summaryrefslogtreecommitdiffstats
path: root/contrib/intarray/_int_gist.c
blob: 5d46b6bc13ec9aa945fce7283bdc459b214dfa9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
/*
 * contrib/intarray/_int_gist.c
 */
#include "postgres.h"

#include <limits.h>

#include "_int.h"
#include "access/gist.h"
#include "access/reloptions.h"
#include "access/stratnum.h"

#define GETENTRY(vec,pos) ((ArrayType *) DatumGetPointer((vec)->vector[(pos)].key))

/*
 * Control the maximum sparseness of compressed keys.
 *
 * The upper safe bound for this limit is half the maximum allocatable array
 * size. A lower bound would give more guarantees that pathological data
 * wouldn't eat excessive CPU and memory, but at the expense of breaking
 * possibly working (after a fashion) indexes.
 */
#define MAXNUMELTS (Min((MaxAllocSize / sizeof(Datum)),((MaxAllocSize - ARR_OVERHEAD_NONULLS(1)) / sizeof(int)))/2)
/* or: #define MAXNUMELTS 1000000 */

/*
** GiST support methods
*/
PG_FUNCTION_INFO_V1(g_int_consistent);
PG_FUNCTION_INFO_V1(g_int_compress);
PG_FUNCTION_INFO_V1(g_int_decompress);
PG_FUNCTION_INFO_V1(g_int_penalty);
PG_FUNCTION_INFO_V1(g_int_picksplit);
PG_FUNCTION_INFO_V1(g_int_union);
PG_FUNCTION_INFO_V1(g_int_same);
PG_FUNCTION_INFO_V1(g_int_options);


/*
** The GiST Consistent method for _intments
** Should return false if for all data items x below entry,
** the predicate x op query == false, where op is the oper
** corresponding to strategy in the pg_amop table.
*/
Datum
g_int_consistent(PG_FUNCTION_ARGS)
{
	GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
	ArrayType  *query = PG_GETARG_ARRAYTYPE_P_COPY(1);
	StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);

	/* Oid		subtype = PG_GETARG_OID(3); */
	bool	   *recheck = (bool *) PG_GETARG_POINTER(4);
	bool		retval;

	/* this is exact except for RTSameStrategyNumber */
	*recheck = (strategy == RTSameStrategyNumber);

	if (strategy == BooleanSearchStrategy)
	{
		retval = execconsistent((QUERYTYPE *) query,
								(ArrayType *) DatumGetPointer(entry->key),
								GIST_LEAF(entry));

		pfree(query);
		PG_RETURN_BOOL(retval);
	}

	/* sort query for fast search, key is already sorted */
	CHECKARRVALID(query);
	PREPAREARR(query);

	switch (strategy)
	{
		case RTOverlapStrategyNumber:
			retval = inner_int_overlap((ArrayType *) DatumGetPointer(entry->key),
									   query);
			break;
		case RTSameStrategyNumber:
			if (GIST_LEAF(entry))
				DirectFunctionCall3(g_int_same,
									entry->key,
									PointerGetDatum(query),
									PointerGetDatum(&retval));
			else
				retval = inner_int_contains((ArrayType *) DatumGetPointer(entry->key),
											query);
			break;
		case RTContainsStrategyNumber:
		case RTOldContainsStrategyNumber:
			retval = inner_int_contains((ArrayType *) DatumGetPointer(entry->key),
										query);
			break;
		case RTContainedByStrategyNumber:
		case RTOldContainedByStrategyNumber:

			/*
			 * This code is unreachable as of intarray 1.4, because the <@
			 * operator has been removed from the opclass.  We keep it for now
			 * to support older versions of the SQL definitions.
			 */
			if (GIST_LEAF(entry))
				retval = inner_int_contains(query,
											(ArrayType *) DatumGetPointer(entry->key));
			else
			{
				/*
				 * Unfortunately, because empty arrays could be anywhere in
				 * the index, we must search the whole tree.
				 */
				retval = true;
			}
			break;
		default:
			retval = false;
	}
	pfree(query);
	PG_RETURN_BOOL(retval);
}

