1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
|
/*-------------------------------------------------------------------------
*
* relnode.c
* Relation-node lookup/construction routines
*
* Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/optimizer/util/relnode.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <limits.h>
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/appendinfo.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/inherit.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/placeholder.h"
#include "optimizer/plancat.h"
#include "optimizer/restrictinfo.h"
#include "optimizer/tlist.h"
#include "utils/hsearch.h"
#include "utils/lsyscache.h"
typedef struct JoinHashEntry
{
Relids join_relids; /* hash key --- MUST BE FIRST */
RelOptInfo *join_rel;
} JoinHashEntry;
static void build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel,
RelOptInfo *input_rel);
static List *build_joinrel_restrictlist(PlannerInfo *root,
RelOptInfo *joinrel,
RelOptInfo *outer_rel,
RelOptInfo *inner_rel);
static void build_joinrel_joinlist(RelOptInfo *joinrel,
RelOptInfo *outer_rel,
RelOptInfo *inner_rel);
static List *subbuild_joinrel_restrictlist(RelOptInfo *joinrel,
List *joininfo_list,
List *new_restrictlist);
static List *subbuild_joinrel_joinlist(RelOptInfo *joinrel,
List *joininfo_list,
List *new_joininfo);
static void set_foreign_rel_properties(RelOptInfo *joinrel,
RelOptInfo *outer_rel, RelOptInfo *inner_rel);
static void add_join_rel(PlannerInfo *root, RelOptInfo *joinrel);
static void build_joinrel_partition_info(RelOptInfo *joinrel,
RelOptInfo *outer_rel, RelOptInfo *inner_rel,
List *restrictlist, JoinType jointype);
static bool have_partkey_equi_join(RelOptInfo *joinrel,
RelOptInfo *rel1, RelOptInfo *rel2,
JoinType jointype, List *restrictlist);
static int match_expr_to_partition_keys(Expr *expr, RelOptInfo *rel,
bool strict_op);
static void set_joinrel_partition_key_exprs(RelOptInfo *joinrel,
RelOptInfo *outer_rel, RelOptInfo *inner_rel,
JoinType jointype);
static void build_child_join_reltarget(PlannerInfo *root,
RelOptInfo *parentrel,
RelOptInfo *childrel,
int nappinfos,
AppendRelInfo **appinfos);
/*
* setup_simple_rel_arrays
* Prepare the arrays we use for quickly accessing base relations
* and AppendRelInfos.
*/
void
setup_simple_rel_arrays(PlannerInfo *root)
{
int size;
Index rti;
ListCell *lc;
/* Arrays are accessed using RT indexes (1..N) */
size = list_length(root->parse->rtable) + 1;
root->simple_rel_array_size = size;
/*
* simple_rel_array is initialized to all NULLs, since no RelOptInfos
* exist yet. It'll be filled by later calls to build_simple_rel().
*/
root->simple_rel_array = (RelOptInfo **)
palloc0(size * sizeof(RelOptInfo *));
/* simple_rte_array is an array equivalent of the rtable list */
root->simple_rte_array = (RangeTblEntry **)
palloc0(size * sizeof(RangeTblEntry *));
rti = 1;
foreach(lc, root->parse->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
root->simple_rte_array[rti++] = rte;
}
/* append_rel_array is not needed if there are no AppendRelInfos */
if (root->append_rel_list == NIL)
{
root->append_rel_array = NULL;
return;
}
root->append_rel_array = (AppendRelInfo **)
palloc0(size * sizeof(AppendRelInfo *));
/*
* append_rel_array is filled with any already-existing AppendRelInfos,
* which currently could only come from UNION ALL flattening. We might
* add more later during inheritance expansion, but it's the
* responsibility of the expansion code to update the array properly.
*/
foreach(lc, root->append_rel_list)
{
AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc);
int child_relid = appinfo->child_relid;
/* Sanity check */
Assert(child_relid < size);
if (root->append_rel_array[child_relid])
elog(ERROR, "child relation already exists");
root->append_rel_array[child_relid] = appinfo;
}
}
/*
* expand_planner_arrays
* Expand the PlannerInfo's per-RTE arrays by add_size members
* and initialize the newly added entries to NULLs
*
* Note: this causes the append_rel_array to become allocated even if
* it was not before. This is okay for current uses, because we only call
* this when adding child relations, which always have AppendRelInfos.
*/
void
expand_planner_arrays(PlannerInfo *root, int add_size)
{
int new_size;
Assert(add_size > 0);
new_size = root->simple_rel_array_size + add_size;
root->simple_rel_array = (RelOptInfo **)
repalloc(root->simple_rel_array,
sizeof(RelOptInfo *) * new_size);
MemSet(root->simple_rel_array + root->simple_rel_array_size,
0, sizeof(RelOptInfo *) * add_size);
root->simple_rte_array = (RangeTblEntry **)
repalloc(root->simple_rte_array,
sizeof(RangeTblEntry *) * new_size);
MemSet(root->simple_rte_array + root->simple_rel_array_size,
0, sizeof(RangeTblEntry *) * add_size);
if (root->append_rel_array)
{
root->append_rel_array = (AppendRelInfo **)
repalloc(root->append_rel_array,
sizeof(AppendRelInfo *) * new_size);
MemSet(root->append_rel_array + root->simple_rel_array_size,
0, sizeof(AppendRelInfo *) * add_size);
}
else
{
root->append_rel_array = (AppendRelInfo **)
palloc0(sizeof(AppendRelInfo *) * new_size);
}
root->simple_rel_array_size = new_size;
}
/*
* build_simple_rel
* Construct a new RelOptInfo for a base relation or 'other' relation.
*/
RelOptInfo *
build_simple_rel(PlannerInfo *root, int relid, RelOptInfo *parent)
{
RelOptInfo *rel;
RangeTblEntry *rte;
/* Rel should not exist already */
Assert(relid > 0 && relid < root->simple_rel_array_size);
if (root->simple_rel_array[relid] != NULL)
elog(ERROR, "rel %d already exists", relid);
/* Fetch RTE for relation */
rte = root->simple_rte_array[relid];
Assert(rte != NULL);
rel = makeNode(RelOptInfo);
rel->reloptkind = parent ? RELOPT_OTHER_MEMBER_REL : RELOPT_BASEREL;
rel->relids = bms_make_singleton(relid);
rel->rows = 0;
/* cheap startup cost is interesting iff not all tuples to be retrieved */
rel->consider_startup = (root->tuple_fraction > 0);
rel->consider_param_startup = false; /* might get changed later */
rel->consider_parallel = false; /* might get changed later */
rel->reltarget = create_empty_pathtarget();
rel->pathlist = NIL;
rel->ppilist = NIL;
rel->partial_pathlist = NIL;
rel->cheapest_startup_path = NULL;
rel->cheapest_total_path = NULL;
rel->cheapest_unique_path = NULL;
rel->cheapest_parameterized_paths = NIL;
rel->relid = relid;
rel->rtekind = rte->rtekind;
/* min_attr, max_attr, attr_needed, attr_widths are set below */
rel->lateral_vars = NIL;
rel->indexlist = NIL;
rel->statlist = NIL;
rel->pages = 0;
rel->tuples = 0;
rel->allvisfrac = 0;
rel->eclass_indexes = NULL;
rel->subroot = NULL;
rel->subplan_params = NIL;
rel->rel_parallel_workers = -1; /* set up in get_relation_info */
rel->amflags = 0;
rel->serverid = InvalidOid;
rel->userid = rte->checkAsUser;
rel->useridiscurrent = false;
rel->fdwroutine = NULL;
rel->fdw_private = NULL;
rel->unique_for_rels = NIL;
rel->non_unique_for_rels = NIL;
rel->baserestrictinfo = NIL;
rel->baserestrictcost.startup = 0;
rel->baserestrictcost.per_tuple = 0;
rel->baserestrict_min_security = UINT_MAX;
rel->joininfo = NIL;
rel->has_eclass_joins = false;
rel->consider_partitionwise_join = false; /* might get changed later */
rel->part_scheme = NULL;
rel->nparts = -1;
rel->boundinfo = NULL;
rel->partbounds_merged = false;
rel->partition_qual = NIL;
rel->part_rels = NULL;
rel->live_parts = NULL;
rel->all_partrels = NULL;
rel->partexprs = NULL;
rel->nullable_partexprs = NULL;
/*
* Pass assorted information down the inheritance hierarchy.
