summaryrefslogtreecommitdiffstats
path: root/doc/src/sgml/array.sgml
blob: 56185b9b0387dba4ed615658427c5b957d4a403b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
<!-- doc/src/sgml/array.sgml -->

<sect1 id="arrays">
 <title>Arrays</title>

 <indexterm>
  <primary>array</primary>
 </indexterm>

 <para>
  <productname>PostgreSQL</productname> allows columns of a table to be
  defined as variable-length multidimensional arrays. Arrays of any
  built-in or user-defined base type, enum type, composite type, range type,
  or domain can be created.
 </para>

 <sect2 id="arrays-declaration">
  <title>Declaration of Array Types</title>

  <indexterm>
   <primary>array</primary>
   <secondary>declaration</secondary>
  </indexterm>

 <para>
  To illustrate the use of array types, we create this table:
<programlisting>
CREATE TABLE sal_emp (
    name            text,
    pay_by_quarter  integer[],
    schedule        text[][]
);
</programlisting>
  As shown, an array data type is named by appending square brackets
  (<literal>[]</literal>) to the data type name of the array elements.  The
  above command will create a table named
  <structname>sal_emp</structname> with a column of type
  <type>text</type> (<structfield>name</structfield>), a
  one-dimensional array of type <type>integer</type>
  (<structfield>pay_by_quarter</structfield>), which represents the
  employee's salary by quarter, and a two-dimensional array of
  <type>text</type> (<structfield>schedule</structfield>), which
  represents the employee's weekly schedule.
 </para>

 <para>
  The syntax for <command>CREATE TABLE</command> allows the exact size of
  arrays to be specified, for example:

<programlisting>
CREATE TABLE tictactoe (
    squares   integer[3][3]
);
</programlisting>

  However, the current implementation ignores any supplied array size
  limits, i.e., the behavior is the same as for arrays of unspecified
  length.
 </para>

 <para>
  The current implementation does not enforce the declared
  number of dimensions either.  Arrays of a particular element type are
  all considered to be of the same type, regardless of size or number
  of dimensions.  So, declaring the array size or number of dimensions in
  <command>CREATE TABLE</command> is simply documentation; it does not
  affect run-time behavior.
 </para>

 <para>
  An alternative syntax, which conforms to the SQL standard by using
  the keyword <literal>ARRAY</literal>, can be used for one-dimensional arrays.
  <structfield>pay_by_quarter</structfield> could have been defined
  as:
<programlisting>
    pay_by_quarter  integer ARRAY[4],
</programlisting>
  Or, if no array size is to be specified:
<programlisting>
    pay_by_quarter  integer ARRAY,
</programlisting>
  As before, however, <productname>PostgreSQL</productname> does not enforce the
  size restriction in any case.
 </para>
 </sect2>

 <sect2 id="arrays-input">
  <title>Array Value Input</title>

  <indexterm>
   <primary>array</primary>
   <secondary>constant</secondary>
  </indexterm>

  <para>
   To write an array value as a literal constant, enclose the element
   values within curly braces and separate them by commas.  (If you
   know C, this is not unlike the C syntax for initializing
   structures.)  You can put double quotes around any element value,
   and must do so if it contains commas or curly braces.  (More
   details appear below.)  Thus, the general format of an array
   constant is the following:
<synopsis>
'{ <replaceable>val1</replaceable> <replaceable>delim</replaceable> <replaceable>val2</replaceable> <replaceable>delim</replaceable> ... }'
</synopsis>
   where <replaceable>delim</replaceable> is the delimiter character
   for the type, as recorded in its <literal>pg_type</literal> entry.
   Among the standard data types provided in the
   <productname>PostgreSQL</productname> distribution, all use a comma
   (<literal>,</literal>), except for type <type>box</type> which uses a semicolon
   (<literal>;</literal>). Each <replaceable>val</replaceable> is
   either a constant of the array element type, or a subarray. An example
   of an array constant is:
<programlisting>
'{{1,2,3},{4,5,6},{7,8,9}}'
</programlisting>
   This constant is a two-dimensional, 3-by-3 array consisting of
   three subarrays of integers.
  </para>