Datum
g_int_union(PG_FUNCTION_ARGS)
{
	GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
	int		   *size = (int *) PG_GETARG_POINTER(1);
	int32		i,
			   *ptr;
	ArrayType  *res;
	int			totlen = 0;

	for (i = 0; i < entryvec->n; i++)
	{
		ArrayType  *ent = GETENTRY(entryvec, i);

		CHECKARRVALID(ent);
		totlen += ARRNELEMS(ent);
	}

	res = new_intArrayType(totlen);
	ptr = ARRPTR(res);

	for (i = 0; i < entryvec->n; i++)
	{
		ArrayType  *ent = GETENTRY(entryvec, i);
		int			nel;

		nel = ARRNELEMS(ent);
		memcpy(ptr, ARRPTR(ent), nel * sizeof(int32));
		ptr += nel;
	}

	QSORT(res, 1);
	res = _int_unique(res);
	*size = VARSIZE(res);
	PG_RETURN_POINTER(res);
}

/*
** GiST Compress and Decompress methods
*/
Datum
g_int_compress(PG_FUNCTION_ARGS)
{
	GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
	GISTENTRY  *retval;
	ArrayType  *r;
	int			num_ranges = G_INT_GET_NUMRANGES();
	int			len,
				lenr;
	int		   *dr;
	int			i,
				j,
				cand;
	int64		min;

	if (entry->leafkey)
	{
		r = DatumGetArrayTypePCopy(entry->key);
		CHECKARRVALID(r);
		PREPAREARR(r);

		if (ARRNELEMS(r) >= 2 * num_ranges)
			ereport(ERROR,
					(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
					 errmsg("input array is too big (%d maximum allowed, %d current), use gist__intbig_ops opclass instead",
							2 * num_ranges - 1, ARRNELEMS(r))));

		retval = palloc(sizeof(GISTENTRY));
		gistentryinit(*retval, PointerGetDatum(r),
					  entry->rel, entry->page, entry->offset, false);

		PG_RETURN_POINTER(retval);
	}

	/*
	 * leaf entries never compress one more time, only when entry->leafkey
	 * ==true, so now we work only with internal keys
	 */

	r = DatumGetArrayTypeP(entry->key);
	CHECKARRVALID(r);
	if (ARRISEMPTY(r))
	{
		if (r != (ArrayType *) DatumGetPointer(entry->key))
			pfree(r);
		PG_RETURN_POINTER(entry);
	}

	if ((len = ARRNELEMS(r)) >= 2 * num_ranges)
	{							/* compress */
		if (r == (ArrayType *) DatumGetPointer(entry->key))
			r = DatumGetArrayTypePCopy(entry->key);
		r = resize_intArrayType(r, 2 * (len));

		dr = ARRPTR(r);

		/*
		 * "len" at this point is the number of ranges we will construct.
		 * "lenr" is the number of ranges we must eventually remove by
		 * merging, we must be careful to remove no more than this number.
		 */
		lenr = len - num_ranges;

		/*
		 * Initially assume we can merge consecutive ints into a range. but we
		 * must count every value removed and stop when lenr runs out
		 */
		for (j = i = len - 1; i > 0 && lenr > 0; i--, j--)
		{
			int			r_end = dr[i];
			int			r_start = r_end;

			while (i > 0 && lenr > 0 && dr[i - 1] == r_start - 1)
				--r_start, --i, --lenr;
			dr[2 * j] = r_start;
			dr[2 * j + 1] = r_end;
		}
		/* just copy the rest, if any, as trivial ranges */
		for (; i >= 0; i--, j--)
			dr[2 * j] = dr[2 * j + 1] = dr[i];

		if (++j)
		{
			/*
			 * shunt everything down to start at the right place
			 */
			memmove((void *) &dr[0], (void *) &dr[2 * j], 2 * (len - j) * sizeof(int32));
		}

