1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
/*------------------------------------------------------------------------
*
* geqo_main.c
* solution to the query optimization problem
* by means of a Genetic Algorithm (GA)
*
* Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/backend/optimizer/geqo/geqo_main.c
*
*-------------------------------------------------------------------------
*/
/* contributed by:
=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=
* Martin Utesch * Institute of Automatic Control *
= = University of Mining and Technology =
* utesch@aut.tu-freiberg.de * Freiberg, Germany *
=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=
*/
/* -- parts of this are adapted from D. Whitley's Genitor algorithm -- */
#include "postgres.h"
#include <math.h>
#include "optimizer/geqo_misc.h"
#include "optimizer/geqo_mutation.h"
#include "optimizer/geqo_pool.h"
#include "optimizer/geqo_random.h"
#include "optimizer/geqo_selection.h"
/*
* Configuration options
*/
int Geqo_effort;
int Geqo_pool_size;
int Geqo_generations;
double Geqo_selection_bias;
double Geqo_seed;
static int gimme_pool_size(int nr_rel);
static int gimme_number_generations(int pool_size);
/* complain if no recombination mechanism is #define'd */
#if !defined(ERX) && \
!defined(PMX) && \
!defined(CX) && \
!defined(PX) && \
!defined(OX1) && \
!defined(OX2)
#error "must choose one GEQO recombination mechanism in geqo.h"
#endif
/*
* geqo
* solution of the query optimization problem
* similar to a constrained Traveling Salesman Problem (TSP)
*/
RelOptInfo *
geqo(PlannerInfo *root, int number_of_rels, List *initial_rels)
{
GeqoPrivateData private;
int generation;
Chromosome *momma;
Chromosome *daddy;
Chromosome *kid;
Pool *pool;
int pool_size,
number_generations;
#ifdef GEQO_DEBUG
int status_interval;
#endif
Gene *best_tour;
RelOptInfo *best_rel;
#if defined(ERX)
Edge *edge_table; /* list of edges */
int edge_failures = 0;
#endif
#if defined(CX) || defined(PX) || defined(OX1) || defined(OX2)
City *city_table; /* list of cities */
#endif
#if defined(CX)
int cycle_diffs = 0;
int mutations = 0;
#endif
/* set up private information */
root->join_search_private = (void *) &private;
private.initial_rels = initial_rels;
/* initialize private number generator */
geqo_set_seed(root, Geqo_seed);
/* set GA parameters */
pool_size = gimme_pool_size(number_of_rels);
number_generations = gimme_number_generations(pool_size);
#ifdef GEQO_DEBUG
status_interval = 10;
#endif
/* allocate genetic pool memory */
pool = alloc_pool(root, pool_size, number_of_rels);
/* random initialization of the pool */
random_init_pool(root, pool);
/* sort the pool according to cheapest path as fitness */
sort_pool(root, pool); /* we have to do it only one time, since all
* kids replace the worst individuals in
* future (-> geqo_pool.c:spread_chromo ) */
#ifdef GEQO_DEBUG
elog(DEBUG1, "GEQO selected %d pool entries, best %.2f, worst %.2f",
pool_size,
pool->data[0].worth,
pool->data[pool_size - 1].worth);
#endif
/* allocate chromosome momma and daddy memory */
momma = alloc_chromo(root, pool->string_length);
daddy = alloc_chromo(root, pool->string_length);
#if defined (ERX)
#ifdef GEQO_DEBUG
elog(DEBUG2, "using edge recombination crossover [ERX]");
#endif
/* allocate edge table memory */
edge_table = alloc_edge_table(root, pool->string_length);
#elif defined(PMX)
#ifdef GEQO_DEBUG
elog(DEBUG2, "using partially matched crossover [PMX]");
#endif
/* allocate chromosome kid memory */
kid = alloc_chromo(root, pool->string_length);
#elif defined(CX)
#ifdef GEQO_DEBUG
elog(DEBUG2, "using cycle crossover [CX]");
#endif
/* allocate city table memory */
kid = alloc_chromo(root, pool->string_length);
city_table = alloc_city_table(root, pool->string_length);
#elif defined(PX)
#ifdef GEQO_DEBUG
elog(DEBUG2, "using position crossover [PX]");
#endif
/* allocate city table memory */
kid = alloc_chromo(root, pool->string_length);
city_table = alloc_city_table(root, pool->string_length);
#elif defined(OX1)
#ifdef GEQO_DEBUG
elog(DEBUG2, "using order crossover [OX1]");
#endif
/* allocate city table memory */
kid = alloc_chromo(root, pool->string_length);
city_table = alloc_city_table(root, pool->string_length);
#elif defined(OX2)
#ifdef GEQO_DEBUG
elog(DEBUG2, "using order crossover [OX2]");
#endif
/* allocate city table memory */
kid = alloc_chromo(root, pool->string_length);