*/
if (parent)
{
/*
* Each direct or indirect child wants to know the relids of its
* topmost parent.
*/
if (parent->top_parent_relids)
rel->top_parent_relids = parent->top_parent_relids;
else
rel->top_parent_relids = bms_copy(parent->relids);
/*
* Also propagate lateral-reference information from appendrel parent
* rels to their child rels. We intentionally give each child rel the
* same minimum parameterization, even though it's quite possible that
* some don't reference all the lateral rels. This is because any
* append path for the parent will have to have the same
* parameterization for every child anyway, and there's no value in
* forcing extra reparameterize_path() calls. Similarly, a lateral
* reference to the parent prevents use of otherwise-movable join rels
* for each child.
*
* It's possible for child rels to have their own children, in which
* case the topmost parent's lateral info propagates all the way down.
*/
rel->direct_lateral_relids = parent->direct_lateral_relids;
rel->lateral_relids = parent->lateral_relids;
rel->lateral_referencers = parent->lateral_referencers;
}
else
{
rel->top_parent_relids = NULL;
rel->direct_lateral_relids = NULL;
rel->lateral_relids = NULL;
rel->lateral_referencers = NULL;
}
/* Check type of rtable entry */
switch (rte->rtekind)
{
case RTE_RELATION:
/* Table --- retrieve statistics from the system catalogs */
get_relation_info(root, rte->relid, rte->inh, rel);
break;
case RTE_SUBQUERY:
case RTE_FUNCTION:
case RTE_TABLEFUNC:
case RTE_VALUES:
case RTE_CTE:
case RTE_NAMEDTUPLESTORE:
/*
* Subquery, function, tablefunc, values list, CTE, or ENR --- set
* up attr range and arrays
*
* Note: 0 is included in range to support whole-row Vars
*/
rel->min_attr = 0;
rel->max_attr = list_length(rte->eref->colnames);
rel->attr_needed = (Relids *)
palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
rel->attr_widths = (int32 *)
palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
break;
case RTE_RESULT:
/* RTE_RESULT has no columns, nor could it have whole-row Var */
rel->min_attr = 0;
rel->max_attr = -1;
rel->attr_needed = NULL;
rel->attr_widths = NULL;
break;
default:
elog(ERROR, "unrecognized RTE kind: %d",
(int) rte->rtekind);
break;
}
/*
* Copy the parent's quals to the child, with appropriate substitution of
* variables. If any constant false or NULL clauses turn up, we can mark
* the child as dummy right away. (We must do this immediately so that
* pruning works correctly when recursing in expand_partitioned_rtentry.)
*/
if (parent)
{
AppendRelInfo *appinfo = root->append_rel_array[relid];
Assert(appinfo != NULL);
if (!apply_child_basequals(root, parent, rel, rte, appinfo))
{
/*
* Some restriction clause reduced to constant FALSE or NULL after
* substitution, so this child need not be scanned.
*/
mark_dummy_rel(rel);
}
}
/* Save the finished struct in the query's simple_rel_array */
root->simple_rel_array[relid] = rel;
return rel;
}
/*
* find_base_rel
* Find a base or other relation entry, which must already exist.
*/
RelOptInfo *
find_base_rel(PlannerInfo *root, int relid)
{
RelOptInfo *rel;
Assert(relid > 0);
if (relid < root->simple_rel_array_size)
{
rel = root->simple_rel_array[relid];
if (rel)
return rel;
}
elog(ERROR, "no relation entry for relid %d", relid);
return NULL; /* keep compiler quiet */
}
/*
* build_join_rel_hash
* Construct the auxiliary hash table for join relations.
*/
static void
build_join_rel_hash(PlannerInfo *root)
{
HTAB *hashtab;
HASHCTL hash_ctl;
ListCell *l;
/* Create the hash table */
hash_ctl.keysize = sizeof(Relids);
hash_ctl.entrysize = sizeof(JoinHashEntry);
hash_ctl.hash = bitmap_hash;
hash_ctl.match = bitmap_match;
hash_ctl.hcxt = CurrentMemoryContext;
hashtab = hash_create("JoinRelHashTable",
256L,
&hash_ctl,
HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);
/* Insert all the already-existing joinrels */
foreach(l, root->join_rel_list)
{
RelOptInfo *rel = (RelOptInfo *) lfirst(l);
JoinHashEntry *hentry;
bool found;
hentry = (JoinHashEntry *) hash_search(hashtab,
&(rel->relids),
HASH_ENTER,
&found);
Assert(!found);
hentry->join_rel = rel;
}
root->join_rel_hash = hashtab;
}
/*
* find_join_rel
* Returns relation entry corresponding to 'relids' (a set of RT indexes),
* or NULL if none exists. This is for join relations.
*/
RelOptInfo *
find_join_rel(PlannerInfo *root, Relids relids)
{
/*
* Switch to using hash lookup when list grows "too long". The threshold
* is arbitrary and is known only here.
*/
if (!root->join_rel_hash && list_length(root->join_rel_list) > 32)
build_join_rel_hash(root);
/*
* Use either hashtable lookup or linear search, as appropriate.
*
* Note: the seemingly redundant hashkey variable is used to avoid taking
* the address of relids; unless the compiler is exceedingly smart, doing
* so would force relids out of a register and thus probably slow down the
* list-search case.
*/
if (root->join_rel_hash)
{
Relids hashkey = relids;
JoinHashEntry *hentry;
hentry = (JoinHashEntry *) hash_search(root->join_rel_hash,
&hashkey,
HASH_FIND,
NULL);
if (hentry)
return hentry->join_rel;
}
else
{
ListCell *l;
foreach(l, root->join_rel_list)
{
RelOptInfo *rel = (RelOptInfo *) lfirst(l);
if (bms_equal(rel->relids, relids))
return rel;
}
}
return NULL;
}
/*
* set_foreign_rel_properties
* Set up foreign-join fields if outer and inner relation are foreign
* tables (or joins) belonging to the same server and assigned to the same
* user to check access permissions as.
*
* In addition to an exact match of userid, we allow the case where one side
* has zero userid (implying current user) and the other side has explicit
* userid that happens to equal the current user; but in that case, pushdown of
* the join is only valid for the current user. The useridiscurrent field
* records whether we had to make such an assumption for this join or any
* sub-join.
*
* Otherwise these fields are left invalid, so GetForeignJoinPaths will not be
* called for the join relation.
*
*/
static void
set_foreign_rel_properties(RelOptInfo *joinrel, RelOptInfo *outer_rel,
RelOptInfo *inner_rel)
{
if (OidIsValid(outer_rel->serverid) &&
inner_rel->serverid == outer_rel->serverid)
{
if (inner_rel->userid == outer_rel->userid)
{
joinrel->serverid = outer_rel->serverid;
joinrel->userid = outer_rel->userid;
joinrel->useridiscurrent = outer_rel->useridiscurrent || inner_rel->useridiscurrent;
joinrel->fdwroutine = outer_rel->fdwroutine;
}
else if (!OidIsValid(inner_rel->userid) &&
outer_rel->userid == GetUserId())
{
joinrel->serverid = outer_rel->serverid;
joinrel->userid = outer_rel->userid;
joinrel->useridiscurrent = true;
joinrel->fdwroutine = outer_rel->fdwroutine;
}
else if (!OidIsValid(outer_rel->userid) &&
inner_rel->userid == GetUserId())
{
joinrel->serverid = outer_rel->serverid;
joinrel->userid = inner_rel->userid;
joinrel->useridiscurrent = true;
joinrel->fdwroutine = outer_rel->fdwroutine;
}
}
}
/*
* add_join_rel
* Add given join relation to the list of join relations in the given
* PlannerInfo. Also add it to the auxiliary hashtable if there is one.
