summaryrefslogtreecommitdiffstats
path: root/doc/src/sgml/html/xfunc-sql.html
blob: e7c56b2d83aa3d564d07eb27a21c03f6a0184ec2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>38.5. Query Language (SQL) Functions</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><link rel="prev" href="xproc.html" title="38.4. User-Defined Procedures" /><link rel="next" href="xfunc-overload.html" title="38.6. Function Overloading" /></head><body id="docContent" class="container-fluid col-10"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">38.5. Query Language (<acronym class="acronym">SQL</acronym>) Functions</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="xproc.html" title="38.4. User-Defined Procedures">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="extend.html" title="Chapter 38. Extending SQL">Up</a></td><th width="60%" align="center">Chapter 38. Extending <acronym class="acronym">SQL</acronym></th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 15.7 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="xfunc-overload.html" title="38.6. Function Overloading">Next</a></td></tr></table><hr /></div><div class="sect1" id="XFUNC-SQL"><div class="titlepage"><div><div><h2 class="title" style="clear: both">38.5. Query Language (<acronym class="acronym">SQL</acronym>) Functions</h2></div></div></div><div class="toc"><dl class="toc"><dt><span class="sect2"><a href="xfunc-sql.html#XFUNC-SQL-FUNCTION-ARGUMENTS">38.5.1. Arguments for <acronym class="acronym">SQL</acronym> Functions</a></span></dt><dt><span class="sect2"><a href="xfunc-sql.html#XFUNC-SQL-BASE-FUNCTIONS">38.5.2. <acronym class="acronym">SQL</acronym> Functions on Base Types</a></span></dt><dt><span class="sect2"><a href="xfunc-sql.html#XFUNC-SQL-COMPOSITE-FUNCTIONS">38.5.3. <acronym class="acronym">SQL</acronym> Functions on Composite Types</a></span></dt><dt><span class="sect2"><a href="xfunc-sql.html#XFUNC-OUTPUT-PARAMETERS">38.5.4. <acronym class="acronym">SQL</acronym> Functions with Output Parameters</a></span></dt><dt><span class="sect2"><a href="xfunc-sql.html#XFUNC-OUTPUT-PARAMETERS-PROC">38.5.5. <acronym class="acronym">SQL</acronym> Procedures with Output Parameters</a></span></dt><dt><span class="sect2"><a href="xfunc-sql.html#XFUNC-SQL-VARIADIC-FUNCTIONS">38.5.6. <acronym class="acronym">SQL</acronym> Functions with Variable Numbers of Arguments</a></span></dt><dt><span class="sect2"><a href="xfunc-sql.html#XFUNC-SQL-PARAMETER-DEFAULTS">38.5.7. <acronym class="acronym">SQL</acronym> Functions with Default Values for Arguments</a></span></dt><dt><span class="sect2"><a href="xfunc-sql.html#XFUNC-SQL-TABLE-FUNCTIONS">38.5.8. <acronym class="acronym">SQL</acronym> Functions as Table Sources</a></span></dt><dt><span class="sect2"><a href="xfunc-sql.html#XFUNC-SQL-FUNCTIONS-RETURNING-SET">38.5.9. <acronym class="acronym">SQL</acronym> Functions Returning Sets</a></span></dt><dt><span class="sect2"><a href="xfunc-sql.html#XFUNC-SQL-FUNCTIONS-RETURNING-TABLE">38.5.10. <acronym class="acronym">SQL</acronym> Functions Returning <code class="literal">TABLE</code></a></span></dt><dt><span class="sect2"><a href="xfunc-sql.html#XFUNC-SQL-POLYMORPHIC-FUNCTIONS">38.5.11. Polymorphic <acronym class="acronym">SQL</acronym> Functions</a></span></dt><dt><span class="sect2"><a href="xfunc-sql.html#id-1.8.3.8.21">38.5.12. <acronym class="acronym">SQL</acronym> Functions with Collations</a></span></dt></dl></div><a id="id-1.8.3.8.2" class="indexterm"></a><p>
    SQL functions execute an arbitrary list of SQL statements, returning
    the result of the last query in the list.
    In the simple (non-set)
    case, the first row of the last query's result will be returned.
    (Bear in mind that <span class="quote"><span class="quote">the first row</span></span> of a multirow
    result is not well-defined unless you use <code class="literal">ORDER BY</code>.)
    If the last query happens
    to return no rows at all, the null value will be returned.
   </p><p>
    Alternatively, an SQL function can be declared to return a set (that is,
    multiple rows) by specifying the function's return type as <code class="literal">SETOF
    <em class="replaceable"><code>sometype</code></em></code>, or equivalently by declaring it as
    <code class="literal">RETURNS TABLE(<em class="replaceable"><code>columns</code></em>)</code>.  In this case
    all rows of the last query's result are returned.  Further details appear
    below.
   </p><p>
    The body of an SQL function must be a list of SQL
    statements separated by semicolons.  A semicolon after the last
    statement is optional.  Unless the function is declared to return
    <code class="type">void</code>, the last statement must be a <code class="command">SELECT</code>,
    or an <code class="command">INSERT</code>, <code class="command">UPDATE</code>, or <code class="command">DELETE</code>
    that has a <code class="literal">RETURNING</code> clause.
   </p><p>
     Any collection of commands in the  <acronym class="acronym">SQL</acronym>
     language can be packaged together and defined as a function.
     Besides <code class="command">SELECT</code> queries, the commands can include data
     modification queries (<code class="command">INSERT</code>,
     <code class="command">UPDATE</code>, <code class="command">DELETE</code>, and
     <code class="command">MERGE</code>), as well as
     other SQL commands. (You cannot use transaction control commands, e.g.,
     <code class="command">COMMIT</code>, <code class="command">SAVEPOINT</code>, and some utility
     commands, e.g.,  <code class="literal">VACUUM</code>, in <acronym class="acronym">SQL</acronym> functions.)
     However, the final command
     must be a <code class="command">SELECT</code> or have a <code class="literal">RETURNING</code>
     clause that returns whatever is
     specified as the function's return type.  Alternatively, if you
     want to define an SQL function that performs actions but has no
     useful value to return, you can define it as returning <code class="type">void</code>.
     For example, this function removes rows with negative salaries from
     the <code class="literal">emp</code> table:

</p><pre class="screen">
CREATE FUNCTION clean_emp() RETURNS void AS '
    DELETE FROM emp
        WHERE salary &lt; 0;
' LANGUAGE SQL;

