summaryrefslogtreecommitdiffstats
path: root/src/backend/executor/nodeHash.c
blob: 34dd9a28d95ee204cdc1956b1029e009c5936800 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
/*-------------------------------------------------------------------------
 *
 * nodeHash.c
 *	  Routines to hash relations for hashjoin
 *
 * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/executor/nodeHash.c
 *
 * See note on parallelism in nodeHashjoin.c.
 *
 *-------------------------------------------------------------------------
 */
/*
 * INTERFACE ROUTINES
 *		MultiExecHash	- generate an in-memory hash table of the relation
 *		ExecInitHash	- initialize node and subnodes
 *		ExecEndHash		- shutdown node and subnodes
 */

#include "postgres.h"

#include <math.h>
#include <limits.h>

#include "access/htup_details.h"
#include "access/parallel.h"
#include "catalog/pg_statistic.h"
#include "commands/tablespace.h"
#include "executor/execdebug.h"
#include "executor/hashjoin.h"
#include "executor/nodeHash.h"
#include "executor/nodeHashjoin.h"
#include "miscadmin.h"
#include "pgstat.h"
#include "port/atomics.h"
#include "port/pg_bitutils.h"
#include "utils/dynahash.h"
#include "utils/guc.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/syscache.h"

static void ExecHashIncreaseNumBatches(HashJoinTable hashtable);
static void ExecHashIncreaseNumBuckets(HashJoinTable hashtable);
static void ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable);
static void ExecParallelHashIncreaseNumBuckets(HashJoinTable hashtable);
static void ExecHashBuildSkewHash(HashJoinTable hashtable, Hash *node,
								  int mcvsToUse);
static void ExecHashSkewTableInsert(HashJoinTable hashtable,
									TupleTableSlot *slot,
									uint32 hashvalue,
									int bucketNumber);
static void ExecHashRemoveNextSkewBucket(HashJoinTable hashtable);

static void *dense_alloc(HashJoinTable hashtable, Size size);
static HashJoinTuple ExecParallelHashTupleAlloc(HashJoinTable hashtable,
												size_t size,
												dsa_pointer *shared);
static void MultiExecPrivateHash(HashState *node);
static void MultiExecParallelHash(HashState *node);
static inline HashJoinTuple ExecParallelHashFirstTuple(HashJoinTable table,
													   int bucketno);
static inline HashJoinTuple ExecParallelHashNextTuple(HashJoinTable table,
													  HashJoinTuple tuple);
static inline void ExecParallelHashPushTuple(dsa_pointer_atomic *head,
											 HashJoinTuple tuple,
											 dsa_pointer tuple_shared);
static void ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch);
static void ExecParallelHashEnsureBatchAccessors(HashJoinTable hashtable);
static void ExecParallelHashRepartitionFirst(HashJoinTable hashtable);
static void ExecParallelHashRepartitionRest(HashJoinTable hashtable);
static HashMemoryChunk ExecParallelHashPopChunkQueue(HashJoinTable table,
													 dsa_pointer *shared);
static bool ExecParallelHashTuplePrealloc(HashJoinTable hashtable,
										  int batchno,
										  size_t size);
static void ExecParallelHashMergeCounters(HashJoinTable hashtable);
static void ExecParallelHashCloseBatchAccessors(HashJoinTable hashtable);


/* ----------------------------------------------------------------
 *		ExecHash
 *
 *		stub for pro forma compliance
 * ----------------------------------------------------------------
 */
static TupleTableSlot *
ExecHash(PlanState *pstate)
{
	elog(ERROR, "Hash node does not support ExecProcNode call convention");
	return NULL;
}

/* ----------------------------------------------------------------
 *		MultiExecHash
 *
 *		build hash table for hashjoin, doing partitioning if more
 *		than one batch is required.
 * ----------------------------------------------------------------
 */
Node *
MultiExecHash(HashState *node)
{
	/* must provide our own instrumentation support */
	if (node->ps.instrument)
		InstrStartNode(node->ps.instrument);

	if (node->parallel_state != NULL)
		MultiExecParallelHash(node);
	else
		MultiExecPrivateHash(node);

	/* must provide our own instrumentation support */
	if (node->ps.instrument)
		InstrStopNode(node->ps.instrument, node->hashtable->partialTuples);

	/*
	 * We do not return the hash table directly because it's not a subtype of
	 * Node, and so would violate the MultiExecProcNode API.  Instead, our
	 * parent Hashjoin node is expected to know how to fish it out of our node
	 * state.  Ugly but not really worth cleaning up, since Hashjoin knows
	 * quite a bit more about Hash besides that.
	 */
	return NULL;
}

/* ----------------------------------------------------------------
 *		MultiExecPrivateHash
 *
 *		parallel-oblivious version, building a backend-private
 *		hash table and (if necessary) batch files.
 * ----------------------------------------------------------------
 */
static void
MultiExecPrivateHash(HashState *node)
{
	PlanState  *outerNode;
	List	   *hashkeys;
	HashJoinTable hashtable;
	TupleTableSlot *slot;
	ExprContext *econtext;
	uint32		hashvalue;

	/*
	 * get state info from node
	 */
	outerNode = outerPlanState(node);
	hashtable = node->hashtable;

	/*
	 * set expression context
	 */
	hashkeys = node->hashkeys;
	econtext = node->ps.ps_ExprContext;

	/*
	 * Get all tuples from the node below the Hash node and insert into the
	 * hash table (or temp files).
	 */
	for (;;)
	{
		slot = ExecProcNode(outerNode);
		if (TupIsNull(slot))
			break;
		/* We have to compute the hash value */
		econtext->ecxt_outertuple = slot;
		if (ExecHashGetHashValue(hashtable, econtext, hashkeys,
								 false, hashtable->keepNulls,
								 &hashvalue))
		{
			int			bucketNumber;

			bucketNumber = ExecHashGetSkewBucket(hashtable, hashvalue);
			if (bucketNumber != INVALID_SKEW_BUCKET_NO)
			{
				/* It's a skew tuple, so put it into that hash table */
				ExecHashSkewTableInsert(hashtable, slot, hashvalue,
										bucketNumber);
				hashtable->skewTuples += 1;
			}
			else
			{
				/* Not subject to skew optimization, so insert normally */
				ExecHashTableInsert(hashtable, slot, hashvalue);
			}
			hashtable->totalTuples += 1;
		}
	}

	/* resize the hash table if needed (NTUP_PER_BUCKET exceeded) */
	if (hashtable->nbuckets != hashtable->nbuckets_optimal)
		ExecHashIncreaseNumBuckets(hashtable);

	/* Account for the buckets in spaceUsed (reported in EXPLAIN ANALYZE) */
	hashtable->spaceUsed += hashtable->nbuckets * sizeof(HashJoinTuple);
	if (hashtable->spaceUsed > hashtable->spacePeak)
		hashtable->spacePeak = hashtable->spaceUsed;

	hashtable->partialTuples = hashtable->totalTuples;
}

/* ----------------------------------------------------------------
 *		MultiExecParallelHash
 *
 *		parallel-aware version, building a shared hash table and
 *		(if necessary) batch files using the combined effort of
 *		a set of co-operating backends.
 * ----------------------------------------------------------------
 */
static void
MultiExecParallelHash(HashState *node)
{
	ParallelHashJoinState *pstate;
	PlanState  *outerNode;
	List	   *hashkeys;
	HashJoinTable hashtable;
	TupleTableSlot *slot;
	ExprContext *econtext;
	uint32		hashvalue;
	Barrier    *build_barrier;
	int			i;

	/*
	 * get state info from node
	 */
	outerNode = outerPlanState(node);
	hashtable = node->hashtable;

	/*
	 * set expression context
	 */
	hashkeys = node->hashkeys;
	econtext = node->ps.ps_ExprContext;

	/*
	 * Synchronize the parallel hash table build.  At this stage we know that
	 * the shared hash table has been or is being set up by
	 * ExecHashTableCreate(), but we don't know if our peers have returned
	 * from there or are here in MultiExecParallelHash(), and if so how far
	 * through they are.  To find out, we check the build_barrier phase then
	 * and jump to the right step in the build algorithm.
	 */
	pstate = hashtable->parallel_state;
	build_barrier = &pstate->build_barrier;
	Assert(BarrierPhase(build_barrier) >= PHJ_BUILD_ALLOCATING);
	switch (BarrierPhase(build_barrier))
	{
		case PHJ_BUILD_ALLOCATING:

			/*
			 * Either I just allocated the initial hash table in
			 * ExecHashTableCreate(), or someone else is doing that.  Either
			 * way, wait for everyone to arrive here so we can proceed.
			 */
			BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ALLOCATE);
			/* Fall through. */

		case PHJ_BUILD_HASHING_INNER:

			/*
			 * It's time to begin hashing, or if we just arrived here then
			 * hashing is already underway, so join in that effort.  While
			 * hashing we have to be prepared to help increase the number of
			 * batches or buckets at any time, and if we arrived here when
			 * that was already underway we'll have to help complete that work
			 * immediately so that it's safe to access batches and buckets
			 * below.
			 */
			if (PHJ_GROW_BATCHES_PHASE(BarrierAttach(&pstate->grow_batches_barrier)) !=
				PHJ_GROW_BATCHES_ELECTING)
				ExecParallelHashIncreaseNumBatches(hashtable);
			if (PHJ_GROW_BUCKETS_PHASE(BarrierAttach(&pstate->grow_buckets_barrier)) !=
				PHJ_GROW_BUCKETS_ELECTING)
				ExecParallelHashIncreaseNumBuckets(hashtable);
			ExecParallelHashEnsureBatchAccessors(hashtable);
			ExecParallelHashTableSetCurrentBatch(hashtable, 0);
			for (;;)
			{
				slot = ExecProcNode(outerNode);
				if (TupIsNull(slot))
					break;
				econtext->ecxt_outertuple = slot;
				if (ExecHashGetHashValue(hashtable, econtext, hashkeys,
										 false, hashtable->keepNulls,
										 &hashvalue))
					ExecParallelHashTableInsert(hashtable, slot, hashvalue);
				hashtable->partialTuples++;
			}

			/*
			 * Make sure that any tuples we wrote to disk are visible to
			 * others before anyone tries to load them.
			 */
			for (i = 0; i < hashtable->nbatch; ++i)
				sts_end_write(hashtable->batches[i].inner_tuples);

			/*
			 * Update shared counters.  We need an accurate total tuple count
			 * to control the empty table optimization.
			 */
			ExecParallelHashMergeCounters(hashtable);

			BarrierDetach(&pstate->grow_buckets_barrier);
			BarrierDetach(&pstate->grow_batches_barrier);

			/*
			 * Wait for everyone to finish building and flushing files and
			 * counters.
			 */
			if (BarrierArriveAndWait(build_barrier,
									 WAIT_EVENT_HASH_BUILD_HASH_INNER))
			{
				/*
				 * Elect one backend to disable any further growth.  Batches
				 * are now fixed.  While building them we made sure they'd fit
				 * in our memory budget when we load them back in later (or we
				 * tried to do that and gave up because we detected extreme
				 * skew).
				 */
				pstate->growth = PHJ_GROWTH_DISABLED;
			}
	}

	/*
	 * We're not yet attached to a batch.  We all agree on the dimensions and
	 * number of inner tuples (for the empty table optimization).
	 */
	hashtable->curbatch = -1;
	hashtable->nbuckets = pstate->nbuckets;
	hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
	hashtable->totalTuples = pstate->total_tuples;

	/*
	 * Unless we're completely done and the batch state has been freed, make
	 * sure we have accessors.
	 */
	if (BarrierPhase(build_barrier) < PHJ_BUILD_DONE)
		ExecParallelHashEnsureBatchAccessors(hashtable);

	/*
	 * The next synchronization point is in ExecHashJoin's HJ_BUILD_HASHTABLE
	 * case, which will bring the build phase to PHJ_BUILD_RUNNING (if it
	 * isn't there already).
	 */
	Assert(BarrierPhase(build_barrier) == PHJ_BUILD_HASHING_OUTER ||
		   BarrierPhase(build_barrier) == PHJ_BUILD_RUNNING ||
		   BarrierPhase(build_barrier) == PHJ_BUILD_DONE);
}

/* ----------------------------------------------------------------
 *		ExecInitHash
 *
 *		Init routine for Hash node
 * ----------------------------------------------------------------
 */
HashState *
ExecInitHash(Hash *node, EState *estate, int eflags)
{
	HashState  *hashstate;

	/* check for unsupported flags */
	Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));

	/*
	 * create state structure
	 */
	hashstate = makeNode(HashState);
	hashstate->ps.plan = (Plan *) node;
	hashstate->ps.state = estate;
	hashstate->ps.ExecProcNode = ExecHash;
	hashstate->hashtable = NULL;
	hashstate->hashkeys = NIL;	/* will be set by parent HashJoin */

	/*
	 * Miscellaneous initialization
	 *
	 * create expression context for node
	 */
	ExecAssignExprContext(estate, &hashstate->ps);

	/*
	 * initialize child nodes
	 */
	outerPlanState(hashstate) = ExecInitNode(outerPlan(node), estate, eflags);

	/*
	 * initialize our result slot and type. No need to build projection
	 * because this node doesn't do projections.
	 */
	ExecInitResultTupleSlotTL(&hashstate->ps, &TTSOpsMinimalTuple);
	hashstate->ps.ps_ProjInfo = NULL;

	/*
	 * initialize child expressions
	 */
	Assert(node->plan.qual == NIL);
	hashstate->hashkeys =
		ExecInitExprList(node->hashkeys, (PlanState *) hashstate);

	return hashstate;
}

/* ---------------------------------------------------------------
 *		ExecEndHash
 *
 *		clean up routine for Hash node
 * ----------------------------------------------------------------
 */
void
ExecEndHash(HashState *node)
{
	PlanState  *outerPlan;

	/*
	 * free exprcontext
	 */
	ExecFreeExprContext(&node->ps);

	/*
	 * shut down the subplan
	 */
	outerPlan = outerPlanState(node);
	ExecEndNode(outerPlan);
}


/* ----------------------------------------------------------------
 *		ExecHashTableCreate
 *
 *		create an empty hashtable data structure for hashjoin.
 * ----------------------------------------------------------------
 */
HashJoinTable
ExecHashTableCreate(HashState *state, List *hashOperators, List *hashCollations, bool keepNulls)
{
	Hash	   *node;
	HashJoinTable hashtable;
	Plan	   *outerNode;
	size_t		space_allowed;
	int			nbuckets;
	int			nbatch;
	double		rows;
	int			num_skew_mcvs;
	int			log2_nbuckets;
	int			nkeys;
	int			i;
	ListCell   *ho;
	ListCell   *hc;
	MemoryContext oldcxt;

