ result = !carg->constisnull;
+ break;
+ default:
+ elog(ERROR, "unrecognized booltesttype: %d",
+ (int) btest->booltesttype);
+ result = false; /* keep compiler quiet */
+ break;
+ }
+
+ return makeBoolConst(result, false);
+ }
+
+ newbtest = makeNode(BooleanTest);
+ newbtest->arg = (Expr *) arg;
+ newbtest->booltesttype = btest->booltesttype;
+ newbtest->location = btest->location;
+ return (Node *) newbtest;
+ }
+ case T_CoerceToDomain:
+ {
+ /*
+ * If the domain currently has no constraints, we replace the
+ * CoerceToDomain node with a simple RelabelType, which is
+ * both far faster to execute and more amenable to later
+ * optimization. We must then mark the plan as needing to be
+ * rebuilt if the domain's constraints change.
+ *
+ * Also, in estimation mode, always replace CoerceToDomain
+ * nodes, effectively assuming that the coercion will succeed.
+ */
+ CoerceToDomain *cdomain = (CoerceToDomain *) node;
+ CoerceToDomain *newcdomain;
+ Node *arg;
+
+ arg = eval_const_expressions_mutator((Node *) cdomain->arg,
+ context);
+ if (context->estimate ||
+ !DomainHasConstraints(cdomain->resulttype))
+ {
+ /* Record dependency, if this isn't estimation mode */
+ if (context->root && !context->estimate)
+ record_plan_type_dependency(context->root,
+ cdomain->resulttype);
+
+ /* Generate RelabelType to substitute for CoerceToDomain */
+ return applyRelabelType(arg,
+ cdomain->resulttype,
+ cdomain->resulttypmod,
+ cdomain->resultcollid,
+ cdomain->coercionformat,
+ cdomain->location,
+ true);
+ }
+
+ newcdomain = makeNode(CoerceToDomain);
+ newcdomain->arg = (Expr *) arg;
+ newcdomain->resulttype = cdomain->resulttype;
+ newcdomain->resulttypmod = cdomain->resulttypmod;
+ newcdomain->resultcollid = cdomain->resultcollid;
+ newcdomain->coercionformat = cdomain->coercionformat;
+ newcdomain->location = cdomain->location;
+ return (Node *) newcdomain;
+ }
+ case T_PlaceHolderVar:
+
+ /*
+ * In estimation mode, just strip the PlaceHolderVar node
+ * altogether; this amounts to estimating that the contained value
+ * won't be forced to null by an outer join. In regular mode we
+ * just use the default behavior (ie, simplify the expression but
+ * leave the PlaceHolderVar node intact).
+ */
+ if (context->estimate)
+ {
+ PlaceHolderVar *phv = (PlaceHolderVar *) node;
+
+ return eval_const_expressions_mutator((Node *) phv->phexpr,
+ context);
+ }
+ break;
+ case T_ConvertRowtypeExpr:
+ {
+ ConvertRowtypeExpr *cre = castNode(ConvertRowtypeExpr, node);
+ Node *arg;
+ ConvertRowtypeExpr *newcre;
+
+ arg = eval_const_expressions_mutator((Node *) cre->arg,
+ context);
+
+ newcre = makeNode(ConvertRowtypeExpr);
+ newcre->resulttype = cre->resulttype;
+ newcre->convertformat = cre->convertformat;
+ newcre->location = cre->location;
+
+ /*
+ * In case of a nested ConvertRowtypeExpr, we can convert the
+ * leaf row directly to the topmost row format without any
+ * intermediate conversions. (This works because
+ * ConvertRowtypeExpr is used only for child->parent
+ * conversion in inheritance trees, which works by exact match
+ * of column name, and a column absent in an intermediate
+ * result can't be present in the final result.)
+ *
+ * No need to check more than one level deep, because the
+ * above recursion will have flattened anything else.
+ */
+ if (arg != NULL && IsA(arg, ConvertRowtypeExpr))
+ {
+ ConvertRowtypeExpr *argcre = (ConvertRowtypeExpr *) arg;
+
+ arg = (Node *) argcre->arg;
+
+ /*
+ * Make sure an outer implicit conversion can't hide an
+ * inner explicit one.
+ */
+ if (newcre->convertformat == COERCE_IMPLICIT_CAST)
+ newcre->convertformat = argcre->convertformat;
+ }
+
+ newcre->arg = (Expr *) arg;
+
+ if (arg != NULL && IsA(arg, Const))
+ return ece_evaluate_expr((Node *) newcre);
+ return (Node *) newcre;
+ }
+ default:
+ break;
+ }
+
+ /*
+ * For any node type not handled above, copy the node unchanged but
+ * const-simplify its subexpressions. This is the correct thing for node
+ * types whose behavior might change between planning and execution, such
+ * as CurrentOfExpr. It's also a safe default for new node types not
+ * known to this routine.
+ */
+ return ece_generic_processing(node);
+}
+
+/*
+ * Subroutine for eval_const_expressions: check for non-Const nodes.
+ *
+ * We can abort recursion immediately on finding a non-Const node. This is
+ * critical for performance, else eval_const_expressions_mutator would take
+ * O(N^2) time on non-simplifiable trees. However, we do need to descend
+ * into List nodes since expression_tree_walker sometimes invokes the walker
+ * function directly on List subtrees.
+ */
+static bool
+contain_non_const_walker(Node *node, void *context)
+{
+ if (node == NULL)
+ return false;
+ if (IsA(node, Const))
+ return false;
+ if (IsA(node, List))
+ return expression_tree_walker(node, contain_non_const_walker, context);
+ /* Otherwise, abort the tree traversal and return true */
+ return true;
+}
+
+/*
+ * Subroutine for eval_const_expressions: check if a function is OK to evaluate
+ */
+static bool
+ece_function_is_safe(Oid funcid, eval_const_expressions_context *context)
+{
+ char provolatile = func_volatile(funcid);
+
+ /*
+ * Ordinarily we are only allowed to simplify immutable functions. But for
+ * purposes of estimation, we consider it okay to simplify functions that
+ * are merely stable; the risk that the result might change from planning
+ * time to execution time is worth taking in preference to not being able
+ * to estimate the value at all.
+ */
+ if (provolatile == PROVOLATILE_IMMUTABLE)
+ return true;
+ if (context->estimate && provolatile == PROVOLATILE_STABLE)
+ return true;
+ return false;
+}
+
+/*
+ * Subroutine for eval_const_expressions: process arguments of an OR clause
+ *
+ * This includes flattening of nested ORs as well as recursion to
+ * eval_const_expressions to simplify the OR arguments.
+ *
+ * After simplification, OR arguments are handled as follows:
+ * non constant: keep
+ * FALSE: drop (does not affect result)
+ * TRUE: force result to TRUE
+ * NULL: keep only one
+ * We must keep one NULL input because OR expressions evaluate to NULL when no
+ * input is TRUE and at least one is NULL. We don't actually include the NULL
+ * here, that's supposed to be done by the caller.
+ *
+ * The output arguments *haveNull and *forceTrue must be initialized false
+ * by the caller. They will be set true if a NULL constant or TRUE constant,
+ * respectively, is detected anywhere in the argument list.
+ */
+static List *
+simplify_or_arguments(List *args,
+ eval_const_expressions_context *context,
+ bool *haveNull, bool *forceTrue)
+{
+ List *newargs = NIL;
+ List *unprocessed_args;
+
+ /*
+ * We want to ensure that any OR immediately beneath another OR gets
+ * flattened into a single OR-list, so as to simplify later reasoning.
+ *
+ * To avoid stack overflow from recursion of eval_const_expressions, we
+ * resort to some tenseness here: we keep a list of not-yet-processed
+ * inputs, and handle flattening of nested ORs by prepending to the to-do
+ * list instead of recursing. Now that the parser generates N-argument
+ * ORs from simple lists, this complexity is probably less necessary than
+ * it once was, but we might as well keep the logic.
