summaryrefslogtreecommitdiffstats
path: root/doc/src/sgml/gist.sgml
blob: 9ac6b03e6e4524006862b6ab27b3cac6b345a50d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
<!-- doc/src/sgml/gist.sgml -->

<chapter id="gist">
<title>GiST Indexes</title>

   <indexterm>
    <primary>index</primary>
    <secondary>GiST</secondary>
   </indexterm>

<sect1 id="gist-intro">
 <title>Introduction</title>

 <para>
   <acronym>GiST</acronym> stands for Generalized Search Tree.  It is a
   balanced, tree-structured access method, that acts as a base template in
   which to implement arbitrary indexing schemes. B-trees, R-trees and many
   other indexing schemes can be implemented in <acronym>GiST</acronym>.
 </para>

 <para>
  One advantage of <acronym>GiST</acronym> is that it allows the development
  of custom data types with the appropriate access methods, by
  an expert in the domain of the data type, rather than a database expert.
 </para>

  <para>
    Some of the information here is derived from the University of California
    at Berkeley's GiST Indexing Project
    <ulink url="http://gist.cs.berkeley.edu/">web site</ulink> and
    Marcel Kornacker's thesis,
    <ulink url="http://www.sai.msu.su/~megera/postgres/gist/papers/concurrency/access-methods-for-next-generation.pdf.gz">
    Access Methods for Next-Generation Database Systems</ulink>.
    The <acronym>GiST</acronym>
    implementation in <productname>PostgreSQL</productname> is primarily
    maintained by Teodor Sigaev and Oleg Bartunov, and there is more
    information on their
    <ulink url="http://www.sai.msu.su/~megera/postgres/gist/">web site</ulink>.
  </para>

</sect1>

<sect1 id="gist-builtin-opclasses">
 <title>Built-in Operator Classes</title>

 <para>
  The core <productname>PostgreSQL</productname> distribution
  includes the <acronym>GiST</acronym> operator classes shown in
  <xref linkend="gist-builtin-opclasses-table"/>.
  (Some of the optional modules described in <xref linkend="contrib"/>
  provide additional <acronym>GiST</acronym> operator classes.)
 </para>

  <table id="gist-builtin-opclasses-table">
   <title>Built-in <acronym>GiST</acronym> Operator Classes</title>
   <tgroup cols="3">
     <colspec colname="col1" colwidth="2*"/>
     <colspec colname="col2" colwidth="3*"/>
     <colspec colname="col3" colwidth="2*"/>
    <thead>
     <row>
      <entry>Name</entry>
      <entry>Indexable Operators</entry>
      <entry>Ordering Operators</entry>
     </row>
    </thead>
    <tbody>
     <row>
      <entry valign="middle" morerows="13"><literal>box_ops</literal></entry>
      <entry><literal>&lt;&lt; (box, box)</literal></entry>
      <entry valign="middle" morerows="13"><literal>&lt;-&gt; (box, point)</literal></entry>
     </row>
     <row><entry><literal>&amp;&lt; (box, box)</literal></entry></row>
     <row><entry><literal>&amp;&amp; (box, box)</literal></entry></row>
     <row><entry><literal>&amp;&gt; (box, box)</literal></entry></row>
     <row><entry><literal>&gt;&gt; (box, box)</literal></entry></row>
     <row><entry><literal>~= (box, box)</literal></entry></row>
     <row><entry><literal>@&gt; (box, box)</literal></entry></row>
     <row><entry><literal>&lt;@ (box, box)</literal></entry></row>
     <row><entry><literal>&amp;&lt;| (box, box)</literal></entry></row>
     <row><entry><literal>&lt;&lt;| (box, box)</literal></entry></row>
     <row><entry><literal>|&gt;&gt; (box, box)</literal></entry></row>
     <row><entry><literal>|&amp;&gt; (box, box)</literal></entry></row>
     <row><entry><literal>~ (box, box)</literal></entry></row>
     <row><entry><literal>@ (box, box)</literal></entry></row>

     <row>
      <entry valign="middle" morerows="13"><literal>circle_ops</literal></entry>
      <entry><literal>&lt;&lt; (circle, circle)</literal></entry>
      <entry valign="middle" morerows="13"><literal>&lt;-&gt; (circle, point)</literal></entry>
     </row>
     <row><entry><literal>&amp;&lt; (circle, circle)</literal></entry></row>
     <row><entry><literal>&amp;&gt; (circle, circle)</literal></entry></row>
     <row><entry><literal>&gt;&gt; (circle, circle)</literal></entry></row>
     <row><entry><literal>&lt;@ (circle, circle)</literal></entry></row>
     <row><entry><literal>@&gt; (circle, circle)</literal></entry></row>
     <row><entry><literal>~= (circle, circle)</literal></entry></row>
     <row><entry><literal>&amp;&amp; (circle, circle)</literal></entry></row>
     <row><entry><literal>|&gt;&gt; (circle, circle)</literal></entry></row>
     <row><entry><literal>&lt;&lt;| (circle, circle)</literal></entry></row>
     <row><entry><literal>&amp;&lt;| (circle, circle)</literal></entry></row>
     <row><entry><literal>|&amp;&gt; (circle, circle)</literal></entry></row>
     <row><entry><literal>@ (circle, circle)</literal></entry></row>
     <row><entry><literal>~ (circle, circle)</literal></entry></row>

     <row>
      <entry valign="middle" morerows="10"><literal>inet_ops</literal></entry>
      <entry><literal>&lt;&lt; (inet, inet)</literal></entry>
      <entry valign="middle" morerows="10"></entry>
     </row>
     <row><entry><literal>&lt;&lt;= (inet, inet)</literal></entry></row>
     <row><entry><literal>&gt;&gt; (inet, inet)</literal></entry></row>
     <row><entry><literal>&gt;&gt;= (inet, inet)</literal></entry></row>
     <row><entry><literal>= (inet, inet)</literal></entry></row>
     <row><entry><literal>&lt;&gt; (inet, inet)</literal></entry></row>
     <row><entry><literal>&lt; (inet, inet)</literal></entry></row>
     <row><entry><literal>&lt;= (inet, inet)</literal></entry></row>
     <row><entry><literal>&gt; (inet, inet)</literal></entry></row>
     <row><entry><literal>&gt;= (inet, inet)</literal></entry></row>
     <row><entry><literal>&amp;&amp; (inet, inet)</literal></entry></row>