	/*
	 * Get information about the size of the relation to be hashed (it's the
	 * "outer" subtree of this node, but the inner relation of the hashjoin).
	 * Compute the appropriate size of the hash table.
	 */
	node = (Hash *) state->ps.plan;
	outerNode = outerPlan(node);

	/*
	 * If this is shared hash table with a partial plan, then we can't use
	 * outerNode->plan_rows to estimate its size.  We need an estimate of the
	 * total number of rows across all copies of the partial plan.
	 */
	rows = node->plan.parallel_aware ? node->rows_total : outerNode->plan_rows;

	ExecChooseHashTableSize(rows, outerNode->plan_width,
							OidIsValid(node->skewTable),
							state->parallel_state != NULL,
							state->parallel_state != NULL ?
							state->parallel_state->nparticipants - 1 : 0,
							&space_allowed,
							&nbuckets, &nbatch, &num_skew_mcvs);

	/* nbuckets must be a power of 2 */
	log2_nbuckets = my_log2(nbuckets);
	Assert(nbuckets == (1 << log2_nbuckets));

	/*
	 * Initialize the hash table control block.
	 *
	 * The hashtable control block is just palloc'd from the executor's
	 * per-query memory context.  Everything else should be kept inside the
	 * subsidiary hashCxt or batchCxt.
	 */
	hashtable = (HashJoinTable) palloc(sizeof(HashJoinTableData));
	hashtable->nbuckets = nbuckets;
	hashtable->nbuckets_original = nbuckets;
	hashtable->nbuckets_optimal = nbuckets;
	hashtable->log2_nbuckets = log2_nbuckets;
	hashtable->log2_nbuckets_optimal = log2_nbuckets;
	hashtable->buckets.unshared = NULL;
	hashtable->keepNulls = keepNulls;
	hashtable->skewEnabled = false;
	hashtable->skewBucket = NULL;
	hashtable->skewBucketLen = 0;
	hashtable->nSkewBuckets = 0;
	hashtable->skewBucketNums = NULL;
	hashtable->nbatch = nbatch;
	hashtable->curbatch = 0;
	hashtable->nbatch_original = nbatch;
	hashtable->nbatch_outstart = nbatch;
	hashtable->growEnabled = true;
	hashtable->totalTuples = 0;
	hashtable->partialTuples = 0;
	hashtable->skewTuples = 0;
	hashtable->innerBatchFile = NULL;
	hashtable->outerBatchFile = NULL;
	hashtable->spaceUsed = 0;
	hashtable->spacePeak = 0;
	hashtable->spaceAllowed = space_allowed;
	hashtable->spaceUsedSkew = 0;
	hashtable->spaceAllowedSkew =
		hashtable->spaceAllowed * SKEW_HASH_MEM_PERCENT / 100;
	hashtable->chunks = NULL;
	hashtable->current_chunk = NULL;
	hashtable->parallel_state = state->parallel_state;
	hashtable->area = state->ps.state->es_query_dsa;
	hashtable->batches = NULL;

#ifdef HJDEBUG
	printf("Hashjoin %p: initial nbatch = %d, nbuckets = %d\n",
		   hashtable, nbatch, nbuckets);
#endif

	/*
	 * Create temporary memory contexts in which to keep the hashtable working
	 * storage.  See notes in executor/hashjoin.h.
	 */
	hashtable->hashCxt = AllocSetContextCreate(CurrentMemoryContext,
											   "HashTableContext",
											   ALLOCSET_DEFAULT_SIZES);

	hashtable->batchCxt = AllocSetContextCreate(hashtable->hashCxt,
												"HashBatchContext",
												ALLOCSET_DEFAULT_SIZES);

	/* Allocate data that will live for the life of the hashjoin */

	oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);

	/*
	 * Get info about the hash functions to be used for each hash key. Also
	 * remember whether the join operators are strict.
	 */
	nkeys = list_length(hashOperators);
	hashtable->outer_hashfunctions =
		(FmgrInfo *) palloc(nkeys * sizeof(FmgrInfo));
	hashtable->inner_hashfunctions =
		(FmgrInfo *) palloc(nkeys * sizeof(FmgrInfo));
	hashtable->hashStrict = (bool *) palloc(nkeys * sizeof(bool));
	hashtable->collations = (Oid *) palloc(nkeys * sizeof(Oid));
	i = 0;
	forboth(ho, hashOperators, hc, hashCollations)
	{
		Oid			hashop = lfirst_oid(ho);
		Oid			left_hashfn;
		Oid			right_hashfn;

		if (!get_op_hash_functions(hashop, &left_hashfn, &right_hashfn))
			elog(ERROR, "could not find hash function for hash operator %u",
				 hashop);
		fmgr_info(left_hashfn, &hashtable->outer_hashfunctions[i]);
		fmgr_info(right_hashfn, &hashtable->inner_hashfunctions[i]);
		hashtable->hashStrict[i] = op_strict(hashop);
		hashtable->collations[i] = lfirst_oid(hc);
		i++;
	}

	if (nbatch > 1 && hashtable->parallel_state == NULL)
	{
		/*
		 * allocate and initialize the file arrays in hashCxt (not needed for
		 * parallel case which uses shared tuplestores instead of raw files)
		 */
		hashtable->innerBatchFile = (BufFile **)
			palloc0(nbatch * sizeof(BufFile *));
		hashtable->outerBatchFile = (BufFile **)
			palloc0(nbatch * sizeof(BufFile *));
		/* The files will not be opened until needed... */
		/* ... but make sure we have temp tablespaces established for them */
		PrepareTempTablespaces();
	}

	MemoryContextSwitchTo(oldcxt);

	if (hashtable->parallel_state)
	{
		ParallelHashJoinState *pstate = hashtable->parallel_state;
		Barrier    *build_barrier;

		/*
		 * Attach to the build barrier.  The corresponding detach operation is
		 * in ExecHashTableDetach.  Note that we won't attach to the
		 * batch_barrier for batch 0 yet.  We'll attach later and start it out
		 * in PHJ_BATCH_PROBING phase, because batch 0 is allocated up front
		 * and then loaded while hashing (the standard hybrid hash join
		 * algorithm), and we'll coordinate that using build_barrier.
		 */
		build_barrier = &pstate->build_barrier;
		BarrierAttach(build_barrier);

		/*
		 * So far we have no idea whether there are any other participants,
		 * and if so, what phase they are working on.  The only thing we care
		 * about at this point is whether someone has already created the
		 * SharedHashJoinBatch objects and the hash table for batch 0.  One
		 * backend will be elected to do that now if necessary.
		 */
		if (BarrierPhase(build_barrier) == PHJ_BUILD_ELECTING &&
			BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ELECT))
		{
			pstate->nbatch = nbatch;
			pstate->space_allowed = space_allowed;
			pstate->growth = PHJ_GROWTH_OK;

			/* Set up the shared state for coordinating batches. */
			ExecParallelHashJoinSetUpBatches(hashtable, nbatch);

			/*
			 * Allocate batch 0's hash table up front so we can load it
			 * directly while hashing.
			 */
			pstate->nbuckets = nbuckets;
			ExecParallelHashTableAlloc(hashtable, 0);
		}

		/*
		 * The next Parallel Hash synchronization point is in
		 * MultiExecParallelHash(), which will progress it all the way to
		 * PHJ_BUILD_RUNNING.  The caller must not return control from this
		 * executor node between now and then.
		 */
	}
	else
	{
		/*
		 * Prepare context for the first-scan space allocations; allocate the
		 * hashbucket array therein, and set each bucket "empty".
		 */
		MemoryContextSwitchTo(hashtable->batchCxt);

		hashtable->buckets.unshared = (HashJoinTuple *)
			palloc0(nbuckets * sizeof(HashJoinTuple));

		/*
		 * Set up for skew optimization, if possible and there's a need for
		 * more than one batch.  (In a one-batch join, there's no point in
		 * it.)
		 */
		if (nbatch > 1)
			ExecHashBuildSkewHash(hashtable, node, num_skew_mcvs);

		MemoryContextSwitchTo(oldcxt);
	}

	return hashtable;
}


/*
 * Compute appropriate size for hashtable given the estimated size of the
 * relation to be hashed (number of rows and average row width).
 *
 * This is exported so that the planner's costsize.c can use it.
 */

/* Target bucket loading (tuples per bucket) */
#define NTUP_PER_BUCKET			1

void
ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew,
						bool try_combined_hash_mem,
						int parallel_workers,
						size_t *space_allowed,
						int *numbuckets,
						int *numbatches,
						int *num_skew_mcvs)
{
	int			tupsize;
	double		inner_rel_bytes;
	size_t		hash_table_bytes;
	size_t		bucket_bytes;
	size_t		max_pointers;
	int			nbatch = 1;
	int			nbuckets;
	double		dbuckets;

	/* Force a plausible relation size if no info */
	if (ntuples <= 0.0)
		ntuples = 1000.0;

	/*
	 * Estimate tupsize based on footprint of tuple in hashtable... note this
	 * does not allow for any palloc overhead.  The manipulations of spaceUsed
	 * don't count palloc overhead either.
	 */
	tupsize = HJTUPLE_OVERHEAD +
		MAXALIGN(SizeofMinimalTupleHeader) +
		MAXALIGN(tupwidth);
	inner_rel_bytes = ntuples * tupsize;

	/*
	 * Compute in-memory hashtable size limit from GUCs.
	 */
	hash_table_bytes = get_hash_memory_limit();

	/*
	 * Parallel Hash tries to use the combined hash_mem of all workers to
	 * avoid the need to batch.  If that won't work, it falls back to hash_mem
	 * per worker and tries to process batches in parallel.
	 */
	if (try_combined_hash_mem)
	{
		/* Careful, this could overflow size_t */
		double		newlimit;

		newlimit = (double) hash_table_bytes * (double) (parallel_workers + 1);
		newlimit = Min(newlimit, (double) SIZE_MAX);
		hash_table_bytes = (size_t) newlimit;
	}

	*space_allowed = hash_table_bytes;

	/*
	 * If skew optimization is possible, estimate the number of skew buckets
	 * that will fit in the memory allowed, and decrement the assumed space
	 * available for the main hash table accordingly.
	 *
	 * We make the optimistic assumption that each skew bucket will contain
	 * one inner-relation tuple.  If that turns out to be low, we will recover
	 * at runtime by reducing the number of skew buckets.
	 *
	 * hashtable->skewBucket will have up to 8 times as many HashSkewBucket
	 * pointers as the number of MCVs we allow, since ExecHashBuildSkewHash
	 * will round up to the next power of 2 and then multiply by 4 to reduce
	 * collisions.
	 */
	if (useskew)
	{
		size_t		bytes_per_mcv;
		size_t		skew_mcvs;

		/*----------
		 * Compute number of MCVs we could hold in hash_table_bytes
		 *
		 * Divisor is:
		 * size of a hash tuple +
		 * worst-case size of skewBucket[] per MCV +
		 * size of skewBucketNums[] entry +
		 * size of skew bucket struct itself
		 *----------
		 */
		bytes_per_mcv = tupsize +
			(8 * sizeof(HashSkewBucket *)) +
			sizeof(int) +
			SKEW_BUCKET_OVERHEAD;
		skew_mcvs = hash_table_bytes / bytes_per_mcv;

		/*
		 * Now scale by SKEW_HASH_MEM_PERCENT (we do it in this order so as
		 * not to worry about size_t overflow in the multiplication)
		 */
		skew_mcvs = (skew_mcvs * SKEW_HASH_MEM_PERCENT) / 100;

		/* Now clamp to integer range */
		skew_mcvs = Min(skew_mcvs, INT_MAX);

		*num_skew_mcvs = (int) skew_mcvs;

		/* Reduce hash_table_bytes by the amount needed for the skew table */
		if (skew_mcvs > 0)
			hash_table_bytes -= skew_mcvs * bytes_per_mcv;
	}
	else
		*num_skew_mcvs = 0;

	/*
	 * Set nbuckets to achieve an average bucket load of NTUP_PER_BUCKET when
	 * memory is filled, assuming a single batch; but limit the value so that
	 * the pointer arrays we'll try to allocate do not exceed hash_table_bytes
	 * nor MaxAllocSize.
	 *
	 * Note that both nbuckets and nbatch must be powers of 2 to make
	 * ExecHashGetBucketAndBatch fast.
	 */
	max_pointers = hash_table_bytes / sizeof(HashJoinTuple);
	max_pointers = Min(max_pointers, MaxAllocSize / sizeof(HashJoinTuple));
	/* If max_pointers isn't a power of 2, must round it down to one */
	max_pointers = pg_prevpower2_size_t(max_pointers);

	/* Also ensure we avoid integer overflow in nbatch and nbuckets */
	/* (this step is redundant given the current value of MaxAllocSize) */
	max_pointers = Min(max_pointers, INT_MAX / 2 + 1);

	dbuckets = ceil(ntuples / NTUP_PER_BUCKET);
	dbuckets = Min(dbuckets, max_pointers);
	nbuckets = (int) dbuckets;
	/* don't let nbuckets be really small, though ... */
	nbuckets = Max(nbuckets, 1024);
	/* ... and force it to be a power of 2. */
	nbuckets = pg_nextpower2_32(nbuckets);

	/*
	 * If there's not enough space to store the projected number of tuples and
	 * the required bucket headers, we will need multiple batches.
	 */
	bucket_bytes = sizeof(HashJoinTuple) * nbuckets;
	if (inner_rel_bytes + bucket_bytes > hash_table_bytes)
	{
		/* We'll need multiple batches */
		size_t		sbuckets;
		double		dbatch;
		int			minbatch;
		size_t		bucket_size;

		/*
		 * If Parallel Hash with combined hash_mem would still need multiple
		 * batches, we'll have to fall back to regular hash_mem budget.
		 */
		if (try_combined_hash_mem)
		{
			ExecChooseHashTableSize(ntuples, tupwidth, useskew,
									false, parallel_workers,
									space_allowed,
									numbuckets,
									numbatches,
									num_skew_mcvs);
			return;
		}