+ */
+ unprocessed_args = list_copy(args);
+ while (unprocessed_args)
+ {
+ Node *arg = (Node *) linitial(unprocessed_args);
+
+ unprocessed_args = list_delete_first(unprocessed_args);
+
+ /* flatten nested ORs as per above comment */
+ if (is_orclause(arg))
+ {
+ List *subargs = ((BoolExpr *) arg)->args;
+ List *oldlist = unprocessed_args;
+
+ unprocessed_args = list_concat_copy(subargs, unprocessed_args);
+ /* perhaps-overly-tense code to avoid leaking old lists */
+ list_free(oldlist);
+ continue;
+ }
+
+ /* If it's not an OR, simplify it */
+ arg = eval_const_expressions_mutator(arg, context);
+
+ /*
+ * It is unlikely but not impossible for simplification of a non-OR
+ * clause to produce an OR. Recheck, but don't be too tense about it
+ * since it's not a mainstream case. In particular we don't worry
+ * about const-simplifying the input twice, nor about list leakage.
+ */
+ if (is_orclause(arg))
+ {
+ List *subargs = ((BoolExpr *) arg)->args;
+
+ unprocessed_args = list_concat_copy(subargs, unprocessed_args);
+ continue;
+ }
+
+ /*
+ * OK, we have a const-simplified non-OR argument. Process it per
+ * comments above.
+ */
+ if (IsA(arg, Const))
+ {
+ Const *const_input = (Const *) arg;
+
+ if (const_input->constisnull)
+ *haveNull = true;
+ else if (DatumGetBool(const_input->constvalue))
+ {
+ *forceTrue = true;
+
+ /*
+ * Once we detect a TRUE result we can just exit the loop
+ * immediately. However, if we ever add a notion of
+ * non-removable functions, we'd need to keep scanning.
+ */
+ return NIL;
+ }
+ /* otherwise, we can drop the constant-false input */
+ continue;
+ }
+
+ /* else emit the simplified arg into the result list */
+ newargs = lappend(newargs, arg);
+ }
+
+ return newargs;
+}
+
+/*
+ * Subroutine for eval_const_expressions: process arguments of an AND clause
+ *
+ * This includes flattening of nested ANDs as well as recursion to
+ * eval_const_expressions to simplify the AND arguments.
+ *
+ * After simplification, AND arguments are handled as follows:
+ * non constant: keep
+ * TRUE: drop (does not affect result)
+ * FALSE: force result to FALSE
+ * NULL: keep only one
+ * We must keep one NULL input because AND expressions evaluate to NULL when
+ * no input is FALSE and at least one is NULL. We don't actually include the
+ * NULL here, that's supposed to be done by the caller.
+ *
+ * The output arguments *haveNull and *forceFalse must be initialized false
+ * by the caller. They will be set true if a null constant or false constant,
+ * respectively, is detected anywhere in the argument list.
+ */
+static List *
+simplify_and_arguments(List *args,
+ eval_const_expressions_context *context,
+ bool *haveNull, bool *forceFalse)
+{
+ List *newargs = NIL;
+ List *unprocessed_args;
+
+ /* See comments in simplify_or_arguments */
+ unprocessed_args = list_copy(args);
+ while (unprocessed_args)
+ {
+ Node *arg = (Node *) linitial(unprocessed_args);
+
+ unprocessed_args = list_delete_first(unprocessed_args);
+
+ /* flatten nested ANDs as per above comment */
+ if (is_andclause(arg))
+ {
+ List *subargs = ((BoolExpr *) arg)->args;
+ List *oldlist = unprocessed_args;
+
+ unprocessed_args = list_concat_copy(subargs, unprocessed_args);
+ /* perhaps-overly-tense code to avoid leaking old lists */
+ list_free(oldlist);
+ continue;
+ }
+
+ /* If it's not an AND, simplify it */
+ arg = eval_const_expressions_mutator(arg, context);
+
+ /*
+ * It is unlikely but not impossible for simplification of a non-AND
+ * clause to produce an AND. Recheck, but don't be too tense about it
+ * since it's not a mainstream case. In particular we don't worry
+ * about const-simplifying the input twice, nor about list leakage.
+ */
+ if (is_andclause(arg))
+ {
+ List *subargs = ((BoolExpr *) arg)->args;
+
+ unprocessed_args = list_concat_copy(subargs, unprocessed_args);
+ continue;
+ }
+
+ /*
+ * OK, we have a const-simplified non-AND argument. Process it per
+ * comments above.
+ */
+ if (IsA(arg, Const))
+ {
+ Const *const_input = (Const *) arg;
+
+ if (const_input->constisnull)
+ *haveNull = true;
+ else if (!DatumGetBool(const_input->constvalue))
+ {
+ *forceFalse = true;
+
+ /*
+ * Once we detect a FALSE result we can just exit the loop
+ * immediately. However, if we ever add a notion of
+ * non-removable functions, we'd need to keep scanning.
+ */
+ return NIL;
+ }
+ /* otherwise, we can drop the constant-true input */
+ continue;
+ }
+
+ /* else emit the simplified arg into the result list */
+ newargs = lappend(newargs, arg);
+ }
+
+ return newargs;
+}
+
+/*
+ * Subroutine for eval_const_expressions: try to simplify boolean equality
+ * or inequality condition
+ *
+ * Inputs are the operator OID and the simplified arguments to the operator.
+ * Returns a simplified expression if successful, or NULL if cannot
+ * simplify the expression.
+ *
+ * The idea here is to reduce "x = true" to "x" and "x = false" to "NOT x",
+ * or similarly "x <> true" to "NOT x" and "x <> false" to "x".
+ * This is only marginally useful in itself, but doing it in constant folding
+ * ensures that we will recognize these forms as being equivalent in, for
+ * example, partial index matching.
+ *
+ * We come here only if simplify_function has failed; therefore we cannot
+ * see two constant inputs, nor a constant-NULL input.
+ */
+static Node *
+simplify_boolean_equality(Oid opno, List *args)
+{
+ Node *leftop;
+ Node *rightop;
+
+ Assert(list_length(args) == 2);
+ leftop = linitial(args);
+ rightop = lsecond(args);
+ if (leftop && IsA(leftop, Const))
+ {
+ Assert(!((Const *) leftop)->constisnull);
+ if (opno == BooleanEqualOperator)
+ {
+ if (DatumGetBool(((Const *) leftop)->constvalue))
+ return rightop; /* true = foo */
+ else
+ return negate_clause(rightop); /* false = foo */
+ }
+ else
+ {
+ if (DatumGetBool(((Const *) leftop)->constvalue))
+ return negate_clause(rightop); /* true <> foo */
+ else
+ return rightop; /* false <> foo */
+ }
+ }
+ if (rightop && IsA(rightop, Const))
+ {
+ Assert(!((Const *) rightop)->constisnull);
+ if (opno == BooleanEqualOperator)
+ {
+ if (DatumGetBool(((Const *) rightop)->constvalue))
+ return leftop; /* foo = true */
+ else
+ return negate_clause(leftop); /* foo = false */
+ }
+ else
+ {
+ if (DatumGetBool(((Const *) rightop)->constvalue))
+ return negate_clause(leftop); /* foo <> true */
+ else
+ return leftop; /* foo <> false */
+ }
+ }
+ return NULL;
+}
+
+/*
+ * Subroutine for eval_const_expressions: try to simplify a function call
+ * (which might originally have been an operator; we don't care)
+ *
+ * Inputs are the function OID, actual result type OID (which is needed for
+ * polymorphic functions), result typmod, result collation, the input
+ * collation to use for the function, the original argument list (not
+ * const-simplified yet, unless process_args is false), and some flags;
+ * also the context data for eval_const_expressions.
+ *
+ * Returns a simplified expression if successful, or NULL if cannot
+ * simplify the function call.
+ *
+ * This function is also responsible for converting named-notation argument
+ * lists into positional notation and/or adding any needed default argument
+ * expressions; which is a bit grotty, but it avoids extra fetches of the
+ * function's pg_proc tuple. For this reason, the args list is
+ * pass-by-reference. Conversion and const-simplification of the args list
+ * will be done even if simplification of the function call itself is not
+ * possible.