     <row>
      <entry valign="middle" morerows="17"><literal>multirange_ops</literal></entry>
      <entry><literal>= (anymultirange, anymultirange)</literal></entry>
      <entry valign="middle" morerows="17"></entry>
     </row>
     <row><entry><literal>&amp;&amp; (anymultirange, anymultirange)</literal></entry></row>
     <row><entry><literal>&amp;&amp; (anymultirange, anyrange)</literal></entry></row>
     <row><entry><literal>@&gt; (anymultirange, anyelement)</literal></entry></row>
     <row><entry><literal>@&gt; (anymultirange, anymultirange)</literal></entry></row>
     <row><entry><literal>@&gt; (anymultirange, anyrange)</literal></entry></row>
     <row><entry><literal>&lt;@ (anymultirange, anymultirange)</literal></entry></row>
     <row><entry><literal>&lt;@ (anymultirange, anyrange)</literal></entry></row>
     <row><entry><literal>&lt;&lt; (anymultirange, anymultirange)</literal></entry></row>
     <row><entry><literal>&lt;&lt; (anymultirange, anyrange)</literal></entry></row>
     <row><entry><literal>&gt;&gt; (anymultirange, anymultirange)</literal></entry></row>
     <row><entry><literal>&gt;&gt; (anymultirange, anyrange)</literal></entry></row>
     <row><entry><literal>&amp;&lt; (anymultirange, anymultirange)</literal></entry></row>
     <row><entry><literal>&amp;&lt; (anymultirange, anyrange)</literal></entry></row>
     <row><entry><literal>&amp;&gt; (anymultirange, anymultirange)</literal></entry></row>
     <row><entry><literal>&amp;&gt; (anymultirange, anyrange)</literal></entry></row>
     <row><entry><literal>-|- (anymultirange, anymultirange)</literal></entry></row>
     <row><entry><literal>-|- (anymultirange, anyrange)</literal></entry></row>

     <row>
      <entry valign="middle" morerows="7"><literal>point_ops</literal></entry>
      <entry><literal>|&gt;&gt; (point, point)</literal></entry>
      <entry valign="middle" morerows="7"><literal>&lt;-&gt; (point, point)</literal></entry>
     </row>
     <row><entry><literal>&lt;&lt; (point, point)</literal></entry></row>
     <row><entry><literal>&gt;&gt; (point, point)</literal></entry></row>
     <row><entry><literal>&lt;&lt;| (point, point)</literal></entry></row>
     <row><entry><literal>~= (point, point)</literal></entry></row>
     <row><entry><literal>&lt;@ (point, box)</literal></entry></row>
     <row><entry><literal>&lt;@ (point, polygon)</literal></entry></row>
     <row><entry><literal>&lt;@ (point, circle)</literal></entry></row>

     <row>
      <entry valign="middle" morerows="13"><literal>poly_ops</literal></entry>
      <entry><literal>&lt;&lt; (polygon, polygon)</literal></entry>
      <entry valign="middle" morerows="13"><literal>&lt;-&gt; (polygon, point)</literal></entry>
     </row>
     <row><entry><literal>&amp;&lt; (polygon, polygon)</literal></entry></row>
     <row><entry><literal>&amp;&gt; (polygon, polygon)</literal></entry></row>
     <row><entry><literal>&gt;&gt; (polygon, polygon)</literal></entry></row>
     <row><entry><literal>&lt;@ (polygon, polygon)</literal></entry></row>
     <row><entry><literal>@&gt; (polygon, polygon)</literal></entry></row>
     <row><entry><literal>~= (polygon, polygon)</literal></entry></row>
     <row><entry><literal>&amp;&amp; (polygon, polygon)</literal></entry></row>
     <row><entry><literal>&lt;&lt;| (polygon, polygon)</literal></entry></row>
     <row><entry><literal>&amp;&lt;| (polygon, polygon)</literal></entry></row>
     <row><entry><literal>|&amp;&gt; (polygon, polygon)</literal></entry></row>
     <row><entry><literal>|&gt;&gt; (polygon, polygon)</literal></entry></row>
     <row><entry><literal>@ (polygon, polygon)</literal></entry></row>
     <row><entry><literal>~ (polygon, polygon)</literal></entry></row>

     <row>
      <entry valign="middle" morerows="17"><literal>range_ops</literal></entry>
      <entry><literal>= (anyrange, anyrange)</literal></entry>
      <entry valign="middle" morerows="17"></entry>
     </row>
     <row><entry><literal>&amp;&amp; (anyrange, anyrange)</literal></entry></row>
     <row><entry><literal>&amp;&amp; (anyrange, anymultirange)</literal></entry></row>
     <row><entry><literal>@&gt; (anyrange, anyelement)</literal></entry></row>
     <row><entry><literal>@&gt; (anyrange, anyrange)</literal></entry></row>
     <row><entry><literal>@&gt; (anyrange, anymultirange)</literal></entry></row>
     <row><entry><literal>&lt;@ (anyrange, anyrange)</literal></entry></row>
     <row><entry><literal>&lt;@ (anyrange, anymultirange)</literal></entry></row>
     <row><entry><literal>&lt;&lt; (anyrange, anyrange)</literal></entry></row>
     <row><entry><literal>&lt;&lt; (anyrange, anymultirange)</literal></entry></row>
     <row><entry><literal>&gt;&gt; (anyrange, anyrange)</literal></entry></row>
     <row><entry><literal>&gt;&gt; (anyrange, anymultirange)</literal></entry></row>
     <row><entry><literal>&amp;&lt; (anyrange, anyrange)</literal></entry></row>
     <row><entry><literal>&amp;&lt; (anyrange, anymultirange)</literal></entry></row>
     <row><entry><literal>&amp;&gt; (anyrange, anyrange)</literal></entry></row>
     <row><entry><literal>&amp;&gt; (anyrange, anymultirange)</literal></entry></row>
     <row><entry><literal>-|- (anyrange, anyrange)</literal></entry></row>
     <row><entry><literal>-|- (anyrange, anymultirange)</literal></entry></row>