		/*
		 * Estimate the number of buckets we'll want to have when hash_mem is
		 * entirely full.  Each bucket will contain a bucket pointer plus
		 * NTUP_PER_BUCKET tuples, whose projected size already includes
		 * overhead for the hash code, pointer to the next tuple, etc.
		 */
		bucket_size = (tupsize * NTUP_PER_BUCKET + sizeof(HashJoinTuple));
		if (hash_table_bytes <= bucket_size)
			sbuckets = 1;		/* avoid pg_nextpower2_size_t(0) */
		else
			sbuckets = pg_nextpower2_size_t(hash_table_bytes / bucket_size);
		sbuckets = Min(sbuckets, max_pointers);
		nbuckets = (int) sbuckets;
		nbuckets = pg_nextpower2_32(nbuckets);
		bucket_bytes = nbuckets * sizeof(HashJoinTuple);

		/*
		 * Buckets are simple pointers to hashjoin tuples, while tupsize
		 * includes the pointer, hash code, and MinimalTupleData.  So buckets
		 * should never really exceed 25% of hash_mem (even for
		 * NTUP_PER_BUCKET=1); except maybe for hash_mem values that are not
		 * 2^N bytes, where we might get more because of doubling. So let's
		 * look for 50% here.
		 */
		Assert(bucket_bytes <= hash_table_bytes / 2);

		/* Calculate required number of batches. */
		dbatch = ceil(inner_rel_bytes / (hash_table_bytes - bucket_bytes));
		dbatch = Min(dbatch, max_pointers);
		minbatch = (int) dbatch;
		nbatch = pg_nextpower2_32(Max(2, minbatch));
	}

	Assert(nbuckets > 0);
	Assert(nbatch > 0);

	*numbuckets = nbuckets;
	*numbatches = nbatch;
}


/* ----------------------------------------------------------------
 *		ExecHashTableDestroy
 *
 *		destroy a hash table
 * ----------------------------------------------------------------
 */
void
ExecHashTableDestroy(HashJoinTable hashtable)
{
	int			i;

	/*
	 * Make sure all the temp files are closed.  We skip batch 0, since it
	 * can't have any temp files (and the arrays might not even exist if
	 * nbatch is only 1).  Parallel hash joins don't use these files.
	 */
	if (hashtable->innerBatchFile != NULL)
	{
		for (i = 1; i < hashtable->nbatch; i++)
		{
			if (hashtable->innerBatchFile[i])
				BufFileClose(hashtable->innerBatchFile[i]);
			if (hashtable->outerBatchFile[i])
				BufFileClose(hashtable->outerBatchFile[i]);
		}
	}

	/* Release working memory (batchCxt is a child, so it goes away too) */
	MemoryContextDelete(hashtable->hashCxt);

	/* And drop the control block */
	pfree(hashtable);
}

/*
 * ExecHashIncreaseNumBatches
 *		increase the original number of batches in order to reduce
 *		current memory consumption
 */
static void
ExecHashIncreaseNumBatches(HashJoinTable hashtable)
{
	int			oldnbatch = hashtable->nbatch;
	int			curbatch = hashtable->curbatch;
	int			nbatch;
	MemoryContext oldcxt;
	long		ninmemory;
	long		nfreed;
	HashMemoryChunk oldchunks;

	/* do nothing if we've decided to shut off growth */
	if (!hashtable->growEnabled)
		return;

	/* safety check to avoid overflow */
	if (oldnbatch > Min(INT_MAX / 2, MaxAllocSize / (sizeof(void *) * 2)))
		return;

	nbatch = oldnbatch * 2;
	Assert(nbatch > 1);

#ifdef HJDEBUG
	printf("Hashjoin %p: increasing nbatch to %d because space = %zu\n",
		   hashtable, nbatch, hashtable->spaceUsed);
#endif

	oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);

	if (hashtable->innerBatchFile == NULL)
	{
		/* we had no file arrays before */
		hashtable->innerBatchFile = (BufFile **)
			palloc0(nbatch * sizeof(BufFile *));
		hashtable->outerBatchFile = (BufFile **)
			palloc0(nbatch * sizeof(BufFile *));
		/* time to establish the temp tablespaces, too */
		PrepareTempTablespaces();
	}
	else
	{
		/* enlarge arrays and zero out added entries */
		hashtable->innerBatchFile = (BufFile **)
			repalloc(hashtable->innerBatchFile, nbatch * sizeof(BufFile *));
		hashtable->outerBatchFile = (BufFile **)
			repalloc(hashtable->outerBatchFile, nbatch * sizeof(BufFile *));
		MemSet(hashtable->innerBatchFile + oldnbatch, 0,
			   (nbatch - oldnbatch) * sizeof(BufFile *));
		MemSet(hashtable->outerBatchFile + oldnbatch, 0,
			   (nbatch - oldnbatch) * sizeof(BufFile *));
	}

	MemoryContextSwitchTo(oldcxt);

	hashtable->nbatch = nbatch;

	/*
	 * Scan through the existing hash table entries and dump out any that are
	 * no longer of the current batch.
	 */
	ninmemory = nfreed = 0;

	/* If know we need to resize nbuckets, we can do it while rebatching. */
	if (hashtable->nbuckets_optimal != hashtable->nbuckets)
	{
		/* we never decrease the number of buckets */
		Assert(hashtable->nbuckets_optimal > hashtable->nbuckets);

		hashtable->nbuckets = hashtable->nbuckets_optimal;
		hashtable->log2_nbuckets = hashtable->log2_nbuckets_optimal;

		hashtable->buckets.unshared =
			repalloc(hashtable->buckets.unshared,
					 sizeof(HashJoinTuple) * hashtable->nbuckets);
	}

	/*
	 * We will scan through the chunks directly, so that we can reset the
	 * buckets now and not have to keep track which tuples in the buckets have
	 * already been processed. We will free the old chunks as we go.
	 */
	memset(hashtable->buckets.unshared, 0,
		   sizeof(HashJoinTuple) * hashtable->nbuckets);
	oldchunks = hashtable->chunks;
	hashtable->chunks = NULL;

	/* so, let's scan through the old chunks, and all tuples in each chunk */
	while (oldchunks != NULL)
	{
		HashMemoryChunk nextchunk = oldchunks->next.unshared;

		/* position within the buffer (up to oldchunks->used) */
		size_t		idx = 0;

		/* process all tuples stored in this chunk (and then free it) */
		while (idx < oldchunks->used)
		{
			HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(oldchunks) + idx);
			MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
			int			hashTupleSize = (HJTUPLE_OVERHEAD + tuple->t_len);
			int			bucketno;
			int			batchno;

			ninmemory++;
			ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
									  &bucketno, &batchno);

			if (batchno == curbatch)
			{
				/* keep tuple in memory - copy it into the new chunk */
				HashJoinTuple copyTuple;

				copyTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);
				memcpy(copyTuple, hashTuple, hashTupleSize);

				/* and add it back to the appropriate bucket */
				copyTuple->next.unshared = hashtable->buckets.unshared[bucketno];
				hashtable->buckets.unshared[bucketno] = copyTuple;
			}
			else
			{
				/* dump it out */
				Assert(batchno > curbatch);
				ExecHashJoinSaveTuple(HJTUPLE_MINTUPLE(hashTuple),
									  hashTuple->hashvalue,
									  &hashtable->innerBatchFile[batchno]);

				hashtable->spaceUsed -= hashTupleSize;
				nfreed++;
			}

			/* next tuple in this chunk */
			idx += MAXALIGN(hashTupleSize);

			/* allow this loop to be cancellable */
			CHECK_FOR_INTERRUPTS();
		}

		/* we're done with this chunk - free it and proceed to the next one */
		pfree(oldchunks);
		oldchunks = nextchunk;
	}

#ifdef HJDEBUG
	printf("Hashjoin %p: freed %ld of %ld tuples, space now %zu\n",
		   hashtable, nfreed, ninmemory, hashtable->spaceUsed);
#endif

	/*
	 * If we dumped out either all or none of the tuples in the table, disable
	 * further expansion of nbatch.  This situation implies that we have
	 * enough tuples of identical hashvalues to overflow spaceAllowed.
	 * Increasing nbatch will not fix it since there's no way to subdivide the
	 * group any more finely. We have to just gut it out and hope the server
	 * has enough RAM.
	 */
	if (nfreed == 0 || nfreed == ninmemory)
	{
		hashtable->growEnabled = false;
#ifdef HJDEBUG
		printf("Hashjoin %p: disabling further increase of nbatch\n",
			   hashtable);
#endif
	}
}

/*
 * ExecParallelHashIncreaseNumBatches
 *		Every participant attached to grow_batches_barrier must run this
 *		function when it observes growth == PHJ_GROWTH_NEED_MORE_BATCHES.
 */
static void
ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable)
{
	ParallelHashJoinState *pstate = hashtable->parallel_state;
	int			i;

	Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);

	/*
	 * It's unlikely, but we need to be prepared for new participants to show
	 * up while we're in the middle of this operation so we need to switch on
	 * barrier phase here.
	 */
	switch (PHJ_GROW_BATCHES_PHASE(BarrierPhase(&pstate->grow_batches_barrier)))
	{
		case PHJ_GROW_BATCHES_ELECTING:

			/*
			 * Elect one participant to prepare to grow the number of batches.
			 * This involves reallocating or resetting the buckets of batch 0
			 * in preparation for all participants to begin repartitioning the
			 * tuples.
			 */
			if (BarrierArriveAndWait(&pstate->grow_batches_barrier,
									 WAIT_EVENT_HASH_GROW_BATCHES_ELECT))
			{
				dsa_pointer_atomic *buckets;
				ParallelHashJoinBatch *old_batch0;
				int			new_nbatch;
				int			i;

				/* Move the old batch out of the way. */
				old_batch0 = hashtable->batches[0].shared;
				pstate->old_batches = pstate->batches;
				pstate->old_nbatch = hashtable->nbatch;
				pstate->batches = InvalidDsaPointer;

				/* Free this backend's old accessors. */
				ExecParallelHashCloseBatchAccessors(hashtable);

				/* Figure out how many batches to use. */
				if (hashtable->nbatch == 1)
				{
					/*
					 * We are going from single-batch to multi-batch.  We need
					 * to switch from one large combined memory budget to the
					 * regular hash_mem budget.
					 */
					pstate->space_allowed = get_hash_memory_limit();

					/*
					 * The combined hash_mem of all participants wasn't
					 * enough. Therefore one batch per participant would be
					 * approximately equivalent and would probably also be
					 * insufficient.  So try two batches per participant,
					 * rounded up to a power of two.
					 */
					new_nbatch = pg_nextpower2_32(pstate->nparticipants * 2);
				}
				else
				{
					/*
					 * We were already multi-batched.  Try doubling the number
					 * of batches.
					 */
					new_nbatch = hashtable->nbatch * 2;
				}

				/* Allocate new larger generation of batches. */
				Assert(hashtable->nbatch == pstate->nbatch);
				ExecParallelHashJoinSetUpBatches(hashtable, new_nbatch);
				Assert(hashtable->nbatch == pstate->nbatch);

				/* Replace or recycle batch 0's bucket array. */
				if (pstate->old_nbatch == 1)
				{
					double		dtuples;
					double		dbuckets;
					int			new_nbuckets;
					uint32		max_buckets;

					/*
					 * We probably also need a smaller bucket array.  How many
					 * tuples do we expect per batch, assuming we have only
					 * half of them so far?  Normally we don't need to change
					 * the bucket array's size, because the size of each batch
					 * stays the same as we add more batches, but in this
					 * special case we move from a large batch to many smaller
					 * batches and it would be wasteful to keep the large
					 * array.
					 */
					dtuples = (old_batch0->ntuples * 2.0) / new_nbatch;

					/*
					 * We need to calculate the maximum number of buckets to
					 * stay within the MaxAllocSize boundary.  Round the
					 * maximum number to the previous power of 2 given that
					 * later we round the number to the next power of 2.
					 */
					max_buckets = pg_prevpower2_32((uint32)
												   (MaxAllocSize / sizeof(dsa_pointer_atomic)));
					dbuckets = ceil(dtuples / NTUP_PER_BUCKET);
					dbuckets = Min(dbuckets, max_buckets);
					new_nbuckets = (int) dbuckets;
					new_nbuckets = Max(new_nbuckets, 1024);
					new_nbuckets = pg_nextpower2_32(new_nbuckets);
					dsa_free(hashtable->area, old_batch0->buckets);
					hashtable->batches[0].shared->buckets =
						dsa_allocate(hashtable->area,
									 sizeof(dsa_pointer_atomic) * new_nbuckets);
					buckets = (dsa_pointer_atomic *)
						dsa_get_address(hashtable->area,
										hashtable->batches[0].shared->buckets);
					for (i = 0; i < new_nbuckets; ++i)
						dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
					pstate->nbuckets = new_nbuckets;
				}
				else
				{
					/* Recycle the existing bucket array. */
					hashtable->batches[0].shared->buckets = old_batch0->buckets;
					buckets = (dsa_pointer_atomic *)
						dsa_get_address(hashtable->area, old_batch0->buckets);
					for (i = 0; i < hashtable->nbuckets; ++i)
						dsa_pointer_atomic_write(&buckets[i], InvalidDsaPointer);
				}

				/* Move all chunks to the work queue for parallel processing. */
				pstate->chunk_work_queue = old_batch0->chunks;

				/* Disable further growth temporarily while we're growing. */
				pstate->growth = PHJ_GROWTH_DISABLED;
			}
			else
			{
				/* All other participants just flush their tuples to disk. */
				ExecParallelHashCloseBatchAccessors(hashtable);
			}
			/* Fall through. */

		case PHJ_GROW_BATCHES_ALLOCATING:
			/* Wait for the above to be finished. */
			BarrierArriveAndWait(&pstate->grow_batches_barrier,
								 WAIT_EVENT_HASH_GROW_BATCHES_ALLOCATE);
			/* Fall through. */

		case PHJ_GROW_BATCHES_REPARTITIONING:
			/* Make sure that we have the current dimensions and buckets. */
			ExecParallelHashEnsureBatchAccessors(hashtable);
			ExecParallelHashTableSetCurrentBatch(hashtable, 0);
			/* Then partition, flush counters. */
			ExecParallelHashRepartitionFirst(hashtable);
			ExecParallelHashRepartitionRest(hashtable);
			ExecParallelHashMergeCounters(hashtable);
			/* Wait for the above to be finished. */
			BarrierArriveAndWait(&pstate->grow_batches_barrier,
								 WAIT_EVENT_HASH_GROW_BATCHES_REPARTITION);
			/* Fall through. */

		case PHJ_GROW_BATCHES_DECIDING:

			/*
			 * Elect one participant to clean up and decide whether further
			 * repartitioning is needed, or should be disabled because it's
			 * not helping.
			 */
			if (BarrierArriveAndWait(&pstate->grow_batches_barrier,
									 WAIT_EVENT_HASH_GROW_BATCHES_DECIDE))
			{
				bool		space_exhausted = false;
				bool		extreme_skew_detected = false;

