summaryrefslogtreecommitdiffstats
path: root/src/backend/executor/execGrouping.c
blob: 0cc54a3449e3e118c361b5c76c357d240e66b0cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
/*-------------------------------------------------------------------------
 *
 * execGrouping.c
 *	  executor utility routines for grouping, hashing, and aggregation
 *
 * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/executor/execGrouping.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/parallel.h"
#include "common/hashfn.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"

static int	TupleHashTableMatch(struct tuplehash_hash *tb, const MinimalTuple tuple1, const MinimalTuple tuple2);
static inline uint32 TupleHashTableHash_internal(struct tuplehash_hash *tb,
												 const MinimalTuple tuple);
static inline TupleHashEntry LookupTupleHashEntry_internal(TupleHashTable hashtable,
														   TupleTableSlot *slot,
														   bool *isnew, uint32 hash);

/*
 * Define parameters for tuple hash table code generation. The interface is
 * *also* declared in execnodes.h (to generate the types, which are externally
 * visible).
 */
#define SH_PREFIX tuplehash
#define SH_ELEMENT_TYPE TupleHashEntryData
#define SH_KEY_TYPE MinimalTuple
#define SH_KEY firstTuple
#define SH_HASH_KEY(tb, key) TupleHashTableHash_internal(tb, key)
#define SH_EQUAL(tb, a, b) TupleHashTableMatch(tb, a, b) == 0
#define SH_SCOPE extern
#define SH_STORE_HASH
#define SH_GET_HASH(tb, a) a->hash
#define SH_DEFINE
#include "lib/simplehash.h"


/*****************************************************************************
 *		Utility routines for grouping tuples together
 *****************************************************************************/

/*
 * execTuplesMatchPrepare
 *		Build expression that can be evaluated using ExecQual(), returning
 *		whether an ExprContext's inner/outer tuples are NOT DISTINCT
 */
ExprState *
execTuplesMatchPrepare(TupleDesc desc,
					   int numCols,
					   const AttrNumber *keyColIdx,
					   const Oid *eqOperators,
					   const Oid *collations,
					   PlanState *parent)
{
	Oid		   *eqFunctions = (Oid *) palloc(numCols * sizeof(Oid));
	int			i;
	ExprState  *expr;

	if (numCols == 0)
		return NULL;

	/* lookup equality functions */
	for (i = 0; i < numCols; i++)
		eqFunctions[i] = get_opcode(eqOperators[i]);

	/* build actual expression */
	expr = ExecBuildGroupingEqual(desc, desc, NULL, NULL,
								  numCols, keyColIdx, eqFunctions, collations,
								  parent);

	return expr;
}

/*
 * execTuplesHashPrepare
 *		Look up the equality and hashing functions needed for a TupleHashTable.
 *
 * This is similar to execTuplesMatchPrepare, but we also need to find the
 * hash functions associated with the equality operators.  *eqFunctions and
 * *hashFunctions receive the palloc'd result arrays.
 *
 * Note: we expect that the given operators are not cross-type comparisons.
 */
void
execTuplesHashPrepare(int numCols,
					  const Oid *eqOperators,
					  Oid **eqFuncOids,
					  FmgrInfo **hashFunctions)
{
	int			i;

	*eqFuncOids = (Oid *) palloc(numCols * sizeof(Oid));
	*hashFunctions = (FmgrInfo *) palloc(numCols * sizeof(FmgrInfo));

	for (i = 0; i < numCols; i++)
	{
		Oid			eq_opr = eqOperators[i];
		Oid			eq_function;
		Oid			left_hash_function;
		Oid			right_hash_function;

		eq_function = get_opcode(eq_opr);
		if (!get_op_hash_functions(eq_opr,
								   &left_hash_function, &right_hash_function))
			elog(ERROR, "could not find hash function for hash operator %u",
				 eq_opr);
		/* We're not supporting cross-type cases here */
		Assert(left_hash_function == right_hash_function);
		(*eqFuncOids)[i] = eq_function;
		fmgr_info(right_hash_function, &(*hashFunctions)[i]);
	}
}


/*****************************************************************************
 *		Utility routines for all-in-memory hash tables
 *
 * These routines build hash tables for grouping tuples together (eg, for
 * hash aggregation).  There is one entry for each not-distinct set of tuples
 * presented.
 *****************************************************************************/