     <row>
      <entry valign="middle" morerows="1"><literal>tsquery_ops</literal></entry>
      <entry><literal>&lt;@ (tsquery, tsquery)</literal></entry>
      <entry valign="middle" morerows="1"></entry>
     </row>
     <row><entry><literal>@&gt; (tsquery, tsquery)</literal></entry></row>
     <row>
      <entry valign="middle"><literal>tsvector_ops</literal></entry>
      <entry><literal>@@ (tsvector, tsquery)</literal></entry>
      <entry></entry>
     </row>
    </tbody>
   </tgroup>
  </table>

 <para>
  For historical reasons, the <literal>inet_ops</literal> operator class is
  not the default class for types <type>inet</type> and <type>cidr</type>.
  To use it, mention the class name in <command>CREATE INDEX</command>,
  for example
<programlisting>
CREATE INDEX ON my_table USING GIST (my_inet_column inet_ops);
</programlisting>
 </para>

</sect1>

<sect1 id="gist-extensibility">
 <title>Extensibility</title>

 <para>
   Traditionally, implementing a new index access method meant a lot of
   difficult work.  It was necessary to understand the inner workings of the
   database, such as the lock manager and Write-Ahead Log.  The
   <acronym>GiST</acronym> interface has a high level of abstraction,
   requiring the access method implementer only to implement the semantics of
   the data type being accessed.  The <acronym>GiST</acronym> layer itself
   takes care of concurrency, logging and searching the tree structure.
 </para>

 <para>
   This extensibility should not be confused with the extensibility of the
   other standard search trees in terms of the data they can handle.  For
   example, <productname>PostgreSQL</productname> supports extensible B-trees
   and hash indexes. That means that you can use
   <productname>PostgreSQL</productname> to build a B-tree or hash over any
   data type you want. But B-trees only support range predicates
   (<literal>&lt;</literal>, <literal>=</literal>, <literal>&gt;</literal>),
   and hash indexes only support equality queries.
 </para>

 <para>
   So if you index, say, an image collection with a
   <productname>PostgreSQL</productname> B-tree, you can only issue queries
   such as <quote>is imagex equal to imagey</quote>, <quote>is imagex less
   than imagey</quote> and <quote>is imagex greater than imagey</quote>.
   Depending on how you define <quote>equals</quote>, <quote>less than</quote>
   and <quote>greater than</quote> in this context, this could be useful.
   However, by using a <acronym>GiST</acronym> based index, you could create
   ways to ask domain-specific questions, perhaps <quote>find all images of
   horses</quote> or <quote>find all over-exposed images</quote>.
 </para>

 <para>
   All it takes to get a <acronym>GiST</acronym> access method up and running
   is to implement several user-defined methods, which define the behavior of
   keys in the tree. Of course these methods have to be pretty fancy to
   support fancy queries, but for all the standard queries (B-trees,
   R-trees, etc.) they're relatively straightforward. In short,
   <acronym>GiST</acronym> combines extensibility along with generality, code
   reuse, and a clean interface.
  </para>

 <para>
   There are five methods that an index operator class for
   <acronym>GiST</acronym> must provide, and six that are optional.
   Correctness of the index is ensured
   by proper implementation of the <function>same</function>, <function>consistent</function>
   and <function>union</function> methods, while efficiency (size and speed) of the
   index will depend on the <function>penalty</function> and <function>picksplit</function>
   methods.
   Two optional methods are <function>compress</function> and
   <function>decompress</function>, which allow an index to have internal tree data of
   a different type than the data it indexes. The leaves are to be of the
   indexed data type, while the other tree nodes can be of any C struct (but
   you still have to follow <productname>PostgreSQL</productname> data type rules here,
   see about <literal>varlena</literal> for variable sized data). If the tree's
   internal data type exists at the SQL level, the <literal>STORAGE</literal> option
   of the <command>CREATE OPERATOR CLASS</command> command can be used.
   The optional eighth method is <function>distance</function>, which is needed
   if the operator class wishes to support ordered scans (nearest-neighbor
   searches). The optional ninth method <function>fetch</function> is needed if the
   operator class wishes to support index-only scans, except when the
   <function>compress</function> method is omitted. The optional tenth method
   <function>options</function> is needed if the operator class has
   user-specified parameters.
   The optional eleventh method <function>sortsupport</function> is used to
   speed up building a <acronym>GiST</acronym> index.
 </para>

 <variablelist>
    <varlistentry>
     <term><function>consistent</function></term>
     <listitem>
      <para>
       Given an index entry <literal>p</literal> and a query value <literal>q</literal>,
       this function determines whether the index entry is
       <quote>consistent</quote> with the query; that is, could the predicate
       <quote><replaceable>indexed_column</replaceable>
       <replaceable>indexable_operator</replaceable> <literal>q</literal></quote> be true for
       any row represented by the index entry?  For a leaf index entry this is
       equivalent to testing the indexable condition, while for an internal
       tree node this determines whether it is necessary to scan the subtree
       of the index represented by the tree node.  When the result is
       <literal>true</literal>, a <literal>recheck</literal> flag must also be returned.
       This indicates whether the predicate is certainly true or only possibly
       true.  If <literal>recheck</literal> = <literal>false</literal> then the index has
       tested the predicate condition exactly, whereas if <literal>recheck</literal>
       = <literal>true</literal> the row is only a candidate match.  In that case the
       system will automatically evaluate the
       <replaceable>indexable_operator</replaceable> against the actual row value to see
       if it is really a match.  This convention allows
       <acronym>GiST</acronym> to support both lossless and lossy index
       structures.
      </para>