		/*
		 * make "len" be number of array elements, not ranges
		 */
		len = 2 * (len - j);
		cand = 1;
		while (len > num_ranges * 2)
		{
			min = PG_INT64_MAX;
			for (i = 2; i < len; i += 2)
				if (min > ((int64) dr[i] - (int64) dr[i - 1]))
				{
					min = ((int64) dr[i] - (int64) dr[i - 1]);
					cand = i;
				}
			memmove((void *) &dr[cand - 1], (void *) &dr[cand + 1], (len - cand - 1) * sizeof(int32));
			len -= 2;
		}

		/*
		 * check sparseness of result
		 */
		lenr = internal_size(dr, len);
		if (lenr < 0 || lenr > MAXNUMELTS)
			ereport(ERROR,
					(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
					 errmsg("data is too sparse, recreate index using gist__intbig_ops opclass instead")));

		r = resize_intArrayType(r, len);
		retval = palloc(sizeof(GISTENTRY));
		gistentryinit(*retval, PointerGetDatum(r),
					  entry->rel, entry->page, entry->offset, false);
		PG_RETURN_POINTER(retval);
	}
	else
		PG_RETURN_POINTER(entry);
}

Datum
g_int_decompress(PG_FUNCTION_ARGS)
{
	GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
	GISTENTRY  *retval;
	ArrayType  *r;
	int			num_ranges = G_INT_GET_NUMRANGES();
	int		   *dr,
				lenr;
	ArrayType  *in;
	int			lenin;
	int		   *din;
	int			i;

	in = DatumGetArrayTypeP(entry->key);

	CHECKARRVALID(in);
	if (ARRISEMPTY(in))
	{
		if (in != (ArrayType *) DatumGetPointer(entry->key))
		{
			retval = palloc(sizeof(GISTENTRY));
			gistentryinit(*retval, PointerGetDatum(in),
						  entry->rel, entry->page, entry->offset, false);
			PG_RETURN_POINTER(retval);
		}

		PG_RETURN_POINTER(entry);
	}

	lenin = ARRNELEMS(in);

	if (lenin < 2 * num_ranges)
	{							/* not compressed value */
		if (in != (ArrayType *) DatumGetPointer(entry->key))
		{
			retval = palloc(sizeof(GISTENTRY));
			gistentryinit(*retval, PointerGetDatum(in),
						  entry->rel, entry->page, entry->offset, false);

			PG_RETURN_POINTER(retval);
		}
		PG_RETURN_POINTER(entry);
	}

	din = ARRPTR(in);
	lenr = internal_size(din, lenin);
	if (lenr < 0 || lenr > MAXNUMELTS)
		ereport(ERROR,
				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
				 errmsg("compressed array is too big, recreate index using gist__intbig_ops opclass instead")));

	r = new_intArrayType(lenr);
	dr = ARRPTR(r);

	for (i = 0; i < lenin; i += 2)
	{
		/* use int64 for j in case din[i + 1] is INT_MAX */
		for (int64 j = din[i]; j <= din[i + 1]; j++)
			if ((!i) || *(dr - 1) != j)
				*dr++ = (int) j;
	}

	if (in != (ArrayType *) DatumGetPointer(entry->key))
		pfree(in);
	retval = palloc(sizeof(GISTENTRY));
	gistentryinit(*retval, PointerGetDatum(r),
				  entry->rel, entry->page, entry->offset, false);