city_table = alloc_city_table(root, pool->string_length);
#endif
/* my pain main part: */
/* iterative optimization */
for (generation = 0; generation < number_generations; generation++)
{
/* SELECTION: using linear bias function */
geqo_selection(root, momma, daddy, pool, Geqo_selection_bias);
#if defined (ERX)
/* EDGE RECOMBINATION CROSSOVER */
gimme_edge_table(root, momma->string, daddy->string, pool->string_length, edge_table);
kid = momma;
/* are there any edge failures ? */
edge_failures += gimme_tour(root, edge_table, kid->string, pool->string_length);
#elif defined(PMX)
/* PARTIALLY MATCHED CROSSOVER */
pmx(root, momma->string, daddy->string, kid->string, pool->string_length);
#elif defined(CX)
/* CYCLE CROSSOVER */
cycle_diffs = cx(root, momma->string, daddy->string, kid->string, pool->string_length, city_table);
/* mutate the child */
if (cycle_diffs == 0)
{
mutations++;
geqo_mutation(root, kid->string, pool->string_length);
}
#elif defined(PX)
/* POSITION CROSSOVER */
px(root, momma->string, daddy->string, kid->string, pool->string_length, city_table);
#elif defined(OX1)
/* ORDER CROSSOVER */
ox1(root, momma->string, daddy->string, kid->string, pool->string_length, city_table);
#elif defined(OX2)
/* ORDER CROSSOVER */
ox2(root, momma->string, daddy->string, kid->string, pool->string_length, city_table);
#endif
/* EVALUATE FITNESS */
kid->worth = geqo_eval(root, kid->string, pool->string_length);
/* push the kid into the wilderness of life according to its worth */
spread_chromo(root, kid, pool);
#ifdef GEQO_DEBUG
if (status_interval && !(generation % status_interval))
print_gen(stdout, pool, generation);
#endif
}
#if defined(ERX)
#if defined(GEQO_DEBUG)
if (edge_failures != 0)
elog(LOG, "[GEQO] failures: %d, average: %d",
edge_failures, (int) number_generations / edge_failures);
else
elog(LOG, "[GEQO] no edge failures detected");
#else
/* suppress variable-set-but-not-used warnings from some compilers */
(void) edge_failures;
#endif
#endif
#if defined(CX) && defined(GEQO_DEBUG)
if (mutations != 0)
elog(LOG, "[GEQO] mutations: %d, generations: %d",
mutations, number_generations);
else
elog(LOG, "[GEQO] no mutations processed");
#endif
#ifdef GEQO_DEBUG
print_pool(stdout, pool, 0, pool_size - 1);
#endif
#ifdef GEQO_DEBUG
elog(DEBUG1, "GEQO best is %.2f after %d generations",
pool->data[0].worth, number_generations);
#endif
/*
* got the cheapest query tree processed by geqo; first element of the
* population indicates the best query tree
*/
best_tour = (Gene *) pool->data[0].string;
best_rel = gimme_tree(root, best_tour, pool->string_length);
if (best_rel == NULL)
elog(ERROR, "geqo failed to make a valid plan");
/* DBG: show the query plan */
#ifdef NOT_USED
print_plan(best_plan, root);
#endif
/* ... free memory stuff */
free_chromo(root, momma);
free_chromo(root, daddy);
#if defined (ERX)
free_edge_table(root, edge_table);
#elif defined(PMX)
free_chromo(root, kid);
#elif defined(CX)
free_chromo(root, kid);
free_city_table(root, city_table);
#elif defined(PX)
free_chromo(root, kid);
free_city_table(root, city_table);
#elif defined(OX1)
free_chromo(root, kid);
free_city_table(root, city_table);
#elif defined(OX2)
free_chromo(root, kid);
free_city_table(root, city_table);
#endif
free_pool(root, pool);
/* ... clear root pointer to our private storage */
root->join_search_private = NULL;
return best_rel;
}
/*
* Return either configured pool size or a good default
*
* The default is based on query size (no. of relations) = 2^(QS+1),
* but constrained to a range based on the effort value.
*/
static int
gimme_pool_size(int nr_rel)
{
double size;
int minsize;
int maxsize;
/* Legal pool size *must* be at least 2, so ignore attempt to select 1 */
if (Geqo_pool_size >= 2)
return Geqo_pool_size;
size = pow(2.0, nr_rel + 1.0);
maxsize = 50 * Geqo_effort; /* 50 to 500 individuals */
if (size > maxsize)
return maxsize;
minsize = 10 * Geqo_effort; /* 10 to 100 individuals */
if (size < minsize)
return minsize;
return (int) ceil(size);
}
/*
* Return either configured number of generations or a good default
*
* The default is the same as the pool size, which allows us to be
* sure that less-fit individuals get pushed out of the breeding
* population before the run finishes.
*/
static int
gimme_number_generations(int pool_size)
{
if (Geqo_generations > 0)
return Geqo_generations;
return pool_size;
}
|