  <para>
   To set an element of an array constant to NULL, write <literal>NULL</literal>
   for the element value.  (Any upper- or lower-case variant of
   <literal>NULL</literal> will do.)  If you want an actual string value
   <quote>NULL</quote>, you must put double quotes around it.
  </para>

  <para>
   (These kinds of array constants are actually only a special case of
   the generic type constants discussed in <xref
   linkend="sql-syntax-constants-generic"/>.  The constant is initially
   treated as a string and passed to the array input conversion
   routine.  An explicit type specification might be necessary.)
  </para>

  <para>
   Now we can show some <command>INSERT</command> statements:

<programlisting>
INSERT INTO sal_emp
    VALUES ('Bill',
    '{10000, 10000, 10000, 10000}',
    '{{"meeting", "lunch"}, {"training", "presentation"}}');

INSERT INTO sal_emp
    VALUES ('Carol',
    '{20000, 25000, 25000, 25000}',
    '{{"breakfast", "consulting"}, {"meeting", "lunch"}}');
</programlisting>
  </para>

 <para>
  The result of the previous two inserts looks like this:

<programlisting>
SELECT * FROM sal_emp;
 name  |      pay_by_quarter       |                 schedule
-------+---------------------------+-------------------------------------------
 Bill  | {10000,10000,10000,10000} | {{meeting,lunch},{training,presentation}}
 Carol | {20000,25000,25000,25000} | {{breakfast,consulting},{meeting,lunch}}
(2 rows)
</programlisting>
 </para>

 <para>
  Multidimensional arrays must have matching extents for each
  dimension. A mismatch causes an error, for example:

<programlisting>
INSERT INTO sal_emp
    VALUES ('Bill',
    '{10000, 10000, 10000, 10000}',
    '{{"meeting", "lunch"}, {"meeting"}}');
ERROR:  multidimensional arrays must have array expressions with matching dimensions
</programlisting>
 </para>

 <para>
  The <literal>ARRAY</literal> constructor syntax can also be used:
<programlisting>
INSERT INTO sal_emp
    VALUES ('Bill',
    ARRAY[10000, 10000, 10000, 10000],
    ARRAY[['meeting', 'lunch'], ['training', 'presentation']]);

INSERT INTO sal_emp
    VALUES ('Carol',
    ARRAY[20000, 25000, 25000, 25000],
    ARRAY[['breakfast', 'consulting'], ['meeting', 'lunch']]);
</programlisting>
  Notice that the array elements are ordinary SQL constants or
  expressions; for instance, string literals are single quoted, instead of
  double quoted as they would be in an array literal.  The <literal>ARRAY</literal>
  constructor syntax is discussed in more detail in
  <xref linkend="sql-syntax-array-constructors"/>.
 </para>
 </sect2>

 <sect2 id="arrays-accessing">
  <title>Accessing Arrays</title>

  <indexterm>
   <primary>array</primary>
   <secondary>accessing</secondary>
  </indexterm>

 <para>
  Now, we can run some queries on the table.
  First, we show how to access a single element of an array.
  This query retrieves the names of the employees whose pay changed in
  the second quarter:

<programlisting>
SELECT name FROM sal_emp WHERE pay_by_quarter[1] &lt;&gt; pay_by_quarter[2];

 name
-------
 Carol
(1 row)
</programlisting>

  The array subscript numbers are written within square brackets.
  By default <productname>PostgreSQL</productname> uses a
  one-based numbering convention for arrays, that is,
  an array of <replaceable>n</replaceable> elements starts with <literal>array[1]</literal> and
  ends with <literal>array[<replaceable>n</replaceable>]</literal>.
 </para>

 <para>
  This query retrieves the third quarter pay of all employees:

<programlisting>
SELECT pay_by_quarter[3] FROM sal_emp;

 pay_by_quarter
----------------
          10000
          25000
(2 rows)
</programlisting>
 </para>

 <para>
  We can also access arbitrary rectangular slices of an array, or
  subarrays.  An array slice is denoted by writing
  <literal><replaceable>lower-bound</replaceable>:<replaceable>upper-bound</replaceable></literal>
  for one or more array dimensions.  For example, this query retrieves the first
  item on Bill's schedule for the first two days of the week:

<programlisting>
SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = 'Bill';

        schedule
------------------------
 {{meeting},{training}}
(1 row)
</programlisting>