SELECT clean_emp();

 clean_emp
-----------

(1 row)
</pre><p>
    </p><p>
     You can also write this as a procedure, thus avoiding the issue of the
     return type.  For example:
</p><pre class="screen">
CREATE PROCEDURE clean_emp() AS '
    DELETE FROM emp
        WHERE salary &lt; 0;
' LANGUAGE SQL;

CALL clean_emp();
</pre><p>
     In simple cases like this, the difference between a function returning
     <code class="type">void</code> and a procedure is mostly stylistic.  However,
     procedures offer additional functionality such as transaction control
     that is not available in functions.  Also, procedures are SQL standard
     whereas returning <code class="type">void</code> is a PostgreSQL extension.
    </p><div class="note"><h3 class="title">Note</h3><p>
      The entire body of an SQL function is parsed before any of it is
      executed.  While an SQL function can contain commands that alter
      the system catalogs (e.g., <code class="command">CREATE TABLE</code>), the effects
      of such commands will not be visible during parse analysis of
      later commands in the function.  Thus, for example,
      <code class="literal">CREATE TABLE foo (...); INSERT INTO foo VALUES(...);</code>
      will not work as desired if packaged up into a single SQL function,
      since <code class="structname">foo</code> won't exist yet when the <code class="command">INSERT</code>
      command is parsed.  It's recommended to use <span class="application">PL/pgSQL</span>
      instead of an SQL function in this type of situation.
     </p></div><p>
    The syntax of the <code class="command">CREATE FUNCTION</code> command requires
    the function body to be written as a string constant.  It is usually
    most convenient to use dollar quoting (see <a class="xref" href="sql-syntax-lexical.html#SQL-SYNTAX-DOLLAR-QUOTING" title="4.1.2.4. Dollar-Quoted String Constants">Section 4.1.2.4</a>) for the string constant.
    If you choose to use regular single-quoted string constant syntax,
    you must double single quote marks (<code class="literal">'</code>) and backslashes
    (<code class="literal">\</code>) (assuming escape string syntax) in the body of
    the function (see <a class="xref" href="sql-syntax-lexical.html#SQL-SYNTAX-STRINGS" title="4.1.2.1. String Constants">Section 4.1.2.1</a>).
   </p><div class="sect2" id="XFUNC-SQL-FUNCTION-ARGUMENTS"><div class="titlepage"><div><div><h3 class="title">38.5.1. Arguments for <acronym class="acronym">SQL</acronym> Functions</h3></div></div></div><a id="id-1.8.3.8.10.2" class="indexterm"></a><p>
     Arguments of an SQL function can be referenced in the function
     body using either names or numbers.  Examples of both methods appear
     below.
    </p><p>
     To use a name, declare the function argument as having a name, and
     then just write that name in the function body.  If the argument name
     is the same as any column name in the current SQL command within the
     function, the column name will take precedence.  To override this,
     qualify the argument name with the name of the function itself, that is
     <code class="literal"><em class="replaceable"><code>function_name</code></em>.<em class="replaceable"><code>argument_name</code></em></code>.
     (If this would conflict with a qualified column name, again the column
     name wins.  You can avoid the ambiguity by choosing a different alias for
     the table within the SQL command.)
    </p><p>
     In the older numeric approach, arguments are referenced using the syntax
     <code class="literal">$<em class="replaceable"><code>n</code></em></code>: <code class="literal">$1</code> refers to the first input
     argument, <code class="literal">$2</code> to the second, and so on.  This will work
     whether or not the particular argument was declared with a name.
    </p><p>
     If an argument is of a composite type, then the dot notation,
     e.g., <code class="literal"><em class="replaceable"><code>argname</code></em>.<em class="replaceable"><code>fieldname</code></em></code> or
     <code class="literal">$1.<em class="replaceable"><code>fieldname</code></em></code>, can be used to access attributes of the
     argument.  Again, you might need to qualify the argument's name with the
     function name to make the form with an argument name unambiguous.
    </p><p>
     SQL function arguments can only be used as data values,
     not as identifiers.  Thus for example this is reasonable:
</p><pre class="programlisting">
INSERT INTO mytable VALUES ($1);
</pre><p>
but this will not work:
</p><pre class="programlisting">
INSERT INTO $1 VALUES (42);
</pre><p>
    </p><div class="note"><h3 class="title">Note</h3><p>
      The ability to use names to reference SQL function arguments was added
      in <span class="productname">PostgreSQL</span> 9.2.  Functions to be used in
      older servers must use the <code class="literal">$<em class="replaceable"><code>n</code></em></code> notation.
     </p></div></div><div class="sect2" id="XFUNC-SQL-BASE-FUNCTIONS"><div class="titlepage"><div><div><h3 class="title">38.5.2. <acronym class="acronym">SQL</acronym> Functions on Base Types</h3></div></div></div><p>
     The simplest possible <acronym class="acronym">SQL</acronym> function has no arguments and
     simply returns a base type, such as <code class="type">integer</code>:

</p><pre class="screen">
CREATE FUNCTION one() RETURNS integer AS $$
    SELECT 1 AS result;
$$ LANGUAGE SQL;

-- Alternative syntax for string literal:
CREATE FUNCTION one() RETURNS integer AS '
    SELECT 1 AS result;
' LANGUAGE SQL;

SELECT one();

 one
-----
   1
</pre><p>
    </p><p>
     Notice that we defined a column alias within the function body for the result of the function
     (with  the  name <code class="literal">result</code>),  but this column alias is not visible
     outside the function.  Hence,  the  result  is labeled <code class="literal">one</code>
     instead of <code class="literal">result</code>.
    </p><p>
     It is almost as easy to define <acronym class="acronym">SQL</acronym> functions
     that take base types as arguments:

</p><pre class="screen">
CREATE FUNCTION add_em(x integer, y integer) RETURNS integer AS $$
    SELECT x + y;
$$ LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;

 answer
--------
      3
</pre><p>
    </p><p>
     Alternatively, we could dispense with names for the arguments and
     use numbers:

</p><pre class="screen">
CREATE FUNCTION add_em(integer, integer) RETURNS integer AS $$
    SELECT $1 + $2;
$$ LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;

 answer
--------
      3
</pre><p>
    </p><p>
     Here is a more useful function, which might be used to debit a
     bank account:

</p><pre class="programlisting">
CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
    UPDATE bank
        SET balance = balance - debit
        WHERE accountno = tf1.accountno;
    SELECT 1;
$$ LANGUAGE SQL;
</pre><p>

     A user could execute this function to debit account 17 by $100.00 as
     follows:

</p><pre class="programlisting">
SELECT tf1(17, 100.0);
</pre><p>
    </p><p>
     In this example, we chose the name <code class="literal">accountno</code> for the first
     argument, but this is the same as the name of a column in the
     <code class="literal">bank</code> table.  Within the <code class="command">UPDATE</code> command,
     <code class="literal">accountno</code> refers to the column <code class="literal">bank.accountno</code>,
     so <code class="literal">tf1.accountno</code> must be used to refer to the argument.
     We could of course avoid this by using a different name for the argument.
    </p><p>
     In practice one would probably like a more useful result from the
     function than a constant 1, so a more likely definition
     is:

</p><pre class="programlisting">
CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
    UPDATE bank
        SET balance = balance - debit
        WHERE accountno = tf1.accountno;
    SELECT balance FROM bank WHERE accountno = tf1.accountno;
$$ LANGUAGE SQL;
</pre><p>

     which adjusts the balance and returns the new balance.
     The same thing could be done in one command using <code class="literal">RETURNING</code>:

</p><pre class="programlisting">
CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
    UPDATE bank
        SET balance = balance - debit
        WHERE accountno = tf1.accountno
    RETURNING balance;
$$ LANGUAGE SQL;
</pre><p>
    </p><p>
     If the final <code class="literal">SELECT</code> or <code class="literal">RETURNING</code>
     clause in an <acronym class="acronym">SQL</acronym> function does not return exactly
     the function's declared result
     type, <span class="productname">PostgreSQL</span> will automatically cast
     the value to the required type, if that is possible with an implicit
     or assignment cast.  Otherwise, you must write an explicit cast.
     For example, suppose we wanted the
     previous <code class="function">add_em</code> function to return
     type <code class="type">float8</code> instead.  It's sufficient to write

</p><pre class="programlisting">
CREATE FUNCTION add_em(integer, integer) RETURNS float8 AS $$
    SELECT $1 + $2;
$$ LANGUAGE SQL;
</pre><p>

     since the <code class="type">integer</code> sum can be implicitly cast
     to <code class="type">float8</code>.
     (See <a class="xref" href="typeconv.html" title="Chapter 10. Type Conversion">Chapter 10</a> or <a class="xref" href="sql-createcast.html" title="CREATE CAST"><span class="refentrytitle">CREATE CAST</span></a>
     for more about casts.)
    </p></div><div class="sect2" id="XFUNC-SQL-COMPOSITE-FUNCTIONS"><div class="titlepage"><div><div><h3 class="title">38.5.3. <acronym class="acronym">SQL</acronym> Functions on Composite Types</h3></div></div></div><p>
     When writing functions with arguments of composite types, we must not
     only specify which argument we want but also the desired attribute
     (field) of that argument.  For example, suppose that
     <code class="type">emp</code> is a table containing employee data, and therefore
     also the name of the composite type of each row of the table.  Here
     is a function <code class="function">double_salary</code> that computes what someone's
     salary would be if it were doubled:

</p><pre class="screen">
CREATE TABLE emp (
    name        text,
    salary      numeric,
    age         integer,
    cubicle     point
);

INSERT INTO emp VALUES ('Bill', 4200, 45, '(2,1)');

CREATE FUNCTION double_salary(emp) RETURNS numeric AS $$
    SELECT $1.salary * 2 AS salary;
$$ LANGUAGE SQL;

SELECT name, double_salary(emp.*) AS dream
    FROM emp
    WHERE emp.cubicle ~= point '(2,1)';

 name | dream
------+-------
 Bill |  8400
</pre><p>
    </p><p>
     Notice the use of the syntax <code class="literal">$1.salary</code>
     to select one field of the argument row value.  Also notice
     how the calling <code class="command">SELECT</code> command
     uses <em class="replaceable"><code>table_name</code></em><code class="literal">.*</code> to select
     the entire current row of a table as a composite value.  The table
     row can alternatively be referenced using just the table name,
     like this:
</p><pre class="screen">
SELECT name, double_salary(emp) AS dream
    FROM emp
    WHERE emp.cubicle ~= point '(2,1)';
</pre><p>
     but this usage is deprecated since it's easy to get confused.
     (See <a class="xref" href="rowtypes.html#ROWTYPES-USAGE" title="8.16.5. Using Composite Types in Queries">Section 8.16.5</a> for details about these
     two notations for the composite value of a table row.)
    </p><p>
     Sometimes it is handy to construct a composite argument value
     on-the-fly.  This can be done with the <code class="literal">ROW</code> construct.
     For example, we could adjust the data being passed to the function:
</p><pre class="screen">
SELECT name, double_salary(ROW(name, salary*1.1, age, cubicle)) AS dream
    FROM emp;
</pre><p>
    </p><p>
     It is also possible to build a function that returns a composite type.
     This is an example of a function
     that returns a single <code class="type">emp</code> row:

</p><pre class="programlisting">
CREATE FUNCTION new_emp() RETURNS emp AS $$
    SELECT text 'None' AS name,
        1000.0 AS salary,
        25 AS age,
        point '(2,2)' AS cubicle;
$$ LANGUAGE SQL;
</pre><p>

     In this example we have specified each of  the  attributes
     with  a  constant value, but any computation
     could have been substituted for these constants.
    </p><p>
     Note two important things about defining the function:

     </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p>
        The select list order in the query must be exactly the same as
        that in which the columns appear in the composite type.
        (Naming the columns, as we did above,
        is irrelevant to the system.)
       </p></li><li class="listitem"><p>
        We must ensure each expression's type can be cast to that of
        the corresponding column of the composite type.
        Otherwise we'll get errors like this:
</p><pre class="screen">
<code class="computeroutput">
ERROR:  return type mismatch in function declared to return emp
DETAIL:  Final statement returns text instead of point at column 4.
</code>
</pre><p>
        As with the base-type case, the system will not insert explicit
        casts automatically, only implicit or assignment casts.
       </p></li></ul></div><p>
    </p><p>
     A different way to define the same function is:

</p><pre class="programlisting">
CREATE FUNCTION new_emp() RETURNS emp AS $$
    SELECT ROW('None', 1000.0, 25, '(2,2)')::emp;
$$ LANGUAGE SQL;
</pre><p>