+ */
+static Expr *
+simplify_function(Oid funcid, Oid result_type, int32 result_typmod,
+ Oid result_collid, Oid input_collid, List **args_p,
+ bool funcvariadic, bool process_args, bool allow_non_const,
+ eval_const_expressions_context *context)
+{
+ List *args = *args_p;
+ HeapTuple func_tuple;
+ Form_pg_proc func_form;
+ Expr *newexpr;
+
+ /*
+ * We have three strategies for simplification: execute the function to
+ * deliver a constant result, use a transform function to generate a
+ * substitute node tree, or expand in-line the body of the function
+ * definition (which only works for simple SQL-language functions, but
+ * that is a common case). Each case needs access to the function's
+ * pg_proc tuple, so fetch it just once.
+ *
+ * Note: the allow_non_const flag suppresses both the second and third
+ * strategies; so if !allow_non_const, simplify_function can only return a
+ * Const or NULL. Argument-list rewriting happens anyway, though.
+ */
+ func_tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
+ if (!HeapTupleIsValid(func_tuple))
+ elog(ERROR, "cache lookup failed for function %u", funcid);
+ func_form = (Form_pg_proc) GETSTRUCT(func_tuple);
+
+ /*
+ * Process the function arguments, unless the caller did it already.
+ *
+ * Here we must deal with named or defaulted arguments, and then
+ * recursively apply eval_const_expressions to the whole argument list.
+ */
+ if (process_args)
+ {
+ args = expand_function_arguments(args, false, result_type, func_tuple);
+ args = (List *) expression_tree_mutator((Node *) args,
+ eval_const_expressions_mutator,
+ (void *) context);
+ /* Argument processing done, give it back to the caller */
+ *args_p = args;
+ }
+
+ /* Now attempt simplification of the function call proper. */
+
+ newexpr = evaluate_function(funcid, result_type, result_typmod,
+ result_collid, input_collid,
+ args, funcvariadic,
+ func_tuple, context);
+
+ if (!newexpr && allow_non_const && OidIsValid(func_form->prosupport))
+ {
+ /*
+ * Build a SupportRequestSimplify node to pass to the support
+ * function, pointing to a dummy FuncExpr node containing the
+ * simplified arg list. We use this approach to present a uniform
+ * interface to the support function regardless of how the target
+ * function is actually being invoked.
+ */
+ SupportRequestSimplify req;
+ FuncExpr fexpr;
+
+ fexpr.xpr.type = T_FuncExpr;
+ fexpr.funcid = funcid;
+ fexpr.funcresulttype = result_type;
+ fexpr.funcretset = func_form->proretset;
+ fexpr.funcvariadic = funcvariadic;
+ fexpr.funcformat = COERCE_EXPLICIT_CALL;
+ fexpr.funccollid = result_collid;
+ fexpr.inputcollid = input_collid;
+ fexpr.args = args;
+ fexpr.location = -1;
+
+ req.type = T_SupportRequestSimplify;
+ req.root = context->root;
+ req.fcall = &fexpr;
+
+ newexpr = (Expr *)
+ DatumGetPointer(OidFunctionCall1(func_form->prosupport,
+ PointerGetDatum(&req)));
+
+ /* catch a possible API misunderstanding */
+ Assert(newexpr != (Expr *) &fexpr);
+ }
+
+ if (!newexpr && allow_non_const)
+ newexpr = inline_function(funcid, result_type, result_collid,
+ input_collid, args, funcvariadic,
+ func_tuple, context);
+
+ ReleaseSysCache(func_tuple);
+
+ return newexpr;
+}
+
+/*
+ * expand_function_arguments: convert named-notation args to positional args
+ * and/or insert default args, as needed
+ *
+ * Returns a possibly-transformed version of the args list.
+ *
+ * If include_out_arguments is true, then the args list and the result
+ * include OUT arguments.
+ *
+ * The expected result type of the call must be given, for sanity-checking
+ * purposes. Also, we ask the caller to provide the function's actual
+ * pg_proc tuple, not just its OID.
+ *
+ * If we need to change anything, the input argument list is copied, not
+ * modified.
+ *
+ * Note: this gets applied to operator argument lists too, even though the
+ * cases it handles should never occur there. This should be OK since it
+ * will fall through very quickly if there's nothing to do.
+ */
+List *
+expand_function_arguments(List *args, bool include_out_arguments,
+ Oid result_type, HeapTuple func_tuple)
+{
+ Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
+ Oid *proargtypes = funcform->proargtypes.values;
+ int pronargs = funcform->pronargs;
+ bool has_named_args = false;
+ ListCell *lc;
+
+ /*
+ * If we are asked to match to OUT arguments, then use the proallargtypes
+ * array (which includes those); otherwise use proargtypes (which
+ * doesn't). Of course, if proallargtypes is null, we always use
+ * proargtypes. (Fetching proallargtypes is annoyingly expensive
+ * considering that we may have nothing to do here, but fortunately the
+ * common case is include_out_arguments == false.)
+ */
+ if (include_out_arguments)
+ {
+ Datum proallargtypes;
+ bool isNull;
+
+ proallargtypes = SysCacheGetAttr(PROCOID, func_tuple,
+ Anum_pg_proc_proallargtypes,
+ &isNull);
+ if (!isNull)
+ {
+ ArrayType *arr = DatumGetArrayTypeP(proallargtypes);
+
+ pronargs = ARR_DIMS(arr)[0];
+ if (ARR_NDIM(arr) != 1 ||
+ pronargs < 0 ||
+ ARR_HASNULL(arr) ||
+ ARR_ELEMTYPE(arr) != OIDOID)
+ elog(ERROR, "proallargtypes is not a 1-D Oid array or it contains nulls");
+ Assert(pronargs >= funcform->pronargs);
+ proargtypes = (Oid *) ARR_DATA_PTR(arr);
+ }
+ }
+
+ /* Do we have any named arguments? */
+ foreach(lc, args)
+ {
+ Node *arg = (Node *) lfirst(lc);
+
+ if (IsA(arg, NamedArgExpr))
+ {
+ has_named_args = true;
+ break;
+ }
+ }
+
+ /* If so, we must apply reorder_function_arguments */
+ if (has_named_args)
+ {
+ args = reorder_function_arguments(args, pronargs, func_tuple);
+ /* Recheck argument types and add casts if needed */
+ recheck_cast_function_args(args, result_type,
+ proargtypes, pronargs,
+ func_tuple);
+ }
+ else if (list_length(args) < pronargs)
+ {
+ /* No named args, but we seem to be short some defaults */
+ args = add_function_defaults(args, pronargs, func_tuple);
+ /* Recheck argument types and add casts if needed */
+ recheck_cast_function_args(args, result_type,
+ proargtypes, pronargs,
+ func_tuple);
+ }
+
+ return args;
+}
+
+/*
+ * reorder_function_arguments: convert named-notation args to positional args
+ *
+ * This function also inserts default argument values as needed, since it's
+ * impossible to form a truly valid positional call without that.
+ */
+static List *
+reorder_function_arguments(List *args, int pronargs, HeapTuple func_tuple)
+{
+ Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
+ int nargsprovided = list_length(args);
+ Node *argarray[FUNC_MAX_ARGS];
+ ListCell *lc;
+ int i;
+
+ Assert(nargsprovided <= pronargs);
+ if (pronargs < 0 || pronargs > FUNC_MAX_ARGS)
+ elog(ERROR, "too many function arguments");
+ memset(argarray, 0, pronargs * sizeof(Node *));
+
+ /* Deconstruct the argument list into an array indexed by argnumber */
+ i = 0;
+ foreach(lc, args)
+ {
+ Node *arg = (Node *) lfirst(lc);
+
+ if (!IsA(arg, NamedArgExpr))
+ {
+ /* positional argument, assumed to precede all named args */
+ Assert(argarray[i] == NULL);
+ argarray[i++] = arg;
+ }
+ else
+ {
+ NamedArgExpr *na = (NamedArgExpr *) arg;
+
+ Assert(na->argnumber >= 0 && na->argnumber < pronargs);
+ Assert(argarray[na->argnumber] == NULL);
+ argarray[na->argnumber] = (Node *) na->arg;
+ }
+ }
+
+ /*
+ * Fetch default expressions, if needed, and insert into array at proper
+ * locations (they aren't necessarily consecutive or all used)
+ */
+ if (nargsprovided < pronargs)
+ {
+ List *defaults = fetch_function_defaults(func_tuple);
+
+ i = pronargs - funcform->pronargdefaults;
+ foreach(lc, defaults)
+ {
+ if (argarray[i] == NULL)
+ argarray[i] = (Node *) lfirst(lc);
+ i++;
+ }
+ }
+
+ /* Now reconstruct the args list in proper order */
+ args = NIL;
+ for (i = 0; i < pronargs; i++)
+ {
+ Assert(argarray[i] != NULL);
+ args = lappend(args, argarray[i]);
+ }
+
+ return args;
+}
+
+/*
+ * add_function_defaults: add missing function arguments from its defaults
+ *
+ * This is used only when the argument list was positional to begin with,
+ * and so we know we just need to add defaults at the end.