*/
static void
add_join_rel(PlannerInfo *root, RelOptInfo *joinrel)
{
/* GEQO requires us to append the new joinrel to the end of the list! */
root->join_rel_list = lappend(root->join_rel_list, joinrel);
/* store it into the auxiliary hashtable if there is one. */
if (root->join_rel_hash)
{
JoinHashEntry *hentry;
bool found;
hentry = (JoinHashEntry *) hash_search(root->join_rel_hash,
&(joinrel->relids),
HASH_ENTER,
&found);
Assert(!found);
hentry->join_rel = joinrel;
}
}
/*
* build_join_rel
* Returns relation entry corresponding to the union of two given rels,
* creating a new relation entry if none already exists.
*
* 'joinrelids' is the Relids set that uniquely identifies the join
* 'outer_rel' and 'inner_rel' are relation nodes for the relations to be
* joined
* 'sjinfo': join context info
* 'restrictlist_ptr': result variable. If not NULL, *restrictlist_ptr
* receives the list of RestrictInfo nodes that apply to this
* particular pair of joinable relations.
*
* restrictlist_ptr makes the routine's API a little grotty, but it saves
* duplicated calculation of the restrictlist...
*/
RelOptInfo *
build_join_rel(PlannerInfo *root,
Relids joinrelids,
RelOptInfo *outer_rel,
RelOptInfo *inner_rel,
SpecialJoinInfo *sjinfo,
List **restrictlist_ptr)
{
RelOptInfo *joinrel;
List *restrictlist;
/* This function should be used only for join between parents. */
Assert(!IS_OTHER_REL(outer_rel) && !IS_OTHER_REL(inner_rel));
/*
* See if we already have a joinrel for this set of base rels.
*/
joinrel = find_join_rel(root, joinrelids);
if (joinrel)
{
/*
* Yes, so we only need to figure the restrictlist for this particular
* pair of component relations.
*/
if (restrictlist_ptr)
*restrictlist_ptr = build_joinrel_restrictlist(root,
joinrel,
outer_rel,
inner_rel);
return joinrel;
}
/*
* Nope, so make one.
*/
joinrel = makeNode(RelOptInfo);
joinrel->reloptkind = RELOPT_JOINREL;
joinrel->relids = bms_copy(joinrelids);
joinrel->rows = 0;
/* cheap startup cost is interesting iff not all tuples to be retrieved */
joinrel->consider_startup = (root->tuple_fraction > 0);
joinrel->consider_param_startup = false;
joinrel->consider_parallel = false;
joinrel->reltarget = create_empty_pathtarget();
joinrel->pathlist = NIL;
joinrel->ppilist = NIL;
joinrel->partial_pathlist = NIL;
joinrel->cheapest_startup_path = NULL;
joinrel->cheapest_total_path = NULL;
joinrel->cheapest_unique_path = NULL;
joinrel->cheapest_parameterized_paths = NIL;
/* init direct_lateral_relids from children; we'll finish it up below */
joinrel->direct_lateral_relids =
bms_union(outer_rel->direct_lateral_relids,
inner_rel->direct_lateral_relids);
joinrel->lateral_relids = min_join_parameterization(root, joinrel->relids,
outer_rel, inner_rel);
joinrel->relid = 0; /* indicates not a baserel */
joinrel->rtekind = RTE_JOIN;
joinrel->min_attr = 0;
joinrel->max_attr = 0;
joinrel->attr_needed = NULL;
joinrel->attr_widths = NULL;
joinrel->lateral_vars = NIL;
joinrel->lateral_referencers = NULL;
joinrel->indexlist = NIL;
joinrel->statlist = NIL;
joinrel->pages = 0;
joinrel->tuples = 0;
joinrel->allvisfrac = 0;
joinrel->eclass_indexes = NULL;
joinrel->subroot = NULL;
joinrel->subplan_params = NIL;
joinrel->rel_parallel_workers = -1;
joinrel->amflags = 0;
joinrel->serverid = InvalidOid;
joinrel->userid = InvalidOid;
joinrel->useridiscurrent = false;
joinrel->fdwroutine = NULL;
joinrel->fdw_private = NULL;
joinrel->unique_for_rels = NIL;
joinrel->non_unique_for_rels = NIL;
joinrel->baserestrictinfo = NIL;
joinrel->baserestrictcost.startup = 0;
joinrel->baserestrictcost.per_tuple = 0;
joinrel->baserestrict_min_security = UINT_MAX;
joinrel->joininfo = NIL;
joinrel->has_eclass_joins = false;
joinrel->consider_partitionwise_join = false; /* might get changed later */
joinrel->top_parent_relids = NULL;
joinrel->part_scheme = NULL;
joinrel->nparts = -1;
joinrel->boundinfo = NULL;
joinrel->partbounds_merged = false;
joinrel->partition_qual = NIL;
joinrel->part_rels = NULL;
joinrel->live_parts = NULL;
joinrel->all_partrels = NULL;
joinrel->partexprs = NULL;
joinrel->nullable_partexprs = NULL;
/* Compute information relevant to the foreign relations. */
set_foreign_rel_properties(joinrel, outer_rel, inner_rel);
/*
* Create a new tlist containing just the vars that need to be output from
* this join (ie, are needed for higher joinclauses or final output).
*
* NOTE: the tlist order for a join rel will depend on which pair of outer
* and inner rels we first try to build it from. But the contents should
* be the same regardless.
*/
build_joinrel_tlist(root, joinrel, outer_rel);
build_joinrel_tlist(root, joinrel, inner_rel);
add_placeholders_to_joinrel(root, joinrel, outer_rel, inner_rel);
/*
* add_placeholders_to_joinrel also took care of adding the ph_lateral
* sets of any PlaceHolderVars computed here to direct_lateral_relids, so
* now we can finish computing that. This is much like the computation of
* the transitively-closed lateral_relids in min_join_parameterization,
* except that here we *do* have to consider the added PHVs.
*/
joinrel->direct_lateral_relids =
bms_del_members(joinrel->direct_lateral_relids, joinrel->relids);
if (bms_is_empty(joinrel->direct_lateral_relids))
joinrel->direct_lateral_relids = NULL;
/*
* Construct restrict and join clause lists for the new joinrel. (The
* caller might or might not need the restrictlist, but I need it anyway
* for set_joinrel_size_estimates().)
*/
restrictlist = build_joinrel_restrictlist(root, joinrel,
outer_rel, inner_rel);
if (restrictlist_ptr)
*restrictlist_ptr = restrictlist;
build_joinrel_joinlist(joinrel, outer_rel, inner_rel);
/*
* This is also the right place to check whether the joinrel has any
* pending EquivalenceClass joins.
*/
joinrel->has_eclass_joins = has_relevant_eclass_joinclause(root, joinrel);
/* Store the partition information. */
build_joinrel_partition_info(joinrel, outer_rel, inner_rel, restrictlist,
sjinfo->jointype);
/*
* Set estimates of the joinrel's size.
*/
set_joinrel_size_estimates(root, joinrel, outer_rel, inner_rel,
sjinfo, restrictlist);
/*
* Set the consider_parallel flag if this joinrel could potentially be
* scanned within a parallel worker. If this flag is false for either
* inner_rel or outer_rel, then it must be false for the joinrel also.
* Even if both are true, there might be parallel-restricted expressions
* in the targetlist or quals.
*
* Note that if there are more than two rels in this relation, they could
* be divided between inner_rel and outer_rel in any arbitrary way. We
* assume this doesn't matter, because we should hit all the same baserels
* and joinclauses while building up to this joinrel no matter which we
* take; therefore, we should make the same decision here however we get
* here.
*/
if (inner_rel->consider_parallel && outer_rel->consider_parallel &&
is_parallel_safe(root, (Node *) restrictlist) &&
is_parallel_safe(root, (Node *) joinrel->reltarget->exprs))
joinrel->consider_parallel = true;
/* Add the joinrel to the PlannerInfo. */
add_join_rel(root, joinrel);
/*
* Also, if dynamic-programming join search is active, add the new joinrel
* to the appropriate sublist. Note: you might think the Assert on number
* of members should be for equality, but some of the level 1 rels might
* have been joinrels already, so we can only assert <=.
*/
if (root->join_rel_level)
{
Assert(root->join_cur_level > 0);
Assert(root->join_cur_level <= bms_num_members(joinrel->relids));
root->join_rel_level[root->join_cur_level] =
lappend(root->join_rel_level[root->join_cur_level], joinrel);
}
return joinrel;
}
/*
* build_child_join_rel
* Builds RelOptInfo representing join between given two child relations.