      <para>
        The <acronym>SQL</acronym> declaration of the function must look like this:

<programlisting>
CREATE OR REPLACE FUNCTION my_consistent(internal, data_type, smallint, oid, internal)
RETURNS bool
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</programlisting>

        And the matching code in the C module could then follow this skeleton:

<programlisting>
PG_FUNCTION_INFO_V1(my_consistent);

Datum
my_consistent(PG_FUNCTION_ARGS)
{
    GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    data_type  *query = PG_GETARG_DATA_TYPE_P(1);
    StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
    /* Oid subtype = PG_GETARG_OID(3); */
    bool       *recheck = (bool *) PG_GETARG_POINTER(4);
    data_type  *key = DatumGetDataType(entry-&gt;key);
    bool        retval;

    /*
     * determine return value as a function of strategy, key and query.
     *
     * Use GIST_LEAF(entry) to know where you're called in the index tree,
     * which comes handy when supporting the = operator for example (you could
     * check for non empty union() in non-leaf nodes and equality in leaf
     * nodes).
     */

    *recheck = true;        /* or false if check is exact */

    PG_RETURN_BOOL(retval);
}
</programlisting>

       Here, <varname>key</varname> is an element in the index and <varname>query</varname>
       the value being looked up in the index. The <literal>StrategyNumber</literal>
       parameter indicates which operator of your operator class is being
       applied &mdash; it matches one of the operator numbers in the
       <command>CREATE OPERATOR CLASS</command> command.
      </para>

      <para>
       Depending on which operators you have included in the class, the data
       type of <varname>query</varname> could vary with the operator, since it will
       be whatever type is on the right-hand side of the operator, which might
       be different from the indexed data type appearing on the left-hand side.
       (The above code skeleton assumes that only one type is possible; if
       not, fetching the <varname>query</varname> argument value would have to depend
       on the operator.)  It is recommended that the SQL declaration of
       the <function>consistent</function> function use the opclass's indexed data
       type for the <varname>query</varname> argument, even though the actual type
       might be something else depending on the operator.
      </para>

     </listitem>
    </varlistentry>

    <varlistentry>
     <term><function>union</function></term>
     <listitem>
      <para>
       This method consolidates information in the tree.  Given a set of
       entries, this function generates a new index entry that represents
       all the given entries.
      </para>

      <para>
        The <acronym>SQL</acronym> declaration of the function must look like this:

<programlisting>
CREATE OR REPLACE FUNCTION my_union(internal, internal)
RETURNS storage_type
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</programlisting>

        And the matching code in the C module could then follow this skeleton:

<programlisting>
PG_FUNCTION_INFO_V1(my_union);

Datum
my_union(PG_FUNCTION_ARGS)
{
    GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
    GISTENTRY  *ent = entryvec-&gt;vector;
    data_type  *out,
               *tmp,
               *old;
    int         numranges,
                i = 0;

    numranges = entryvec-&gt;n;
    tmp = DatumGetDataType(ent[0].key);
    out = tmp;

    if (numranges == 1)
    {
        out = data_type_deep_copy(tmp);

        PG_RETURN_DATA_TYPE_P(out);
    }

    for (i = 1; i &lt; numranges; i++)
    {
        old = out;
        tmp = DatumGetDataType(ent[i].key);
        out = my_union_implementation(out, tmp);
    }

    PG_RETURN_DATA_TYPE_P(out);
}
</programlisting>
      </para>

      <para>
        As you can see, in this skeleton we're dealing with a data type
        where <literal>union(X, Y, Z) = union(union(X, Y), Z)</literal>. It's easy
        enough to support data types where this is not the case, by
        implementing the proper union algorithm in this
        <acronym>GiST</acronym> support method.
      </para>

      <para>
        The result of the <function>union</function> function must be a value of the
        index's storage type, whatever that is (it might or might not be
        different from the indexed column's type).  The <function>union</function>
        function should return a pointer to newly <function>palloc()</function>ed
        memory. You can't just return the input value as-is, even if there is
        no type change.
      </para>

      <para>
       As shown above, the <function>union</function> function's
       first <type>internal</type> argument is actually
       a <structname>GistEntryVector</structname> pointer.  The second argument is a
       pointer to an integer variable, which can be ignored.  (It used to be
       required that the <function>union</function> function store the size of its
       result value into that variable, but this is no longer necessary.)
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term><function>compress</function></term>
     <listitem>
      <para>
       Converts a data item into a format suitable for physical storage in
       an index page.
       If the <function>compress</function> method is omitted, data items are stored
       in the index without modification.
      </para>

      <para>
        The <acronym>SQL</acronym> declaration of the function must look like this:

<programlisting>
CREATE OR REPLACE FUNCTION my_compress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</programlisting>

        And the matching code in the C module could then follow this skeleton:

<programlisting>
PG_FUNCTION_INFO_V1(my_compress);

Datum
my_compress(PG_FUNCTION_ARGS)
{
    GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    GISTENTRY  *retval;

    if (entry-&gt;leafkey)
    {
        /* replace entry-&gt;key with a compressed version */
        compressed_data_type *compressed_data = palloc(sizeof(compressed_data_type));

        /* fill *compressed_data from entry-&gt;key ... */

        retval = palloc(sizeof(GISTENTRY));
        gistentryinit(*retval, PointerGetDatum(compressed_data),
                      entry-&gt;rel, entry-&gt;page, entry-&gt;offset, FALSE);
    }
    else
    {
        /* typically we needn't do anything with non-leaf entries */
        retval = entry;
    }