  If any dimension is written as a slice, i.e., contains a colon, then all
  dimensions are treated as slices.  Any dimension that has only a single
  number (no colon) is treated as being from 1
  to the number specified.  For example, <literal>[2]</literal> is treated as
  <literal>[1:2]</literal>, as in this example:

<programlisting>
SELECT schedule[1:2][2] FROM sal_emp WHERE name = 'Bill';

                 schedule
-------------------------------------------
 {{meeting,lunch},{training,presentation}}
(1 row)
</programlisting>

  To avoid confusion with the non-slice case, it's best to use slice syntax
  for all dimensions, e.g., <literal>[1:2][1:1]</literal>, not <literal>[2][1:1]</literal>.
 </para>

 <para>
  It is possible to omit the <replaceable>lower-bound</replaceable> and/or
  <replaceable>upper-bound</replaceable> of a slice specifier; the missing
  bound is replaced by the lower or upper limit of the array's subscripts.
  For example:

<programlisting>
SELECT schedule[:2][2:] FROM sal_emp WHERE name = 'Bill';

        schedule
------------------------
 {{lunch},{presentation}}
(1 row)

SELECT schedule[:][1:1] FROM sal_emp WHERE name = 'Bill';

        schedule
------------------------
 {{meeting},{training}}
(1 row)
</programlisting>
 </para>

 <para>
  An array subscript expression will return null if either the array itself or
  any of the subscript expressions are null.  Also, null is returned if a
  subscript is outside the array bounds (this case does not raise an error).
  For example, if <literal>schedule</literal>
  currently has the dimensions <literal>[1:3][1:2]</literal> then referencing
  <literal>schedule[3][3]</literal> yields NULL.  Similarly, an array reference
  with the wrong number of subscripts yields a null rather than an error.
 </para>

 <para>
  An array slice expression likewise yields null if the array itself or
  any of the subscript expressions are null.  However, in other
  cases such as selecting an array slice that
  is completely outside the current array bounds, a slice expression
  yields an empty (zero-dimensional) array instead of null.  (This
  does not match non-slice behavior and is done for historical reasons.)
  If the requested slice partially overlaps the array bounds, then it
  is silently reduced to just the overlapping region instead of
  returning null.
 </para>

 <para>
  The current dimensions of any array value can be retrieved with the
  <function>array_dims</function> function:

<programlisting>
SELECT array_dims(schedule) FROM sal_emp WHERE name = 'Carol';

 array_dims
------------
 [1:2][1:2]
(1 row)
</programlisting>

  <function>array_dims</function> produces a <type>text</type> result,
  which is convenient for people to read but perhaps inconvenient
  for programs.  Dimensions can also be retrieved with
  <function>array_upper</function> and <function>array_lower</function>,
  which return the upper and lower bound of a
  specified array dimension, respectively:

<programlisting>
SELECT array_upper(schedule, 1) FROM sal_emp WHERE name = 'Carol';

 array_upper
-------------
           2
(1 row)
</programlisting>

 <function>array_length</function> will return the length of a specified
 array dimension:

<programlisting>
SELECT array_length(schedule, 1) FROM sal_emp WHERE name = 'Carol';

 array_length
--------------
            2
(1 row)
</programlisting>

 <function>cardinality</function> returns the total number of elements in an
 array across all dimensions.  It is effectively the number of rows a call to
 <function>unnest</function> would yield:

<programlisting>
SELECT cardinality(schedule) FROM sal_emp WHERE name = 'Carol';

 cardinality
-------------
           4
(1 row)
</programlisting>
 </para>
 </sect2>

 <sect2 id="arrays-modifying">
  <title>Modifying Arrays</title>

  <indexterm>
   <primary>array</primary>
   <secondary>modifying</secondary>
  </indexterm>

 <para>
  An array value can be replaced completely:

<programlisting>
UPDATE sal_emp SET pay_by_quarter = '{25000,25000,27000,27000}'
    WHERE name = 'Carol';
</programlisting>

  or using the <literal>ARRAY</literal> expression syntax:

<programlisting>
UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
    WHERE name = 'Carol';
</programlisting>

  An array can also be updated at a single element:

<programlisting>
UPDATE sal_emp SET pay_by_quarter[4] = 15000
    WHERE name = 'Bill';
</programlisting>

  or updated in a slice:

<programlisting>
UPDATE sal_emp SET pay_by_quarter[1:2] = '{27000,27000}'
    WHERE name = 'Carol';
</programlisting>

  The slice syntaxes with omitted <replaceable>lower-bound</replaceable> and/or
  <replaceable>upper-bound</replaceable> can be used too, but only when
  updating an array value that is not NULL or zero-dimensional (otherwise,
  there is no existing subscript limit to substitute).
 </para>

 <para>
  A stored array value can be enlarged by assigning to elements not already
  present.  Any positions between those previously present and the newly
  assigned elements will be filled with nulls.  For example, if array
  <literal>myarray</literal> currently has 4 elements, it will have six
  elements after an update that assigns to <literal>myarray[6]</literal>;
  <literal>myarray[5]</literal> will contain null.
  Currently, enlargement in this fashion is only allowed for one-dimensional
  arrays, not multidimensional arrays.
 </para>

 <para>
  Subscripted assignment allows creation of arrays that do not use one-based
  subscripts.  For example one might assign to <literal>myarray[-2:7]</literal> to
  create an array with subscript values from -2 to 7.
 </para>

 <para>
  New array values can also be constructed using the concatenation operator,
  <literal>||</literal>:
<programlisting>
SELECT ARRAY[1,2] || ARRAY[3,4];
 ?column?
-----------
 {1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]];
      ?column?
---------------------
 {{5,6},{1,2},{3,4}}
(1 row)
</programlisting>
 </para>

 <para>
  The concatenation operator allows a single element to be pushed onto the
  beginning or end of a one-dimensional array. It also accepts two
  <replaceable>N</replaceable>-dimensional arrays, or an <replaceable>N</replaceable>-dimensional
  and an <replaceable>N+1</replaceable>-dimensional array.
 </para>

 <para>
  When a single element is pushed onto either the beginning or end of a
  one-dimensional array, the result is an array with the same lower bound
  subscript as the array operand. For example:
<programlisting>
SELECT array_dims(1 || '[0:1]={2,3}'::int[]);
 array_dims
------------
 [0:2]
(1 row)

SELECT array_dims(ARRAY[1,2] || 3);
 array_dims
------------
 [1:3]
(1 row)
</programlisting>
 </para>

 <para>
  When two arrays with an equal number of dimensions are concatenated, the
  result retains the lower bound subscript of the left-hand operand's outer
  dimension. The result is an array comprising every element of the left-hand
  operand followed by every element of the right-hand operand. For example:
<programlisting>
SELECT array_dims(ARRAY[1,2] || ARRAY[3,4,5]);
 array_dims
------------
 [1:5]
(1 row)

SELECT array_dims(ARRAY[[1,2],[3,4]] || ARRAY[[5,6],[7,8],[9,0]]);
 array_dims
------------
 [1:5][1:2]
(1 row)
</programlisting>
 </para>

 <para>
  When an <replaceable>N</replaceable>-dimensional array is pushed onto the beginning
  or end of an <replaceable>N+1</replaceable>-dimensional array, the result is
  analogous to the element-array case above. Each <replaceable>N</replaceable>-dimensional
  sub-array is essentially an element of the <replaceable>N+1</replaceable>-dimensional
  array's outer dimension. For example:
<programlisting>
SELECT array_dims(ARRAY[1,2] || ARRAY[[3,4],[5,6]]);
 array_dims
------------
 [1:3][1:2]
(1 row)
</programlisting>
 </para>

 <para>
  An array can also be constructed by using the functions
  <function>array_prepend</function>, <function>array_append</function>,
  or <function>array_cat</function>. The first two only support one-dimensional
  arrays, but <function>array_cat</function> supports multidimensional arrays.
  Some examples:

<programlisting>
SELECT array_prepend(1, ARRAY[2,3]);
 array_prepend
---------------
 {1,2,3}
(1 row)

SELECT array_append(ARRAY[1,2], 3);
 array_append
--------------
 {1,2,3}
(1 row)

SELECT array_cat(ARRAY[1,2], ARRAY[3,4]);
 array_cat
-----------
 {1,2,3,4}
(1 row)

SELECT array_cat(ARRAY[[1,2],[3,4]], ARRAY[5,6]);
      array_cat
---------------------
 {{1,2},{3,4},{5,6}}
(1 row)