				/* Make sure that we have the current dimensions and buckets. */
				ExecParallelHashEnsureBatchAccessors(hashtable);
				ExecParallelHashTableSetCurrentBatch(hashtable, 0);

				/* Are any of the new generation of batches exhausted? */
				for (i = 0; i < hashtable->nbatch; ++i)
				{
					ParallelHashJoinBatch *batch = hashtable->batches[i].shared;

					if (batch->space_exhausted ||
						batch->estimated_size > pstate->space_allowed)
					{
						int			parent;

						space_exhausted = true;

						/*
						 * Did this batch receive ALL of the tuples from its
						 * parent batch?  That would indicate that further
						 * repartitioning isn't going to help (the hash values
						 * are probably all the same).
						 */
						parent = i % pstate->old_nbatch;
						if (batch->ntuples == hashtable->batches[parent].shared->old_ntuples)
							extreme_skew_detected = true;
					}
				}

				/* Don't keep growing if it's not helping or we'd overflow. */
				if (extreme_skew_detected || hashtable->nbatch >= INT_MAX / 2)
					pstate->growth = PHJ_GROWTH_DISABLED;
				else if (space_exhausted)
					pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
				else
					pstate->growth = PHJ_GROWTH_OK;

				/* Free the old batches in shared memory. */
				dsa_free(hashtable->area, pstate->old_batches);
				pstate->old_batches = InvalidDsaPointer;
			}
			/* Fall through. */

		case PHJ_GROW_BATCHES_FINISHING:
			/* Wait for the above to complete. */
			BarrierArriveAndWait(&pstate->grow_batches_barrier,
								 WAIT_EVENT_HASH_GROW_BATCHES_FINISH);
	}
}

/*
 * Repartition the tuples currently loaded into memory for inner batch 0
 * because the number of batches has been increased.  Some tuples are retained
 * in memory and some are written out to a later batch.
 */
static void
ExecParallelHashRepartitionFirst(HashJoinTable hashtable)
{
	dsa_pointer chunk_shared;
	HashMemoryChunk chunk;

	Assert(hashtable->nbatch == hashtable->parallel_state->nbatch);

	while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_shared)))
	{
		size_t		idx = 0;

		/* Repartition all tuples in this chunk. */
		while (idx < chunk->used)
		{
			HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
			MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
			HashJoinTuple copyTuple;
			dsa_pointer shared;
			int			bucketno;
			int			batchno;

			ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
									  &bucketno, &batchno);

			Assert(batchno < hashtable->nbatch);
			if (batchno == 0)
			{
				/* It still belongs in batch 0.  Copy to a new chunk. */
				copyTuple =
					ExecParallelHashTupleAlloc(hashtable,
											   HJTUPLE_OVERHEAD + tuple->t_len,
											   &shared);
				copyTuple->hashvalue = hashTuple->hashvalue;
				memcpy(HJTUPLE_MINTUPLE(copyTuple), tuple, tuple->t_len);
				ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
										  copyTuple, shared);
			}
			else
			{
				size_t		tuple_size =
				MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);

				/* It belongs in a later batch. */
				hashtable->batches[batchno].estimated_size += tuple_size;
				sts_puttuple(hashtable->batches[batchno].inner_tuples,
							 &hashTuple->hashvalue, tuple);
			}

			/* Count this tuple. */
			++hashtable->batches[0].old_ntuples;
			++hashtable->batches[batchno].ntuples;

			idx += MAXALIGN(HJTUPLE_OVERHEAD +
							HJTUPLE_MINTUPLE(hashTuple)->t_len);
		}

		/* Free this chunk. */
		dsa_free(hashtable->area, chunk_shared);

		CHECK_FOR_INTERRUPTS();
	}
}

/*
 * Help repartition inner batches 1..n.
 */
static void
ExecParallelHashRepartitionRest(HashJoinTable hashtable)
{
	ParallelHashJoinState *pstate = hashtable->parallel_state;
	int			old_nbatch = pstate->old_nbatch;
	SharedTuplestoreAccessor **old_inner_tuples;
	ParallelHashJoinBatch *old_batches;
	int			i;

	/* Get our hands on the previous generation of batches. */
	old_batches = (ParallelHashJoinBatch *)
		dsa_get_address(hashtable->area, pstate->old_batches);
	old_inner_tuples = palloc0(sizeof(SharedTuplestoreAccessor *) * old_nbatch);
	for (i = 1; i < old_nbatch; ++i)
	{
		ParallelHashJoinBatch *shared =
		NthParallelHashJoinBatch(old_batches, i);

		old_inner_tuples[i] = sts_attach(ParallelHashJoinBatchInner(shared),
										 ParallelWorkerNumber + 1,
										 &pstate->fileset);
	}

	/* Join in the effort to repartition them. */
	for (i = 1; i < old_nbatch; ++i)
	{
		MinimalTuple tuple;
		uint32		hashvalue;

		/* Scan one partition from the previous generation. */
		sts_begin_parallel_scan(old_inner_tuples[i]);
		while ((tuple = sts_parallel_scan_next(old_inner_tuples[i], &hashvalue)))
		{
			size_t		tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
			int			bucketno;
			int			batchno;

			/* Decide which partition it goes to in the new generation. */
			ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno,
									  &batchno);

			hashtable->batches[batchno].estimated_size += tuple_size;
			++hashtable->batches[batchno].ntuples;
			++hashtable->batches[i].old_ntuples;

			/* Store the tuple its new batch. */
			sts_puttuple(hashtable->batches[batchno].inner_tuples,
						 &hashvalue, tuple);

			CHECK_FOR_INTERRUPTS();
		}
		sts_end_parallel_scan(old_inner_tuples[i]);
	}

	pfree(old_inner_tuples);
}

/*
 * Transfer the backend-local per-batch counters to the shared totals.
 */
static void
ExecParallelHashMergeCounters(HashJoinTable hashtable)
{
	ParallelHashJoinState *pstate = hashtable->parallel_state;
	int			i;

	LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
	pstate->total_tuples = 0;
	for (i = 0; i < hashtable->nbatch; ++i)
	{
		ParallelHashJoinBatchAccessor *batch = &hashtable->batches[i];

		batch->shared->size += batch->size;
		batch->shared->estimated_size += batch->estimated_size;
		batch->shared->ntuples += batch->ntuples;
		batch->shared->old_ntuples += batch->old_ntuples;
		batch->size = 0;
		batch->estimated_size = 0;
		batch->ntuples = 0;
		batch->old_ntuples = 0;
		pstate->total_tuples += batch->shared->ntuples;
	}
	LWLockRelease(&pstate->lock);
}

/*
 * ExecHashIncreaseNumBuckets
 *		increase the original number of buckets in order to reduce
 *		number of tuples per bucket
 */
static void
ExecHashIncreaseNumBuckets(HashJoinTable hashtable)
{
	HashMemoryChunk chunk;

	/* do nothing if not an increase (it's called increase for a reason) */
	if (hashtable->nbuckets >= hashtable->nbuckets_optimal)
		return;

#ifdef HJDEBUG
	printf("Hashjoin %p: increasing nbuckets %d => %d\n",
		   hashtable, hashtable->nbuckets, hashtable->nbuckets_optimal);
#endif

	hashtable->nbuckets = hashtable->nbuckets_optimal;
	hashtable->log2_nbuckets = hashtable->log2_nbuckets_optimal;

	Assert(hashtable->nbuckets > 1);
	Assert(hashtable->nbuckets <= (INT_MAX / 2));
	Assert(hashtable->nbuckets == (1 << hashtable->log2_nbuckets));

	/*
	 * Just reallocate the proper number of buckets - we don't need to walk
	 * through them - we can walk the dense-allocated chunks (just like in
	 * ExecHashIncreaseNumBatches, but without all the copying into new
	 * chunks)
	 */
	hashtable->buckets.unshared =
		(HashJoinTuple *) repalloc(hashtable->buckets.unshared,
								   hashtable->nbuckets * sizeof(HashJoinTuple));

	memset(hashtable->buckets.unshared, 0,
		   hashtable->nbuckets * sizeof(HashJoinTuple));

	/* scan through all tuples in all chunks to rebuild the hash table */
	for (chunk = hashtable->chunks; chunk != NULL; chunk = chunk->next.unshared)
	{
		/* process all tuples stored in this chunk */
		size_t		idx = 0;

		while (idx < chunk->used)
		{
			HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
			int			bucketno;
			int			batchno;

			ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
									  &bucketno, &batchno);

			/* add the tuple to the proper bucket */
			hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
			hashtable->buckets.unshared[bucketno] = hashTuple;

			/* advance index past the tuple */
			idx += MAXALIGN(HJTUPLE_OVERHEAD +
							HJTUPLE_MINTUPLE(hashTuple)->t_len);
		}

		/* allow this loop to be cancellable */
		CHECK_FOR_INTERRUPTS();
	}
}

static void
ExecParallelHashIncreaseNumBuckets(HashJoinTable hashtable)
{
	ParallelHashJoinState *pstate = hashtable->parallel_state;
	int			i;
	HashMemoryChunk chunk;
	dsa_pointer chunk_s;

	Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);

	/*
	 * It's unlikely, but we need to be prepared for new participants to show
	 * up while we're in the middle of this operation so we need to switch on
	 * barrier phase here.
	 */
	switch (PHJ_GROW_BUCKETS_PHASE(BarrierPhase(&pstate->grow_buckets_barrier)))
	{
		case PHJ_GROW_BUCKETS_ELECTING:
			/* Elect one participant to prepare to increase nbuckets. */
			if (BarrierArriveAndWait(&pstate->grow_buckets_barrier,
									 WAIT_EVENT_HASH_GROW_BUCKETS_ELECT))
			{
				size_t		size;
				dsa_pointer_atomic *buckets;

				/* Double the size of the bucket array. */
				pstate->nbuckets *= 2;
				size = pstate->nbuckets * sizeof(dsa_pointer_atomic);
				hashtable->batches[0].shared->size += size / 2;
				dsa_free(hashtable->area, hashtable->batches[0].shared->buckets);
				hashtable->batches[0].shared->buckets =
					dsa_allocate(hashtable->area, size);
				buckets = (dsa_pointer_atomic *)
					dsa_get_address(hashtable->area,
									hashtable->batches[0].shared->buckets);
				for (i = 0; i < pstate->nbuckets; ++i)
					dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);

				/* Put the chunk list onto the work queue. */
				pstate->chunk_work_queue = hashtable->batches[0].shared->chunks;

				/* Clear the flag. */
				pstate->growth = PHJ_GROWTH_OK;
			}
			/* Fall through. */

		case PHJ_GROW_BUCKETS_ALLOCATING:
			/* Wait for the above to complete. */
			BarrierArriveAndWait(&pstate->grow_buckets_barrier,
								 WAIT_EVENT_HASH_GROW_BUCKETS_ALLOCATE);
			/* Fall through. */

		case PHJ_GROW_BUCKETS_REINSERTING:
			/* Reinsert all tuples into the hash table. */
			ExecParallelHashEnsureBatchAccessors(hashtable);
			ExecParallelHashTableSetCurrentBatch(hashtable, 0);
			while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_s)))
			{
				size_t		idx = 0;

				while (idx < chunk->used)
				{
					HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
					dsa_pointer shared = chunk_s + HASH_CHUNK_HEADER_SIZE + idx;
					int			bucketno;
					int			batchno;

					ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
											  &bucketno, &batchno);
					Assert(batchno == 0);

					/* add the tuple to the proper bucket */
					ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
											  hashTuple, shared);

					/* advance index past the tuple */
					idx += MAXALIGN(HJTUPLE_OVERHEAD +
									HJTUPLE_MINTUPLE(hashTuple)->t_len);
				}

				/* allow this loop to be cancellable */
				CHECK_FOR_INTERRUPTS();
			}
			BarrierArriveAndWait(&pstate->grow_buckets_barrier,
								 WAIT_EVENT_HASH_GROW_BUCKETS_REINSERT);
	}
}

/*
 * ExecHashTableInsert
 *		insert a tuple into the hash table depending on the hash value
 *		it may just go to a temp file for later batches
 *
 * Note: the passed TupleTableSlot may contain a regular, minimal, or virtual
 * tuple; the minimal case in particular is certain to happen while reloading
 * tuples from batch files.  We could save some cycles in the regular-tuple
 * case by not forcing the slot contents into minimal form; not clear if it's
 * worth the messiness required.
 */
void
ExecHashTableInsert(HashJoinTable hashtable,
					TupleTableSlot *slot,
					uint32 hashvalue)
{
	bool		shouldFree;
	MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
	int			bucketno;
	int			batchno;

	ExecHashGetBucketAndBatch(hashtable, hashvalue,
							  &bucketno, &batchno);

	/*
	 * decide whether to put the tuple in the hash table or a temp file
	 */
	if (batchno == hashtable->curbatch)
	{
		/*
		 * put the tuple in hash table
		 */
		HashJoinTuple hashTuple;
		int			hashTupleSize;
		double		ntuples = (hashtable->totalTuples - hashtable->skewTuples);

		/* Create the HashJoinTuple */
		hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
		hashTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);

		hashTuple->hashvalue = hashvalue;
		memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);

		/*
		 * We always reset the tuple-matched flag on insertion.  This is okay
		 * even when reloading a tuple from a batch file, since the tuple
		 * could not possibly have been matched to an outer tuple before it
		 * went into the batch file.
		 */
		HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));

		/* Push it onto the front of the bucket's list */
		hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
		hashtable->buckets.unshared[bucketno] = hashTuple;

		/*
		 * Increase the (optimal) number of buckets if we just exceeded the
		 * NTUP_PER_BUCKET threshold, but only when there's still a single
		 * batch.
		 */
		if (hashtable->nbatch == 1 &&
			ntuples > (hashtable->nbuckets_optimal * NTUP_PER_BUCKET))
		{
			/* Guard against integer overflow and alloc size overflow */
			if (hashtable->nbuckets_optimal <= INT_MAX / 2 &&
				hashtable->nbuckets_optimal * 2 <= MaxAllocSize / sizeof(HashJoinTuple))
			{
				hashtable->nbuckets_optimal *= 2;
				hashtable->log2_nbuckets_optimal += 1;
			}
		}