    PG_RETURN_POINTER(retval);
}
</programlisting>
      </para>

      <para>
       You have to adapt <replaceable>compressed_data_type</replaceable> to the specific
       type you're converting to in order to compress your leaf nodes, of
       course.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term><function>decompress</function></term>
     <listitem>
      <para>
       Converts the stored representation of a data item into a format that
       can be manipulated by the other GiST methods in the operator class.
       If the <function>decompress</function> method is omitted, it is assumed that
       the other GiST methods can work directly on the stored data format.
       (<function>decompress</function> is not necessarily the reverse of
       the <function>compress</function> method; in particular,
       if <function>compress</function> is lossy then it's impossible
       for <function>decompress</function> to exactly reconstruct the original
       data.  <function>decompress</function> is not necessarily equivalent
       to <function>fetch</function>, either, since the other GiST methods might not
       require full reconstruction of the data.)
      </para>

      <para>
        The <acronym>SQL</acronym> declaration of the function must look like this:

<programlisting>
CREATE OR REPLACE FUNCTION my_decompress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</programlisting>

        And the matching code in the C module could then follow this skeleton:

<programlisting>
PG_FUNCTION_INFO_V1(my_decompress);

Datum
my_decompress(PG_FUNCTION_ARGS)
{
    PG_RETURN_POINTER(PG_GETARG_POINTER(0));
}
</programlisting>

        The above skeleton is suitable for the case where no decompression
        is needed.  (But, of course, omitting the method altogether is even
        easier, and is recommended in such cases.)
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term><function>penalty</function></term>
     <listitem>
      <para>
       Returns a value indicating the <quote>cost</quote> of inserting the new
       entry into a particular branch of the tree.  Items will be inserted
       down the path of least <function>penalty</function> in the tree.
       Values returned by <function>penalty</function> should be non-negative.
       If a negative value is returned, it will be treated as zero.
      </para>

      <para>
        The <acronym>SQL</acronym> declaration of the function must look like this:

<programlisting>
CREATE OR REPLACE FUNCTION my_penalty(internal, internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;  -- in some cases penalty functions need not be strict
</programlisting>

        And the matching code in the C module could then follow this skeleton:

<programlisting>
PG_FUNCTION_INFO_V1(my_penalty);

Datum
my_penalty(PG_FUNCTION_ARGS)
{
    GISTENTRY  *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
    GISTENTRY  *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
    float      *penalty = (float *) PG_GETARG_POINTER(2);
    data_type  *orig = DatumGetDataType(origentry-&gt;key);
    data_type  *new = DatumGetDataType(newentry-&gt;key);

    *penalty = my_penalty_implementation(orig, new);
    PG_RETURN_POINTER(penalty);
}
</programlisting>

        For historical reasons, the <function>penalty</function> function doesn't
        just return a <type>float</type> result; instead it has to store the value
        at the location indicated by the third argument.  The return
        value per se is ignored, though it's conventional to pass back the
        address of that argument.
      </para>

      <para>
        The <function>penalty</function> function is crucial to good performance of
        the index. It'll get used at insertion time to determine which branch
        to follow when choosing where to add the new entry in the tree. At
        query time, the more balanced the index, the quicker the lookup.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term><function>picksplit</function></term>
     <listitem>
      <para>
       When an index page split is necessary, this function decides which
       entries on the page are to stay on the old page, and which are to move
       to the new page.
      </para>

      <para>
        The <acronym>SQL</acronym> declaration of the function must look like this:

<programlisting>
CREATE OR REPLACE FUNCTION my_picksplit(internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</programlisting>

        And the matching code in the C module could then follow this skeleton:

<programlisting>
PG_FUNCTION_INFO_V1(my_picksplit);

Datum
my_picksplit(PG_FUNCTION_ARGS)
{
    GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
    GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
    OffsetNumber maxoff = entryvec-&gt;n - 1;
    GISTENTRY  *ent = entryvec-&gt;vector;
    int         i,
                nbytes;
    OffsetNumber *left,
               *right;
    data_type  *tmp_union;
    data_type  *unionL;
    data_type  *unionR;
    GISTENTRY **raw_entryvec;

    maxoff = entryvec-&gt;n - 1;
    nbytes = (maxoff + 1) * sizeof(OffsetNumber);

    v-&gt;spl_left = (OffsetNumber *) palloc(nbytes);
    left = v-&gt;spl_left;
    v-&gt;spl_nleft = 0;

    v-&gt;spl_right = (OffsetNumber *) palloc(nbytes);
    right = v-&gt;spl_right;
    v-&gt;spl_nright = 0;

    unionL = NULL;
    unionR = NULL;

    /* Initialize the raw entry vector. */
    raw_entryvec = (GISTENTRY **) malloc(entryvec-&gt;n * sizeof(void *));
    for (i = FirstOffsetNumber; i &lt;= maxoff; i = OffsetNumberNext(i))
        raw_entryvec[i] = &amp;(entryvec-&gt;vector[i]);

    for (i = FirstOffsetNumber; i &lt;= maxoff; i = OffsetNumberNext(i))
    {
        int         real_index = raw_entryvec[i] - entryvec-&gt;vector;

        tmp_union = DatumGetDataType(entryvec-&gt;vector[real_index].key);
        Assert(tmp_union != NULL);

        /*
         * Choose where to put the index entries and update unionL and unionR
         * accordingly. Append the entries to either v-&gt;spl_left or
         * v-&gt;spl_right, and care about the counters.
         */

        if (my_choice_is_left(unionL, curl, unionR, curr))
        {
            if (unionL == NULL)
                unionL = tmp_union;
            else
                unionL = my_union_implementation(unionL, tmp_union);

            *left = real_index;
            ++left;
            ++(v-&gt;spl_nleft);
        }
        else
        {
            /*
             * Same on the right
             */
        }
    }

    v-&gt;spl_ldatum = DataTypeGetDatum(unionL);
    v-&gt;spl_rdatum = DataTypeGetDatum(unionR);
    PG_RETURN_POINTER(v);
}
</programlisting>