/*
 * Construct an empty TupleHashTable
 *
 *	numCols, keyColIdx: identify the tuple fields to use as lookup key
 *	eqfunctions: equality comparison functions to use
 *	hashfunctions: datatype-specific hashing functions to use
 *	nbuckets: initial estimate of hashtable size
 *	additionalsize: size of data stored in ->additional
 *	metacxt: memory context for long-lived allocation, but not per-entry data
 *	tablecxt: memory context in which to store table entries
 *	tempcxt: short-lived context for evaluation hash and comparison functions
 *
 * The function arrays may be made with execTuplesHashPrepare().  Note they
 * are not cross-type functions, but expect to see the table datatype(s)
 * on both sides.
 *
 * Note that keyColIdx, eqfunctions, and hashfunctions must be allocated in
 * storage that will live as long as the hashtable does.
 */
TupleHashTable
BuildTupleHashTableExt(PlanState *parent,
					   TupleDesc inputDesc,
					   int numCols, AttrNumber *keyColIdx,
					   const Oid *eqfuncoids,
					   FmgrInfo *hashfunctions,
					   Oid *collations,
					   long nbuckets, Size additionalsize,
					   MemoryContext metacxt,
					   MemoryContext tablecxt,
					   MemoryContext tempcxt,
					   bool use_variable_hash_iv)
{
	TupleHashTable hashtable;
	Size		entrysize = sizeof(TupleHashEntryData) + additionalsize;
	Size		hash_mem_limit;
	MemoryContext oldcontext;
	bool		allow_jit;

	Assert(nbuckets > 0);

	/* Limit initial table size request to not more than hash_mem */
	hash_mem_limit = get_hash_memory_limit() / entrysize;
	if (nbuckets > hash_mem_limit)
		nbuckets = hash_mem_limit;

	oldcontext = MemoryContextSwitchTo(metacxt);

	hashtable = (TupleHashTable) palloc(sizeof(TupleHashTableData));

	hashtable->numCols = numCols;
	hashtable->keyColIdx = keyColIdx;
	hashtable->tab_hash_funcs = hashfunctions;
	hashtable->tab_collations = collations;
	hashtable->tablecxt = tablecxt;
	hashtable->tempcxt = tempcxt;
	hashtable->entrysize = entrysize;
	hashtable->tableslot = NULL;	/* will be made on first lookup */
	hashtable->inputslot = NULL;
	hashtable->in_hash_funcs = NULL;
	hashtable->cur_eq_func = NULL;

	/*
	 * If parallelism is in use, even if the leader backend is performing the
	 * scan itself, we don't want to create the hashtable exactly the same way
	 * in all workers. As hashtables are iterated over in keyspace-order,
	 * doing so in all processes in the same way is likely to lead to
	 * "unbalanced" hashtables when the table size initially is
	 * underestimated.
	 */
	if (use_variable_hash_iv)
		hashtable->hash_iv = murmurhash32(ParallelWorkerNumber);
	else
		hashtable->hash_iv = 0;

	hashtable->hashtab = tuplehash_create(metacxt, nbuckets, hashtable);

	/*
	 * We copy the input tuple descriptor just for safety --- we assume all
	 * input tuples will have equivalent descriptors.
	 */
	hashtable->tableslot = MakeSingleTupleTableSlot(CreateTupleDescCopy(inputDesc),
													&TTSOpsMinimalTuple);

	/*
	 * If the old reset interface is used (i.e. BuildTupleHashTable, rather
	 * than BuildTupleHashTableExt), allowing JIT would lead to the generated
	 * functions to a) live longer than the query b) be re-generated each time
	 * the table is being reset. Therefore prevent JIT from being used in that
	 * case, by not providing a parent node (which prevents accessing the
	 * JitContext in the EState).
	 */
	allow_jit = metacxt != tablecxt;

	/* build comparator for all columns */
	/* XXX: should we support non-minimal tuples for the inputslot? */
	hashtable->tab_eq_func = ExecBuildGroupingEqual(inputDesc, inputDesc,
													&TTSOpsMinimalTuple, &TTSOpsMinimalTuple,
													numCols,
													keyColIdx, eqfuncoids, collations,
													allow_jit ? parent : NULL);

	/*
	 * While not pretty, it's ok to not shut down this context, but instead
	 * rely on the containing memory context being reset, as
	 * ExecBuildGroupingEqual() only builds a very simple expression calling
	 * functions (i.e. nothing that'd employ RegisterExprContextCallback()).
	 */
	hashtable->exprcontext = CreateStandaloneExprContext();

	MemoryContextSwitchTo(oldcontext);

	return hashtable;
}

/*
 * BuildTupleHashTable is a backwards-compatibility wrapper for
 * BuildTupleHashTableExt(), that allocates the hashtable's metadata in
 * tablecxt. Note that hashtables created this way cannot be reset leak-free
 * with ResetTupleHashTable().
 */
TupleHashTable
BuildTupleHashTable(PlanState *parent,
					TupleDesc inputDesc,
					int numCols, AttrNumber *keyColIdx,
					const Oid *eqfuncoids,
					FmgrInfo *hashfunctions,
					Oid *collations,
					long nbuckets, Size additionalsize,
					MemoryContext tablecxt,
					MemoryContext tempcxt,
					bool use_variable_hash_iv)
{
	return BuildTupleHashTableExt(parent,
								  inputDesc,
								  numCols, keyColIdx,
								  eqfuncoids,
								  hashfunctions,
								  collations,
								  nbuckets, additionalsize,
								  tablecxt,
								  tablecxt,
								  tempcxt,
								  use_variable_hash_iv);
}