		/* Account for space used, and back off if we've used too much */
		hashtable->spaceUsed += hashTupleSize;
		if (hashtable->spaceUsed > hashtable->spacePeak)
			hashtable->spacePeak = hashtable->spaceUsed;
		if (hashtable->spaceUsed +
			hashtable->nbuckets_optimal * sizeof(HashJoinTuple)
			> hashtable->spaceAllowed)
			ExecHashIncreaseNumBatches(hashtable);
	}
	else
	{
		/*
		 * put the tuple into a temp file for later batches
		 */
		Assert(batchno > hashtable->curbatch);
		ExecHashJoinSaveTuple(tuple,
							  hashvalue,
							  &hashtable->innerBatchFile[batchno]);
	}

	if (shouldFree)
		heap_free_minimal_tuple(tuple);
}

/*
 * ExecParallelHashTableInsert
 *		insert a tuple into a shared hash table or shared batch tuplestore
 */
void
ExecParallelHashTableInsert(HashJoinTable hashtable,
							TupleTableSlot *slot,
							uint32 hashvalue)
{
	bool		shouldFree;
	MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
	dsa_pointer shared;
	int			bucketno;
	int			batchno;

retry:
	ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);

	if (batchno == 0)
	{
		HashJoinTuple hashTuple;

		/* Try to load it into memory. */
		Assert(BarrierPhase(&hashtable->parallel_state->build_barrier) ==
			   PHJ_BUILD_HASHING_INNER);
		hashTuple = ExecParallelHashTupleAlloc(hashtable,
											   HJTUPLE_OVERHEAD + tuple->t_len,
											   &shared);
		if (hashTuple == NULL)
			goto retry;

		/* Store the hash value in the HashJoinTuple header. */
		hashTuple->hashvalue = hashvalue;
		memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);

		/* Push it onto the front of the bucket's list */
		ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
								  hashTuple, shared);
	}
	else
	{
		size_t		tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);

		Assert(batchno > 0);

		/* Try to preallocate space in the batch if necessary. */
		if (hashtable->batches[batchno].preallocated < tuple_size)
		{
			if (!ExecParallelHashTuplePrealloc(hashtable, batchno, tuple_size))
				goto retry;
		}

		Assert(hashtable->batches[batchno].preallocated >= tuple_size);
		hashtable->batches[batchno].preallocated -= tuple_size;
		sts_puttuple(hashtable->batches[batchno].inner_tuples, &hashvalue,
					 tuple);
	}
	++hashtable->batches[batchno].ntuples;

	if (shouldFree)
		heap_free_minimal_tuple(tuple);
}

/*
 * Insert a tuple into the current hash table.  Unlike
 * ExecParallelHashTableInsert, this version is not prepared to send the tuple
 * to other batches or to run out of memory, and should only be called with
 * tuples that belong in the current batch once growth has been disabled.
 */
void
ExecParallelHashTableInsertCurrentBatch(HashJoinTable hashtable,
										TupleTableSlot *slot,
										uint32 hashvalue)
{
	bool		shouldFree;
	MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
	HashJoinTuple hashTuple;
	dsa_pointer shared;
	int			batchno;
	int			bucketno;

	ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
	Assert(batchno == hashtable->curbatch);
	hashTuple = ExecParallelHashTupleAlloc(hashtable,
										   HJTUPLE_OVERHEAD + tuple->t_len,
										   &shared);
	hashTuple->hashvalue = hashvalue;
	memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
	HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
	ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
							  hashTuple, shared);

	if (shouldFree)
		heap_free_minimal_tuple(tuple);
}

/*
 * ExecHashGetHashValue
 *		Compute the hash value for a tuple
 *
 * The tuple to be tested must be in econtext->ecxt_outertuple (thus Vars in
 * the hashkeys expressions need to have OUTER_VAR as varno). If outer_tuple
 * is false (meaning it's the HashJoin's inner node, Hash), econtext,
 * hashkeys, and slot need to be from Hash, with hashkeys/slot referencing and
 * being suitable for tuples from the node below the Hash. Conversely, if
 * outer_tuple is true, econtext is from HashJoin, and hashkeys/slot need to
 * be appropriate for tuples from HashJoin's outer node.
 *
 * A true result means the tuple's hash value has been successfully computed
 * and stored at *hashvalue.  A false result means the tuple cannot match
 * because it contains a null attribute, and hence it should be discarded
 * immediately.  (If keep_nulls is true then false is never returned.)
 */
bool
ExecHashGetHashValue(HashJoinTable hashtable,
					 ExprContext *econtext,
					 List *hashkeys,
					 bool outer_tuple,
					 bool keep_nulls,
					 uint32 *hashvalue)
{
	uint32		hashkey = 0;
	FmgrInfo   *hashfunctions;
	ListCell   *hk;
	int			i = 0;
	MemoryContext oldContext;

	/*
	 * We reset the eval context each time to reclaim any memory leaked in the
	 * hashkey expressions.
	 */
	ResetExprContext(econtext);

	oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);

	if (outer_tuple)
		hashfunctions = hashtable->outer_hashfunctions;
	else
		hashfunctions = hashtable->inner_hashfunctions;

	foreach(hk, hashkeys)
	{
		ExprState  *keyexpr = (ExprState *) lfirst(hk);
		Datum		keyval;
		bool		isNull;

		/* combine successive hashkeys by rotating */
		hashkey = pg_rotate_left32(hashkey, 1);

		/*
		 * Get the join attribute value of the tuple
		 */
		keyval = ExecEvalExpr(keyexpr, econtext, &isNull);

		/*
		 * If the attribute is NULL, and the join operator is strict, then
		 * this tuple cannot pass the join qual so we can reject it
		 * immediately (unless we're scanning the outside of an outer join, in
		 * which case we must not reject it).  Otherwise we act like the
		 * hashcode of NULL is zero (this will support operators that act like
		 * IS NOT DISTINCT, though not any more-random behavior).  We treat
		 * the hash support function as strict even if the operator is not.
		 *
		 * Note: currently, all hashjoinable operators must be strict since
		 * the hash index AM assumes that.  However, it takes so little extra
		 * code here to allow non-strict that we may as well do it.
		 */
		if (isNull)
		{
			if (hashtable->hashStrict[i] && !keep_nulls)
			{
				MemoryContextSwitchTo(oldContext);
				return false;	/* cannot match */
			}
			/* else, leave hashkey unmodified, equivalent to hashcode 0 */
		}
		else
		{
			/* Compute the hash function */
			uint32		hkey;

			hkey = DatumGetUInt32(FunctionCall1Coll(&hashfunctions[i], hashtable->collations[i], keyval));
			hashkey ^= hkey;
		}

		i++;
	}

	MemoryContextSwitchTo(oldContext);

	*hashvalue = hashkey;
	return true;
}

/*
 * ExecHashGetBucketAndBatch
 *		Determine the bucket number and batch number for a hash value
 *
 * Note: on-the-fly increases of nbatch must not change the bucket number
 * for a given hash code (since we don't move tuples to different hash
 * chains), and must only cause the batch number to remain the same or
 * increase.  Our algorithm is
 *		bucketno = hashvalue MOD nbuckets
 *		batchno = ROR(hashvalue, log2_nbuckets) MOD nbatch
 * where nbuckets and nbatch are both expected to be powers of 2, so we can
 * do the computations by shifting and masking.  (This assumes that all hash
 * functions are good about randomizing all their output bits, else we are
 * likely to have very skewed bucket or batch occupancy.)
 *
 * nbuckets and log2_nbuckets may change while nbatch == 1 because of dynamic
 * bucket count growth.  Once we start batching, the value is fixed and does
 * not change over the course of the join (making it possible to compute batch
 * number the way we do here).
 *
 * nbatch is always a power of 2; we increase it only by doubling it.  This
 * effectively adds one more bit to the top of the batchno.  In very large
 * joins, we might run out of bits to add, so we do this by rotating the hash
 * value.  This causes batchno to steal bits from bucketno when the number of
 * virtual buckets exceeds 2^32.  It's better to have longer bucket chains
 * than to lose the ability to divide batches.
 */
void
ExecHashGetBucketAndBatch(HashJoinTable hashtable,
						  uint32 hashvalue,
						  int *bucketno,
						  int *batchno)
{
	uint32		nbuckets = (uint32) hashtable->nbuckets;
	uint32		nbatch = (uint32) hashtable->nbatch;

	if (nbatch > 1)
	{
		*bucketno = hashvalue & (nbuckets - 1);
		*batchno = pg_rotate_right32(hashvalue,
									 hashtable->log2_nbuckets) & (nbatch - 1);
	}
	else
	{
		*bucketno = hashvalue & (nbuckets - 1);
		*batchno = 0;
	}
}

/*
 * ExecScanHashBucket
 *		scan a hash bucket for matches to the current outer tuple
 *
 * The current outer tuple must be stored in econtext->ecxt_outertuple.
 *
 * On success, the inner tuple is stored into hjstate->hj_CurTuple and
 * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
 * for the latter.
 */
bool
ExecScanHashBucket(HashJoinState *hjstate,
				   ExprContext *econtext)
{
	ExprState  *hjclauses = hjstate->hashclauses;
	HashJoinTable hashtable = hjstate->hj_HashTable;
	HashJoinTuple hashTuple = hjstate->hj_CurTuple;
	uint32		hashvalue = hjstate->hj_CurHashValue;

	/*
	 * hj_CurTuple is the address of the tuple last returned from the current
	 * bucket, or NULL if it's time to start scanning a new bucket.
	 *
	 * If the tuple hashed to a skew bucket then scan the skew bucket
	 * otherwise scan the standard hashtable bucket.
	 */
	if (hashTuple != NULL)
		hashTuple = hashTuple->next.unshared;
	else if (hjstate->hj_CurSkewBucketNo != INVALID_SKEW_BUCKET_NO)
		hashTuple = hashtable->skewBucket[hjstate->hj_CurSkewBucketNo]->tuples;
	else
		hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];

	while (hashTuple != NULL)
	{
		if (hashTuple->hashvalue == hashvalue)
		{
			TupleTableSlot *inntuple;

			/* insert hashtable's tuple into exec slot so ExecQual sees it */
			inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
											 hjstate->hj_HashTupleSlot,
											 false);	/* do not pfree */
			econtext->ecxt_innertuple = inntuple;

			if (ExecQualAndReset(hjclauses, econtext))
			{
				hjstate->hj_CurTuple = hashTuple;
				return true;
			}
		}

		hashTuple = hashTuple->next.unshared;
	}

	/*
	 * no match
	 */
	return false;
}

/*
 * ExecParallelScanHashBucket
 *		scan a hash bucket for matches to the current outer tuple
 *
 * The current outer tuple must be stored in econtext->ecxt_outertuple.
 *
 * On success, the inner tuple is stored into hjstate->hj_CurTuple and
 * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
 * for the latter.
 */
bool
ExecParallelScanHashBucket(HashJoinState *hjstate,
						   ExprContext *econtext)
{
	ExprState  *hjclauses = hjstate->hashclauses;
	HashJoinTable hashtable = hjstate->hj_HashTable;
	HashJoinTuple hashTuple = hjstate->hj_CurTuple;
	uint32		hashvalue = hjstate->hj_CurHashValue;

	/*
	 * hj_CurTuple is the address of the tuple last returned from the current
	 * bucket, or NULL if it's time to start scanning a new bucket.
	 */
	if (hashTuple != NULL)
		hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
	else
		hashTuple = ExecParallelHashFirstTuple(hashtable,
											   hjstate->hj_CurBucketNo);

	while (hashTuple != NULL)
	{
		if (hashTuple->hashvalue == hashvalue)
		{
			TupleTableSlot *inntuple;

			/* insert hashtable's tuple into exec slot so ExecQual sees it */
			inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
											 hjstate->hj_HashTupleSlot,
											 false);	/* do not pfree */
			econtext->ecxt_innertuple = inntuple;

			if (ExecQualAndReset(hjclauses, econtext))
			{
				hjstate->hj_CurTuple = hashTuple;
				return true;
			}
		}

		hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
	}

	/*
	 * no match
	 */
	return false;
}

/*
 * ExecPrepHashTableForUnmatched
 *		set up for a series of ExecScanHashTableForUnmatched calls
 */
void
ExecPrepHashTableForUnmatched(HashJoinState *hjstate)
{
	/*----------
	 * During this scan we use the HashJoinState fields as follows:
	 *
	 * hj_CurBucketNo: next regular bucket to scan
	 * hj_CurSkewBucketNo: next skew bucket (an index into skewBucketNums)
	 * hj_CurTuple: last tuple returned, or NULL to start next bucket
	 *----------
	 */
	hjstate->hj_CurBucketNo = 0;
	hjstate->hj_CurSkewBucketNo = 0;
	hjstate->hj_CurTuple = NULL;
}

/*
 * ExecScanHashTableForUnmatched
 *		scan the hash table for unmatched inner tuples
 *
 * On success, the inner tuple is stored into hjstate->hj_CurTuple and
 * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
 * for the latter.
 */
bool
ExecScanHashTableForUnmatched(HashJoinState *hjstate, ExprContext *econtext)
{
	HashJoinTable hashtable = hjstate->hj_HashTable;
	HashJoinTuple hashTuple = hjstate->hj_CurTuple;

	for (;;)
	{
		/*
		 * hj_CurTuple is the address of the tuple last returned from the
		 * current bucket, or NULL if it's time to start scanning a new
		 * bucket.
		 */
		if (hashTuple != NULL)
			hashTuple = hashTuple->next.unshared;
		else if (hjstate->hj_CurBucketNo < hashtable->nbuckets)
		{
			hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];
			hjstate->hj_CurBucketNo++;
		}
		else if (hjstate->hj_CurSkewBucketNo < hashtable->nSkewBuckets)
		{
			int			j = hashtable->skewBucketNums[hjstate->hj_CurSkewBucketNo];

			hashTuple = hashtable->skewBucket[j]->tuples;
			hjstate->hj_CurSkewBucketNo++;
		}
		else
			break;				/* finished all buckets */

		while (hashTuple != NULL)
		{
			if (!HeapTupleHeaderHasMatch(HJTUPLE_MINTUPLE(hashTuple)))
			{
				TupleTableSlot *inntuple;

				/* insert hashtable's tuple into exec slot */
				inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
												 hjstate->hj_HashTupleSlot,
												 false);	/* do not pfree */
				econtext->ecxt_innertuple = inntuple;

				/*
				 * Reset temp memory each time; although this function doesn't
				 * do any qual eval, the caller will, so let's keep it
				 * parallel to ExecScanHashBucket.
				 */
				ResetExprContext(econtext);

				hjstate->hj_CurTuple = hashTuple;
				return true;
			}

			hashTuple = hashTuple->next.unshared;
		}

		/* allow this loop to be cancellable */
		CHECK_FOR_INTERRUPTS();
	}

	/*
	 * no more unmatched tuples
	 */
	return false;
}

/*
 * ExecHashTableReset
 *
 *		reset hash table header for new batch
 */
void
ExecHashTableReset(HashJoinTable hashtable)
{
	MemoryContext oldcxt;
	int			nbuckets = hashtable->nbuckets;