+ */
+static List *
+add_function_defaults(List *args, int pronargs, HeapTuple func_tuple)
+{
+ int nargsprovided = list_length(args);
+ List *defaults;
+ int ndelete;
+
+ /* Get all the default expressions from the pg_proc tuple */
+ defaults = fetch_function_defaults(func_tuple);
+
+ /* Delete any unused defaults from the list */
+ ndelete = nargsprovided + list_length(defaults) - pronargs;
+ if (ndelete < 0)
+ elog(ERROR, "not enough default arguments");
+ if (ndelete > 0)
+ defaults = list_delete_first_n(defaults, ndelete);
+
+ /* And form the combined argument list, not modifying the input list */
+ return list_concat_copy(args, defaults);
+}
+
+/*
+ * fetch_function_defaults: get function's default arguments as expression list
+ */
+static List *
+fetch_function_defaults(HeapTuple func_tuple)
+{
+ List *defaults;
+ Datum proargdefaults;
+ bool isnull;
+ char *str;
+
+ /* The error cases here shouldn't happen, but check anyway */
+ proargdefaults = SysCacheGetAttr(PROCOID, func_tuple,
+ Anum_pg_proc_proargdefaults,
+ &isnull);
+ if (isnull)
+ elog(ERROR, "not enough default arguments");
+ str = TextDatumGetCString(proargdefaults);
+ defaults = castNode(List, stringToNode(str));
+ pfree(str);
+ return defaults;
+}
+
+/*
+ * recheck_cast_function_args: recheck function args and typecast as needed
+ * after adding defaults.
+ *
+ * It is possible for some of the defaulted arguments to be polymorphic;
+ * therefore we can't assume that the default expressions have the correct
+ * data types already. We have to re-resolve polymorphics and do coercion
+ * just like the parser did.
+ *
+ * This should be a no-op if there are no polymorphic arguments,
+ * but we do it anyway to be sure.
+ *
+ * Note: if any casts are needed, the args list is modified in-place;
+ * caller should have already copied the list structure.
+ */
+static void
+recheck_cast_function_args(List *args, Oid result_type,
+ Oid *proargtypes, int pronargs,
+ HeapTuple func_tuple)
+{
+ Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
+ int nargs;
+ Oid actual_arg_types[FUNC_MAX_ARGS];
+ Oid declared_arg_types[FUNC_MAX_ARGS];
+ Oid rettype;
+ ListCell *lc;
+
+ if (list_length(args) > FUNC_MAX_ARGS)
+ elog(ERROR, "too many function arguments");
+ nargs = 0;
+ foreach(lc, args)
+ {
+ actual_arg_types[nargs++] = exprType((Node *) lfirst(lc));
+ }
+ Assert(nargs == pronargs);
+ memcpy(declared_arg_types, proargtypes, pronargs * sizeof(Oid));
+ rettype = enforce_generic_type_consistency(actual_arg_types,
+ declared_arg_types,
+ nargs,
+ funcform->prorettype,
+ false);
+ /* let's just check we got the same answer as the parser did ... */
+ if (rettype != result_type)
+ elog(ERROR, "function's resolved result type changed during planning");
+
+ /* perform any necessary typecasting of arguments */
+ make_fn_arguments(NULL, args, actual_arg_types, declared_arg_types);
+}
+
+/*
+ * evaluate_function: try to pre-evaluate a function call
+ *
+ * We can do this if the function is strict and has any constant-null inputs
+ * (just return a null constant), or if the function is immutable and has all
+ * constant inputs (call it and return the result as a Const node). In
+ * estimation mode we are willing to pre-evaluate stable functions too.
+ *
+ * Returns a simplified expression if successful, or NULL if cannot
+ * simplify the function.
+ */
+static Expr *
+evaluate_function(Oid funcid, Oid result_type, int32 result_typmod,
+ Oid result_collid, Oid input_collid, List *args,
+ bool funcvariadic,
+ HeapTuple func_tuple,
+ eval_const_expressions_context *context)
+{
+ Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
+ bool has_nonconst_input = false;
+ bool has_null_input = false;
+ ListCell *arg;
+ FuncExpr *newexpr;
+
+ /*
+ * Can't simplify if it returns a set.
+ */
+ if (funcform->proretset)
+ return NULL;
+
+ /*
+ * Can't simplify if it returns RECORD. The immediate problem is that it
+ * will be needing an expected tupdesc which we can't supply here.
+ *
+ * In the case where it has OUT parameters, it could get by without an
+ * expected tupdesc, but we still have issues: get_expr_result_type()
+ * doesn't know how to extract type info from a RECORD constant, and in
+ * the case of a NULL function result there doesn't seem to be any clean
+ * way to fix that. In view of the likelihood of there being still other
+ * gotchas, seems best to leave the function call unreduced.
+ */
+ if (funcform->prorettype == RECORDOID)
+ return NULL;
+
+ /*
+ * Check for constant inputs and especially constant-NULL inputs.
+ */
+ foreach(arg, args)
+ {
+ if (IsA(lfirst(arg), Const))
+ has_null_input |= ((Const *) lfirst(arg))->constisnull;
+ else
+ has_nonconst_input = true;
+ }
+
+ /*
+ * If the function is strict and has a constant-NULL input, it will never
+ * be called at all, so we can replace the call by a NULL constant, even
+ * if there are other inputs that aren't constant, and even if the
+ * function is not otherwise immutable.
+ */
+ if (funcform->proisstrict && has_null_input)
+ return (Expr *) makeNullConst(result_type, result_typmod,
+ result_collid);
+
+ /*
+ * Otherwise, can simplify only if all inputs are constants. (For a
+ * non-strict function, constant NULL inputs are treated the same as
+ * constant non-NULL inputs.)
+ */
+ if (has_nonconst_input)
+ return NULL;
+
+ /*
+ * Ordinarily we are only allowed to simplify immutable functions. But for
+ * purposes of estimation, we consider it okay to simplify functions that
+ * are merely stable; the risk that the result might change from planning
+ * time to execution time is worth taking in preference to not being able
+ * to estimate the value at all.
+ */
+ if (funcform->provolatile == PROVOLATILE_IMMUTABLE)
+ /* okay */ ;
+ else if (context->estimate && funcform->provolatile == PROVOLATILE_STABLE)
+ /* okay */ ;
+ else
+ return NULL;
+
+ /*
+ * OK, looks like we can simplify this operator/function.
+ *
+ * Build a new FuncExpr node containing the already-simplified arguments.
+ */
+ newexpr = makeNode(FuncExpr);
+ newexpr->funcid = funcid;
+ newexpr->funcresulttype = result_type;
+ newexpr->funcretset = false;
+ newexpr->funcvariadic = funcvariadic;
+ newexpr->funcformat = COERCE_EXPLICIT_CALL; /* doesn't matter */
+ newexpr->funccollid = result_collid; /* doesn't matter */
+ newexpr->inputcollid = input_collid;
+ newexpr->args = args;
+ newexpr->location = -1;
+
+ return evaluate_expr((Expr *) newexpr, result_type, result_typmod,
+ result_collid);
+}
+
+/*
+ * inline_function: try to expand a function call inline
+ *
+ * If the function is a sufficiently simple SQL-language function
+ * (just "SELECT expression"), then we can inline it and avoid the rather
+ * high per-call overhead of SQL functions. Furthermore, this can expose
+ * opportunities for constant-folding within the function expression.