       Notice that the <function>picksplit</function> function's result is delivered
       by modifying the passed-in <structname>v</structname> structure.  The return
       value per se is ignored, though it's conventional to pass back the
       address of <structname>v</structname>.
      </para>

      <para>
        Like <function>penalty</function>, the <function>picksplit</function> function
        is crucial to good performance of the index.  Designing suitable
        <function>penalty</function> and <function>picksplit</function> implementations
        is where the challenge of implementing well-performing
        <acronym>GiST</acronym> indexes lies.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term><function>same</function></term>
     <listitem>
      <para>
       Returns true if two index entries are identical, false otherwise.
       (An <quote>index entry</quote> is a value of the index's storage type,
       not necessarily the original indexed column's type.)
      </para>

      <para>
        The <acronym>SQL</acronym> declaration of the function must look like this:

<programlisting>
CREATE OR REPLACE FUNCTION my_same(storage_type, storage_type, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</programlisting>

        And the matching code in the C module could then follow this skeleton:

<programlisting>
PG_FUNCTION_INFO_V1(my_same);

Datum
my_same(PG_FUNCTION_ARGS)
{
    prefix_range *v1 = PG_GETARG_PREFIX_RANGE_P(0);
    prefix_range *v2 = PG_GETARG_PREFIX_RANGE_P(1);
    bool       *result = (bool *) PG_GETARG_POINTER(2);

    *result = my_eq(v1, v2);
    PG_RETURN_POINTER(result);
}
</programlisting>

        For historical reasons, the <function>same</function> function doesn't
        just return a Boolean result; instead it has to store the flag
        at the location indicated by the third argument.  The return
        value per se is ignored, though it's conventional to pass back the
        address of that argument.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term><function>distance</function></term>
     <listitem>
      <para>
       Given an index entry <literal>p</literal> and a query value <literal>q</literal>,
       this function determines the index entry's
       <quote>distance</quote> from the query value.  This function must be
       supplied if the operator class contains any ordering operators.
       A query using the ordering operator will be implemented by returning
       index entries with the smallest <quote>distance</quote> values first,
       so the results must be consistent with the operator's semantics.
       For a leaf index entry the result just represents the distance to
       the index entry; for an internal tree node, the result must be the
       smallest distance that any child entry could have.
      </para>

      <para>
        The <acronym>SQL</acronym> declaration of the function must look like this:

<programlisting>
CREATE OR REPLACE FUNCTION my_distance(internal, data_type, smallint, oid, internal)
RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</programlisting>

        And the matching code in the C module could then follow this skeleton:

<programlisting>
PG_FUNCTION_INFO_V1(my_distance);

Datum
my_distance(PG_FUNCTION_ARGS)
{
    GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    data_type  *query = PG_GETARG_DATA_TYPE_P(1);
    StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
    /* Oid subtype = PG_GETARG_OID(3); */
    /* bool *recheck = (bool *) PG_GETARG_POINTER(4); */
    data_type  *key = DatumGetDataType(entry-&gt;key);
    double      retval;

    /*
     * determine return value as a function of strategy, key and query.
     */

    PG_RETURN_FLOAT8(retval);
}
</programlisting>

       The arguments to the <function>distance</function> function are identical to
       the arguments of the <function>consistent</function> function.
      </para>

      <para>
       Some approximation is allowed when determining the distance, so long
       as the result is never greater than the entry's actual distance. Thus,
       for example, distance to a bounding box is usually sufficient in
       geometric applications.  For an internal tree node, the distance
       returned must not be greater than the distance to any of the child
       nodes. If the returned distance is not exact, the function must set
       <literal>*recheck</literal> to true. (This is not necessary for internal tree
       nodes; for them, the calculation is always assumed to be inexact.) In
       this case the executor will calculate the accurate distance after
       fetching the tuple from the heap, and reorder the tuples if necessary.
      </para>

      <para>
       If the distance function returns <literal>*recheck = true</literal> for any
       leaf node, the original ordering operator's return type must
       be <type>float8</type> or <type>float4</type>, and the distance function's
       result values must be comparable to those of the original ordering
       operator, since the executor will sort using both distance function
       results and recalculated ordering-operator results.  Otherwise, the
       distance function's result values can be any finite <type>float8</type>
       values, so long as the relative order of the result values matches the
       order returned by the ordering operator.  (Infinity and minus infinity
       are used internally to handle cases such as nulls, so it is not
       recommended that <function>distance</function> functions return these values.)
      </para>

     </listitem>
    </varlistentry>

    <varlistentry>
     <term><function>fetch</function></term>
     <listitem>
      <para>
       Converts the compressed index representation of a data item into the
       original data type, for index-only scans. The returned data must be an
       exact, non-lossy copy of the originally indexed value.
      </para>

      <para>
        The <acronym>SQL</acronym> declaration of the function must look like this:

<programlisting>
CREATE OR REPLACE FUNCTION my_fetch(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</programlisting>

        The argument is a pointer to a <structname>GISTENTRY</structname> struct. On
        entry, its <structfield>key</structfield> field contains a non-NULL leaf datum in
        compressed form. The return value is another <structname>GISTENTRY</structname>
        struct, whose <structfield>key</structfield> field contains the same datum in its
        original, uncompressed form. If the opclass's compress function does
        nothing for leaf entries, the <function>fetch</function> method can return the
        argument as-is.  Or, if the opclass does not have a compress function,
        the <function>fetch</function> method can be omitted as well, since it would
        necessarily be a no-op.
       </para>

       <para>
        The matching code in the C module could then follow this skeleton:

<programlisting>
PG_FUNCTION_INFO_V1(my_fetch);

Datum
my_fetch(PG_FUNCTION_ARGS)
{
    GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    input_data_type *in = DatumGetPointer(entry->key);
    fetched_data_type *fetched_data;
    GISTENTRY  *retval;

    retval = palloc(sizeof(GISTENTRY));
    fetched_data = palloc(sizeof(fetched_data_type));