/*
 * Reset contents of the hashtable to be empty, preserving all the non-content
 * state. Note that the tablecxt passed to BuildTupleHashTableExt() should
 * also be reset, otherwise there will be leaks.
 */
void
ResetTupleHashTable(TupleHashTable hashtable)
{
	tuplehash_reset(hashtable->hashtab);
}

/*
 * Find or create a hashtable entry for the tuple group containing the
 * given tuple.  The tuple must be the same type as the hashtable entries.
 *
 * If isnew is NULL, we do not create new entries; we return NULL if no
 * match is found.
 *
 * If hash is not NULL, we set it to the calculated hash value. This allows
 * callers access to the hash value even if no entry is returned.
 *
 * If isnew isn't NULL, then a new entry is created if no existing entry
 * matches.  On return, *isnew is true if the entry is newly created,
 * false if it existed already.  ->additional_data in the new entry has
 * been zeroed.
 */
TupleHashEntry
LookupTupleHashEntry(TupleHashTable hashtable, TupleTableSlot *slot,
					 bool *isnew, uint32 *hash)
{
	TupleHashEntry entry;
	MemoryContext oldContext;
	uint32		local_hash;

	/* Need to run the hash functions in short-lived context */
	oldContext = MemoryContextSwitchTo(hashtable->tempcxt);

	/* set up data needed by hash and match functions */
	hashtable->inputslot = slot;
	hashtable->in_hash_funcs = hashtable->tab_hash_funcs;
	hashtable->cur_eq_func = hashtable->tab_eq_func;

	local_hash = TupleHashTableHash_internal(hashtable->hashtab, NULL);
	entry = LookupTupleHashEntry_internal(hashtable, slot, isnew, local_hash);

	if (hash != NULL)
		*hash = local_hash;

	Assert(entry == NULL || entry->hash == local_hash);

	MemoryContextSwitchTo(oldContext);

	return entry;
}

/*
 * Compute the hash value for a tuple
 */
uint32
TupleHashTableHash(TupleHashTable hashtable, TupleTableSlot *slot)
{
	MemoryContext oldContext;
	uint32		hash;

	hashtable->inputslot = slot;
	hashtable->in_hash_funcs = hashtable->tab_hash_funcs;

	/* Need to run the hash functions in short-lived context */
	oldContext = MemoryContextSwitchTo(hashtable->tempcxt);

	hash = TupleHashTableHash_internal(hashtable->hashtab, NULL);

	MemoryContextSwitchTo(oldContext);

	return hash;
}

/*
 * A variant of LookupTupleHashEntry for callers that have already computed
 * the hash value.
 */
TupleHashEntry
LookupTupleHashEntryHash(TupleHashTable hashtable, TupleTableSlot *slot,
						 bool *isnew, uint32 hash)
{
	TupleHashEntry entry;
	MemoryContext oldContext;

	/* Need to run the hash functions in short-lived context */
	oldContext = MemoryContextSwitchTo(hashtable->tempcxt);

	/* set up data needed by hash and match functions */
	hashtable->inputslot = slot;
	hashtable->in_hash_funcs = hashtable->tab_hash_funcs;
	hashtable->cur_eq_func = hashtable->tab_eq_func;

	entry = LookupTupleHashEntry_internal(hashtable, slot, isnew, hash);
	Assert(entry == NULL || entry->hash == hash);

	MemoryContextSwitchTo(oldContext);

	return entry;
}

/*
 * Search for a hashtable entry matching the given tuple.  No entry is
 * created if there's not a match.  This is similar to the non-creating
 * case of LookupTupleHashEntry, except that it supports cross-type
 * comparisons, in which the given tuple is not of the same type as the
 * table entries.  The caller must provide the hash functions to use for
 * the input tuple, as well as the equality functions, since these may be
 * different from the table's internal functions.
 */
TupleHashEntry
FindTupleHashEntry(TupleHashTable hashtable, TupleTableSlot *slot,
				   ExprState *eqcomp,
				   FmgrInfo *hashfunctions)
{
	TupleHashEntry entry;
	MemoryContext oldContext;
	MinimalTuple key;

	/* Need to run the hash functions in short-lived context */
	oldContext = MemoryContextSwitchTo(hashtable->tempcxt);

	/* Set up data needed by hash and match functions */
	hashtable->inputslot = slot;
	hashtable->in_hash_funcs = hashfunctions;
	hashtable->cur_eq_func = eqcomp;