SELECT array_cat(ARRAY[5,6], ARRAY[[1,2],[3,4]]);
      array_cat
---------------------
 {{5,6},{1,2},{3,4}}
</programlisting>
 </para>

 <para>
  In simple cases, the concatenation operator discussed above is preferred
  over direct use of these functions.  However, because the concatenation
  operator is overloaded to serve all three cases, there are situations where
  use of one of the functions is helpful to avoid ambiguity.  For example
  consider:

<programlisting>
SELECT ARRAY[1, 2] || '{3, 4}';  -- the untyped literal is taken as an array
 ?column?
-----------
 {1,2,3,4}

SELECT ARRAY[1, 2] || '7';                 -- so is this one
ERROR:  malformed array literal: "7"

SELECT ARRAY[1, 2] || NULL;                -- so is an undecorated NULL
 ?column?
----------
 {1,2}
(1 row)

SELECT array_append(ARRAY[1, 2], NULL);    -- this might have been meant
 array_append
--------------
 {1,2,NULL}
</programlisting>

  In the examples above, the parser sees an integer array on one side of the
  concatenation operator, and a constant of undetermined type on the other.
  The heuristic it uses to resolve the constant's type is to assume it's of
  the same type as the operator's other input &mdash; in this case,
  integer array.  So the concatenation operator is presumed to
  represent <function>array_cat</function>, not <function>array_append</function>.  When
  that's the wrong choice, it could be fixed by casting the constant to the
  array's element type; but explicit use of <function>array_append</function> might
  be a preferable solution.
 </para>
 </sect2>

 <sect2 id="arrays-searching">
  <title>Searching in Arrays</title>

  <indexterm>
   <primary>array</primary>
   <secondary>searching</secondary>
  </indexterm>

 <para>
  To search for a value in an array, each value must be checked.
  This can be done manually, if you know the size of the array.
  For example:

<programlisting>
SELECT * FROM sal_emp WHERE pay_by_quarter[1] = 10000 OR
                            pay_by_quarter[2] = 10000 OR
                            pay_by_quarter[3] = 10000 OR
                            pay_by_quarter[4] = 10000;
</programlisting>

  However, this quickly becomes tedious for large arrays, and is not
  helpful if the size of the array is unknown. An alternative method is
  described in <xref linkend="functions-comparisons"/>. The above
  query could be replaced by:

<programlisting>
SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);
</programlisting>

  In addition, you can find rows where the array has all values
  equal to 10000 with:

<programlisting>
SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);
</programlisting>

 </para>

 <para>
  Alternatively, the <function>generate_subscripts</function> function can be used.
  For example:

<programlisting>
SELECT * FROM
   (SELECT pay_by_quarter,
           generate_subscripts(pay_by_quarter, 1) AS s
      FROM sal_emp) AS foo
 WHERE pay_by_quarter[s] = 10000;
</programlisting>

  This function is described in <xref linkend="functions-srf-subscripts"/>.
 </para>

 <para>
  You can also search an array using the <literal>&amp;&amp;</literal> operator,
  which checks whether the left operand overlaps with the right operand.
  For instance:

<programlisting>
SELECT * FROM sal_emp WHERE pay_by_quarter &amp;&amp; ARRAY[10000];
</programlisting>

  This and other array operators are further described in
  <xref linkend="functions-array"/>.  It can be accelerated by an appropriate
  index, as described in <xref linkend="indexes-types"/>.
 </para>

 <para>
  You can also search for specific values in an array using the <function>array_position</function>
  and <function>array_positions</function> functions. The former returns the subscript of
  the first occurrence of a value in an array; the latter returns an array with the
  subscripts of all occurrences of the value in the array.  For example:

<programlisting>
SELECT array_position(ARRAY['sun','mon','tue','wed','thu','fri','sat'], 'mon');
 array_position
----------------
              2
(1 row)

SELECT array_positions(ARRAY[1, 4, 3, 1, 3, 4, 2, 1], 1);
 array_positions
-----------------
 {1,4,8}
(1 row)
</programlisting>
 </para>

 <tip>
  <para>
   Arrays are not sets; searching for specific array elements
   can be a sign of database misdesign.  Consider
   using a separate table with a row for each item that would be an
   array element.  This will be easier to search, and is likely to
   scale better for a large number of elements.
  </para>
 </tip>
 </sect2>