+ *
+ * We have to beware of some special cases however. A directly or
+ * indirectly recursive function would cause us to recurse forever,
+ * so we keep track of which functions we are already expanding and
+ * do not re-expand them. Also, if a parameter is used more than once
+ * in the SQL-function body, we require it not to contain any volatile
+ * functions (volatiles might deliver inconsistent answers) nor to be
+ * unreasonably expensive to evaluate. The expensiveness check not only
+ * prevents us from doing multiple evaluations of an expensive parameter
+ * at runtime, but is a safety value to limit growth of an expression due
+ * to repeated inlining.
+ *
+ * We must also beware of changing the volatility or strictness status of
+ * functions by inlining them.
+ *
+ * Also, at the moment we can't inline functions returning RECORD. This
+ * doesn't work in the general case because it discards information such
+ * as OUT-parameter declarations.
+ *
+ * Also, context-dependent expression nodes in the argument list are trouble.
+ *
+ * Returns a simplified expression if successful, or NULL if cannot
+ * simplify the function.
+ */
+static Expr *
+inline_function(Oid funcid, Oid result_type, Oid result_collid,
+ Oid input_collid, List *args,
+ bool funcvariadic,
+ HeapTuple func_tuple,
+ eval_const_expressions_context *context)
+{
+ Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
+ char *src;
+ Datum tmp;
+ bool isNull;
+ MemoryContext oldcxt;
+ MemoryContext mycxt;
+ inline_error_callback_arg callback_arg;
+ ErrorContextCallback sqlerrcontext;
+ FuncExpr *fexpr;
+ SQLFunctionParseInfoPtr pinfo;
+ TupleDesc rettupdesc;
+ ParseState *pstate;
+ List *raw_parsetree_list;
+ List *querytree_list;
+ Query *querytree;
+ Node *newexpr;
+ int *usecounts;
+ ListCell *arg;
+ int i;
+
+ /*
+ * Forget it if the function is not SQL-language or has other showstopper
+ * properties. (The prokind and nargs checks are just paranoia.)
+ */
+ if (funcform->prolang != SQLlanguageId ||
+ funcform->prokind != PROKIND_FUNCTION ||
+ funcform->prosecdef ||
+ funcform->proretset ||
+ funcform->prorettype == RECORDOID ||
+ !heap_attisnull(func_tuple, Anum_pg_proc_proconfig, NULL) ||
+ funcform->pronargs != list_length(args))
+ return NULL;
+
+ /* Check for recursive function, and give up trying to expand if so */
+ if (list_member_oid(context->active_fns, funcid))
+ return NULL;
+
+ /* Check permission to call function (fail later, if not) */
+ if (pg_proc_aclcheck(funcid, GetUserId(), ACL_EXECUTE) != ACLCHECK_OK)
+ return NULL;
+
+ /* Check whether a plugin wants to hook function entry/exit */
+ if (FmgrHookIsNeeded(funcid))
+ return NULL;
+
+ /*
+ * Make a temporary memory context, so that we don't leak all the stuff
+ * that parsing might create.
+ */
+ mycxt = AllocSetContextCreate(CurrentMemoryContext,
+ "inline_function",
+ ALLOCSET_DEFAULT_SIZES);
+ oldcxt = MemoryContextSwitchTo(mycxt);
+
+ /*
+ * We need a dummy FuncExpr node containing the already-simplified
+ * arguments. (In some cases we don't really need it, but building it is
+ * cheap enough that it's not worth contortions to avoid.)
+ */
+ fexpr = makeNode(FuncExpr);
+ fexpr->funcid = funcid;
+ fexpr->funcresulttype = result_type;
+ fexpr->funcretset = false;
+ fexpr->funcvariadic = funcvariadic;
+ fexpr->funcformat = COERCE_EXPLICIT_CALL; /* doesn't matter */
+ fexpr->funccollid = result_collid; /* doesn't matter */
+ fexpr->inputcollid = input_collid;
+ fexpr->args = args;
+ fexpr->location = -1;
+
+ /* Fetch the function body */
+ tmp = SysCacheGetAttr(PROCOID,
+ func_tuple,
+ Anum_pg_proc_prosrc,
+ &isNull);
+ if (isNull)
+ elog(ERROR, "null prosrc for function %u", funcid);
+ src = TextDatumGetCString(tmp);
+
+ /*
+ * Setup error traceback support for ereport(). This is so that we can
+ * finger the function that bad information came from.
+ */
+ callback_arg.proname = NameStr(funcform->proname);
+ callback_arg.prosrc = src;
+
+ sqlerrcontext.callback = sql_inline_error_callback;
+ sqlerrcontext.arg = (void *) &callback_arg;
+ sqlerrcontext.previous = error_context_stack;
+ error_context_stack = &sqlerrcontext;
+
+ /* If we have prosqlbody, pay attention to that not prosrc */
+ tmp = SysCacheGetAttr(PROCOID,
+ func_tuple,
+ Anum_pg_proc_prosqlbody,
+ &isNull);
+ if (!isNull)
+ {
+ Node *n;
+ List *querytree_list;
+
+ n = stringToNode(TextDatumGetCString(tmp));
+ if (IsA(n, List))
+ querytree_list = linitial_node(List, castNode(List, n));
+ else
+ querytree_list = list_make1(n);
+ if (list_length(querytree_list) != 1)
+ goto fail;
+ querytree = linitial(querytree_list);
+
+ /*
+ * Because we'll insist below that the querytree have an empty rtable
+ * and no sublinks, it cannot have any relation references that need
+ * to be locked or rewritten. So we can omit those steps.
+ */
+ }
+ else
+ {
+ /* Set up to handle parameters while parsing the function body. */
+ pinfo = prepare_sql_fn_parse_info(func_tuple,
+ (Node *) fexpr,
+ input_collid);
+
+ /*
+ * We just do parsing and parse analysis, not rewriting, because
+ * rewriting will not affect table-free-SELECT-only queries, which is
+ * all that we care about. Also, we can punt as soon as we detect
+ * more than one command in the function body.
+ */
+ raw_parsetree_list = pg_parse_query(src);
+ if (list_length(raw_parsetree_list) != 1)
+ goto fail;
+
+ pstate = make_parsestate(NULL);
+ pstate->p_sourcetext = src;
+ sql_fn_parser_setup(pstate, pinfo);
+
+ querytree = transformTopLevelStmt(pstate, linitial(raw_parsetree_list));
+
+ free_parsestate(pstate);
+ }
+
+ /*
+ * The single command must be a simple "SELECT expression".
+ *
+ * Note: if you change the tests involved in this, see also plpgsql's
+ * exec_simple_check_plan(). That generally needs to have the same idea
+ * of what's a "simple expression", so that inlining a function that
+ * previously wasn't inlined won't change plpgsql's conclusion.
+ */
+ if (!IsA(querytree, Query) ||
+ querytree->commandType != CMD_SELECT ||
+ querytree->hasAggs ||
+ querytree->hasWindowFuncs ||
+ querytree->hasTargetSRFs ||
+ querytree->hasSubLinks ||
+ querytree->cteList ||
+ querytree->rtable ||
+ querytree->jointree->fromlist ||
+ querytree->jointree->quals ||
+ querytree->groupClause ||
+ querytree->groupingSets ||
+ querytree->havingQual ||
+ querytree->windowClause ||
+ querytree->distinctClause ||
+ querytree->sortClause ||
+ querytree->limitOffset ||
+ querytree->limitCount ||
+ querytree->setOperations ||
+ list_length(querytree->targetList) != 1)
+ goto fail;
+
+ /* If the function result is composite, resolve it */
+ (void) get_expr_result_type((Node *) fexpr,
+ NULL,
+ &rettupdesc);
+
+ /*
+ * Make sure the function (still) returns what it's declared to. This
+ * will raise an error if wrong, but that's okay since the function would
+ * fail at runtime anyway. Note that check_sql_fn_retval will also insert
+ * a coercion if needed to make the tlist expression match the declared
+ * type of the function.