*
* 'outer_rel' and 'inner_rel' are the RelOptInfos of child relations being
* joined
* 'parent_joinrel' is the RelOptInfo representing the join between parent
* relations. Some of the members of new RelOptInfo are produced by
* translating corresponding members of this RelOptInfo
* 'sjinfo': child-join context info
* 'restrictlist': list of RestrictInfo nodes that apply to this particular
* pair of joinable relations
* 'jointype' is the join type (inner, left, full, etc)
*/
RelOptInfo *
build_child_join_rel(PlannerInfo *root, RelOptInfo *outer_rel,
RelOptInfo *inner_rel, RelOptInfo *parent_joinrel,
List *restrictlist, SpecialJoinInfo *sjinfo,
JoinType jointype)
{
RelOptInfo *joinrel = makeNode(RelOptInfo);
AppendRelInfo **appinfos;
int nappinfos;
/* Only joins between "other" relations land here. */
Assert(IS_OTHER_REL(outer_rel) && IS_OTHER_REL(inner_rel));
/* The parent joinrel should have consider_partitionwise_join set. */
Assert(parent_joinrel->consider_partitionwise_join);
joinrel->reloptkind = RELOPT_OTHER_JOINREL;
joinrel->relids = bms_union(outer_rel->relids, inner_rel->relids);
joinrel->rows = 0;
/* cheap startup cost is interesting iff not all tuples to be retrieved */
joinrel->consider_startup = (root->tuple_fraction > 0);
joinrel->consider_param_startup = false;
joinrel->consider_parallel = false;
joinrel->reltarget = create_empty_pathtarget();
joinrel->pathlist = NIL;
joinrel->ppilist = NIL;
joinrel->partial_pathlist = NIL;
joinrel->cheapest_startup_path = NULL;
joinrel->cheapest_total_path = NULL;
joinrel->cheapest_unique_path = NULL;
joinrel->cheapest_parameterized_paths = NIL;
joinrel->direct_lateral_relids = NULL;
joinrel->lateral_relids = NULL;
joinrel->relid = 0; /* indicates not a baserel */
joinrel->rtekind = RTE_JOIN;
joinrel->min_attr = 0;
joinrel->max_attr = 0;
joinrel->attr_needed = NULL;
joinrel->attr_widths = NULL;
joinrel->lateral_vars = NIL;
joinrel->lateral_referencers = NULL;
joinrel->indexlist = NIL;
joinrel->pages = 0;
joinrel->tuples = 0;
joinrel->allvisfrac = 0;
joinrel->eclass_indexes = NULL;
joinrel->subroot = NULL;
joinrel->subplan_params = NIL;
joinrel->amflags = 0;
joinrel->serverid = InvalidOid;
joinrel->userid = InvalidOid;
joinrel->useridiscurrent = false;
joinrel->fdwroutine = NULL;
joinrel->fdw_private = NULL;
joinrel->baserestrictinfo = NIL;
joinrel->baserestrictcost.startup = 0;
joinrel->baserestrictcost.per_tuple = 0;
joinrel->joininfo = NIL;
joinrel->has_eclass_joins = false;
joinrel->consider_partitionwise_join = false; /* might get changed later */
joinrel->top_parent_relids = NULL;
joinrel->part_scheme = NULL;
joinrel->nparts = -1;
joinrel->boundinfo = NULL;
joinrel->partbounds_merged = false;
joinrel->partition_qual = NIL;
joinrel->part_rels = NULL;
joinrel->live_parts = NULL;
joinrel->all_partrels = NULL;
joinrel->partexprs = NULL;
joinrel->nullable_partexprs = NULL;
joinrel->top_parent_relids = bms_union(outer_rel->top_parent_relids,
inner_rel->top_parent_relids);
/* Compute information relevant to foreign relations. */
set_foreign_rel_properties(joinrel, outer_rel, inner_rel);
/* Compute information needed for mapping Vars to the child rel */
appinfos = find_appinfos_by_relids(root, joinrel->relids, &nappinfos);
/* Set up reltarget struct */
build_child_join_reltarget(root, parent_joinrel, joinrel,
nappinfos, appinfos);
/* Construct joininfo list. */
joinrel->joininfo = (List *) adjust_appendrel_attrs(root,
(Node *) parent_joinrel->joininfo,
nappinfos,
appinfos);
/*
* Lateral relids referred in child join will be same as that referred in
* the parent relation.
*/
joinrel->direct_lateral_relids = (Relids) bms_copy(parent_joinrel->direct_lateral_relids);
joinrel->lateral_relids = (Relids) bms_copy(parent_joinrel->lateral_relids);
/*
* If the parent joinrel has pending equivalence classes, so does the
* child.
*/
joinrel->has_eclass_joins = parent_joinrel->has_eclass_joins;
/* Is the join between partitions itself partitioned? */
build_joinrel_partition_info(joinrel, outer_rel, inner_rel, restrictlist,
jointype);
/* Child joinrel is parallel safe if parent is parallel safe. */
joinrel->consider_parallel = parent_joinrel->consider_parallel;
/* Set estimates of the child-joinrel's size. */
set_joinrel_size_estimates(root, joinrel, outer_rel, inner_rel,
sjinfo, restrictlist);
/* We build the join only once. */
Assert(!find_join_rel(root, joinrel->relids));
/* Add the relation to the PlannerInfo. */
add_join_rel(root, joinrel);
/*
* We might need EquivalenceClass members corresponding to the child join,
* so that we can represent sort pathkeys for it. As with children of
* baserels, we shouldn't need this unless there are relevant eclass joins
* (implying that a merge join might be possible) or pathkeys to sort by.
*/
if (joinrel->has_eclass_joins || has_useful_pathkeys(root, parent_joinrel))
add_child_join_rel_equivalences(root,
nappinfos, appinfos,
parent_joinrel, joinrel);
pfree(appinfos);
return joinrel;
}
/*
* min_join_parameterization
*
* Determine the minimum possible parameterization of a joinrel, that is, the
* set of other rels it contains LATERAL references to. We save this value in
* the join's RelOptInfo. This function is split out of build_join_rel()
* because join_is_legal() needs the value to check a prospective join.
*/
Relids
min_join_parameterization(PlannerInfo *root,
Relids joinrelids,
RelOptInfo *outer_rel,
RelOptInfo *inner_rel)
{
Relids result;
/*
* Basically we just need the union of the inputs' lateral_relids, less
* whatever is already in the join.
*
* It's not immediately obvious that this is a valid way to compute the
* result, because it might seem that we're ignoring possible lateral refs
* of PlaceHolderVars that are due to be computed at the join but not in
* either input. However, because create_lateral_join_info() already
* charged all such PHV refs to each member baserel of the join, they'll
* be accounted for already in the inputs' lateral_relids. Likewise, we
* do not need to worry about doing transitive closure here, because that
* was already accounted for in the original baserel lateral_relids.
*/
result = bms_union(outer_rel->lateral_relids, inner_rel->lateral_relids);
result = bms_del_members(result, joinrelids);
/* Maintain invariant that result is exactly NULL if empty */
if (bms_is_empty(result))
result = NULL;
return result;
}
/*
* build_joinrel_tlist
* Builds a join relation's target list from an input relation.
* (This is invoked twice to handle the two input relations.)
*
* The join's targetlist includes all Vars of its member relations that
* will still be needed above the join. This subroutine adds all such
* Vars from the specified input rel's tlist to the join rel's tlist.
*
* We also compute the expected width of the join's output, making use
* of data that was cached at the baserel level by set_rel_width().
*/
static void
build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel,
RelOptInfo *input_rel)
{
Relids relids = joinrel->relids;
ListCell *vars;
foreach(vars, input_rel->reltarget->exprs)
{
Var *var = (Var *) lfirst(vars);
/*
* Ignore PlaceHolderVars in the input tlists; we'll make our own
* decisions about whether to copy them.
*/
if (IsA(var, PlaceHolderVar))
continue;
/*
* Otherwise, anything in a baserel or joinrel targetlist ought to be
* a Var. (More general cases can only appear in appendrel child
* rels, which will never be seen here.)