	PG_RETURN_POINTER(retval);
}

/*
** The GiST Penalty method for _intments
*/
Datum
g_int_penalty(PG_FUNCTION_ARGS)
{
	GISTENTRY  *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
	GISTENTRY  *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
	float	   *result = (float *) PG_GETARG_POINTER(2);
	ArrayType  *ud;
	float		tmp1,
				tmp2;

	ud = inner_int_union((ArrayType *) DatumGetPointer(origentry->key),
						 (ArrayType *) DatumGetPointer(newentry->key));
	rt__int_size(ud, &tmp1);
	rt__int_size((ArrayType *) DatumGetPointer(origentry->key), &tmp2);
	*result = tmp1 - tmp2;
	pfree(ud);

	PG_RETURN_POINTER(result);
}



Datum
g_int_same(PG_FUNCTION_ARGS)
{
	ArrayType  *a = PG_GETARG_ARRAYTYPE_P(0);
	ArrayType  *b = PG_GETARG_ARRAYTYPE_P(1);
	bool	   *result = (bool *) PG_GETARG_POINTER(2);
	int32		n = ARRNELEMS(a);
	int32	   *da,
			   *db;

	CHECKARRVALID(a);
	CHECKARRVALID(b);

	if (n != ARRNELEMS(b))
	{
		*result = false;
		PG_RETURN_POINTER(result);
	}
	*result = true;
	da = ARRPTR(a);
	db = ARRPTR(b);
	while (n--)
	{
		if (*da++ != *db++)
		{
			*result = false;
			break;
		}
	}

	PG_RETURN_POINTER(result);
}

/*****************************************************************
** Common GiST Method
*****************************************************************/

typedef struct
{
	OffsetNumber pos;
	float		cost;
} SPLITCOST;

static int
comparecost(const void *a, const void *b)
{
	if (((const SPLITCOST *) a)->cost == ((const SPLITCOST *) b)->cost)
		return 0;
	else
		return (((const SPLITCOST *) a)->cost > ((const SPLITCOST *) b)->cost) ? 1 : -1;
}

/*
** The GiST PickSplit method for _intments
** We use Guttman's poly time split algorithm
*/
Datum
g_int_picksplit(PG_FUNCTION_ARGS)
{
	GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
	GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
	OffsetNumber i,
				j;
	ArrayType  *datum_alpha,
			   *datum_beta;
	ArrayType  *datum_l,
			   *datum_r;
	ArrayType  *union_d,
			   *union_dl,
			   *union_dr;
	ArrayType  *inter_d;
	bool		firsttime;
	float		size_alpha,
				size_beta,
				size_union,
				size_inter;
	float		size_waste,
				waste;
	float		size_l,
				size_r;
	int			nbytes;
	OffsetNumber seed_1 = 0,
				seed_2 = 0;
	OffsetNumber *left,
			   *right;
	OffsetNumber maxoff;
	SPLITCOST  *costvector;

#ifdef GIST_DEBUG
	elog(DEBUG3, "--------picksplit %d", entryvec->n);
#endif

	maxoff = entryvec->n - 2;
	nbytes = (maxoff + 2) * sizeof(OffsetNumber);
	v->spl_left = (OffsetNumber *) palloc(nbytes);
	v->spl_right = (OffsetNumber *) palloc(nbytes);

	firsttime = true;
	waste = 0.0;
	for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
	{
		datum_alpha = GETENTRY(entryvec, i);
		for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
		{
			datum_beta = GETENTRY(entryvec, j);

			/* compute the wasted space by unioning these guys */
			/* size_waste = size_union - size_inter; */
			union_d = inner_int_union(datum_alpha, datum_beta);
			rt__int_size(union_d, &size_union);
			inter_d = inner_int_inter(datum_alpha, datum_beta);
			rt__int_size(inter_d, &size_inter);
			size_waste = size_union - size_inter;

			pfree(union_d);
			pfree(inter_d);

