summaryrefslogtreecommitdiffstats
path: root/doc/src/sgml/html/extend-type-system.html
blob: e5e7b9d7ef353cddb59f0f24f0d1da041d0b8980 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>38.2. The PostgreSQL Type System</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><link rel="prev" href="extend-how.html" title="38.1. How Extensibility Works" /><link rel="next" href="xfunc.html" title="38.3. User-Defined Functions" /></head><body id="docContent" class="container-fluid col-10"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">38.2. The <span class="productname">PostgreSQL</span> Type System</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="extend-how.html" title="38.1. How Extensibility Works">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="extend.html" title="Chapter 38. Extending SQL">Up</a></td><th width="60%" align="center">Chapter 38. Extending <acronym class="acronym">SQL</acronym></th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 15.7 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="xfunc.html" title="38.3. User-Defined Functions">Next</a></td></tr></table><hr /></div><div class="sect1" id="EXTEND-TYPE-SYSTEM"><div class="titlepage"><div><div><h2 class="title" style="clear: both">38.2. The <span class="productname">PostgreSQL</span> Type System</h2></div></div></div><div class="toc"><dl class="toc"><dt><span class="sect2"><a href="extend-type-system.html#id-1.8.3.5.9">38.2.1. Base Types</a></span></dt><dt><span class="sect2"><a href="extend-type-system.html#id-1.8.3.5.10">38.2.2. Container Types</a></span></dt><dt><span class="sect2"><a href="extend-type-system.html#EXTEND-TYPE-SYSTEM-DOMAINS">38.2.3. Domains</a></span></dt><dt><span class="sect2"><a href="extend-type-system.html#id-1.8.3.5.12">38.2.4. Pseudo-Types</a></span></dt><dt><span class="sect2"><a href="extend-type-system.html#EXTEND-TYPES-POLYMORPHIC">38.2.5. Polymorphic Types</a></span></dt></dl></div><a id="id-1.8.3.5.2" class="indexterm"></a><a id="id-1.8.3.5.3" class="indexterm"></a><a id="id-1.8.3.5.4" class="indexterm"></a><a id="id-1.8.3.5.5" class="indexterm"></a><a id="id-1.8.3.5.6" class="indexterm"></a><a id="id-1.8.3.5.7" class="indexterm"></a><p>
    <span class="productname">PostgreSQL</span> data types can be divided into base
    types, container types, domains, and pseudo-types.
   </p><div class="sect2" id="id-1.8.3.5.9"><div class="titlepage"><div><div><h3 class="title">38.2.1. Base Types</h3></div></div></div><p>
     Base types are those, like <code class="type">integer</code>, that are
     implemented below the level of the <acronym class="acronym">SQL</acronym> language
     (typically in a low-level language such as C).  They generally
     correspond to what are often known as abstract data types.
     <span class="productname">PostgreSQL</span> can only operate on such
     types through functions provided by the user and only understands
     the behavior of such types to the extent that the user describes
     them.
     The built-in base types are described in <a class="xref" href="datatype.html" title="Chapter 8. Data Types">Chapter 8</a>.
    </p><p>
     Enumerated (enum) types can be considered as a subcategory of base
     types.  The main difference is that they can be created using
     just <acronym class="acronym">SQL</acronym> commands, without any low-level programming.
     Refer to <a class="xref" href="datatype-enum.html" title="8.7. Enumerated Types">Section 8.7</a> for more information.
    </p></div><div class="sect2" id="id-1.8.3.5.10"><div class="titlepage"><div><div><h3 class="title">38.2.2. Container Types</h3></div></div></div><p>
     <span class="productname">PostgreSQL</span> has three kinds
     of <span class="quote"><span class="quote">container</span></span> types, which are types that contain multiple
     values of other types.  These are arrays, composites, and ranges.
    </p><p>
     Arrays can hold multiple values that are all of the same type.  An array
     type is automatically created for each base type, composite type, range
     type, and domain type.  But there are no arrays of arrays.  So far as
     the type system is concerned, multi-dimensional arrays are the same as
     one-dimensional arrays.  Refer to <a class="xref" href="arrays.html" title="8.15. Arrays">Section 8.15</a> for more
     information.
    </p><p>
     Composite types, or row types, are created whenever the user
     creates a table. It is also possible to use <a class="xref" href="sql-createtype.html" title="CREATE TYPE"><span class="refentrytitle">CREATE TYPE</span></a> to
     define a <span class="quote"><span class="quote">stand-alone</span></span> composite type with no associated
     table.  A composite type is simply a list of types with
     associated field names.  A value of a composite type is a row or
     record of field values.  Refer to <a class="xref" href="rowtypes.html" title="8.16. Composite Types">Section 8.16</a>
     for more information.