	/* Search the hash table */
	key = NULL;					/* flag to reference inputslot */
	entry = tuplehash_lookup(hashtable->hashtab, key);
	MemoryContextSwitchTo(oldContext);

	return entry;
}

/*
 * If tuple is NULL, use the input slot instead. This convention avoids the
 * need to materialize virtual input tuples unless they actually need to get
 * copied into the table.
 *
 * Also, the caller must select an appropriate memory context for running
 * the hash functions. (dynahash.c doesn't change CurrentMemoryContext.)
 */
static uint32
TupleHashTableHash_internal(struct tuplehash_hash *tb,
							const MinimalTuple tuple)
{
	TupleHashTable hashtable = (TupleHashTable) tb->private_data;
	int			numCols = hashtable->numCols;
	AttrNumber *keyColIdx = hashtable->keyColIdx;
	uint32		hashkey = hashtable->hash_iv;
	TupleTableSlot *slot;
	FmgrInfo   *hashfunctions;
	int			i;

	if (tuple == NULL)
	{
		/* Process the current input tuple for the table */
		slot = hashtable->inputslot;
		hashfunctions = hashtable->in_hash_funcs;
	}
	else
	{
		/*
		 * Process a tuple already stored in the table.
		 *
		 * (this case never actually occurs due to the way simplehash.h is
		 * used, as the hash-value is stored in the entries)
		 */
		slot = hashtable->tableslot;
		ExecStoreMinimalTuple(tuple, slot, false);
		hashfunctions = hashtable->tab_hash_funcs;
	}

	for (i = 0; i < numCols; i++)
	{
		AttrNumber	att = keyColIdx[i];
		Datum		attr;
		bool		isNull;

		/* combine successive hashkeys by rotating */
		hashkey = pg_rotate_left32(hashkey, 1);

		attr = slot_getattr(slot, att, &isNull);

		if (!isNull)			/* treat nulls as having hash key 0 */
		{
			uint32		hkey;

			hkey = DatumGetUInt32(FunctionCall1Coll(&hashfunctions[i],
													hashtable->tab_collations[i],
													attr));
			hashkey ^= hkey;
		}
	}

	/*
	 * The way hashes are combined above, among each other and with the IV,
	 * doesn't lead to good bit perturbation. As the IV's goal is to lead to
	 * achieve that, perform a round of hashing of the combined hash -
	 * resulting in near perfect perturbation.
	 */
	return murmurhash32(hashkey);
}

/*
 * Does the work of LookupTupleHashEntry and LookupTupleHashEntryHash. Useful
 * so that we can avoid switching the memory context multiple times for
 * LookupTupleHashEntry.
 *
 * NB: This function may or may not change the memory context. Caller is
 * expected to change it back.
 */
static inline TupleHashEntry
LookupTupleHashEntry_internal(TupleHashTable hashtable, TupleTableSlot *slot,
							  bool *isnew, uint32 hash)
{
	TupleHashEntryData *entry;
	bool		found;
	MinimalTuple key;

	key = NULL;					/* flag to reference inputslot */

	if (isnew)
	{
		entry = tuplehash_insert_hash(hashtable->hashtab, key, hash, &found);

		if (found)
		{
			/* found pre-existing entry */
			*isnew = false;
		}
		else
		{
			/* created new entry */
			*isnew = true;
			/* zero caller data */
			entry->additional = NULL;
			MemoryContextSwitchTo(hashtable->tablecxt);
			/* Copy the first tuple into the table context */
			entry->firstTuple = ExecCopySlotMinimalTuple(slot);
		}
	}
	else
	{
		entry = tuplehash_lookup_hash(hashtable->hashtab, key, hash);
	}

	return entry;
}

/*
 * See whether two tuples (presumably of the same hash value) match
 */
static int
TupleHashTableMatch(struct tuplehash_hash *tb, const MinimalTuple tuple1, const MinimalTuple tuple2)
{
	TupleTableSlot *slot1;
	TupleTableSlot *slot2;
	TupleHashTable hashtable = (TupleHashTable) tb->private_data;
	ExprContext *econtext = hashtable->exprcontext;

	/*
	 * We assume that simplehash.h will only ever call us with the first
	 * argument being an actual table entry, and the second argument being
	 * LookupTupleHashEntry's dummy TupleHashEntryData.  The other direction
	 * could be supported too, but is not currently required.
	 */
	Assert(tuple1 != NULL);
	slot1 = hashtable->tableslot;
	ExecStoreMinimalTuple(tuple1, slot1, false);
	Assert(tuple2 == NULL);
	slot2 = hashtable->inputslot;

	/* For crosstype comparisons, the inputslot must be first */
	econtext->ecxt_innertuple = slot2;
	econtext->ecxt_outertuple = slot1;
	return !ExecQualAndReset(hashtable->cur_eq_func, econtext);
}