     Here we wrote a <code class="command">SELECT</code> that returns just a single
     column of the correct composite type.  This isn't really better
     in this situation, but it is a handy alternative in some cases
     — for example, if we need to compute the result by calling
     another function that returns the desired composite value.
     Another example is that if we are trying to write a function that
     returns a domain over composite, rather than a plain composite type,
     it is always necessary to write it as returning a single column,
     since there is no way to cause a coercion of the whole row result.
    </p><p>
     We could call this function directly either by using it in
     a value expression:

</p><pre class="screen">
SELECT new_emp();

         new_emp
--------------------------
 (None,1000.0,25,"(2,2)")
</pre><p>

     or by calling it as a table function:

</p><pre class="screen">
SELECT * FROM new_emp();

 name | salary | age | cubicle
------+--------+-----+---------
 None | 1000.0 |  25 | (2,2)
</pre><p>

     The second way is described more fully in <a class="xref" href="xfunc-sql.html#XFUNC-SQL-TABLE-FUNCTIONS" title="38.5.8. SQL Functions as Table Sources">Section 38.5.8</a>.
    </p><p>
     When you use a function that returns a composite type,
     you might want only one field (attribute) from its result.
     You can do that with syntax like this:

</p><pre class="screen">
SELECT (new_emp()).name;

 name
------
 None
</pre><p>

     The extra parentheses are needed to keep the parser from getting
     confused.  If you try to do it without them, you get something like this:

</p><pre class="screen">
SELECT new_emp().name;
ERROR:  syntax error at or near "."
LINE 1: SELECT new_emp().name;
                        ^
</pre><p>
    </p><p>
     Another option is to use functional notation for extracting an attribute:

</p><pre class="screen">
SELECT name(new_emp());

 name
------
 None
</pre><p>

     As explained in <a class="xref" href="rowtypes.html#ROWTYPES-USAGE" title="8.16.5. Using Composite Types in Queries">Section 8.16.5</a>, the field notation and
     functional notation are equivalent.
    </p><p>
     Another way to use a function returning a composite type is to pass the
     result to another function that accepts the correct row type as input:

</p><pre class="screen">
CREATE FUNCTION getname(emp) RETURNS text AS $$
    SELECT $1.name;
$$ LANGUAGE SQL;

SELECT getname(new_emp());
 getname
---------
 None
(1 row)
</pre><p>
    </p></div><div class="sect2" id="XFUNC-OUTPUT-PARAMETERS"><div class="titlepage"><div><div><h3 class="title">38.5.4. <acronym class="acronym">SQL</acronym> Functions with Output Parameters</h3></div></div></div><a id="id-1.8.3.8.13.2" class="indexterm"></a><p>
     An alternative way of describing a function's results is to define it
     with <em class="firstterm">output parameters</em>, as in this example:

</p><pre class="screen">
CREATE FUNCTION add_em (IN x int, IN y int, OUT sum int)
AS 'SELECT x + y'
LANGUAGE SQL;

SELECT add_em(3,7);
 add_em
--------
     10
(1 row)
</pre><p>

     This is not essentially different from the version of <code class="literal">add_em</code>
     shown in <a class="xref" href="xfunc-sql.html#XFUNC-SQL-BASE-FUNCTIONS" title="38.5.2. SQL Functions on Base Types">Section 38.5.2</a>.  The real value of
     output parameters is that they provide a convenient way of defining
     functions that return several columns.  For example,

</p><pre class="screen">
CREATE FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product int)
AS 'SELECT x + y, x * y'
LANGUAGE SQL;

 SELECT * FROM sum_n_product(11,42);
 sum | product
-----+---------
  53 |     462
(1 row)
</pre><p>

     What has essentially happened here is that we have created an anonymous
     composite type for the result of the function.  The above example has
     the same end result as

</p><pre class="screen">
CREATE TYPE sum_prod AS (sum int, product int);

CREATE FUNCTION sum_n_product (int, int) RETURNS sum_prod
AS 'SELECT $1 + $2, $1 * $2'
LANGUAGE SQL;
</pre><p>

     but not having to bother with the separate composite type definition
     is often handy.  Notice that the names attached to the output parameters
     are not just decoration, but determine the column names of the anonymous
     composite type.  (If you omit a name for an output parameter, the
     system will choose a name on its own.)
    </p><p>
     Notice that output parameters are not included in the calling argument
     list when invoking such a function from SQL.  This is because
     <span class="productname">PostgreSQL</span> considers only the input
     parameters to define the function's calling signature.  That means
     also that only the input parameters matter when referencing the function
     for purposes such as dropping it.  We could drop the above function
     with either of

</p><pre class="screen">
DROP FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product int);
DROP FUNCTION sum_n_product (int, int);
</pre><p>
    </p><p>
     Parameters can be marked as <code class="literal">IN</code> (the default),
     <code class="literal">OUT</code>, <code class="literal">INOUT</code>, or <code class="literal">VARIADIC</code>.
     An <code class="literal">INOUT</code>
     parameter serves as both an input parameter (part of the calling
     argument list) and an output parameter (part of the result record type).
     <code class="literal">VARIADIC</code> parameters are input parameters, but are treated
     specially as described below.
    </p></div><div class="sect2" id="XFUNC-OUTPUT-PARAMETERS-PROC"><div class="titlepage"><div><div><h3 class="title">38.5.5. <acronym class="acronym">SQL</acronym> Procedures with Output Parameters</h3></div></div></div><a id="id-1.8.3.8.14.2" class="indexterm"></a><p>
     Output parameters are also supported in procedures, but they work a bit
     differently from functions.  In <code class="command">CALL</code> commands,
     output parameters must be included in the argument list.
     For example, the bank account debiting routine from earlier could be
     written like this:
</p><pre class="programlisting">
CREATE PROCEDURE tp1 (accountno integer, debit numeric, OUT new_balance numeric) AS $$
    UPDATE bank
        SET balance = balance - debit
        WHERE accountno = tp1.accountno
    RETURNING balance;
$$ LANGUAGE SQL;
</pre><p>
     To call this procedure, an argument matching the <code class="literal">OUT</code>
     parameter must be included.  It's customary to write
     <code class="literal">NULL</code>:
</p><pre class="programlisting">
CALL tp1(17, 100.0, NULL);
</pre><p>
     If you write something else, it must be an expression that is implicitly
     coercible to the declared type of the parameter, just as for input
     parameters.  Note however that such an expression will not be evaluated.
    </p><p>
     When calling a procedure from <span class="application">PL/pgSQL</span>,
     instead of writing <code class="literal">NULL</code> you must write a variable
     that will receive the procedure's output.  See <a class="xref" href="plpgsql-control-structures.html#PLPGSQL-STATEMENTS-CALLING-PROCEDURE" title="43.6.3. Calling a Procedure">Section 43.6.3</a> for details.
    </p></div><div class="sect2" id="XFUNC-SQL-VARIADIC-FUNCTIONS"><div class="titlepage"><div><div><h3 class="title">38.5.6. <acronym class="acronym">SQL</acronym> Functions with Variable Numbers of Arguments</h3></div></div></div><a id="id-1.8.3.8.15.2" class="indexterm"></a><a id="id-1.8.3.8.15.3" class="indexterm"></a><p>
     <acronym class="acronym">SQL</acronym> functions can be declared to accept
     variable numbers of arguments, so long as all the <span class="quote"><span class="quote">optional</span></span>
     arguments are of the same data type.  The optional arguments will be
     passed to the function as an array.  The function is declared by
     marking the last parameter as <code class="literal">VARIADIC</code>; this parameter
     must be declared as being of an array type.  For example:

</p><pre class="screen">
CREATE FUNCTION mleast(VARIADIC arr numeric[]) RETURNS numeric AS $$
    SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;

SELECT mleast(10, -1, 5, 4.4);
 mleast
--------
     -1
(1 row)
</pre><p>

     Effectively, all the actual arguments at or beyond the
     <code class="literal">VARIADIC</code> position are gathered up into a one-dimensional
     array, as if you had written

</p><pre class="screen">
SELECT mleast(ARRAY[10, -1, 5, 4.4]);    -- doesn't work
</pre><p>

     You can't actually write that, though — or at least, it will
     not match this function definition.  A parameter marked
     <code class="literal">VARIADIC</code> matches one or more occurrences of its element
     type, not of its own type.
    </p><p>
     Sometimes it is useful to be able to pass an already-constructed array
     to a variadic function; this is particularly handy when one variadic
     function wants to pass on its array parameter to another one.  Also,
     this is the only secure way to call a variadic function found in a schema
     that permits untrusted users to create objects; see
     <a class="xref" href="typeconv-func.html" title="10.3. Functions">Section 10.3</a>.  You can do this by
     specifying <code class="literal">VARIADIC</code> in the call:

</p><pre class="screen">
SELECT mleast(VARIADIC ARRAY[10, -1, 5, 4.4]);
</pre><p>

     This prevents expansion of the function's variadic parameter into its
     element type, thereby allowing the array argument value to match
     normally.  <code class="literal">VARIADIC</code> can only be attached to the last
     actual argument of a function call.
    </p><p>
     Specifying <code class="literal">VARIADIC</code> in the call is also the only way to
     pass an empty array to a variadic function, for example:

</p><pre class="screen">
SELECT mleast(VARIADIC ARRAY[]::numeric[]);
</pre><p>

     Simply writing <code class="literal">SELECT mleast()</code> does not work because a
     variadic parameter must match at least one actual argument.
     (You could define a second function also named <code class="literal">mleast</code>,
     with no parameters, if you wanted to allow such calls.)
    </p><p>
     The array element parameters generated from a variadic parameter are
     treated as not having any names of their own.  This means it is not
     possible to call a variadic function using named arguments (<a class="xref" href="sql-syntax-calling-funcs.html" title="4.3. Calling Functions">Section 4.3</a>), except when you specify
     <code class="literal">VARIADIC</code>.  For example, this will work:

</p><pre class="screen">
SELECT mleast(VARIADIC arr =&gt; ARRAY[10, -1, 5, 4.4]);
</pre><p>

     but not these:

</p><pre class="screen">
SELECT mleast(arr =&gt; 10);
SELECT mleast(arr =&gt; ARRAY[10, -1, 5, 4.4]);
</pre><p>
    </p></div><div class="sect2" id="XFUNC-SQL-PARAMETER-DEFAULTS"><div class="titlepage"><div><div><h3 class="title">38.5.7. <acronym class="acronym">SQL</acronym> Functions with Default Values for Arguments</h3></div></div></div><a id="id-1.8.3.8.16.2" class="indexterm"></a><p>
     Functions can be declared with default values for some or all input
     arguments.  The default values are inserted whenever the function is
     called with insufficiently many actual arguments.  Since arguments
     can only be omitted from the end of the actual argument list, all
     parameters after a parameter with a default value have to have
     default values as well.  (Although the use of named argument notation
     could allow this restriction to be relaxed, it's still enforced so that
     positional argument notation works sensibly.)  Whether or not you use it,
     this capability creates a need for precautions when calling functions in
     databases where some users mistrust other users; see
     <a class="xref" href="typeconv-func.html" title="10.3. Functions">Section 10.3</a>.
    </p><p>
     For example:
</p><pre class="screen">
CREATE FUNCTION foo(a int, b int DEFAULT 2, c int DEFAULT 3)
RETURNS int
LANGUAGE SQL
AS $$
    SELECT $1 + $2 + $3;
$$;

SELECT foo(10, 20, 30);
 foo
-----
  60
(1 row)

SELECT foo(10, 20);
 foo
-----
  33
(1 row)

SELECT foo(10);
 foo
-----
  15
(1 row)

SELECT foo();  -- fails since there is no default for the first argument
ERROR:  function foo() does not exist
</pre><p>
     The <code class="literal">=</code> sign can also be used in place of the
     key word <code class="literal">DEFAULT</code>.
    </p></div><div class="sect2" id="XFUNC-SQL-TABLE-FUNCTIONS"><div class="titlepage"><div><div><h3 class="title">38.5.8. <acronym class="acronym">SQL</acronym> Functions as Table Sources</h3></div></div></div><p>
     All SQL functions can be used in the <code class="literal">FROM</code> clause of a query,
     but it is particularly useful for functions returning composite types.
     If the function is defined to return a base type, the table function
     produces a one-column table.  If the function is defined to return
     a composite type, the table function produces a column for each attribute
     of the composite type.
    </p><p>
     Here is an example:

</p><pre class="screen">
CREATE TABLE foo (fooid int, foosubid int, fooname text);
INSERT INTO foo VALUES (1, 1, 'Joe');
INSERT INTO foo VALUES (1, 2, 'Ed');
INSERT INTO foo VALUES (2, 1, 'Mary');