    </p><p>
     A range type can hold two values of the same type, which are the lower
     and upper bounds of the range.  Range types are user-created, although
     a few built-in ones exist.  Refer to <a class="xref" href="rangetypes.html" title="8.17. Range Types">Section 8.17</a>
     for more information.
    </p></div><div class="sect2" id="EXTEND-TYPE-SYSTEM-DOMAINS"><div class="titlepage"><div><div><h3 class="title">38.2.3. Domains</h3></div></div></div><p>
     A domain is based on a particular underlying type and for many purposes
     is interchangeable with its underlying type.  However, a domain can have
     constraints that restrict its valid values to a subset of what the
     underlying type would allow.  Domains are created using
     the <acronym class="acronym">SQL</acronym> command <a class="xref" href="sql-createdomain.html" title="CREATE DOMAIN"><span class="refentrytitle">CREATE DOMAIN</span></a>.
     Refer to <a class="xref" href="domains.html" title="8.18. Domain Types">Section 8.18</a> for more information.
    </p></div><div class="sect2" id="id-1.8.3.5.12"><div class="titlepage"><div><div><h3 class="title">38.2.4. Pseudo-Types</h3></div></div></div><p>
     There are a few <span class="quote"><span class="quote">pseudo-types</span></span> for special purposes.
     Pseudo-types cannot appear as columns of tables or components of
     container types, but they can be used to declare the argument and
     result types of functions.  This provides a mechanism within the
     type system to identify special classes of functions.  <a class="xref" href="datatype-pseudo.html#DATATYPE-PSEUDOTYPES-TABLE" title="Table 8.27. Pseudo-Types">Table 8.27</a> lists the existing
     pseudo-types.
    </p></div><div class="sect2" id="EXTEND-TYPES-POLYMORPHIC"><div class="titlepage"><div><div><h3 class="title">38.2.5. Polymorphic Types</h3></div></div></div><a id="id-1.8.3.5.13.2" class="indexterm"></a><a id="id-1.8.3.5.13.3" class="indexterm"></a><a id="id-1.8.3.5.13.4" class="indexterm"></a><a id="id-1.8.3.5.13.5" class="indexterm"></a><p>
     Some pseudo-types of special interest are the <em class="firstterm">polymorphic
     types</em>, which are used to declare <em class="firstterm">polymorphic
     functions</em>.  This powerful feature allows a single function
     definition to operate on many different data types, with the specific
     data type(s) being determined by the data types actually passed to it
     in a particular call.  The polymorphic types are shown in
     <a class="xref" href="extend-type-system.html#EXTEND-TYPES-POLYMORPHIC-TABLE" title="Table 38.1. Polymorphic Types">Table 38.1</a>.  Some examples of
     their use appear in <a class="xref" href="xfunc-sql.html#XFUNC-SQL-POLYMORPHIC-FUNCTIONS" title="38.5.11. Polymorphic SQL Functions">Section 38.5.11</a>.
    </p><div class="table" id="EXTEND-TYPES-POLYMORPHIC-TABLE"><p class="title"><strong>Table 38.1. Polymorphic Types</strong></p><div class="table-contents"><table class="table" summary="Polymorphic Types" border="1"><colgroup><col class="col1" /><col class="col2" /><col class="col3" /></colgroup><thead><tr><th>Name</th><th>Family</th><th>Description</th></tr></thead><tbody><tr><td><code class="type">anyelement</code></td><td>Simple</td><td>Indicates that a function accepts any data type</td></tr><tr><td><code class="type">anyarray</code></td><td>Simple</td><td>Indicates that a function accepts any array data type</td></tr><tr><td><code class="type">anynonarray</code></td><td>Simple</td><td>Indicates that a function accepts any non-array data type</td></tr><tr><td><code class="type">anyenum</code></td><td>Simple</td><td>Indicates that a function accepts any enum data type
        (see <a class="xref" href="datatype-enum.html" title="8.7. Enumerated Types">Section 8.7</a>)
        </td></tr><tr><td><code class="type">anyrange</code></td><td>Simple</td><td>Indicates that a function accepts any range data type
        (see <a class="xref" href="rangetypes.html" title="8.17. Range Types">Section 8.17</a>)
        </td></tr><tr><td><code class="type">anymultirange</code></td><td>Simple</td><td>Indicates that a function accepts any multirange data type
        (see <a class="xref" href="rangetypes.html" title="8.17. Range Types">Section 8.17</a>)
        </td></tr><tr><td><code class="type">anycompatible</code></td><td>Common</td><td>Indicates that a function accepts any data type,
        with automatic promotion of multiple arguments to a common data type
        </td></tr><tr><td><code class="type">anycompatiblearray</code></td><td>Common</td><td>Indicates that a function accepts any array data type,
        with automatic promotion of multiple arguments to a common data type
        </td></tr><tr><td><code class="type">anycompatiblenonarray</code></td><td>Common</td><td>Indicates that a function accepts any non-array data type,
        with automatic promotion of multiple arguments to a common data type
        </td></tr><tr><td><code class="type">anycompatiblerange</code></td><td>Common</td><td>Indicates that a function accepts any range data type,
        with automatic promotion of multiple arguments to a common data type
        </td></tr><tr><td><code class="type">anycompatiblemultirange</code></td><td>Common</td><td>Indicates that a function accepts any multirange data type,
        with automatic promotion of multiple arguments to a common data type
        </td></tr></tbody></table></div></div><br class="table-break" /><p>
     Polymorphic arguments and results are tied to each other and are resolved
     to specific data types when a query calling a polymorphic function is
     parsed.  When there is more than one polymorphic argument, the actual
     data types of the input values must match up as described below.  If the
     function's result type is polymorphic, or it has output parameters of
     polymorphic types, the types of those results are deduced from the
     actual types of the polymorphic inputs as described below.