*/
if (!IsA(var, Var))
elog(ERROR, "unexpected node type in rel targetlist: %d",
(int) nodeTag(var));
if (var->varno == ROWID_VAR)
{
/* UPDATE/DELETE/MERGE row identity vars are always needed */
RowIdentityVarInfo *ridinfo = (RowIdentityVarInfo *)
list_nth(root->row_identity_vars, var->varattno - 1);
joinrel->reltarget->exprs = lappend(joinrel->reltarget->exprs,
var);
/* Vars have cost zero, so no need to adjust reltarget->cost */
joinrel->reltarget->width += ridinfo->rowidwidth;
}
else
{
RelOptInfo *baserel;
int ndx;
/* Get the Var's original base rel */
baserel = find_base_rel(root, var->varno);
/* Is it still needed above this joinrel? */
ndx = var->varattno - baserel->min_attr;
if (bms_nonempty_difference(baserel->attr_needed[ndx], relids))
{
/* Yup, add it to the output */
joinrel->reltarget->exprs = lappend(joinrel->reltarget->exprs,
var);
/* Vars have cost zero, so no need to adjust reltarget->cost */
joinrel->reltarget->width += baserel->attr_widths[ndx];
}
}
}
}
/*
* build_joinrel_restrictlist
* build_joinrel_joinlist
* These routines build lists of restriction and join clauses for a
* join relation from the joininfo lists of the relations it joins.
*
* These routines are separate because the restriction list must be
* built afresh for each pair of input sub-relations we consider, whereas
* the join list need only be computed once for any join RelOptInfo.
* The join list is fully determined by the set of rels making up the
* joinrel, so we should get the same results (up to ordering) from any
* candidate pair of sub-relations. But the restriction list is whatever
* is not handled in the sub-relations, so it depends on which
* sub-relations are considered.
*
* If a join clause from an input relation refers to base rels still not
* present in the joinrel, then it is still a join clause for the joinrel;
* we put it into the joininfo list for the joinrel. Otherwise,
* the clause is now a restrict clause for the joined relation, and we
* return it to the caller of build_joinrel_restrictlist() to be stored in
* join paths made from this pair of sub-relations. (It will not need to
* be considered further up the join tree.)
*
* In many cases we will find the same RestrictInfos in both input
* relations' joinlists, so be careful to eliminate duplicates.
* Pointer equality should be a sufficient test for dups, since all
* the various joinlist entries ultimately refer to RestrictInfos
* pushed into them by distribute_restrictinfo_to_rels().
*
* 'joinrel' is a join relation node
* 'outer_rel' and 'inner_rel' are a pair of relations that can be joined
* to form joinrel.
*
* build_joinrel_restrictlist() returns a list of relevant restrictinfos,
* whereas build_joinrel_joinlist() stores its results in the joinrel's
* joininfo list. One or the other must accept each given clause!
*
* NB: Formerly, we made deep(!) copies of each input RestrictInfo to pass
* up to the join relation. I believe this is no longer necessary, because
* RestrictInfo nodes are no longer context-dependent. Instead, just include
* the original nodes in the lists made for the join relation.
*/
static List *
build_joinrel_restrictlist(PlannerInfo *root,
RelOptInfo *joinrel,
RelOptInfo *outer_rel,
RelOptInfo *inner_rel)
{
List *result;
/*
* Collect all the clauses that syntactically belong at this level,
* eliminating any duplicates (important since we will see many of the
* same clauses arriving from both input relations).
*/
result = subbuild_joinrel_restrictlist(joinrel, outer_rel->joininfo, NIL);
result = subbuild_joinrel_restrictlist(joinrel, inner_rel->joininfo, result);
/*
* Add on any clauses derived from EquivalenceClasses. These cannot be
* redundant with the clauses in the joininfo lists, so don't bother
* checking.
*/
result = list_concat(result,
generate_join_implied_equalities(root,
joinrel->relids,
outer_rel->relids,
inner_rel));
return result;
}
static void
build_joinrel_joinlist(RelOptInfo *joinrel,
RelOptInfo *outer_rel,
RelOptInfo *inner_rel)
{
List *result;
/*
* Collect all the clauses that syntactically belong above this level,
* eliminating any duplicates (important since we will see many of the
* same clauses arriving from both input relations).
*/
result = subbuild_joinrel_joinlist(joinrel, outer_rel->joininfo, NIL);
result = subbuild_joinrel_joinlist(joinrel, inner_rel->joininfo, result);
joinrel->joininfo = result;
}
static List *
subbuild_joinrel_restrictlist(RelOptInfo *joinrel,
List *joininfo_list,
List *new_restrictlist)
{
ListCell *l;
foreach(l, joininfo_list)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
if (bms_is_subset(rinfo->required_relids, joinrel->relids))
{
/*
* This clause becomes a restriction clause for the joinrel, since
* it refers to no outside rels. Add it to the list, being
* careful to eliminate duplicates. (Since RestrictInfo nodes in
* different joinlists will have been multiply-linked rather than
* copied, pointer equality should be a sufficient test.)
*/
new_restrictlist = list_append_unique_ptr(new_restrictlist, rinfo);
}
else
{
/*
* This clause is still a join clause at this level, so we ignore
* it in this routine.
*/
}
}
return new_restrictlist;
}
static List *
subbuild_joinrel_joinlist(RelOptInfo *joinrel,
List *joininfo_list,
List *new_joininfo)
{
ListCell *l;
/* Expected to be called only for join between parent relations. */
Assert(joinrel->reloptkind == RELOPT_JOINREL);
foreach(l, joininfo_list)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
if (bms_is_subset(rinfo->required_relids, joinrel->relids))
{
/*
* This clause becomes a restriction clause for the joinrel, since
* it refers to no outside rels. So we can ignore it in this
* routine.
*/
}
else
{
/*
* This clause is still a join clause at this level, so add it to
* the new joininfo list, being careful to eliminate duplicates.
* (Since RestrictInfo nodes in different joinlists will have been
* multiply-linked rather than copied, pointer equality should be
* a sufficient test.)
*/
new_joininfo = list_append_unique_ptr(new_joininfo, rinfo);
}
}
return new_joininfo;
}
/*
* fetch_upper_rel
* Build a RelOptInfo describing some post-scan/join query processing,
* or return a pre-existing one if somebody already built it.
*
* An "upper" relation is identified by an UpperRelationKind and a Relids set.
* The meaning of the Relids set is not specified here, and very likely will
* vary for different relation kinds.
*
* Most of the fields in an upper-level RelOptInfo are not used and are not
* set here (though makeNode should ensure they're zeroes). We basically only
* care about fields that are of interest to add_path() and set_cheapest().
*/
RelOptInfo *
fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
{
RelOptInfo *upperrel;
ListCell *lc;
/*
* For the moment, our indexing data structure is just a List for each
* relation kind. If we ever get so many of one kind that this stops
* working well, we can improve it. No code outside this function should
* assume anything about how to find a particular upperrel.
*/
/* If we already made this upperrel for the query, return it */
foreach(lc, root->upper_rels[kind])
{
upperrel = (RelOptInfo *) lfirst(lc);
if (bms_equal(upperrel->relids, relids))
return upperrel;
}
upperrel = makeNode(RelOptInfo);
upperrel->reloptkind = RELOPT_UPPER_REL;
upperrel->relids = bms_copy(relids);
/* cheap startup cost is interesting iff not all tuples to be retrieved */
upperrel->consider_startup = (root->tuple_fraction > 0);
upperrel->consider_param_startup = false;
upperrel->consider_parallel = false; /* might get changed later */
upperrel->reltarget = create_empty_pathtarget();
upperrel->pathlist = NIL;
upperrel->cheapest_startup_path = NULL;
upperrel->cheapest_total_path = NULL;
upperrel->cheapest_unique_path = NULL;
upperrel->cheapest_parameterized_paths = NIL;
root->upper_rels[kind] = lappend(root->upper_rels[kind], upperrel);
return upperrel;
}
/*
* find_childrel_parents
* Compute the set of parent relids of an appendrel child rel.
*
* Since appendrels can be nested, a child could have multiple levels of
* appendrel ancestors. This function computes a Relids set of all the
* parent relation IDs.