    /*
     * Convert 'fetched_data' into the a Datum of the original datatype.
     */

    /* fill *retval from fetched_data. */
    gistentryinit(*retval, PointerGetDatum(converted_datum),
                  entry->rel, entry->page, entry->offset, FALSE);

    PG_RETURN_POINTER(retval);
}
</programlisting>
      </para>

      <para>
       If the compress method is lossy for leaf entries, the operator class
       cannot support index-only scans, and must not define
       a <function>fetch</function> function.
      </para>

     </listitem>
    </varlistentry>

    <varlistentry>
     <term><function>options</function></term>
     <listitem>
      <para>
       Allows definition of user-visible parameters that control operator
       class behavior.
      </para>

      <para>
        The <acronym>SQL</acronym> declaration of the function must look like this:

<programlisting>
CREATE OR REPLACE FUNCTION my_options(internal)
RETURNS void
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</programlisting>
      </para>

      <para>
       The function is passed a pointer to a <structname>local_relopts</structname>
       struct, which needs to be filled with a set of operator class
       specific options.  The options can be accessed from other support
       functions using the <literal>PG_HAS_OPCLASS_OPTIONS()</literal> and
       <literal>PG_GET_OPCLASS_OPTIONS()</literal> macros.
      </para>

       <para>
        An example implementation of my_options() and parameters use
        from other support functions are given below:

<programlisting>
typedef enum MyEnumType
{
    MY_ENUM_ON,
    MY_ENUM_OFF,
    MY_ENUM_AUTO
} MyEnumType;

typedef struct
{
    int32   vl_len_;    /* varlena header (do not touch directly!) */
    int     int_param;  /* integer parameter */
    double  real_param; /* real parameter */
    MyEnumType enum_param; /* enum parameter */
    int     str_param;  /* string parameter */
} MyOptionsStruct;

/* String representation of enum values */
static relopt_enum_elt_def myEnumValues[] =
{
    {"on", MY_ENUM_ON},
    {"off", MY_ENUM_OFF},
    {"auto", MY_ENUM_AUTO},
    {(const char *) NULL}   /* list terminator */
};

static char *str_param_default = "default";

/*
 * Sample validator: checks that string is not longer than 8 bytes.
 */
static void
validate_my_string_relopt(const char *value)
{
    if (strlen(value) > 8)
        ereport(ERROR,
                (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
                 errmsg("str_param must be at most 8 bytes")));
}

/*
 * Sample filler: switches characters to lower case.
 */
static Size
fill_my_string_relopt(const char *value, void *ptr)
{
    char   *tmp = str_tolower(value, strlen(value), DEFAULT_COLLATION_OID);
    int     len = strlen(tmp);

    if (ptr)
        strcpy((char *) ptr, tmp);

    pfree(tmp);
    return len + 1;
}

PG_FUNCTION_INFO_V1(my_options);

Datum
my_options(PG_FUNCTION_ARGS)
{
    local_relopts *relopts = (local_relopts *) PG_GETARG_POINTER(0);

    init_local_reloptions(relopts, sizeof(MyOptionsStruct));
    add_local_int_reloption(relopts, "int_param", "integer parameter",
                            100, 0, 1000000,
                            offsetof(MyOptionsStruct, int_param));
    add_local_real_reloption(relopts, "real_param", "real parameter",
                             1.0, 0.0, 1000000.0,
                             offsetof(MyOptionsStruct, real_param));
    add_local_enum_reloption(relopts, "enum_param", "enum parameter",
                             myEnumValues, MY_ENUM_ON,
                             "Valid values are: \"on\", \"off\" and \"auto\".",
                             offsetof(MyOptionsStruct, enum_param));
    add_local_string_reloption(relopts, "str_param", "string parameter",
                               str_param_default,
                               &amp;validate_my_string_relopt,
                               &amp;fill_my_string_relopt,
                               offsetof(MyOptionsStruct, str_param));

    PG_RETURN_VOID();
}

PG_FUNCTION_INFO_V1(my_compress);

Datum
my_compress(PG_FUNCTION_ARGS)
{
    int     int_param = 100;
    double  real_param = 1.0;
    MyEnumType enum_param = MY_ENUM_ON;
    char   *str_param = str_param_default;

    /*
     * Normally, when opclass contains 'options' method, then options are always
     * passed to support functions.  However, if you add 'options' method to
     * existing opclass, previously defined indexes have no options, so the
     * check is required.
     */
    if (PG_HAS_OPCLASS_OPTIONS())
    {
        MyOptionsStruct *options = (MyOptionsStruct *) PG_GET_OPCLASS_OPTIONS();

        int_param = options->int_param;
        real_param = options->real_param;
        enum_param = options->enum_param;
        str_param = GET_STRING_RELOPTION(options, str_param);
    }

    /* the rest implementation of support function */
}

</programlisting>
      </para>

      <para>
       Since the representation of the key in <acronym>GiST</acronym> is
       flexible, it may depend on user-specified parameters.  For instance,
       the length of key signature may be specified.  See
       <literal>gtsvector_options()</literal> for example.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term><function>sortsupport</function></term>
     <listitem>
      <para>
       Returns a comparator function to sort data in a way that preserves
       locality. It is used by <command>CREATE INDEX</command> and
       <command>REINDEX</command> commands. The quality of the created index
       depends on how well the sort order determined by the comparator function
       preserves locality of the inputs.
      </para>
      <para>
       The <function>sortsupport</function> method is optional. If it is not
       provided, <command>CREATE INDEX</command> builds the index by inserting
       each tuple to the tree using the <function>penalty</function> and
       <function>picksplit</function> functions, which is much slower.
      </para>

      <para>
       The <acronym>SQL</acronym> declaration of the function must look like
       this:

<programlisting>
CREATE OR REPLACE FUNCTION my_sortsupport(internal)
RETURNS void
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
</programlisting>