    </p><p>
     For the <span class="quote"><span class="quote">simple</span></span> family of polymorphic types, the
     matching and deduction rules work like this:
    </p><p>
     Each position (either argument or return value) declared as
     <code class="type">anyelement</code> is allowed to have any specific actual
     data type, but in any given call they must all be the
     <span class="emphasis"><em>same</em></span> actual type. Each
     position declared as <code class="type">anyarray</code> can have any array data type,
     but similarly they must all be the same type.  And similarly,
     positions declared as <code class="type">anyrange</code> must all be the same range
     type.  Likewise for <code class="type">anymultirange</code>.
    </p><p>
     Furthermore, if there are
     positions declared <code class="type">anyarray</code> and others declared
     <code class="type">anyelement</code>, the actual array type in the
     <code class="type">anyarray</code> positions must be an array whose elements are
     the same type appearing in the <code class="type">anyelement</code> positions.
     <code class="type">anynonarray</code> is treated exactly the same as <code class="type">anyelement</code>,
     but adds the additional constraint that the actual type must not be
     an array type.
     <code class="type">anyenum</code> is treated exactly the same as <code class="type">anyelement</code>,
     but adds the additional constraint that the actual type must
     be an enum type.
    </p><p>
     Similarly, if there are positions declared <code class="type">anyrange</code>
     and others declared <code class="type">anyelement</code> or <code class="type">anyarray</code>,
     the actual range type in the <code class="type">anyrange</code> positions must be a
     range whose subtype is the same type appearing in
     the <code class="type">anyelement</code> positions and the same as the element type
     of the <code class="type">anyarray</code> positions.
     If there are positions declared <code class="type">anymultirange</code>,
     their actual multirange type must contain ranges matching parameters declared
     <code class="type">anyrange</code> and base elements matching parameters declared
     <code class="type">anyelement</code> and <code class="type">anyarray</code>.
    </p><p>
     Thus, when more than one argument position is declared with a polymorphic
     type, the net effect is that only certain combinations of actual argument
     types are allowed.  For example, a function declared as
     <code class="literal">equal(anyelement, anyelement)</code> will take any two input values,
     so long as they are of the same data type.
    </p><p>
     When the return value of a function is declared as a polymorphic type,
     there must be at least one argument position that is also polymorphic,
     and the actual data type(s) supplied for the polymorphic arguments
     determine the actual
     result type for that call.  For example, if there were not already
     an array subscripting mechanism, one could define a function that
     implements subscripting as <code class="literal">subscript(anyarray, integer)
     returns anyelement</code>.  This declaration constrains the actual first
     argument to be an array type, and allows the parser to infer the correct
     result type from the actual first argument's type.  Another example
     is that a function declared as <code class="literal">f(anyarray) returns anyenum</code>
     will only accept arrays of enum types.
    </p><p>
     In most cases, the parser can infer the actual data type for a
     polymorphic result type from arguments that are of a different
     polymorphic type in the same family; for example <code class="type">anyarray</code>
     can be deduced from <code class="type">anyelement</code> or vice versa.
     An exception is that a
     polymorphic result of type <code class="type">anyrange</code> requires an argument
     of type <code class="type">anyrange</code>; it cannot be deduced
     from <code class="type">anyarray</code> or <code class="type">anyelement</code> arguments.  This
     is because there could be multiple range types with the same subtype.