*/
Relids
find_childrel_parents(PlannerInfo *root, RelOptInfo *rel)
{
Relids result = NULL;
Assert(rel->reloptkind == RELOPT_OTHER_MEMBER_REL);
Assert(rel->relid > 0 && rel->relid < root->simple_rel_array_size);
do
{
AppendRelInfo *appinfo = root->append_rel_array[rel->relid];
Index prelid = appinfo->parent_relid;
result = bms_add_member(result, prelid);
/* traverse up to the parent rel, loop if it's also a child rel */
rel = find_base_rel(root, prelid);
} while (rel->reloptkind == RELOPT_OTHER_MEMBER_REL);
Assert(rel->reloptkind == RELOPT_BASEREL);
return result;
}
/*
* get_baserel_parampathinfo
* Get the ParamPathInfo for a parameterized path for a base relation,
* constructing one if we don't have one already.
*
* This centralizes estimating the rowcounts for parameterized paths.
* We need to cache those to be sure we use the same rowcount for all paths
* of the same parameterization for a given rel. This is also a convenient
* place to determine which movable join clauses the parameterized path will
* be responsible for evaluating.
*/
ParamPathInfo *
get_baserel_parampathinfo(PlannerInfo *root, RelOptInfo *baserel,
Relids required_outer)
{
ParamPathInfo *ppi;
Relids joinrelids;
List *pclauses;
List *eqclauses;
double rows;
ListCell *lc;
/* If rel has LATERAL refs, every path for it should account for them */
Assert(bms_is_subset(baserel->lateral_relids, required_outer));
/* Unparameterized paths have no ParamPathInfo */
if (bms_is_empty(required_outer))
return NULL;
Assert(!bms_overlap(baserel->relids, required_outer));
/* If we already have a PPI for this parameterization, just return it */
if ((ppi = find_param_path_info(baserel, required_outer)))
return ppi;
/*
* Identify all joinclauses that are movable to this base rel given this
* parameterization.
*/
joinrelids = bms_union(baserel->relids, required_outer);
pclauses = NIL;
foreach(lc, baserel->joininfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
if (join_clause_is_movable_into(rinfo,
baserel->relids,
joinrelids))
pclauses = lappend(pclauses, rinfo);
}
/*
* Add in joinclauses generated by EquivalenceClasses, too. In principle
* these should always satisfy join_clause_is_movable_into; but if we are
* below an outer join the clauses might contain Vars that should only be
* evaluated above the join, so we have to check.
*/
eqclauses = generate_join_implied_equalities(root,
joinrelids,
required_outer,
baserel);
foreach(lc, eqclauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
if (join_clause_is_movable_into(rinfo,
baserel->relids,
joinrelids))
pclauses = lappend(pclauses, rinfo);
}
/* Estimate the number of rows returned by the parameterized scan */
rows = get_parameterized_baserel_size(root, baserel, pclauses);
/* And now we can build the ParamPathInfo */
ppi = makeNode(ParamPathInfo);
ppi->ppi_req_outer = required_outer;
ppi->ppi_rows = rows;
ppi->ppi_clauses = pclauses;
baserel->ppilist = lappend(baserel->ppilist, ppi);
return ppi;
}
/*
* get_joinrel_parampathinfo
* Get the ParamPathInfo for a parameterized path for a join relation,
* constructing one if we don't have one already.
*
* This centralizes estimating the rowcounts for parameterized paths.
* We need to cache those to be sure we use the same rowcount for all paths
* of the same parameterization for a given rel. This is also a convenient
* place to determine which movable join clauses the parameterized path will
* be responsible for evaluating.
*
* outer_path and inner_path are a pair of input paths that can be used to
* construct the join, and restrict_clauses is the list of regular join
* clauses (including clauses derived from EquivalenceClasses) that must be
* applied at the join node when using these inputs.
*
* Unlike the situation for base rels, the set of movable join clauses to be
* enforced at a join varies with the selected pair of input paths, so we
* must calculate that and pass it back, even if we already have a matching
* ParamPathInfo. We handle this by adding any clauses moved down to this
* join to *restrict_clauses, which is an in/out parameter. (The addition
* is done in such a way as to not modify the passed-in List structure.)
*
* Note: when considering a nestloop join, the caller must have removed from
* restrict_clauses any movable clauses that are themselves scheduled to be
* pushed into the right-hand path. We do not do that here since it's
* unnecessary for other join types.
*/
ParamPathInfo *
get_joinrel_parampathinfo(PlannerInfo *root, RelOptInfo *joinrel,
Path *outer_path,
Path *inner_path,
SpecialJoinInfo *sjinfo,
Relids required_outer,
List **restrict_clauses)
{
ParamPathInfo *ppi;
Relids join_and_req;
Relids outer_and_req;
Relids inner_and_req;
List *pclauses;
List *eclauses;
List *dropped_ecs;
double rows;
ListCell *lc;
/* If rel has LATERAL refs, every path for it should account for them */
Assert(bms_is_subset(joinrel->lateral_relids, required_outer));
/* Unparameterized paths have no ParamPathInfo or extra join clauses */
if (bms_is_empty(required_outer))
return NULL;
Assert(!bms_overlap(joinrel->relids, required_outer));
/*
* Identify all joinclauses that are movable to this join rel given this
* parameterization. These are the clauses that are movable into this
* join, but not movable into either input path. Treat an unparameterized
* input path as not accepting parameterized clauses (because it won't,
* per the shortcut exit above), even though the joinclause movement rules
* might allow the same clauses to be moved into a parameterized path for
* that rel.
*/
join_and_req = bms_union(joinrel->relids, required_outer);
if (outer_path->param_info)
outer_and_req = bms_union(outer_path->parent->relids,
PATH_REQ_OUTER(outer_path));
else
outer_and_req = NULL; /* outer path does not accept parameters */
if (inner_path->param_info)
inner_and_req = bms_union(inner_path->parent->relids,
PATH_REQ_OUTER(inner_path));
else
inner_and_req = NULL; /* inner path does not accept parameters */
pclauses = NIL;
foreach(lc, joinrel->joininfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
if (join_clause_is_movable_into(rinfo,
joinrel->relids,
join_and_req) &&
!join_clause_is_movable_into(rinfo,
outer_path->parent->relids,
outer_and_req) &&
!join_clause_is_movable_into(rinfo,
inner_path->parent->relids,
inner_and_req))
pclauses = lappend(pclauses, rinfo);
}
/* Consider joinclauses generated by EquivalenceClasses, too */
eclauses = generate_join_implied_equalities(root,
join_and_req,
required_outer,
joinrel);
/* We only want ones that aren't movable to lower levels */
dropped_ecs = NIL;
foreach(lc, eclauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
/*
* In principle, join_clause_is_movable_into() should accept anything
* returned by generate_join_implied_equalities(); but because its
* analysis is only approximate, sometimes it doesn't. So we
* currently cannot use this Assert; instead just assume it's okay to
* apply the joinclause at this level.
*/
#ifdef NOT_USED
Assert(join_clause_is_movable_into(rinfo,
joinrel->relids,
join_and_req));
#endif
if (join_clause_is_movable_into(rinfo,
outer_path->parent->relids,
outer_and_req))
continue; /* drop if movable into LHS */
if (join_clause_is_movable_into(rinfo,
inner_path->parent->relids,
inner_and_req))
{
/* drop if movable into RHS, but remember EC for use below */
Assert(rinfo->left_ec == rinfo->right_ec);
dropped_ecs = lappend(dropped_ecs, rinfo->left_ec);
continue;
}
pclauses = lappend(pclauses, rinfo);
}
/*
* EquivalenceClasses are harder to deal with than we could wish, because
* of the fact that a given EC can generate different clauses depending on
* context. Suppose we have an EC {X.X, Y.Y, Z.Z} where X and Y are the
* LHS and RHS of the current join and Z is in required_outer, and further
* suppose that the inner_path is parameterized by both X and Z. The code
* above will have produced either Z.Z = X.X or Z.Z = Y.Y from that EC,
* and in the latter case will have discarded it as being movable into the
* RHS. However, the EC machinery might have produced either Y.Y = X.X or
* Y.Y = Z.Z as the EC enforcement clause within the inner_path; it will
* not have produced both, and we can't readily tell from here which one
* it did pick. If we add no clause to this join, we'll end up with
* insufficient enforcement of the EC; either Z.Z or X.X will fail to be
* constrained to be equal to the other members of the EC. (When we come
* to join Z to this X/Y path, we will certainly drop whichever EC clause
* is generated at that join, so this omission won't get fixed later.)