			/*
			 * are these a more promising split that what we've already seen?
			 */

			if (size_waste > waste || firsttime)
			{
				waste = size_waste;
				seed_1 = i;
				seed_2 = j;
				firsttime = false;
			}
		}
	}

	left = v->spl_left;
	v->spl_nleft = 0;
	right = v->spl_right;
	v->spl_nright = 0;
	if (seed_1 == 0 || seed_2 == 0)
	{
		seed_1 = 1;
		seed_2 = 2;
	}

	datum_alpha = GETENTRY(entryvec, seed_1);
	datum_l = copy_intArrayType(datum_alpha);
	rt__int_size(datum_l, &size_l);
	datum_beta = GETENTRY(entryvec, seed_2);
	datum_r = copy_intArrayType(datum_beta);
	rt__int_size(datum_r, &size_r);

	maxoff = OffsetNumberNext(maxoff);

	/*
	 * sort entries
	 */
	costvector = (SPLITCOST *) palloc(sizeof(SPLITCOST) * maxoff);
	for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
	{
		costvector[i - 1].pos = i;
		datum_alpha = GETENTRY(entryvec, i);
		union_d = inner_int_union(datum_l, datum_alpha);
		rt__int_size(union_d, &size_alpha);
		pfree(union_d);
		union_d = inner_int_union(datum_r, datum_alpha);
		rt__int_size(union_d, &size_beta);
		pfree(union_d);
		costvector[i - 1].cost = Abs((size_alpha - size_l) - (size_beta - size_r));
	}
	qsort((void *) costvector, maxoff, sizeof(SPLITCOST), comparecost);

	/*
	 * Now split up the regions between the two seeds.  An important property
	 * of this split algorithm is that the split vector v has the indices of
	 * items to be split in order in its left and right vectors.  We exploit
	 * this property by doing a merge in the code that actually splits the
	 * page.
	 *
	 * For efficiency, we also place the new index tuple in this loop. This is
	 * handled at the very end, when we have placed all the existing tuples
	 * and i == maxoff + 1.
	 */


	for (j = 0; j < maxoff; j++)
	{
		i = costvector[j].pos;

		/*
		 * If we've already decided where to place this item, just put it on
		 * the right list.  Otherwise, we need to figure out which page needs
		 * the least enlargement in order to store the item.
		 */

		if (i == seed_1)
		{
			*left++ = i;
			v->spl_nleft++;
			continue;
		}
		else if (i == seed_2)
		{
			*right++ = i;
			v->spl_nright++;
			continue;
		}

		/* okay, which page needs least enlargement? */
		datum_alpha = GETENTRY(entryvec, i);
		union_dl = inner_int_union(datum_l, datum_alpha);
		union_dr = inner_int_union(datum_r, datum_alpha);
		rt__int_size(union_dl, &size_alpha);
		rt__int_size(union_dr, &size_beta);

		/* pick which page to add it to */
		if (size_alpha - size_l < size_beta - size_r + WISH_F(v->spl_nleft, v->spl_nright, 0.01))
		{
			pfree(datum_l);
			pfree(union_dr);
			datum_l = union_dl;
			size_l = size_alpha;
			*left++ = i;
			v->spl_nleft++;
		}
		else
		{
			pfree(datum_r);
			pfree(union_dl);
			datum_r = union_dr;
			size_r = size_beta;
			*right++ = i;
			v->spl_nright++;
		}
	}
	pfree(costvector);
	*right = *left = FirstOffsetNumber;

	v->spl_ldatum = PointerGetDatum(datum_l);
	v->spl_rdatum = PointerGetDatum(datum_r);

	PG_RETURN_POINTER(v);
}

Datum
g_int_options(PG_FUNCTION_ARGS)
{
	local_relopts *relopts = (local_relopts *) PG_GETARG_POINTER(0);

	init_local_reloptions(relopts, sizeof(GISTIntArrayOptions));
	add_local_int_reloption(relopts, "numranges",
							"number of ranges for compression",
							G_INT_NUMRANGES_DEFAULT, 1, G_INT_NUMRANGES_MAX,
							offsetof(GISTIntArrayOptions, num_ranges));

	PG_RETURN_VOID();
}