+ *
+ * Note: we do not try this until we have verified that no rewriting was
+ * needed; that's probably not important, but let's be careful.
+ */
+ querytree_list = list_make1(querytree);
+ if (check_sql_fn_retval(list_make1(querytree_list),
+ result_type, rettupdesc,
+ false, NULL))
+ goto fail; /* reject whole-tuple-result cases */
+
+ /*
+ * Given the tests above, check_sql_fn_retval shouldn't have decided to
+ * inject a projection step, but let's just make sure.
+ */
+ if (querytree != linitial(querytree_list))
+ goto fail;
+
+ /* Now we can grab the tlist expression */
+ newexpr = (Node *) ((TargetEntry *) linitial(querytree->targetList))->expr;
+
+ /*
+ * If the SQL function returns VOID, we can only inline it if it is a
+ * SELECT of an expression returning VOID (ie, it's just a redirection to
+ * another VOID-returning function). In all non-VOID-returning cases,
+ * check_sql_fn_retval should ensure that newexpr returns the function's
+ * declared result type, so this test shouldn't fail otherwise; but we may
+ * as well cope gracefully if it does.
+ */
+ if (exprType(newexpr) != result_type)
+ goto fail;
+
+ /*
+ * Additional validity checks on the expression. It mustn't be more
+ * volatile than the surrounding function (this is to avoid breaking hacks
+ * that involve pretending a function is immutable when it really ain't).
+ * If the surrounding function is declared strict, then the expression
+ * must contain only strict constructs and must use all of the function
+ * parameters (this is overkill, but an exact analysis is hard).
+ */
+ if (funcform->provolatile == PROVOLATILE_IMMUTABLE &&
+ contain_mutable_functions(newexpr))
+ goto fail;
+ else if (funcform->provolatile == PROVOLATILE_STABLE &&
+ contain_volatile_functions(newexpr))
+ goto fail;
+
+ if (funcform->proisstrict &&
+ contain_nonstrict_functions(newexpr))
+ goto fail;
+
+ /*
+ * If any parameter expression contains a context-dependent node, we can't
+ * inline, for fear of putting such a node into the wrong context.
+ */
+ if (contain_context_dependent_node((Node *) args))
+ goto fail;
+
+ /*
+ * We may be able to do it; there are still checks on parameter usage to
+ * make, but those are most easily done in combination with the actual
+ * substitution of the inputs. So start building expression with inputs
+ * substituted.
+ */
+ usecounts = (int *) palloc0(funcform->pronargs * sizeof(int));
+ newexpr = substitute_actual_parameters(newexpr, funcform->pronargs,
+ args, usecounts);
+
+ /* Now check for parameter usage */
+ i = 0;
+ foreach(arg, args)
+ {
+ Node *param = lfirst(arg);
+
+ if (usecounts[i] == 0)
+ {
+ /* Param not used at all: uncool if func is strict */
+ if (funcform->proisstrict)
+ goto fail;
+ }
+ else if (usecounts[i] != 1)
+ {
+ /* Param used multiple times: uncool if expensive or volatile */
+ QualCost eval_cost;
+
+ /*
+ * We define "expensive" as "contains any subplan or more than 10
+ * operators". Note that the subplan search has to be done
+ * explicitly, since cost_qual_eval() will barf on unplanned
+ * subselects.
+ */
+ if (contain_subplans(param))
+ goto fail;
+ cost_qual_eval(&eval_cost, list_make1(param), NULL);
+ if (eval_cost.startup + eval_cost.per_tuple >
+ 10 * cpu_operator_cost)
+ goto fail;
+
+ /*
+ * Check volatility last since this is more expensive than the
+ * above tests
+ */
+ if (contain_volatile_functions(param))
+ goto fail;
+ }
+ i++;
+ }
+
+ /*
+ * Whew --- we can make the substitution. Copy the modified expression
+ * out of the temporary memory context, and clean up.
+ */
+ MemoryContextSwitchTo(oldcxt);
+
+ newexpr = copyObject(newexpr);
+
+ MemoryContextDelete(mycxt);
+
+ /*
+ * If the result is of a collatable type, force the result to expose the
+ * correct collation. In most cases this does not matter, but it's
+ * possible that the function result is used directly as a sort key or in
+ * other places where we expect exprCollation() to tell the truth.
+ */
+ if (OidIsValid(result_collid))
+ {
+ Oid exprcoll = exprCollation(newexpr);
+
+ if (OidIsValid(exprcoll) && exprcoll != result_collid)
+ {
+ CollateExpr *newnode = makeNode(CollateExpr);
+
+ newnode->arg = (Expr *) newexpr;
+ newnode->collOid = result_collid;
+ newnode->location = -1;
+
+ newexpr = (Node *) newnode;
+ }
+ }
+
+ /*
+ * Since there is now no trace of the function in the plan tree, we must
+ * explicitly record the plan's dependency on the function.
+ */
+ if (context->root)
+ record_plan_function_dependency(context->root, funcid);
+
+ /*
+ * Recursively try to simplify the modified expression. Here we must add
+ * the current function to the context list of active functions.
+ */
+ context->active_fns = lappend_oid(context->active_fns, funcid);
+ newexpr = eval_const_expressions_mutator(newexpr, context);
+ context->active_fns = list_delete_last(context->active_fns);
+
+ error_context_stack = sqlerrcontext.previous;
+
+ return (Expr *) newexpr;
+
+ /* Here if func is not inlinable: release temp memory and return NULL */
+fail:
+ MemoryContextSwitchTo(oldcxt);
+ MemoryContextDelete(mycxt);
+ error_context_stack = sqlerrcontext.previous;
+
+ return NULL;
+}
+
+/*
+ * Replace Param nodes by appropriate actual parameters
+ */
+static Node *
+substitute_actual_parameters(Node *expr, int nargs, List *args,
+ int *usecounts)
+{
+ substitute_actual_parameters_context context;
+
+ context.nargs = nargs;
+ context.args = args;
+ context.usecounts = usecounts;
+
+ return substitute_actual_parameters_mutator(expr, &context);
+}
+
+static Node *
+substitute_actual_parameters_mutator(Node *node,
+ substitute_actual_parameters_context *context)
+{
+ if (node == NULL)
+ return NULL;
+ if (IsA(node, Param))
+ {
+ Param *param = (Param *) node;
+
+ if (param->paramkind != PARAM_EXTERN)
+ elog(ERROR, "unexpected paramkind: %d", (int) param->paramkind);
+ if (param->paramid <= 0 || param->paramid > context->nargs)
+ elog(ERROR, "invalid paramid: %d", param->paramid);
+
+ /* Count usage of parameter */
+ context->usecounts[param->paramid - 1]++;
+
+ /* Select the appropriate actual arg and replace the Param with it */
+ /* We don't need to copy at this time (it'll get done later) */
+ return list_nth(context->args, param->paramid - 1);
+ }
+ return expression_tree_mutator(node, substitute_actual_parameters_mutator,
+ (void *) context);
+}
+
+/*
+ * error context callback to let us supply a call-stack traceback
+ */
+static void
+sql_inline_error_callback(void *arg)
+{
+ inline_error_callback_arg *callback_arg = (inline_error_callback_arg *) arg;
+ int syntaxerrposition;
+
+ /* If it's a syntax error, convert to internal syntax error report */
+ syntaxerrposition = geterrposition();
+ if (syntaxerrposition > 0)
+ {
+ errposition(0);
+ internalerrposition(syntaxerrposition);
+ internalerrquery(callback_arg->prosrc);
+ }
+
+ errcontext("SQL function \"%s\" during inlining", callback_arg->proname);
+}
+
+/*
+ * evaluate_expr: pre-evaluate a constant expression
+ *
+ * We use the executor's routine ExecEvalExpr() to avoid duplication of
+ * code and ensure we get the same result as the executor would get.