*
* To handle this, for each EC we discarded such a clause from, try to
* generate a clause connecting the required_outer rels to the join's LHS
* ("Z.Z = X.X" in the terms of the above example). If successful, and if
* the clause can't be moved to the LHS, add it to the current join's
* restriction clauses. (If an EC cannot generate such a clause then it
* has nothing that needs to be enforced here, while if the clause can be
* moved into the LHS then it should have been enforced within that path.)
*
* Note that we don't need similar processing for ECs whose clause was
* considered to be movable into the LHS, because the LHS can't refer to
* the RHS so there is no comparable ambiguity about what it might
* actually be enforcing internally.
*/
if (dropped_ecs)
{
Relids real_outer_and_req;
real_outer_and_req = bms_union(outer_path->parent->relids,
required_outer);
eclauses =
generate_join_implied_equalities_for_ecs(root,
dropped_ecs,
real_outer_and_req,
required_outer,
outer_path->parent);
foreach(lc, eclauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
/* As above, can't quite assert this here */
#ifdef NOT_USED
Assert(join_clause_is_movable_into(rinfo,
outer_path->parent->relids,
real_outer_and_req));
#endif
if (!join_clause_is_movable_into(rinfo,
outer_path->parent->relids,
outer_and_req))
pclauses = lappend(pclauses, rinfo);
}
}
/*
* Now, attach the identified moved-down clauses to the caller's
* restrict_clauses list. By using list_concat in this order, we leave
* the original list structure of restrict_clauses undamaged.
*/
*restrict_clauses = list_concat(pclauses, *restrict_clauses);
/* If we already have a PPI for this parameterization, just return it */
if ((ppi = find_param_path_info(joinrel, required_outer)))
return ppi;
/* Estimate the number of rows returned by the parameterized join */
rows = get_parameterized_joinrel_size(root, joinrel,
outer_path,
inner_path,
sjinfo,
*restrict_clauses);
/*
* And now we can build the ParamPathInfo. No point in saving the
* input-pair-dependent clause list, though.
*
* Note: in GEQO mode, we'll be called in a temporary memory context, but
* the joinrel structure is there too, so no problem.
*/
ppi = makeNode(ParamPathInfo);
ppi->ppi_req_outer = required_outer;
ppi->ppi_rows = rows;
ppi->ppi_clauses = NIL;
joinrel->ppilist = lappend(joinrel->ppilist, ppi);
return ppi;
}
/*
* get_appendrel_parampathinfo
* Get the ParamPathInfo for a parameterized path for an append relation.
*
* For an append relation, the rowcount estimate will just be the sum of
* the estimates for its children. However, we still need a ParamPathInfo
* to flag the fact that the path requires parameters. So this just creates
* a suitable struct with zero ppi_rows (and no ppi_clauses either, since
* the Append node isn't responsible for checking quals).
*/
ParamPathInfo *
get_appendrel_parampathinfo(RelOptInfo *appendrel, Relids required_outer)
{
ParamPathInfo *ppi;
/* If rel has LATERAL refs, every path for it should account for them */
Assert(bms_is_subset(appendrel->lateral_relids, required_outer));
/* Unparameterized paths have no ParamPathInfo */
if (bms_is_empty(required_outer))
return NULL;
Assert(!bms_overlap(appendrel->relids, required_outer));
/* If we already have a PPI for this parameterization, just return it */
if ((ppi = find_param_path_info(appendrel, required_outer)))
return ppi;
/* Else build the ParamPathInfo */
ppi = makeNode(ParamPathInfo);
ppi->ppi_req_outer = required_outer;
ppi->ppi_rows = 0;
ppi->ppi_clauses = NIL;
appendrel->ppilist = lappend(appendrel->ppilist, ppi);
return ppi;
}
/*
* Returns a ParamPathInfo for the parameterization given by required_outer, if
* already available in the given rel. Returns NULL otherwise.
*/
ParamPathInfo *
find_param_path_info(RelOptInfo *rel, Relids required_outer)
{
ListCell *lc;
foreach(lc, rel->ppilist)
{
ParamPathInfo *ppi = (ParamPathInfo *) lfirst(lc);
if (bms_equal(ppi->ppi_req_outer, required_outer))
return ppi;
}
return NULL;
}
/*
* build_joinrel_partition_info
* Checks if the two relations being joined can use partitionwise join
* and if yes, initialize partitioning information of the resulting
* partitioned join relation.
*/
static void
build_joinrel_partition_info(RelOptInfo *joinrel, RelOptInfo *outer_rel,
RelOptInfo *inner_rel, List *restrictlist,
JoinType jointype)
{
PartitionScheme part_scheme;
/* Nothing to do if partitionwise join technique is disabled. */
if (!enable_partitionwise_join)
{
Assert(!IS_PARTITIONED_REL(joinrel));
return;
}
/*
* We can only consider this join as an input to further partitionwise
* joins if (a) the input relations are partitioned and have
* consider_partitionwise_join=true, (b) the partition schemes match, and
* (c) we can identify an equi-join between the partition keys. Note that
* if it were possible for have_partkey_equi_join to return different
* answers for the same joinrel depending on which join ordering we try
* first, this logic would break. That shouldn't happen, though, because
* of the way the query planner deduces implied equalities and reorders
* the joins. Please see optimizer/README for details.
*/
if (outer_rel->part_scheme == NULL || inner_rel->part_scheme == NULL ||
!outer_rel->consider_partitionwise_join ||
!inner_rel->consider_partitionwise_join ||
outer_rel->part_scheme != inner_rel->part_scheme ||
!have_partkey_equi_join(joinrel, outer_rel, inner_rel,
jointype, restrictlist))
{
Assert(!IS_PARTITIONED_REL(joinrel));
return;
}
part_scheme = outer_rel->part_scheme;
/*
* This function will be called only once for each joinrel, hence it
* should not have partitioning fields filled yet.
*/
Assert(!joinrel->part_scheme && !joinrel->partexprs &&
!joinrel->nullable_partexprs && !joinrel->part_rels &&
!joinrel->boundinfo);
/*
* If the join relation is partitioned, it uses the same partitioning
* scheme as the joining relations.
*
* Note: we calculate the partition bounds, number of partitions, and
* child-join relations of the join relation in try_partitionwise_join().
*/
joinrel->part_scheme = part_scheme;
set_joinrel_partition_key_exprs(joinrel, outer_rel, inner_rel, jointype);
/*
* Set the consider_partitionwise_join flag.
*/
Assert(outer_rel->consider_partitionwise_join);
Assert(inner_rel->consider_partitionwise_join);
joinrel->consider_partitionwise_join = true;
}
/*
* have_partkey_equi_join
*
* Returns true if there exist equi-join conditions involving pairs
* of matching partition keys of the relations being joined for all
* partition keys.
*/
static bool
have_partkey_equi_join(RelOptInfo *joinrel,
RelOptInfo *rel1, RelOptInfo *rel2,
JoinType jointype, List *restrictlist)
{
PartitionScheme part_scheme = rel1->part_scheme;
ListCell *lc;
int cnt_pks;
bool pk_has_clause[PARTITION_MAX_KEYS];
bool strict_op;
/*
* This function must only be called when the joined relations have same
* partitioning scheme.