CREATE FUNCTION getfoo(int) RETURNS foo AS $$
    SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT *, upper(fooname) FROM getfoo(1) AS t1;

 fooid | foosubid | fooname | upper
-------+----------+---------+-------
     1 |        1 | Joe     | JOE
(1 row)
</pre><p>

     As the example shows, we can work with the columns of the function's
     result just the same as if they were columns of a regular table.
    </p><p>
     Note that we only got one row out of the function.  This is because
     we did not use <code class="literal">SETOF</code>.  That is described in the next section.
    </p></div><div class="sect2" id="XFUNC-SQL-FUNCTIONS-RETURNING-SET"><div class="titlepage"><div><div><h3 class="title">38.5.9. <acronym class="acronym">SQL</acronym> Functions Returning Sets</h3></div></div></div><a id="id-1.8.3.8.18.2" class="indexterm"></a><p>
     When an SQL function is declared as returning <code class="literal">SETOF
     <em class="replaceable"><code>sometype</code></em></code>, the function's final
     query is executed to completion, and each row it
     outputs is returned as an element of the result set.
    </p><p>
     This feature is normally used when calling the function in the <code class="literal">FROM</code>
     clause.  In this case each row returned by the function becomes
     a row of the table seen by the query.  For example, assume that
     table <code class="literal">foo</code> has the same contents as above, and we say:

</p><pre class="programlisting">
CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
    SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;
</pre><p>

     Then we would get:
</p><pre class="screen">
 fooid | foosubid | fooname
-------+----------+---------
     1 |        1 | Joe
     1 |        2 | Ed
(2 rows)
</pre><p>
    </p><p>
     It is also possible to return multiple rows with the columns defined by
     output parameters, like this:

</p><pre class="programlisting">
CREATE TABLE tab (y int, z int);
INSERT INTO tab VALUES (1, 2), (3, 4), (5, 6), (7, 8);

CREATE FUNCTION sum_n_product_with_tab (x int, OUT sum int, OUT product int)
RETURNS SETOF record
AS $$
    SELECT $1 + tab.y, $1 * tab.y FROM tab;
$$ LANGUAGE SQL;

SELECT * FROM sum_n_product_with_tab(10);
 sum | product
-----+---------
  11 |      10
  13 |      30
  15 |      50
  17 |      70
(4 rows)
</pre><p>

     The key point here is that you must write <code class="literal">RETURNS SETOF record</code>
     to indicate that the function returns multiple rows instead of just one.
     If there is only one output parameter, write that parameter's type
     instead of <code class="type">record</code>.
    </p><p>
     It is frequently useful to construct a query's result by invoking a
     set-returning function multiple times, with the parameters for each
     invocation coming from successive rows of a table or subquery.  The
     preferred way to do this is to use the <code class="literal">LATERAL</code> key word,
     which is described in <a class="xref" href="queries-table-expressions.html#QUERIES-LATERAL" title="7.2.1.5. LATERAL Subqueries">Section 7.2.1.5</a>.
     Here is an example using a set-returning function to enumerate
     elements of a tree structure:

</p><pre class="screen">
SELECT * FROM nodes;
   name    | parent
-----------+--------
 Top       |
 Child1    | Top
 Child2    | Top
 Child3    | Top
 SubChild1 | Child1
 SubChild2 | Child1
(6 rows)

CREATE FUNCTION listchildren(text) RETURNS SETOF text AS $$
    SELECT name FROM nodes WHERE parent = $1
$$ LANGUAGE SQL STABLE;

SELECT * FROM listchildren('Top');
 listchildren
--------------
 Child1
 Child2
 Child3
(3 rows)

SELECT name, child FROM nodes, LATERAL listchildren(name) AS child;
  name  |   child
--------+-----------
 Top    | Child1
 Top    | Child2
 Top    | Child3
 Child1 | SubChild1
 Child1 | SubChild2
(5 rows)
</pre><p>

     This example does not do anything that we couldn't have done with a
     simple join, but in more complex calculations the option to put
     some of the work into a function can be quite convenient.
    </p><p>
     Functions returning sets can also be called in the select list
     of a query.  For each row that the query
     generates by itself, the set-returning function is invoked, and an output
     row is generated for each element of the function's result set.
     The previous example could also be done with queries like
     these:

</p><pre class="screen">
SELECT listchildren('Top');
 listchildren
--------------
 Child1
 Child2
 Child3
(3 rows)

SELECT name, listchildren(name) FROM nodes;
  name  | listchildren
--------+--------------
 Top    | Child1
 Top    | Child2
 Top    | Child3
 Child1 | SubChild1
 Child1 | SubChild2
(5 rows)
</pre><p>