	/*
	 * Release all the hash buckets and tuples acquired in the prior pass, and
	 * reinitialize the context for a new pass.
	 */
	MemoryContextReset(hashtable->batchCxt);
	oldcxt = MemoryContextSwitchTo(hashtable->batchCxt);

	/* Reallocate and reinitialize the hash bucket headers. */
	hashtable->buckets.unshared = (HashJoinTuple *)
		palloc0(nbuckets * sizeof(HashJoinTuple));

	hashtable->spaceUsed = 0;

	MemoryContextSwitchTo(oldcxt);

	/* Forget the chunks (the memory was freed by the context reset above). */
	hashtable->chunks = NULL;
}

/*
 * ExecHashTableResetMatchFlags
 *		Clear all the HeapTupleHeaderHasMatch flags in the table
 */
void
ExecHashTableResetMatchFlags(HashJoinTable hashtable)
{
	HashJoinTuple tuple;
	int			i;

	/* Reset all flags in the main table ... */
	for (i = 0; i < hashtable->nbuckets; i++)
	{
		for (tuple = hashtable->buckets.unshared[i]; tuple != NULL;
			 tuple = tuple->next.unshared)
			HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(tuple));
	}

	/* ... and the same for the skew buckets, if any */
	for (i = 0; i < hashtable->nSkewBuckets; i++)
	{
		int			j = hashtable->skewBucketNums[i];
		HashSkewBucket *skewBucket = hashtable->skewBucket[j];

		for (tuple = skewBucket->tuples; tuple != NULL; tuple = tuple->next.unshared)
			HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(tuple));
	}
}


void
ExecReScanHash(HashState *node)
{
	/*
	 * if chgParam of subnode is not null then plan will be re-scanned by
	 * first ExecProcNode.
	 */
	if (node->ps.lefttree->chgParam == NULL)
		ExecReScan(node->ps.lefttree);
}


/*
 * ExecHashBuildSkewHash
 *
 *		Set up for skew optimization if we can identify the most common values
 *		(MCVs) of the outer relation's join key.  We make a skew hash bucket
 *		for the hash value of each MCV, up to the number of slots allowed
 *		based on available memory.
 */
static void
ExecHashBuildSkewHash(HashJoinTable hashtable, Hash *node, int mcvsToUse)
{
	HeapTupleData *statsTuple;
	AttStatsSlot sslot;

	/* Do nothing if planner didn't identify the outer relation's join key */
	if (!OidIsValid(node->skewTable))
		return;
	/* Also, do nothing if we don't have room for at least one skew bucket */
	if (mcvsToUse <= 0)
		return;

	/*
	 * Try to find the MCV statistics for the outer relation's join key.
	 */
	statsTuple = SearchSysCache3(STATRELATTINH,
								 ObjectIdGetDatum(node->skewTable),
								 Int16GetDatum(node->skewColumn),
								 BoolGetDatum(node->skewInherit));
	if (!HeapTupleIsValid(statsTuple))
		return;

	if (get_attstatsslot(&sslot, statsTuple,
						 STATISTIC_KIND_MCV, InvalidOid,
						 ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
	{
		double		frac;
		int			nbuckets;
		FmgrInfo   *hashfunctions;
		int			i;

		if (mcvsToUse > sslot.nvalues)
			mcvsToUse = sslot.nvalues;

		/*
		 * Calculate the expected fraction of outer relation that will
		 * participate in the skew optimization.  If this isn't at least
		 * SKEW_MIN_OUTER_FRACTION, don't use skew optimization.
		 */
		frac = 0;
		for (i = 0; i < mcvsToUse; i++)
			frac += sslot.numbers[i];
		if (frac < SKEW_MIN_OUTER_FRACTION)
		{
			free_attstatsslot(&sslot);
			ReleaseSysCache(statsTuple);
			return;
		}

		/*
		 * Okay, set up the skew hashtable.
		 *
		 * skewBucket[] is an open addressing hashtable with a power of 2 size
		 * that is greater than the number of MCV values.  (This ensures there
		 * will be at least one null entry, so searches will always
		 * terminate.)
		 *
		 * Note: this code could fail if mcvsToUse exceeds INT_MAX/8 or
		 * MaxAllocSize/sizeof(void *)/8, but that is not currently possible
		 * since we limit pg_statistic entries to much less than that.
		 */
		nbuckets = pg_nextpower2_32(mcvsToUse + 1);
		/* use two more bits just to help avoid collisions */
		nbuckets <<= 2;

		hashtable->skewEnabled = true;
		hashtable->skewBucketLen = nbuckets;

		/*
		 * We allocate the bucket memory in the hashtable's batch context. It
		 * is only needed during the first batch, and this ensures it will be
		 * automatically removed once the first batch is done.
		 */
		hashtable->skewBucket = (HashSkewBucket **)
			MemoryContextAllocZero(hashtable->batchCxt,
								   nbuckets * sizeof(HashSkewBucket *));
		hashtable->skewBucketNums = (int *)
			MemoryContextAllocZero(hashtable->batchCxt,
								   mcvsToUse * sizeof(int));

		hashtable->spaceUsed += nbuckets * sizeof(HashSkewBucket *)
			+ mcvsToUse * sizeof(int);
		hashtable->spaceUsedSkew += nbuckets * sizeof(HashSkewBucket *)
			+ mcvsToUse * sizeof(int);
		if (hashtable->spaceUsed > hashtable->spacePeak)
			hashtable->spacePeak = hashtable->spaceUsed;

		/*
		 * Create a skew bucket for each MCV hash value.
		 *
		 * Note: it is very important that we create the buckets in order of
		 * decreasing MCV frequency.  If we have to remove some buckets, they
		 * must be removed in reverse order of creation (see notes in
		 * ExecHashRemoveNextSkewBucket) and we want the least common MCVs to
		 * be removed first.
		 */
		hashfunctions = hashtable->outer_hashfunctions;

		for (i = 0; i < mcvsToUse; i++)
		{
			uint32		hashvalue;
			int			bucket;

			hashvalue = DatumGetUInt32(FunctionCall1Coll(&hashfunctions[0],
														 hashtable->collations[0],
														 sslot.values[i]));

			/*
			 * While we have not hit a hole in the hashtable and have not hit
			 * the desired bucket, we have collided with some previous hash
			 * value, so try the next bucket location.  NB: this code must
			 * match ExecHashGetSkewBucket.
			 */
			bucket = hashvalue & (nbuckets - 1);
			while (hashtable->skewBucket[bucket] != NULL &&
				   hashtable->skewBucket[bucket]->hashvalue != hashvalue)
				bucket = (bucket + 1) & (nbuckets - 1);

			/*
			 * If we found an existing bucket with the same hashvalue, leave
			 * it alone.  It's okay for two MCVs to share a hashvalue.
			 */
			if (hashtable->skewBucket[bucket] != NULL)
				continue;

			/* Okay, create a new skew bucket for this hashvalue. */
			hashtable->skewBucket[bucket] = (HashSkewBucket *)
				MemoryContextAlloc(hashtable->batchCxt,
								   sizeof(HashSkewBucket));
			hashtable->skewBucket[bucket]->hashvalue = hashvalue;
			hashtable->skewBucket[bucket]->tuples = NULL;
			hashtable->skewBucketNums[hashtable->nSkewBuckets] = bucket;
			hashtable->nSkewBuckets++;
			hashtable->spaceUsed += SKEW_BUCKET_OVERHEAD;
			hashtable->spaceUsedSkew += SKEW_BUCKET_OVERHEAD;
			if (hashtable->spaceUsed > hashtable->spacePeak)
				hashtable->spacePeak = hashtable->spaceUsed;
		}

		free_attstatsslot(&sslot);
	}

	ReleaseSysCache(statsTuple);
}

/*
 * ExecHashGetSkewBucket
 *
 *		Returns the index of the skew bucket for this hashvalue,
 *		or INVALID_SKEW_BUCKET_NO if the hashvalue is not
 *		associated with any active skew bucket.
 */
int
ExecHashGetSkewBucket(HashJoinTable hashtable, uint32 hashvalue)
{
	int			bucket;

	/*
	 * Always return INVALID_SKEW_BUCKET_NO if not doing skew optimization (in
	 * particular, this happens after the initial batch is done).
	 */
	if (!hashtable->skewEnabled)
		return INVALID_SKEW_BUCKET_NO;

	/*
	 * Since skewBucketLen is a power of 2, we can do a modulo by ANDing.
	 */
	bucket = hashvalue & (hashtable->skewBucketLen - 1);

	/*
	 * While we have not hit a hole in the hashtable and have not hit the
	 * desired bucket, we have collided with some other hash value, so try the
	 * next bucket location.
	 */
	while (hashtable->skewBucket[bucket] != NULL &&
		   hashtable->skewBucket[bucket]->hashvalue != hashvalue)
		bucket = (bucket + 1) & (hashtable->skewBucketLen - 1);

	/*
	 * Found the desired bucket?
	 */
	if (hashtable->skewBucket[bucket] != NULL)
		return bucket;

	/*
	 * There must not be any hashtable entry for this hash value.
	 */
	return INVALID_SKEW_BUCKET_NO;
}

/*
 * ExecHashSkewTableInsert
 *
 *		Insert a tuple into the skew hashtable.
 *
 * This should generally match up with the current-batch case in
 * ExecHashTableInsert.
 */
static void
ExecHashSkewTableInsert(HashJoinTable hashtable,
						TupleTableSlot *slot,
						uint32 hashvalue,
						int bucketNumber)
{
	bool		shouldFree;
	MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
	HashJoinTuple hashTuple;
	int			hashTupleSize;

	/* Create the HashJoinTuple */
	hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
	hashTuple = (HashJoinTuple) MemoryContextAlloc(hashtable->batchCxt,
												   hashTupleSize);
	hashTuple->hashvalue = hashvalue;
	memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
	HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));

	/* Push it onto the front of the skew bucket's list */
	hashTuple->next.unshared = hashtable->skewBucket[bucketNumber]->tuples;
	hashtable->skewBucket[bucketNumber]->tuples = hashTuple;
	Assert(hashTuple != hashTuple->next.unshared);

	/* Account for space used, and back off if we've used too much */
	hashtable->spaceUsed += hashTupleSize;
	hashtable->spaceUsedSkew += hashTupleSize;
	if (hashtable->spaceUsed > hashtable->spacePeak)
		hashtable->spacePeak = hashtable->spaceUsed;
	while (hashtable->spaceUsedSkew > hashtable->spaceAllowedSkew)
		ExecHashRemoveNextSkewBucket(hashtable);

	/* Check we are not over the total spaceAllowed, either */
	if (hashtable->spaceUsed > hashtable->spaceAllowed)
		ExecHashIncreaseNumBatches(hashtable);

	if (shouldFree)
		heap_free_minimal_tuple(tuple);
}

/*
 *		ExecHashRemoveNextSkewBucket
 *
 *		Remove the least valuable skew bucket by pushing its tuples into
 *		the main hash table.
 */
static void
ExecHashRemoveNextSkewBucket(HashJoinTable hashtable)
{
	int			bucketToRemove;
	HashSkewBucket *bucket;
	uint32		hashvalue;
	int			bucketno;
	int			batchno;
	HashJoinTuple hashTuple;

	/* Locate the bucket to remove */
	bucketToRemove = hashtable->skewBucketNums[hashtable->nSkewBuckets - 1];
	bucket = hashtable->skewBucket[bucketToRemove];

	/*
	 * Calculate which bucket and batch the tuples belong to in the main
	 * hashtable.  They all have the same hash value, so it's the same for all
	 * of them.  Also note that it's not possible for nbatch to increase while
	 * we are processing the tuples.
	 */
	hashvalue = bucket->hashvalue;
	ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);

	/* Process all tuples in the bucket */
	hashTuple = bucket->tuples;
	while (hashTuple != NULL)
	{
		HashJoinTuple nextHashTuple = hashTuple->next.unshared;
		MinimalTuple tuple;
		Size		tupleSize;

		/*
		 * This code must agree with ExecHashTableInsert.  We do not use
		 * ExecHashTableInsert directly as ExecHashTableInsert expects a
		 * TupleTableSlot while we already have HashJoinTuples.
		 */
		tuple = HJTUPLE_MINTUPLE(hashTuple);
		tupleSize = HJTUPLE_OVERHEAD + tuple->t_len;

		/* Decide whether to put the tuple in the hash table or a temp file */
		if (batchno == hashtable->curbatch)
		{
			/* Move the tuple to the main hash table */
			HashJoinTuple copyTuple;

			/*
			 * We must copy the tuple into the dense storage, else it will not
			 * be found by, eg, ExecHashIncreaseNumBatches.
			 */
			copyTuple = (HashJoinTuple) dense_alloc(hashtable, tupleSize);
			memcpy(copyTuple, hashTuple, tupleSize);
			pfree(hashTuple);

			copyTuple->next.unshared = hashtable->buckets.unshared[bucketno];
			hashtable->buckets.unshared[bucketno] = copyTuple;

			/* We have reduced skew space, but overall space doesn't change */
			hashtable->spaceUsedSkew -= tupleSize;
		}
		else
		{
			/* Put the tuple into a temp file for later batches */
			Assert(batchno > hashtable->curbatch);
			ExecHashJoinSaveTuple(tuple, hashvalue,
								  &hashtable->innerBatchFile[batchno]);
			pfree(hashTuple);
			hashtable->spaceUsed -= tupleSize;
			hashtable->spaceUsedSkew -= tupleSize;
		}

		hashTuple = nextHashTuple;

		/* allow this loop to be cancellable */
		CHECK_FOR_INTERRUPTS();
	}

	/*
	 * Free the bucket struct itself and reset the hashtable entry to NULL.
	 *
	 * NOTE: this is not nearly as simple as it looks on the surface, because
	 * of the possibility of collisions in the hashtable.  Suppose that hash
	 * values A and B collide at a particular hashtable entry, and that A was
	 * entered first so B gets shifted to a different table entry.  If we were
	 * to remove A first then ExecHashGetSkewBucket would mistakenly start
	 * reporting that B is not in the hashtable, because it would hit the NULL
	 * before finding B.  However, we always remove entries in the reverse
	 * order of creation, so this failure cannot happen.
	 */
	hashtable->skewBucket[bucketToRemove] = NULL;
	hashtable->nSkewBuckets--;
	pfree(bucket);
	hashtable->spaceUsed -= SKEW_BUCKET_OVERHEAD;
	hashtable->spaceUsedSkew -= SKEW_BUCKET_OVERHEAD;