 <sect2 id="arrays-io">
  <title>Array Input and Output Syntax</title>

  <indexterm>
   <primary>array</primary>
   <secondary>I/O</secondary>
  </indexterm>

  <para>
   The external text representation of an array value consists of items that
   are interpreted according to the I/O conversion rules for the array's
   element type, plus decoration that indicates the array structure.
   The decoration consists of curly braces (<literal>{</literal> and <literal>}</literal>)
   around the array value plus delimiter characters between adjacent items.
   The delimiter character is usually a comma (<literal>,</literal>) but can be
   something else: it is determined by the <literal>typdelim</literal> setting
   for the array's element type.  Among the standard data types provided
   in the <productname>PostgreSQL</productname> distribution, all use a comma,
   except for type <type>box</type>, which uses a semicolon (<literal>;</literal>).
   In a multidimensional array, each dimension (row, plane,
   cube, etc.) gets its own level of curly braces, and delimiters
   must be written between adjacent curly-braced entities of the same level.
  </para>

  <para>
   The array output routine will put double quotes around element values
   if they are empty strings, contain curly braces, delimiter characters,
   double quotes, backslashes, or white space, or match the word
   <literal>NULL</literal>.  Double quotes and backslashes
   embedded in element values will be backslash-escaped.  For numeric
   data types it is safe to assume that double quotes will never appear, but
   for textual data types one should be prepared to cope with either the presence
   or absence of quotes.
  </para>

  <para>
   By default, the lower bound index value of an array's dimensions is
   set to one.  To represent arrays with other lower bounds, the array
   subscript ranges can be specified explicitly before writing the
   array contents.
   This decoration consists of square brackets (<literal>[]</literal>)
   around each array dimension's lower and upper bounds, with
   a colon (<literal>:</literal>) delimiter character in between. The
   array dimension decoration is followed by an equal sign (<literal>=</literal>).
   For example:
<programlisting>
SELECT f1[1][-2][3] AS e1, f1[1][-1][5] AS e2
 FROM (SELECT '[1:1][-2:-1][3:5]={{{1,2,3},{4,5,6}}}'::int[] AS f1) AS ss;

 e1 | e2
----+----
  1 |  6
(1 row)
</programlisting>
   The array output routine will include explicit dimensions in its result
   only when there are one or more lower bounds different from one.
  </para>

  <para>
   If the value written for an element is <literal>NULL</literal> (in any case
   variant), the element is taken to be NULL.  The presence of any quotes
   or backslashes disables this and allows the literal string value
   <quote>NULL</quote> to be entered.  Also, for backward compatibility with
   pre-8.2 versions of <productname>PostgreSQL</productname>, the <xref
   linkend="guc-array-nulls"/> configuration parameter can be turned
   <literal>off</literal> to suppress recognition of <literal>NULL</literal> as a NULL.
  </para>

  <para>
   As shown previously, when writing an array value you can use double
   quotes around any individual array element. You <emphasis>must</emphasis> do so
   if the element value would otherwise confuse the array-value parser.
   For example, elements containing curly braces, commas (or the data type's
   delimiter character), double quotes, backslashes, or leading or trailing
   whitespace must be double-quoted.  Empty strings and strings matching the
   word <literal>NULL</literal> must be quoted, too.  To put a double
   quote or backslash in a quoted array element value, precede it
   with a backslash. Alternatively, you can avoid quotes and use
   backslash-escaping to protect all data characters that would otherwise
   be taken as array syntax.
  </para>

  <para>
   You can add whitespace before a left brace or after a right
   brace. You can also add whitespace before or after any individual item
   string. In all of these cases the whitespace will be ignored. However,
   whitespace within double-quoted elements, or surrounded on both sides by
   non-whitespace characters of an element, is not ignored.
  </para>

 <tip>
  <para>
   The <literal>ARRAY</literal> constructor syntax (see
   <xref linkend="sql-syntax-array-constructors"/>) is often easier to work
   with than the array-literal syntax when writing array values in SQL
   commands. In <literal>ARRAY</literal>, individual element values are written the
   same way they would be written when not members of an array.
  </para>
 </tip>
 </sect2>

</sect1>