     In the last <code class="command">SELECT</code>,
     notice that no output row appears for <code class="literal">Child2</code>, <code class="literal">Child3</code>, etc.
     This happens because <code class="function">listchildren</code> returns an empty set
     for those arguments, so no result rows are generated.  This is the same
     behavior as we got from an inner join to the function result when using
     the <code class="literal">LATERAL</code> syntax.
    </p><p>
     <span class="productname">PostgreSQL</span>'s behavior for a set-returning function in a
     query's select list is almost exactly the same as if the set-returning
     function had been written in a <code class="literal">LATERAL FROM</code>-clause item
     instead.  For example,
</p><pre class="programlisting">
SELECT x, generate_series(1,5) AS g FROM tab;
</pre><p>
     is almost equivalent to
</p><pre class="programlisting">
SELECT x, g FROM tab, LATERAL generate_series(1,5) AS g;
</pre><p>
     It would be exactly the same, except that in this specific example,
     the planner could choose to put <code class="structname">g</code> on the outside of the
     nested-loop join, since <code class="structname">g</code> has no actual lateral dependency
     on <code class="structname">tab</code>.  That would result in a different output row
     order.  Set-returning functions in the select list are always evaluated
     as though they are on the inside of a nested-loop join with the rest of
     the <code class="literal">FROM</code> clause, so that the function(s) are run to
     completion before the next row from the <code class="literal">FROM</code> clause is
     considered.
    </p><p>
     If there is more than one set-returning function in the query's select
     list, the behavior is similar to what you get from putting the functions
     into a single <code class="literal">LATERAL ROWS FROM( ... )</code> <code class="literal">FROM</code>-clause
     item.  For each row from the underlying query, there is an output row
     using the first result from each function, then an output row using the
     second result, and so on.  If some of the set-returning functions
     produce fewer outputs than others, null values are substituted for the
     missing data, so that the total number of rows emitted for one
     underlying row is the same as for the set-returning function that
     produced the most outputs.  Thus the set-returning functions
     run <span class="quote"><span class="quote">in lockstep</span></span> until they are all exhausted, and then
     execution continues with the next underlying row.
    </p><p>
     Set-returning functions can be nested in a select list, although that is
     not allowed in <code class="literal">FROM</code>-clause items.  In such cases, each level
     of nesting is treated separately, as though it were
     a separate <code class="literal">LATERAL ROWS FROM( ... )</code> item.  For example, in
</p><pre class="programlisting">
SELECT srf1(srf2(x), srf3(y)), srf4(srf5(z)) FROM tab;
</pre><p>
     the set-returning functions <code class="function">srf2</code>, <code class="function">srf3</code>,
     and <code class="function">srf5</code> would be run in lockstep for each row
     of <code class="structname">tab</code>, and then <code class="function">srf1</code> and <code class="function">srf4</code>
     would be applied in lockstep to each row produced by the lower
     functions.
    </p><p>
     Set-returning functions cannot be used within conditional-evaluation
     constructs, such as <code class="literal">CASE</code> or <code class="literal">COALESCE</code>.  For
     example, consider
</p><pre class="programlisting">
SELECT x, CASE WHEN x &gt; 0 THEN generate_series(1, 5) ELSE 0 END FROM tab;
</pre><p>
     It might seem that this should produce five repetitions of input rows
     that have <code class="literal">x &gt; 0</code>, and a single repetition of those that do
     not; but actually, because <code class="function">generate_series(1, 5)</code> would be
     run in an implicit <code class="literal">LATERAL FROM</code> item before
     the <code class="literal">CASE</code> expression is ever evaluated, it would produce five
     repetitions of every input row.  To reduce confusion, such cases produce
     a parse-time error instead.
    </p><div class="note"><h3 class="title">Note</h3><p>
      If a function's last command is <code class="command">INSERT</code>, <code class="command">UPDATE</code>,
      or <code class="command">DELETE</code> with <code class="literal">RETURNING</code>, that command will
      always be executed to completion, even if the function is not declared
      with <code class="literal">SETOF</code> or the calling query does not fetch all the
      result rows.  Any extra rows produced by the <code class="literal">RETURNING</code>
      clause are silently dropped, but the commanded table modifications
      still happen (and are all completed before returning from the function).
     </p></div><div class="note"><h3 class="title">Note</h3><p>
      Before <span class="productname">PostgreSQL</span> 10, putting more than one
      set-returning function in the same select list did not behave very
      sensibly unless they always produced equal numbers of rows.  Otherwise,
      what you got was a number of output rows equal to the least common
      multiple of the numbers of rows produced by the set-returning
      functions.  Also, nested set-returning functions did not work as
      described above; instead, a set-returning function could have at most
      one set-returning argument, and each nest of set-returning functions
      was run independently.  Also, conditional execution (set-returning
      functions inside <code class="literal">CASE</code> etc.) was previously allowed,
      complicating things even more.
      Use of the <code class="literal">LATERAL</code> syntax is recommended when writing
      queries that need to work in older <span class="productname">PostgreSQL</span> versions,
      because that will give consistent results across different versions.
      If you have a query that is relying on conditional execution of a
      set-returning function, you may be able to fix it by moving the
      conditional test into a custom set-returning function.  For example,
</p><pre class="programlisting">
SELECT x, CASE WHEN y &gt; 0 THEN generate_series(1, z) ELSE 5 END FROM tab;
</pre><p>
      could become
</p><pre class="programlisting">
CREATE FUNCTION case_generate_series(cond bool, start int, fin int, els int)
  RETURNS SETOF int AS $$
BEGIN
  IF cond THEN
    RETURN QUERY SELECT generate_series(start, fin);
  ELSE
    RETURN QUERY SELECT els;
  END IF;
END$$ LANGUAGE plpgsql;

SELECT x, case_generate_series(y &gt; 0, 1, z, 5) FROM tab;
</pre><p>
      This formulation will work the same in all versions
      of <span class="productname">PostgreSQL</span>.
     </p></div></div><div class="sect2" id="XFUNC-SQL-FUNCTIONS-RETURNING-TABLE"><div class="titlepage"><div><div><h3 class="title">38.5.10. <acronym class="acronym">SQL</acronym> Functions Returning <code class="literal">TABLE</code></h3></div></div></div><a id="id-1.8.3.8.19.2" class="indexterm"></a><p>
     There is another way to declare a function as returning a set,
     which is to use the syntax
     <code class="literal">RETURNS TABLE(<em class="replaceable"><code>columns</code></em>)</code>.
     This is equivalent to using one or more <code class="literal">OUT</code> parameters plus
     marking the function as returning <code class="literal">SETOF record</code> (or
     <code class="literal">SETOF</code> a single output parameter's type, as appropriate).
     This notation is specified in recent versions of the SQL standard, and
     thus may be more portable than using <code class="literal">SETOF</code>.
    </p><p>
     For example, the preceding sum-and-product example could also be
     done this way:

</p><pre class="programlisting">
CREATE FUNCTION sum_n_product_with_tab (x int)
RETURNS TABLE(sum int, product int) AS $$
    SELECT $1 + tab.y, $1 * tab.y FROM tab;
$$ LANGUAGE SQL;
</pre><p>

     It is not allowed to use explicit <code class="literal">OUT</code> or <code class="literal">INOUT</code>
     parameters with the <code class="literal">RETURNS TABLE</code> notation — you must
     put all the output columns in the <code class="literal">TABLE</code> list.
    </p></div><div class="sect2" id="XFUNC-SQL-POLYMORPHIC-FUNCTIONS"><div class="titlepage"><div><div><h3 class="title">38.5.11. Polymorphic <acronym class="acronym">SQL</acronym> Functions</h3></div></div></div><p>
     <acronym class="acronym">SQL</acronym> functions can be declared to accept and
     return the polymorphic types described in <a class="xref" href="extend-type-system.html#EXTEND-TYPES-POLYMORPHIC" title="38.2.5. Polymorphic Types">Section 38.2.5</a>.  Here is a polymorphic
     function <code class="function">make_array</code> that builds up an array
     from two arbitrary data type elements:
</p><pre class="screen">
CREATE FUNCTION make_array(anyelement, anyelement) RETURNS anyarray AS $$
    SELECT ARRAY[$1, $2];
$$ LANGUAGE SQL;