	/*
	 * If we have removed all skew buckets then give up on skew optimization.
	 * Release the arrays since they aren't useful any more.
	 */
	if (hashtable->nSkewBuckets == 0)
	{
		hashtable->skewEnabled = false;
		pfree(hashtable->skewBucket);
		pfree(hashtable->skewBucketNums);
		hashtable->skewBucket = NULL;
		hashtable->skewBucketNums = NULL;
		hashtable->spaceUsed -= hashtable->spaceUsedSkew;
		hashtable->spaceUsedSkew = 0;
	}
}

/*
 * Reserve space in the DSM segment for instrumentation data.
 */
void
ExecHashEstimate(HashState *node, ParallelContext *pcxt)
{
	size_t		size;

	/* don't need this if not instrumenting or no workers */
	if (!node->ps.instrument || pcxt->nworkers == 0)
		return;

	size = mul_size(pcxt->nworkers, sizeof(HashInstrumentation));
	size = add_size(size, offsetof(SharedHashInfo, hinstrument));
	shm_toc_estimate_chunk(&pcxt->estimator, size);
	shm_toc_estimate_keys(&pcxt->estimator, 1);
}

/*
 * Set up a space in the DSM for all workers to record instrumentation data
 * about their hash table.
 */
void
ExecHashInitializeDSM(HashState *node, ParallelContext *pcxt)
{
	size_t		size;

	/* don't need this if not instrumenting or no workers */
	if (!node->ps.instrument || pcxt->nworkers == 0)
		return;

	size = offsetof(SharedHashInfo, hinstrument) +
		pcxt->nworkers * sizeof(HashInstrumentation);
	node->shared_info = (SharedHashInfo *) shm_toc_allocate(pcxt->toc, size);

	/* Each per-worker area must start out as zeroes. */
	memset(node->shared_info, 0, size);

	node->shared_info->num_workers = pcxt->nworkers;
	shm_toc_insert(pcxt->toc, node->ps.plan->plan_node_id,
				   node->shared_info);
}

/*
 * Locate the DSM space for hash table instrumentation data that we'll write
 * to at shutdown time.
 */
void
ExecHashInitializeWorker(HashState *node, ParallelWorkerContext *pwcxt)
{
	SharedHashInfo *shared_info;

	/* don't need this if not instrumenting */
	if (!node->ps.instrument)
		return;

	/*
	 * Find our entry in the shared area, and set up a pointer to it so that
	 * we'll accumulate stats there when shutting down or rebuilding the hash
	 * table.
	 */
	shared_info = (SharedHashInfo *)
		shm_toc_lookup(pwcxt->toc, node->ps.plan->plan_node_id, false);
	node->hinstrument = &shared_info->hinstrument[ParallelWorkerNumber];
}

/*
 * Collect EXPLAIN stats if needed, saving them into DSM memory if
 * ExecHashInitializeWorker was called, or local storage if not.  In the
 * parallel case, this must be done in ExecShutdownHash() rather than
 * ExecEndHash() because the latter runs after we've detached from the DSM
 * segment.
 */
void
ExecShutdownHash(HashState *node)
{
	/* Allocate save space if EXPLAIN'ing and we didn't do so already */
	if (node->ps.instrument && !node->hinstrument)
		node->hinstrument = (HashInstrumentation *)
			palloc0(sizeof(HashInstrumentation));
	/* Now accumulate data for the current (final) hash table */
	if (node->hinstrument && node->hashtable)
		ExecHashAccumInstrumentation(node->hinstrument, node->hashtable);
}

/*
 * Retrieve instrumentation data from workers before the DSM segment is
 * detached, so that EXPLAIN can access it.
 */
void
ExecHashRetrieveInstrumentation(HashState *node)
{
	SharedHashInfo *shared_info = node->shared_info;
	size_t		size;

	if (shared_info == NULL)
		return;

	/* Replace node->shared_info with a copy in backend-local memory. */
	size = offsetof(SharedHashInfo, hinstrument) +
		shared_info->num_workers * sizeof(HashInstrumentation);
	node->shared_info = palloc(size);
	memcpy(node->shared_info, shared_info, size);
}

/*
 * Accumulate instrumentation data from 'hashtable' into an
 * initially-zeroed HashInstrumentation struct.
 *
 * This is used to merge information across successive hash table instances
 * within a single plan node.  We take the maximum values of each interesting
 * number.  The largest nbuckets and largest nbatch values might have occurred
 * in different instances, so there's some risk of confusion from reporting
 * unrelated numbers; but there's a bigger risk of misdiagnosing a performance
 * issue if we don't report the largest values.  Similarly, we want to report
 * the largest spacePeak regardless of whether it happened in the same
 * instance as the largest nbuckets or nbatch.  All the instances should have
 * the same nbuckets_original and nbatch_original; but there's little value
 * in depending on that here, so handle them the same way.
 */
void
ExecHashAccumInstrumentation(HashInstrumentation *instrument,
							 HashJoinTable hashtable)
{
	instrument->nbuckets = Max(instrument->nbuckets,
							   hashtable->nbuckets);
	instrument->nbuckets_original = Max(instrument->nbuckets_original,
										hashtable->nbuckets_original);
	instrument->nbatch = Max(instrument->nbatch,
							 hashtable->nbatch);
	instrument->nbatch_original = Max(instrument->nbatch_original,
									  hashtable->nbatch_original);
	instrument->space_peak = Max(instrument->space_peak,
								 hashtable->spacePeak);
}

/*
 * Allocate 'size' bytes from the currently active HashMemoryChunk
 */
static void *
dense_alloc(HashJoinTable hashtable, Size size)
{
	HashMemoryChunk newChunk;
	char	   *ptr;

	/* just in case the size is not already aligned properly */
	size = MAXALIGN(size);

	/*
	 * If tuple size is larger than threshold, allocate a separate chunk.
	 */
	if (size > HASH_CHUNK_THRESHOLD)
	{
		/* allocate new chunk and put it at the beginning of the list */
		newChunk = (HashMemoryChunk) MemoryContextAlloc(hashtable->batchCxt,
														HASH_CHUNK_HEADER_SIZE + size);
		newChunk->maxlen = size;
		newChunk->used = size;
		newChunk->ntuples = 1;

		/*
		 * Add this chunk to the list after the first existing chunk, so that
		 * we don't lose the remaining space in the "current" chunk.
		 */
		if (hashtable->chunks != NULL)
		{
			newChunk->next = hashtable->chunks->next;
			hashtable->chunks->next.unshared = newChunk;
		}
		else
		{
			newChunk->next.unshared = hashtable->chunks;
			hashtable->chunks = newChunk;
		}

		return HASH_CHUNK_DATA(newChunk);
	}

	/*
	 * See if we have enough space for it in the current chunk (if any). If
	 * not, allocate a fresh chunk.
	 */
	if ((hashtable->chunks == NULL) ||
		(hashtable->chunks->maxlen - hashtable->chunks->used) < size)
	{
		/* allocate new chunk and put it at the beginning of the list */
		newChunk = (HashMemoryChunk) MemoryContextAlloc(hashtable->batchCxt,
														HASH_CHUNK_HEADER_SIZE + HASH_CHUNK_SIZE);

		newChunk->maxlen = HASH_CHUNK_SIZE;
		newChunk->used = size;
		newChunk->ntuples = 1;

		newChunk->next.unshared = hashtable->chunks;
		hashtable->chunks = newChunk;

		return HASH_CHUNK_DATA(newChunk);
	}

	/* There is enough space in the current chunk, let's add the tuple */
	ptr = HASH_CHUNK_DATA(hashtable->chunks) + hashtable->chunks->used;
	hashtable->chunks->used += size;
	hashtable->chunks->ntuples += 1;

	/* return pointer to the start of the tuple memory */
	return ptr;
}

/*
 * Allocate space for a tuple in shared dense storage.  This is equivalent to
 * dense_alloc but for Parallel Hash using shared memory.
 *
 * While loading a tuple into shared memory, we might run out of memory and
 * decide to repartition, or determine that the load factor is too high and
 * decide to expand the bucket array, or discover that another participant has
 * commanded us to help do that.  Return NULL if number of buckets or batches
 * has changed, indicating that the caller must retry (considering the
 * possibility that the tuple no longer belongs in the same batch).
 */
static HashJoinTuple
ExecParallelHashTupleAlloc(HashJoinTable hashtable, size_t size,
						   dsa_pointer *shared)
{
	ParallelHashJoinState *pstate = hashtable->parallel_state;
	dsa_pointer chunk_shared;
	HashMemoryChunk chunk;
	Size		chunk_size;
	HashJoinTuple result;
	int			curbatch = hashtable->curbatch;

	size = MAXALIGN(size);

	/*
	 * Fast path: if there is enough space in this backend's current chunk,
	 * then we can allocate without any locking.
	 */
	chunk = hashtable->current_chunk;
	if (chunk != NULL &&
		size <= HASH_CHUNK_THRESHOLD &&
		chunk->maxlen - chunk->used >= size)
	{

		chunk_shared = hashtable->current_chunk_shared;
		Assert(chunk == dsa_get_address(hashtable->area, chunk_shared));
		*shared = chunk_shared + HASH_CHUNK_HEADER_SIZE + chunk->used;
		result = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + chunk->used);
		chunk->used += size;

		Assert(chunk->used <= chunk->maxlen);
		Assert(result == dsa_get_address(hashtable->area, *shared));

		return result;
	}

	/* Slow path: try to allocate a new chunk. */
	LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);

	/*
	 * Check if we need to help increase the number of buckets or batches.
	 */
	if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES ||
		pstate->growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
	{
		ParallelHashGrowth growth = pstate->growth;

		hashtable->current_chunk = NULL;
		LWLockRelease(&pstate->lock);

		/* Another participant has commanded us to help grow. */
		if (growth == PHJ_GROWTH_NEED_MORE_BATCHES)
			ExecParallelHashIncreaseNumBatches(hashtable);
		else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
			ExecParallelHashIncreaseNumBuckets(hashtable);

		/* The caller must retry. */
		return NULL;
	}

	/* Oversized tuples get their own chunk. */
	if (size > HASH_CHUNK_THRESHOLD)
		chunk_size = size + HASH_CHUNK_HEADER_SIZE;
	else
		chunk_size = HASH_CHUNK_SIZE;

	/* Check if it's time to grow batches or buckets. */
	if (pstate->growth != PHJ_GROWTH_DISABLED)
	{
		Assert(curbatch == 0);
		Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);

		/*
		 * Check if our space limit would be exceeded.  To avoid choking on
		 * very large tuples or very low hash_mem setting, we'll always allow
		 * each backend to allocate at least one chunk.
		 */
		if (hashtable->batches[0].at_least_one_chunk &&
			hashtable->batches[0].shared->size +
			chunk_size > pstate->space_allowed)
		{
			pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
			hashtable->batches[0].shared->space_exhausted = true;
			LWLockRelease(&pstate->lock);

			return NULL;
		}

		/* Check if our load factor limit would be exceeded. */
		if (hashtable->nbatch == 1)
		{
			hashtable->batches[0].shared->ntuples += hashtable->batches[0].ntuples;
			hashtable->batches[0].ntuples = 0;
			/* Guard against integer overflow and alloc size overflow */
			if (hashtable->batches[0].shared->ntuples + 1 >
				hashtable->nbuckets * NTUP_PER_BUCKET &&
				hashtable->nbuckets < (INT_MAX / 2) &&
				hashtable->nbuckets * 2 <=
				MaxAllocSize / sizeof(dsa_pointer_atomic))
			{
				pstate->growth = PHJ_GROWTH_NEED_MORE_BUCKETS;
				LWLockRelease(&pstate->lock);

				return NULL;
			}
		}
	}

	/* We are cleared to allocate a new chunk. */
	chunk_shared = dsa_allocate(hashtable->area, chunk_size);
	hashtable->batches[curbatch].shared->size += chunk_size;
	hashtable->batches[curbatch].at_least_one_chunk = true;

	/* Set up the chunk. */
	chunk = (HashMemoryChunk) dsa_get_address(hashtable->area, chunk_shared);
	*shared = chunk_shared + HASH_CHUNK_HEADER_SIZE;
	chunk->maxlen = chunk_size - HASH_CHUNK_HEADER_SIZE;
	chunk->used = size;

	/*
	 * Push it onto the list of chunks, so that it can be found if we need to
	 * increase the number of buckets or batches (batch 0 only) and later for
	 * freeing the memory (all batches).
	 */
	chunk->next.shared = hashtable->batches[curbatch].shared->chunks;
	hashtable->batches[curbatch].shared->chunks = chunk_shared;

	if (size <= HASH_CHUNK_THRESHOLD)
	{
		/*
		 * Make this the current chunk so that we can use the fast path to
		 * fill the rest of it up in future calls.
		 */
		hashtable->current_chunk = chunk;
		hashtable->current_chunk_shared = chunk_shared;
	}
	LWLockRelease(&pstate->lock);

	Assert(HASH_CHUNK_DATA(chunk) == dsa_get_address(hashtable->area, *shared));
	result = (HashJoinTuple) HASH_CHUNK_DATA(chunk);

	return result;
}

/*
 * One backend needs to set up the shared batch state including tuplestores.
 * Other backends will ensure they have correctly configured accessors by
 * called ExecParallelHashEnsureBatchAccessors().
 */
static void
ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch)
{
	ParallelHashJoinState *pstate = hashtable->parallel_state;
	ParallelHashJoinBatch *batches;
	MemoryContext oldcxt;
	int			i;

	Assert(hashtable->batches == NULL);

	/* Allocate space. */
	pstate->batches =
		dsa_allocate0(hashtable->area,
					  EstimateParallelHashJoinBatch(hashtable) * nbatch);
	pstate->nbatch = nbatch;
	batches = dsa_get_address(hashtable->area, pstate->batches);

	/* Use hash join memory context. */
	oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);

	/* Allocate this backend's accessor array. */
	hashtable->nbatch = nbatch;
	hashtable->batches = (ParallelHashJoinBatchAccessor *)
		palloc0(sizeof(ParallelHashJoinBatchAccessor) * hashtable->nbatch);

	/* Set up the shared state, tuplestores and backend-local accessors. */
	for (i = 0; i < hashtable->nbatch; ++i)
	{
		ParallelHashJoinBatchAccessor *accessor = &hashtable->batches[i];
		ParallelHashJoinBatch *shared = NthParallelHashJoinBatch(batches, i);
		char		name[MAXPGPATH];