       The argument is a pointer to a <structname>SortSupport</structname>
       struct. At a minimum, the function must fill in its comparator field.
       The comparator takes three arguments: two Datums to compare, and
       a pointer to the <structname>SortSupport</structname> struct. The
       Datums are the two indexed values in the format that they are stored
       in the index; that is, in the format returned by the
       <function>compress</function> method. The full API is defined in
       <filename>src/include/utils/sortsupport.h</filename>.
       </para>

       <para>
        The matching code in the C module could then follow this skeleton:

<programlisting>
PG_FUNCTION_INFO_V1(my_sortsupport);

static int
my_fastcmp(Datum x, Datum y, SortSupport ssup)
{
  /* establish order between x and y by computing some sorting value z */

  int z1 = ComputeSpatialCode(x);
  int z2 = ComputeSpatialCode(y);

  return z1 == z2 ? 0 : z1 > z2 ? 1 : -1;
}

Datum
my_sortsupport(PG_FUNCTION_ARGS)
{
  SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);

  ssup->comparator = my_fastcmp;
  PG_RETURN_VOID();
}
</programlisting>
      </para>
     </listitem>
    </varlistentry>
  </variablelist>

  <para>
   All the GiST support methods are normally called in short-lived memory
   contexts; that is, <varname>CurrentMemoryContext</varname> will get reset after
   each tuple is processed.  It is therefore not very important to worry about
   pfree'ing everything you palloc.  However, in some cases it's useful for a
   support method to cache data across repeated calls.  To do that, allocate
   the longer-lived data in <literal>fcinfo-&gt;flinfo-&gt;fn_mcxt</literal>, and
   keep a pointer to it in <literal>fcinfo-&gt;flinfo-&gt;fn_extra</literal>.  Such
   data will survive for the life of the index operation (e.g., a single GiST
   index scan, index build, or index tuple insertion).  Be careful to pfree
   the previous value when replacing a <literal>fn_extra</literal> value, or the leak
   will accumulate for the duration of the operation.
  </para>

</sect1>

<sect1 id="gist-implementation">
 <title>Implementation</title>

 <sect2 id="gist-buffering-build">
  <title>GiST Index Build Methods</title>

  <para>
   The simplest way to build a GiST index is just to insert all the entries,
   one by one.  This tends to be slow for large indexes, because if the
   index tuples are scattered across the index and the index is large enough
   to not fit in cache, a lot of random I/O will be
   needed.  <productname>PostgreSQL</productname> supports two alternative
   methods for initial build of a GiST index: <firstterm>sorted</firstterm>
   and <firstterm>buffered</firstterm> modes.
  </para>

  <para>
   The sorted method is only available if each of the opclasses used by the
   index provides a <function>sortsupport</function> function, as described
   in <xref linkend="gist-extensibility"/>.  If they do, this method is
   usually the best, so it is used by default.
  </para>

  <para>
   The buffered method works by not inserting tuples directly into the index
   right away.  It can dramatically reduce the amount of random I/O needed
   for non-ordered data sets.  For well-ordered data sets the benefit is
   smaller or non-existent, because only a small number of pages receive new
   tuples at a time, and those pages fit in cache even if the index as a
   whole does not.
  </para>

  <para>
   The buffered method needs to call the <function>penalty</function>
   function more often than the simple method does, which consumes some
   extra CPU resources. Also, the buffers need temporary disk space, up to
   the size of the resulting index. Buffering can also influence the quality
   of the resulting index, in both positive and negative directions. That
   influence depends on various factors, like the distribution of the input
   data and the operator class implementation.
  </para>

  <para>
   If sorting is not possible, then by default a GiST index build switches
   to the buffering method when the index size reaches
   <xref linkend="guc-effective-cache-size"/>.  Buffering can be manually
   forced or prevented by the <literal>buffering</literal> parameter to the
   CREATE INDEX command.  The default behavior is good for most cases, but
   turning buffering off might speed up the build somewhat if the input data
   is ordered.
  </para>

 </sect2>
</sect1>

<sect1 id="gist-examples">
 <title>Examples</title>

 <para>
  The <productname>PostgreSQL</productname> source distribution includes
  several examples of index methods implemented using
  <acronym>GiST</acronym>.  The core system currently provides text search
  support (indexing for <type>tsvector</type> and <type>tsquery</type>) as well as
  R-Tree equivalent functionality for some of the built-in geometric data types
  (see <filename>src/backend/access/gist/gistproc.c</filename>).  The following
  <filename>contrib</filename> modules also contain <acronym>GiST</acronym>
  operator classes:

 <variablelist>
  <varlistentry>
   <term><filename>btree_gist</filename></term>
   <listitem>
    <para>B-tree equivalent functionality for several data types</para>
   </listitem>
  </varlistentry>

  <varlistentry>
   <term><filename>cube</filename></term>
   <listitem>
    <para>Indexing for multidimensional cubes</para>
   </listitem>
  </varlistentry>

  <varlistentry>
   <term><filename>hstore</filename></term>
   <listitem>
    <para>Module for storing (key, value) pairs</para>
   </listitem>
  </varlistentry>

  <varlistentry>
   <term><filename>intarray</filename></term>
   <listitem>
    <para>RD-Tree for one-dimensional array of int4 values</para>
   </listitem>
  </varlistentry>

  <varlistentry>
   <term><filename>ltree</filename></term>
   <listitem>
    <para>Indexing for tree-like structures</para>
   </listitem>
  </varlistentry>

  <varlistentry>
   <term><filename>pg_trgm</filename></term>
   <listitem>
    <para>Text similarity using trigram matching</para>
   </listitem>
  </varlistentry>

  <varlistentry>
   <term><filename>seg</filename></term>
   <listitem>
    <para>Indexing for <quote>float ranges</quote></para>
   </listitem>
  </varlistentry>
 </variablelist>
 </para>

</sect1>

</chapter>