SELECT make_array(1, 2) AS intarray, make_array('a'::text, 'b') AS textarray;
 intarray | textarray
----------+-----------
 {1,2}    | {a,b}
(1 row)
</pre><p>
    </p><p>
     Notice the use of the typecast <code class="literal">'a'::text</code>
     to specify that the argument is of type <code class="type">text</code>. This is
     required if the argument is just a string literal, since otherwise
     it would be treated as type
     <code class="type">unknown</code>, and array of <code class="type">unknown</code> is not a valid
     type.
     Without the typecast, you will get errors like this:
</p><pre class="screen">
ERROR:  could not determine polymorphic type because input has type unknown
</pre><p>
    </p><p>
     With <code class="function">make_array</code> declared as above, you must
     provide two arguments that are of exactly the same data type; the
     system will not attempt to resolve any type differences.  Thus for
     example this does not work:
</p><pre class="screen">
SELECT make_array(1, 2.5) AS numericarray;
ERROR:  function make_array(integer, numeric) does not exist
</pre><p>
     An alternative approach is to use the <span class="quote"><span class="quote">common</span></span> family of
     polymorphic types, which allows the system to try to identify a
     suitable common type:
</p><pre class="screen">
CREATE FUNCTION make_array2(anycompatible, anycompatible)
RETURNS anycompatiblearray AS $$
    SELECT ARRAY[$1, $2];
$$ LANGUAGE SQL;

SELECT make_array2(1, 2.5) AS numericarray;
 numericarray
--------------
 {1,2.5}
(1 row)
</pre><p>
     Because the rules for common type resolution default to choosing
     type <code class="type">text</code> when all inputs are of unknown types, this
     also works:
</p><pre class="screen">
SELECT make_array2('a', 'b') AS textarray;
 textarray
-----------
 {a,b}
(1 row)
</pre><p>
    </p><p>
     It is permitted to have polymorphic arguments with a fixed
     return type, but the converse is not. For example:
</p><pre class="screen">
CREATE FUNCTION is_greater(anyelement, anyelement) RETURNS boolean AS $$
    SELECT $1 &gt; $2;
$$ LANGUAGE SQL;

SELECT is_greater(1, 2);
 is_greater
------------
 f
(1 row)

CREATE FUNCTION invalid_func() RETURNS anyelement AS $$
    SELECT 1;
$$ LANGUAGE SQL;
ERROR:  cannot determine result data type
DETAIL:  A result of type anyelement requires at least one input of type anyelement, anyarray, anynonarray, anyenum, or anyrange.
</pre><p>
    </p><p>
     Polymorphism can be used with functions that have output arguments.
     For example:
</p><pre class="screen">
CREATE FUNCTION dup (f1 anyelement, OUT f2 anyelement, OUT f3 anyarray)
AS 'select $1, array[$1,$1]' LANGUAGE SQL;

SELECT * FROM dup(22);
 f2 |   f3
----+---------
 22 | {22,22}
(1 row)
</pre><p>
    </p><p>
     Polymorphism can also be used with variadic functions.
     For example:
</p><pre class="screen">
CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$
    SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;

SELECT anyleast(10, -1, 5, 4);
 anyleast
----------
       -1
(1 row)

SELECT anyleast('abc'::text, 'def');
 anyleast
----------
 abc
(1 row)

CREATE FUNCTION concat_values(text, VARIADIC anyarray) RETURNS text AS $$
    SELECT array_to_string($2, $1);
$$ LANGUAGE SQL;

SELECT concat_values('|', 1, 4, 2);
 concat_values
---------------
 1|4|2
(1 row)
</pre><p>
    </p></div><div class="sect2" id="id-1.8.3.8.21"><div class="titlepage"><div><div><h3 class="title">38.5.12. <acronym class="acronym">SQL</acronym> Functions with Collations</h3></div></div></div><a id="id-1.8.3.8.21.2" class="indexterm"></a><p>
     When an SQL function has one or more parameters of collatable data types,
     a collation is identified for each function call depending on the
     collations assigned to the actual arguments, as described in <a class="xref" href="collation.html" title="24.2. Collation Support">Section 24.2</a>.  If a collation is successfully identified
     (i.e., there are no conflicts of implicit collations among the arguments)
     then all the collatable parameters are treated as having that collation
     implicitly.  This will affect the behavior of collation-sensitive
     operations within the function.  For example, using the
     <code class="function">anyleast</code> function described above, the result of
</p><pre class="programlisting">
SELECT anyleast('abc'::text, 'ABC');
</pre><p>
     will depend on the database's default collation.  In <code class="literal">C</code> locale
     the result will be <code class="literal">ABC</code>, but in many other locales it will
     be <code class="literal">abc</code>.  The collation to use can be forced by adding
     a <code class="literal">COLLATE</code> clause to any of the arguments, for example
</p><pre class="programlisting">
SELECT anyleast('abc'::text, 'ABC' COLLATE "C");
</pre><p>
     Alternatively, if you wish a function to operate with a particular
     collation regardless of what it is called with, insert
     <code class="literal">COLLATE</code> clauses as needed in the function definition.
     This version of <code class="function">anyleast</code> would always use <code class="literal">en_US</code>
     locale to compare strings:
</p><pre class="programlisting">
CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$
    SELECT min($1[i] COLLATE "en_US") FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;
</pre><p>
     But note that this will throw an error if applied to a non-collatable
     data type.
    </p><p>
     If no common collation can be identified among the actual arguments,
     then an SQL function treats its parameters as having their data types'
     default collation (which is usually the database's default collation,
     but could be different for parameters of domain types).
    </p><p>
     The behavior of collatable parameters can be thought of as a limited
     form of polymorphism, applicable only to textual data types.
    </p></div></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="xproc.html" title="38.4. User-Defined Procedures">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="extend.html" title="Chapter 38. Extending SQL">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="xfunc-overload.html" title="38.6. Function Overloading">Next</a></td></tr><tr><td width="40%" align="left" valign="top">38.4. User-Defined Procedures </td><td width="20%" align="center"><a accesskey="h" href="index.html" title="PostgreSQL 15.7 Documentation">Home</a></td><td width="40%" align="right" valign="top"> 38.6. Function Overloading</td></tr></table></div></body></html>