    </p><p>
     Note that <code class="type">anynonarray</code> and <code class="type">anyenum</code> do not represent
     separate type variables; they are the same type as
     <code class="type">anyelement</code>, just with an additional constraint.  For
     example, declaring a function as <code class="literal">f(anyelement, anyenum)</code>
     is equivalent to declaring it as <code class="literal">f(anyenum, anyenum)</code>:
     both actual arguments have to be the same enum type.
    </p><p>
     For the <span class="quote"><span class="quote">common</span></span> family of polymorphic types, the
     matching and deduction rules work approximately the same as for
     the <span class="quote"><span class="quote">simple</span></span> family, with one major difference: the
     actual types of the arguments need not be identical, so long as they
     can be implicitly cast to a single common type.  The common type is
     selected following the same rules as for <code class="literal">UNION</code> and
     related constructs (see <a class="xref" href="typeconv-union-case.html" title="10.5. UNION, CASE, and Related Constructs">Section 10.5</a>).
     Selection of the common type considers the actual types
     of <code class="type">anycompatible</code> and <code class="type">anycompatiblenonarray</code>
     inputs, the array element types of <code class="type">anycompatiblearray</code>
     inputs, the range subtypes of <code class="type">anycompatiblerange</code> inputs,
     and the multirange subtypes of <code class="type">anycompatiblemultirange</code>
     inputs.  If <code class="type">anycompatiblenonarray</code> is present then the
     common type is required to be a non-array type.  Once a common type is
     identified, arguments in <code class="type">anycompatible</code>
     and <code class="type">anycompatiblenonarray</code> positions are automatically
     cast to that type, and arguments in <code class="type">anycompatiblearray</code>
     positions are automatically cast to the array type for that type.
    </p><p>
     Since there is no way to select a range type knowing only its subtype,
     use of <code class="type">anycompatiblerange</code> and/or
     <code class="type">anycompatiblemultirange</code> requires that all arguments declared
     with that type have the same actual range and/or multirange type, and that
     that type's subtype agree with the selected common type, so that no casting
     of the range values is required.  As with <code class="type">anyrange</code> and
     <code class="type">anymultirange</code>, use of <code class="type">anycompatiblerange</code> and
     <code class="type">anymultirange</code> as a function result type requires that there be
     an <code class="type">anycompatiblerange</code> or <code class="type">anycompatiblemultirange</code>
     argument.
    </p><p>
     Notice that there is no <code class="type">anycompatibleenum</code> type.  Such a
     type would not be very useful, since there normally are not any
     implicit casts to enum types, meaning that there would be no way to
     resolve a common type for dissimilar enum inputs.
    </p><p>
     The <span class="quote"><span class="quote">simple</span></span> and <span class="quote"><span class="quote">common</span></span> polymorphic
     families represent two independent sets of type variables.  Consider
     for example
</p><pre class="programlisting">
CREATE FUNCTION myfunc(a anyelement, b anyelement,
                       c anycompatible, d anycompatible)
RETURNS anycompatible AS ...
</pre><p>
     In an actual call of this function, the first two inputs must have
     exactly the same type.  The last two inputs must be promotable to a
     common type, but this type need not have anything to do with the type
     of the first two inputs.  The result will have the common type of the
     last two inputs.
    </p><p>
     A variadic function (one taking a variable number of arguments, as in
     <a class="xref" href="xfunc-sql.html#XFUNC-SQL-VARIADIC-FUNCTIONS" title="38.5.6. SQL Functions with Variable Numbers of Arguments">Section 38.5.6</a>) can be
     polymorphic: this is accomplished by declaring its last parameter as
     <code class="literal">VARIADIC</code> <code class="type">anyarray</code> or
     <code class="literal">VARIADIC</code> <code class="type">anycompatiblearray</code>.
     For purposes of argument
     matching and determining the actual result type, such a function behaves
     the same as if you had written the appropriate number of
     <code class="type">anynonarray</code> or <code class="type">anycompatiblenonarray</code>
     parameters.
    </p></div></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="extend-how.html" title="38.1. How Extensibility Works">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="extend.html" title="Chapter 38. Extending SQL">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="xfunc.html" title="38.3. User-Defined Functions">Next</a></td></tr><tr><td width="40%" align="left" valign="top">38.1. How Extensibility Works </td><td width="20%" align="center"><a accesskey="h" href="index.html" title="PostgreSQL 15.7 Documentation">Home</a></td><td width="40%" align="right" valign="top"> 38.3. User-Defined Functions</td></tr></table></div></body></html>