		/*
		 * All members of shared were zero-initialized.  We just need to set
		 * up the Barrier.
		 */
		BarrierInit(&shared->batch_barrier, 0);
		if (i == 0)
		{
			/* Batch 0 doesn't need to be loaded. */
			BarrierAttach(&shared->batch_barrier);
			while (BarrierPhase(&shared->batch_barrier) < PHJ_BATCH_PROBING)
				BarrierArriveAndWait(&shared->batch_barrier, 0);
			BarrierDetach(&shared->batch_barrier);
		}

		/* Initialize accessor state.  All members were zero-initialized. */
		accessor->shared = shared;

		/* Initialize the shared tuplestores. */
		snprintf(name, sizeof(name), "i%dof%d", i, hashtable->nbatch);
		accessor->inner_tuples =
			sts_initialize(ParallelHashJoinBatchInner(shared),
						   pstate->nparticipants,
						   ParallelWorkerNumber + 1,
						   sizeof(uint32),
						   SHARED_TUPLESTORE_SINGLE_PASS,
						   &pstate->fileset,
						   name);
		snprintf(name, sizeof(name), "o%dof%d", i, hashtable->nbatch);
		accessor->outer_tuples =
			sts_initialize(ParallelHashJoinBatchOuter(shared,
													  pstate->nparticipants),
						   pstate->nparticipants,
						   ParallelWorkerNumber + 1,
						   sizeof(uint32),
						   SHARED_TUPLESTORE_SINGLE_PASS,
						   &pstate->fileset,
						   name);
	}

	MemoryContextSwitchTo(oldcxt);
}

/*
 * Free the current set of ParallelHashJoinBatchAccessor objects.
 */
static void
ExecParallelHashCloseBatchAccessors(HashJoinTable hashtable)
{
	int			i;

	for (i = 0; i < hashtable->nbatch; ++i)
	{
		/* Make sure no files are left open. */
		sts_end_write(hashtable->batches[i].inner_tuples);
		sts_end_write(hashtable->batches[i].outer_tuples);
		sts_end_parallel_scan(hashtable->batches[i].inner_tuples);
		sts_end_parallel_scan(hashtable->batches[i].outer_tuples);
	}
	pfree(hashtable->batches);
	hashtable->batches = NULL;
}

/*
 * Make sure this backend has up-to-date accessors for the current set of
 * batches.
 */
static void
ExecParallelHashEnsureBatchAccessors(HashJoinTable hashtable)
{
	ParallelHashJoinState *pstate = hashtable->parallel_state;
	ParallelHashJoinBatch *batches;
	MemoryContext oldcxt;
	int			i;

	if (hashtable->batches != NULL)
	{
		if (hashtable->nbatch == pstate->nbatch)
			return;
		ExecParallelHashCloseBatchAccessors(hashtable);
	}

	/*
	 * We should never see a state where the batch-tracking array is freed,
	 * because we should have given up sooner if we join when the build
	 * barrier has reached the PHJ_BUILD_DONE phase.
	 */
	Assert(DsaPointerIsValid(pstate->batches));

	/* Use hash join memory context. */
	oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);

	/* Allocate this backend's accessor array. */
	hashtable->nbatch = pstate->nbatch;
	hashtable->batches = (ParallelHashJoinBatchAccessor *)
		palloc0(sizeof(ParallelHashJoinBatchAccessor) * hashtable->nbatch);

	/* Find the base of the pseudo-array of ParallelHashJoinBatch objects. */
	batches = (ParallelHashJoinBatch *)
		dsa_get_address(hashtable->area, pstate->batches);

	/* Set up the accessor array and attach to the tuplestores. */
	for (i = 0; i < hashtable->nbatch; ++i)
	{
		ParallelHashJoinBatchAccessor *accessor = &hashtable->batches[i];
		ParallelHashJoinBatch *shared = NthParallelHashJoinBatch(batches, i);

		accessor->shared = shared;
		accessor->preallocated = 0;
		accessor->done = false;
		accessor->inner_tuples =
			sts_attach(ParallelHashJoinBatchInner(shared),
					   ParallelWorkerNumber + 1,
					   &pstate->fileset);
		accessor->outer_tuples =
			sts_attach(ParallelHashJoinBatchOuter(shared,
												  pstate->nparticipants),
					   ParallelWorkerNumber + 1,
					   &pstate->fileset);
	}

	MemoryContextSwitchTo(oldcxt);
}

/*
 * Allocate an empty shared memory hash table for a given batch.
 */
void
ExecParallelHashTableAlloc(HashJoinTable hashtable, int batchno)
{
	ParallelHashJoinBatch *batch = hashtable->batches[batchno].shared;
	dsa_pointer_atomic *buckets;
	int			nbuckets = hashtable->parallel_state->nbuckets;
	int			i;

	batch->buckets =
		dsa_allocate(hashtable->area, sizeof(dsa_pointer_atomic) * nbuckets);
	buckets = (dsa_pointer_atomic *)
		dsa_get_address(hashtable->area, batch->buckets);
	for (i = 0; i < nbuckets; ++i)
		dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
}

/*
 * If we are currently attached to a shared hash join batch, detach.  If we
 * are last to detach, clean up.
 */
void
ExecHashTableDetachBatch(HashJoinTable hashtable)
{
	if (hashtable->parallel_state != NULL &&
		hashtable->curbatch >= 0)
	{
		int			curbatch = hashtable->curbatch;
		ParallelHashJoinBatch *batch = hashtable->batches[curbatch].shared;

		/* Make sure any temporary files are closed. */
		sts_end_parallel_scan(hashtable->batches[curbatch].inner_tuples);
		sts_end_parallel_scan(hashtable->batches[curbatch].outer_tuples);

		/* Detach from the batch we were last working on. */
		if (BarrierArriveAndDetach(&batch->batch_barrier))
		{
			/*
			 * Technically we shouldn't access the barrier because we're no
			 * longer attached, but since there is no way it's moving after
			 * this point it seems safe to make the following assertion.
			 */
			Assert(BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_DONE);

			/* Free shared chunks and buckets. */
			while (DsaPointerIsValid(batch->chunks))
			{
				HashMemoryChunk chunk =
				dsa_get_address(hashtable->area, batch->chunks);
				dsa_pointer next = chunk->next.shared;

				dsa_free(hashtable->area, batch->chunks);
				batch->chunks = next;
			}
			if (DsaPointerIsValid(batch->buckets))
			{
				dsa_free(hashtable->area, batch->buckets);
				batch->buckets = InvalidDsaPointer;
			}
		}

		/*
		 * Track the largest batch we've been attached to.  Though each
		 * backend might see a different subset of batches, explain.c will
		 * scan the results from all backends to find the largest value.
		 */
		hashtable->spacePeak =
			Max(hashtable->spacePeak,
				batch->size + sizeof(dsa_pointer_atomic) * hashtable->nbuckets);

		/* Remember that we are not attached to a batch. */
		hashtable->curbatch = -1;
	}
}

/*
 * Detach from all shared resources.  If we are last to detach, clean up.
 */
void
ExecHashTableDetach(HashJoinTable hashtable)
{
	ParallelHashJoinState *pstate = hashtable->parallel_state;

	/*
	 * If we're involved in a parallel query, we must either have gotten all
	 * the way to PHJ_BUILD_RUNNING, or joined too late and be in
	 * PHJ_BUILD_DONE.
	 */
	Assert(!pstate ||
		   BarrierPhase(&pstate->build_barrier) >= PHJ_BUILD_RUNNING);

	if (pstate && BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_RUNNING)
	{
		int			i;

		/* Make sure any temporary files are closed. */
		if (hashtable->batches)
		{
			for (i = 0; i < hashtable->nbatch; ++i)
			{
				sts_end_write(hashtable->batches[i].inner_tuples);
				sts_end_write(hashtable->batches[i].outer_tuples);
				sts_end_parallel_scan(hashtable->batches[i].inner_tuples);
				sts_end_parallel_scan(hashtable->batches[i].outer_tuples);
			}
		}

		/* If we're last to detach, clean up shared memory. */
		if (BarrierArriveAndDetach(&pstate->build_barrier))
		{
			/*
			 * Late joining processes will see this state and give up
			 * immediately.
			 */
			Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_DONE);

			if (DsaPointerIsValid(pstate->batches))
			{
				dsa_free(hashtable->area, pstate->batches);
				pstate->batches = InvalidDsaPointer;
			}
		}
	}
	hashtable->parallel_state = NULL;
}

/*
 * Get the first tuple in a given bucket identified by number.
 */
static inline HashJoinTuple
ExecParallelHashFirstTuple(HashJoinTable hashtable, int bucketno)
{
	HashJoinTuple tuple;
	dsa_pointer p;

	Assert(hashtable->parallel_state);
	p = dsa_pointer_atomic_read(&hashtable->buckets.shared[bucketno]);
	tuple = (HashJoinTuple) dsa_get_address(hashtable->area, p);

	return tuple;
}

/*
 * Get the next tuple in the same bucket as 'tuple'.
 */
static inline HashJoinTuple
ExecParallelHashNextTuple(HashJoinTable hashtable, HashJoinTuple tuple)
{
	HashJoinTuple next;

	Assert(hashtable->parallel_state);
	next = (HashJoinTuple) dsa_get_address(hashtable->area, tuple->next.shared);

	return next;
}

/*
 * Insert a tuple at the front of a chain of tuples in DSA memory atomically.
 */
static inline void
ExecParallelHashPushTuple(dsa_pointer_atomic *head,
						  HashJoinTuple tuple,
						  dsa_pointer tuple_shared)
{
	for (;;)
	{
		tuple->next.shared = dsa_pointer_atomic_read(head);
		if (dsa_pointer_atomic_compare_exchange(head,
												&tuple->next.shared,
												tuple_shared))
			break;
	}
}

/*
 * Prepare to work on a given batch.
 */
void
ExecParallelHashTableSetCurrentBatch(HashJoinTable hashtable, int batchno)
{
	Assert(hashtable->batches[batchno].shared->buckets != InvalidDsaPointer);

	hashtable->curbatch = batchno;
	hashtable->buckets.shared = (dsa_pointer_atomic *)
		dsa_get_address(hashtable->area,
						hashtable->batches[batchno].shared->buckets);
	hashtable->nbuckets = hashtable->parallel_state->nbuckets;
	hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
	hashtable->current_chunk = NULL;
	hashtable->current_chunk_shared = InvalidDsaPointer;
	hashtable->batches[batchno].at_least_one_chunk = false;
}

/*
 * Take the next available chunk from the queue of chunks being worked on in
 * parallel.  Return NULL if there are none left.  Otherwise return a pointer
 * to the chunk, and set *shared to the DSA pointer to the chunk.
 */
static HashMemoryChunk
ExecParallelHashPopChunkQueue(HashJoinTable hashtable, dsa_pointer *shared)
{
	ParallelHashJoinState *pstate = hashtable->parallel_state;
	HashMemoryChunk chunk;

	LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
	if (DsaPointerIsValid(pstate->chunk_work_queue))
	{
		*shared = pstate->chunk_work_queue;
		chunk = (HashMemoryChunk)
			dsa_get_address(hashtable->area, *shared);
		pstate->chunk_work_queue = chunk->next.shared;
	}
	else
		chunk = NULL;
	LWLockRelease(&pstate->lock);

	return chunk;
}

/*
 * Increase the space preallocated in this backend for a given inner batch by
 * at least a given amount.  This allows us to track whether a given batch
 * would fit in memory when loaded back in.  Also increase the number of
 * batches or buckets if required.
 *
 * This maintains a running estimation of how much space will be taken when we
 * load the batch back into memory by simulating the way chunks will be handed
 * out to workers.  It's not perfectly accurate because the tuples will be
 * packed into memory chunks differently by ExecParallelHashTupleAlloc(), but
 * it should be pretty close.  It tends to overestimate by a fraction of a
 * chunk per worker since all workers gang up to preallocate during hashing,
 * but workers tend to reload batches alone if there are enough to go around,
 * leaving fewer partially filled chunks.  This effect is bounded by
 * nparticipants.
 *
 * Return false if the number of batches or buckets has changed, and the
 * caller should reconsider which batch a given tuple now belongs in and call
 * again.
 */
static bool
ExecParallelHashTuplePrealloc(HashJoinTable hashtable, int batchno, size_t size)
{
	ParallelHashJoinState *pstate = hashtable->parallel_state;
	ParallelHashJoinBatchAccessor *batch = &hashtable->batches[batchno];
	size_t		want = Max(size, HASH_CHUNK_SIZE - HASH_CHUNK_HEADER_SIZE);

	Assert(batchno > 0);
	Assert(batchno < hashtable->nbatch);
	Assert(size == MAXALIGN(size));

	LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);

	/* Has another participant commanded us to help grow? */
	if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES ||
		pstate->growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
	{
		ParallelHashGrowth growth = pstate->growth;

		LWLockRelease(&pstate->lock);
		if (growth == PHJ_GROWTH_NEED_MORE_BATCHES)
			ExecParallelHashIncreaseNumBatches(hashtable);
		else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
			ExecParallelHashIncreaseNumBuckets(hashtable);

		return false;
	}

	if (pstate->growth != PHJ_GROWTH_DISABLED &&
		batch->at_least_one_chunk &&
		(batch->shared->estimated_size + want + HASH_CHUNK_HEADER_SIZE
		 > pstate->space_allowed))
	{
		/*
		 * We have determined that this batch would exceed the space budget if
		 * loaded into memory.  Command all participants to help repartition.
		 */
		batch->shared->space_exhausted = true;
		pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
		LWLockRelease(&pstate->lock);

		return false;
	}

	batch->at_least_one_chunk = true;
	batch->shared->estimated_size += want + HASH_CHUNK_HEADER_SIZE;
	batch->preallocated = want;
	LWLockRelease(&pstate->lock);

	return true;
}

/*
 * Calculate the limit on how much memory can be used by Hash and similar
 * plan types.  This is work_mem times hash_mem_multiplier, and is
 * expressed in bytes.
 *
 * Exported for use by the planner, as well as other hash-like executor
 * nodes.  This is a rather random place for this, but there is no better
 * place.
 */
size_t
get_hash_memory_limit(void)
{
	double		mem_limit;

	/* Do initial calculation in double arithmetic */
	mem_limit = (double) work_mem * hash_mem_multiplier * 1024.0;

	/* Clamp in case it doesn't fit in size_t */
	mem_limit = Min(mem_limit, (double) SIZE_MAX);

	return (size_t) mem_limit;
}