+ */
+Expr *
+evaluate_expr(Expr *expr, Oid result_type, int32 result_typmod,
+ Oid result_collation)
+{
+ EState *estate;
+ ExprState *exprstate;
+ MemoryContext oldcontext;
+ Datum const_val;
+ bool const_is_null;
+ int16 resultTypLen;
+ bool resultTypByVal;
+
+ /*
+ * To use the executor, we need an EState.
+ */
+ estate = CreateExecutorState();
+
+ /* We can use the estate's working context to avoid memory leaks. */
+ oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
+
+ /* Make sure any opfuncids are filled in. */
+ fix_opfuncids((Node *) expr);
+
+ /*
+ * Prepare expr for execution. (Note: we can't use ExecPrepareExpr
+ * because it'd result in recursively invoking eval_const_expressions.)
+ */
+ exprstate = ExecInitExpr(expr, NULL);
+
+ /*
+ * And evaluate it.
+ *
+ * It is OK to use a default econtext because none of the ExecEvalExpr()
+ * code used in this situation will use econtext. That might seem
+ * fortuitous, but it's not so unreasonable --- a constant expression does
+ * not depend on context, by definition, n'est ce pas?
+ */
+ const_val = ExecEvalExprSwitchContext(exprstate,
+ GetPerTupleExprContext(estate),
+ &const_is_null);
+
+ /* Get info needed about result datatype */
+ get_typlenbyval(result_type, &resultTypLen, &resultTypByVal);
+
+ /* Get back to outer memory context */
+ MemoryContextSwitchTo(oldcontext);
+
+ /*
+ * Must copy result out of sub-context used by expression eval.
+ *
+ * Also, if it's varlena, forcibly detoast it. This protects us against
+ * storing TOAST pointers into plans that might outlive the referenced
+ * data. (makeConst would handle detoasting anyway, but it's worth a few
+ * extra lines here so that we can do the copy and detoast in one step.)
+ */
+ if (!const_is_null)
+ {
+ if (resultTypLen == -1)
+ const_val = PointerGetDatum(PG_DETOAST_DATUM_COPY(const_val));
+ else
+ const_val = datumCopy(const_val, resultTypByVal, resultTypLen);
+ }
+
+ /* Release all the junk we just created */
+ FreeExecutorState(estate);
+
+ /*
+ * Make the constant result node.
+ */
+ return (Expr *) makeConst(result_type, result_typmod, result_collation,
+ resultTypLen,
+ const_val, const_is_null,
+ resultTypByVal);
+}
+
+
+/*
+ * inline_set_returning_function
+ * Attempt to "inline" a set-returning function in the FROM clause.
+ *
+ * "rte" is an RTE_FUNCTION rangetable entry. If it represents a call of a
+ * set-returning SQL function that can safely be inlined, expand the function
+ * and return the substitute Query structure. Otherwise, return NULL.
+ *
+ * We assume that the RTE's expression has already been put through
+ * eval_const_expressions(), which among other things will take care of
+ * default arguments and named-argument notation.
+ *
+ * This has a good deal of similarity to inline_function(), but that's
+ * for the non-set-returning case, and there are enough differences to
+ * justify separate functions.
+ */
+Query *
+inline_set_returning_function(PlannerInfo *root, RangeTblEntry *rte)
+{
+ RangeTblFunction *rtfunc;
+ FuncExpr *fexpr;
+ Oid func_oid;
+ HeapTuple func_tuple;
+ Form_pg_proc funcform;
+ char *src;
+ Datum tmp;
+ bool isNull;
+ MemoryContext oldcxt;
+ MemoryContext mycxt;
+ inline_error_callback_arg callback_arg;
+ ErrorContextCallback sqlerrcontext;
+ SQLFunctionParseInfoPtr pinfo;
+ TypeFuncClass functypclass;
+ TupleDesc rettupdesc;
+ List *raw_parsetree_list;
+ List *querytree_list;
+ Query *querytree;
+
+ Assert(rte->rtekind == RTE_FUNCTION);
+
+ /*
+ * It doesn't make a lot of sense for a SQL SRF to refer to itself in its
+ * own FROM clause, since that must cause infinite recursion at runtime.
+ * It will cause this code to recurse too, so check for stack overflow.
+ * (There's no need to do more.)
+ */
+ check_stack_depth();
+
+ /* Fail if the RTE has ORDINALITY - we don't implement that here. */
+ if (rte->funcordinality)
+ return NULL;
+
+ /* Fail if RTE isn't a single, simple FuncExpr */
+ if (list_length(rte->functions) != 1)
+ return NULL;
+ rtfunc = (RangeTblFunction *) linitial(rte->functions);
+
+ if (!IsA(rtfunc->funcexpr, FuncExpr))
+ return NULL;
+ fexpr = (FuncExpr *) rtfunc->funcexpr;
+
+ func_oid = fexpr->funcid;
+
+ /*
+ * The function must be declared to return a set, else inlining would
+ * change the results if the contained SELECT didn't return exactly one
+ * row.
+ */
+ if (!fexpr->funcretset)
+ return NULL;
+
+ /*
+ * Refuse to inline if the arguments contain any volatile functions or
+ * sub-selects. Volatile functions are rejected because inlining may
+ * result in the arguments being evaluated multiple times, risking a
+ * change in behavior. Sub-selects are rejected partly for implementation
+ * reasons (pushing them down another level might change their behavior)
+ * and partly because they're likely to be expensive and so multiple
+ * evaluation would be bad.
+ */
+ if (contain_volatile_functions((Node *) fexpr->args) ||
+ contain_subplans((Node *) fexpr->args))
+ return NULL;
+
+ /* Check permission to call function (fail later, if not) */
+ if (pg_proc_aclcheck(func_oid, GetUserId(), ACL_EXECUTE) != ACLCHECK_OK)
+ return NULL;
+
+ /* Check whether a plugin wants to hook function entry/exit */
+ if (FmgrHookIsNeeded(func_oid))
+ return NULL;
+
+ /*
+ * OK, let's take a look at the function's pg_proc entry.
+ */
+ func_tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(func_oid));
+ if (!HeapTupleIsValid(func_tuple))
+ elog(ERROR, "cache lookup failed for function %u", func_oid);
+ funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
+
+ /*
+ * Forget it if the function is not SQL-language or has other showstopper
+ * properties. In particular it mustn't be declared STRICT, since we
+ * couldn't enforce that. It also mustn't be VOLATILE, because that is
+ * supposed to cause it to be executed with its own snapshot, rather than
+ * sharing the snapshot of the calling query. We also disallow returning
+ * SETOF VOID, because inlining would result in exposing the actual result
+ * of the function's last SELECT, which should not happen in that case.
+ * (Rechecking prokind, proretset, and pronargs is just paranoia.)
+ */
+ if (funcform->prolang != SQLlanguageId ||
+ funcform->prokind != PROKIND_FUNCTION ||
+ funcform->proisstrict ||
+ funcform->provolatile == PROVOLATILE_VOLATILE ||
+ funcform->prorettype == VOIDOID ||
+ funcform->prosecdef ||
+ !funcform->proretset ||
+ list_length(fexpr->args) != funcform->pronargs ||
+ !heap_attisnull(func_tuple, Anum_pg_proc_proconfig, NULL))
+ {
+ ReleaseSysCache(func_tuple);
+ return NULL;
+ }
+
+ /*
+ * Make a temporary memory context, so that we don't leak all the stuff
+ * that parsing might create.
+ */
+ mycxt = AllocSetContextCreate(CurrentMemoryContext,
+ "inline_set_returning_function",
+ ALLOCSET_DEFAULT_SIZES);
+ oldcxt = MemoryContextSwitchTo(mycxt);
+
+ /* Fetch the function body */
+ tmp = SysCacheGetAttr(PROCOID,
+ func_tuple,
+ Anum_pg_proc_prosrc,
+ &isNull);
+ if (isNull)
+ elog(ERROR, "null prosrc for function %u", func_oid);
+ src = TextDatumGetCString(tmp);
+
+ /*
+ * Setup error traceback support for ereport(). This is so that we can
+ * finger the function that bad information came from.
+ */
+ callback_arg.proname = NameStr(funcform->proname);
+ callback_arg.prosrc = src;
+
+ sqlerrcontext.callback = sql_inline_error_callback;
+ sqlerrcontext.arg = (void *) &callback_arg;
+ sqlerrcontext.previous = error_context_stack;
+ error_context_stack = &sqlerrcontext;
+
+ /* If we have prosqlbody, pay attention to that not prosrc */
+ tmp = SysCacheGetAttr(PROCOID,
+ func_tuple,
+ Anum_pg_proc_prosqlbody,
+ &isNull);
+ if (!isNull)
+ {
+ Node *n;
+
+ n = stringToNode(TextDatumGetCString(tmp));
+ if (IsA(n, List))
+ querytree_list = linitial_node(List, castNode(List, n));
+ else
+ querytree_list = list_make1(n);
+ if (list_length(querytree_list) != 1)
+ goto fail;
+ querytree = linitial(querytree_list);
+
+ /* Acquire necessary locks, then apply rewriter. */
+ AcquireRewriteLocks(querytree, true, false);
+ querytree_list = pg_rewrite_query(querytree);
+ if (list_length(querytree_list) != 1)
+ goto fail;
+ querytree = linitial(querytree_list);
+ }
+ else
+ {
+ /*
+ * Set up to handle parameters while parsing the function body. We
+ * can use the FuncExpr just created as the input for
+ * prepare_sql_fn_parse_info.
+ */
+ pinfo = prepare_sql_fn_parse_info(func_tuple,
+ (Node *) fexpr,
+ fexpr->inputcollid);
+
+ /*
+ * Parse, analyze, and rewrite (unlike inline_function(), we can't
+ * skip rewriting here). We can fail as soon as we find more than one
+ * query, though.
+ */
+ raw_parsetree_list = pg_parse_query(src);
+ if (list_length(raw_parsetree_list) != 1)
+ goto fail;
+
+ querytree_list = pg_analyze_and_rewrite_withcb(linitial(raw_parsetree_list),
+ src,
+ (ParserSetupHook) sql_fn_parser_setup,
+ pinfo, NULL);
+ if (list_length(querytree_list) != 1)
+ goto fail;
+ querytree = linitial(querytree_list);
+ }
+
+ /*
+ * Also resolve the actual function result tupdesc, if composite. If the
+ * function is just declared to return RECORD, dig the info out of the AS
+ * clause.
+ */
+ functypclass = get_expr_result_type((Node *) fexpr, NULL, &rettupdesc);
+ if (functypclass == TYPEFUNC_RECORD)
+ rettupdesc = BuildDescFromLists(rtfunc->funccolnames,
+ rtfunc->funccoltypes,
+ rtfunc->funccoltypmods,
+ rtfunc->funccolcollations);
+
+ /*
+ * The single command must be a plain SELECT.
+ */
+ if (!IsA(querytree, Query) ||
+ querytree->commandType != CMD_SELECT)
+ goto fail;
+
+ /*
+ * Make sure the function (still) returns what it's declared to. This
+ * will raise an error if wrong, but that's okay since the function would
+ * fail at runtime anyway. Note that check_sql_fn_retval will also insert
+ * coercions if needed to make the tlist expression(s) match the declared
+ * type of the function. We also ask it to insert dummy NULL columns for
+ * any dropped columns in rettupdesc, so that the elements of the modified
+ * tlist match up to the attribute numbers.
+ *
+ * If the function returns a composite type, don't inline unless the check
+ * shows it's returning a whole tuple result; otherwise what it's
+ * returning is a single composite column which is not what we need.
+ */
+ if (!check_sql_fn_retval(list_make1(querytree_list),
+ fexpr->funcresulttype, rettupdesc,
+ true, NULL) &&
+ (functypclass == TYPEFUNC_COMPOSITE ||
+ functypclass == TYPEFUNC_COMPOSITE_DOMAIN ||
+ functypclass == TYPEFUNC_RECORD))
+ goto fail; /* reject not-whole-tuple-result cases */
+
+ /*
+ * check_sql_fn_retval might've inserted a projection step, but that's
+ * fine; just make sure we use the upper Query.
+ */
+ querytree = linitial_node(Query, querytree_list);
+
+ /*
+ * Looks good --- substitute parameters into the query.
+ */
+ querytree = substitute_actual_srf_parameters(querytree,
+ funcform->pronargs,
+ fexpr->args);
+
+ /*
+ * Copy the modified query out of the temporary memory context, and clean
+ * up.
+ */
+ MemoryContextSwitchTo(oldcxt);
+
+ querytree = copyObject(querytree);
+
+ MemoryContextDelete(mycxt);
+ error_context_stack = sqlerrcontext.previous;
+ ReleaseSysCache(func_tuple);
+
+ /*
+ * We don't have to fix collations here because the upper query is already
+ * parsed, ie, the collations in the RTE are what count.
+ */
+
+ /*
+ * Since there is now no trace of the function in the plan tree, we must
+ * explicitly record the plan's dependency on the function.
+ */
+ record_plan_function_dependency(root, func_oid);
+
+ /*
+ * We must also notice if the inserted query adds a dependency on the
+ * calling role due to RLS quals.
+ */
+ if (querytree->hasRowSecurity)
+ root->glob->dependsOnRole = true;
+
+ return querytree;
+
+ /* Here if func is not inlinable: release temp memory and return NULL */
+fail:
+ MemoryContextSwitchTo(oldcxt);
+ MemoryContextDelete(mycxt);
+ error_context_stack = sqlerrcontext.previous;
+ ReleaseSysCache(func_tuple);
+
+ return NULL;
+}
+
+/*
+ * Replace Param nodes by appropriate actual parameters
+ *
+ * This is just enough different from substitute_actual_parameters()
+ * that it needs its own code.
+ */
+static Query *
+substitute_actual_srf_parameters(Query *expr, int nargs, List *args)
+{
+ substitute_actual_srf_parameters_context context;
+
+ context.nargs = nargs;
+ context.args = args;
+ context.sublevels_up = 1;
+
+ return query_tree_mutator(expr,
+ substitute_actual_srf_parameters_mutator,
+ &context,
+ 0);
+}
+
+static Node *
+substitute_actual_srf_parameters_mutator(Node *node,
+ substitute_actual_srf_parameters_context *context)
+{
+ Node *result;
+
+ if (node == NULL)
+ return NULL;
+ if (IsA(node, Query))
+ {
+ context->sublevels_up++;
+ result = (Node *) query_tree_mutator((Query *) node,
+ substitute_actual_srf_parameters_mutator,
+ (void *) context,
+ 0);
+ context->sublevels_up--;
+ return result;
+ }
+ if (IsA(node, Param))
+ {
+ Param *param = (Param *) node;
+
+ if (param->paramkind == PARAM_EXTERN)
+ {
+ if (param->paramid <= 0 || param->paramid > context->nargs)
+ elog(ERROR, "invalid paramid: %d", param->paramid);
+
+ /*
+ * Since the parameter is being inserted into a subquery, we must
+ * adjust levels.
+ */
+ result = copyObject(list_nth(context->args, param->paramid - 1));
+ IncrementVarSublevelsUp(result, context->sublevels_up, 0);
+ return result;
+ }
+ }
+ return expression_tree_mutator(node,
+ substitute_actual_srf_parameters_mutator,
+ (void *) context);
+}
+
+/*
+ * pull_paramids
+ * Returns a Bitmapset containing the paramids of all Params in 'expr'.
+ */
+Bitmapset *
+pull_paramids(Expr *expr)
+{
+ Bitmapset *result = NULL;
+
+ (void) pull_paramids_walker((Node *) expr, &result);
+
+ return result;
+}
+
+static bool
+pull_paramids_walker(Node *node, Bitmapset **context)
+{
+ if (node == NULL)
+ return false;
+ if (IsA(node, Param))
+ {
+ Param *param = (Param *) node;
+
+ *context = bms_add_member(*context, param->paramid);
+ return false;
+ }
+ return expression_tree_walker(node, pull_paramids_walker,
+ (void *) context);
+}