*/
Assert(rel1->part_scheme == rel2->part_scheme);
Assert(part_scheme);
memset(pk_has_clause, 0, sizeof(pk_has_clause));
foreach(lc, restrictlist)
{
RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
OpExpr *opexpr;
Expr *expr1;
Expr *expr2;
int ipk1;
int ipk2;
/* If processing an outer join, only use its own join clauses. */
if (IS_OUTER_JOIN(jointype) &&
RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
continue;
/* Skip clauses which can not be used for a join. */
if (!rinfo->can_join)
continue;
/* Skip clauses which are not equality conditions. */
if (!rinfo->mergeopfamilies && !OidIsValid(rinfo->hashjoinoperator))
continue;
/* Should be OK to assume it's an OpExpr. */
opexpr = castNode(OpExpr, rinfo->clause);
/* Match the operands to the relation. */
if (bms_is_subset(rinfo->left_relids, rel1->relids) &&
bms_is_subset(rinfo->right_relids, rel2->relids))
{
expr1 = linitial(opexpr->args);
expr2 = lsecond(opexpr->args);
}
else if (bms_is_subset(rinfo->left_relids, rel2->relids) &&
bms_is_subset(rinfo->right_relids, rel1->relids))
{
expr1 = lsecond(opexpr->args);
expr2 = linitial(opexpr->args);
}
else
continue;
/*
* Now we need to know whether the join operator is strict; see
* comments in pathnodes.h.
*/
strict_op = op_strict(opexpr->opno);
/*
* Only clauses referencing the partition keys are useful for
* partitionwise join.
*/
ipk1 = match_expr_to_partition_keys(expr1, rel1, strict_op);
if (ipk1 < 0)
continue;
ipk2 = match_expr_to_partition_keys(expr2, rel2, strict_op);
if (ipk2 < 0)
continue;
/*
* If the clause refers to keys at different ordinal positions, it can
* not be used for partitionwise join.
*/
if (ipk1 != ipk2)
continue;
/*
* The clause allows partitionwise join only if it uses the same
* operator family as that specified by the partition key.
*/
if (rel1->part_scheme->strategy == PARTITION_STRATEGY_HASH)
{
if (!OidIsValid(rinfo->hashjoinoperator) ||
!op_in_opfamily(rinfo->hashjoinoperator,
part_scheme->partopfamily[ipk1]))
continue;
}
else if (!list_member_oid(rinfo->mergeopfamilies,
part_scheme->partopfamily[ipk1]))
continue;
/* Mark the partition key as having an equi-join clause. */
pk_has_clause[ipk1] = true;
}
/* Check whether every partition key has an equi-join condition. */
for (cnt_pks = 0; cnt_pks < part_scheme->partnatts; cnt_pks++)
{
if (!pk_has_clause[cnt_pks])
return false;
}
return true;
}
/*
* match_expr_to_partition_keys
*
* Tries to match an expression to one of the nullable or non-nullable
* partition keys of "rel". Returns the matched key's ordinal position,
* or -1 if the expression could not be matched to any of the keys.
*
* strict_op must be true if the expression will be compared with the
* partition key using a strict operator. This allows us to consider
* nullable as well as nonnullable partition keys.
*/
static int
match_expr_to_partition_keys(Expr *expr, RelOptInfo *rel, bool strict_op)
{
int cnt;
/* This function should be called only for partitioned relations. */
Assert(rel->part_scheme);
Assert(rel->partexprs);
Assert(rel->nullable_partexprs);
/* Remove any relabel decorations. */
while (IsA(expr, RelabelType))
expr = (Expr *) (castNode(RelabelType, expr))->arg;
for (cnt = 0; cnt < rel->part_scheme->partnatts; cnt++)
{
ListCell *lc;
/* We can always match to the non-nullable partition keys. */
foreach(lc, rel->partexprs[cnt])
{
if (equal(lfirst(lc), expr))
return cnt;
}
if (!strict_op)
continue;
/*
* If it's a strict join operator then a NULL partition key on one
* side will not join to any partition key on the other side, and in
* particular such a row can't join to a row from a different
* partition on the other side. So, it's okay to search the nullable
* partition keys as well.
*/
foreach(lc, rel->nullable_partexprs[cnt])
{
if (equal(lfirst(lc), expr))
return cnt;
}
}
return -1;
}
/*
* set_joinrel_partition_key_exprs
* Initialize partition key expressions for a partitioned joinrel.
*/
static void
set_joinrel_partition_key_exprs(RelOptInfo *joinrel,
RelOptInfo *outer_rel, RelOptInfo *inner_rel,
JoinType jointype)
{
PartitionScheme part_scheme = joinrel->part_scheme;
int partnatts = part_scheme->partnatts;
joinrel->partexprs = (List **) palloc0(sizeof(List *) * partnatts);
joinrel->nullable_partexprs =
(List **) palloc0(sizeof(List *) * partnatts);
/*
* The joinrel's partition expressions are the same as those of the input
* rels, but we must properly classify them as nullable or not in the
* joinrel's output. (Also, we add some more partition expressions if
* it's a FULL JOIN.)
*/
for (int cnt = 0; cnt < partnatts; cnt++)
{
/* mark these const to enforce that we copy them properly */
const List *outer_expr = outer_rel->partexprs[cnt];
const List *outer_null_expr = outer_rel->nullable_partexprs[cnt];
const List *inner_expr = inner_rel->partexprs[cnt];
const List *inner_null_expr = inner_rel->nullable_partexprs[cnt];
List *partexpr = NIL;
List *nullable_partexpr = NIL;
ListCell *lc;
switch (jointype)
{
/*
* A join relation resulting from an INNER join may be
* regarded as partitioned by either of the inner and outer
* relation keys. For example, A INNER JOIN B ON A.a = B.b
* can be regarded as partitioned on either A.a or B.b. So we
* add both keys to the joinrel's partexpr lists. However,
* anything that was already nullable still has to be treated
* as nullable.
*/
case JOIN_INNER:
partexpr = list_concat_copy(outer_expr, inner_expr);
nullable_partexpr = list_concat_copy(outer_null_expr,
inner_null_expr);
break;
/*
* A join relation resulting from a SEMI or ANTI join may be
* regarded as partitioned by the outer relation keys. The
* inner relation's keys are no longer interesting; since they
* aren't visible in the join output, nothing could join to
* them.
*/
case JOIN_SEMI:
case JOIN_ANTI:
partexpr = list_copy(outer_expr);
nullable_partexpr = list_copy(outer_null_expr);
break;
/*
* A join relation resulting from a LEFT OUTER JOIN likewise
* may be regarded as partitioned on the (non-nullable) outer
* relation keys. The inner (nullable) relation keys are okay
* as partition keys for further joins as long as they involve
* strict join operators.
*/
case JOIN_LEFT:
partexpr = list_copy(outer_expr);
nullable_partexpr = list_concat_copy(inner_expr,
outer_null_expr);
nullable_partexpr = list_concat(nullable_partexpr,
inner_null_expr);
break;
/*
* For FULL OUTER JOINs, both relations are nullable, so the
* resulting join relation may be regarded as partitioned on
* either of inner and outer relation keys, but only for joins
* that involve strict join operators.
*/
case JOIN_FULL:
nullable_partexpr = list_concat_copy(outer_expr,
inner_expr);
nullable_partexpr = list_concat(nullable_partexpr,
outer_null_expr);
nullable_partexpr = list_concat(nullable_partexpr,
inner_null_expr);
/*
* Also add CoalesceExprs corresponding to each possible
* full-join output variable (that is, left side coalesced to
* right side), so that we can match equijoin expressions
* using those variables. We really only need these for
* columns merged by JOIN USING, and only with the pairs of
* input items that correspond to the data structures that
* parse analysis would build for such variables. But it's
* hard to tell which those are, so just make all the pairs.
* Extra items in the nullable_partexprs list won't cause big
* problems. (It's possible that such items will get matched
* to user-written COALESCEs, but it should still be valid to
* partition on those, since they're going to be either the
* partition column or NULL; it's the same argument as for
* partitionwise nesting of any outer join.) We assume no
* type coercions are needed to make the coalesce expressions,
* since columns of different types won't have gotten
* classified as the same PartitionScheme.
*/
foreach(lc, list_concat_copy(outer_expr, outer_null_expr))
{
Node *larg = (Node *) lfirst(lc);
ListCell *lc2;
foreach(lc2, list_concat_copy(inner_expr, inner_null_expr))
{
Node *rarg = (Node *) lfirst(lc2);
CoalesceExpr *c = makeNode(CoalesceExpr);
c->coalescetype = exprType(larg);
c->coalescecollid = exprCollation(larg);
c->args = list_make2(larg, rarg);
c->location = -1;
nullable_partexpr = lappend(nullable_partexpr, c);
}
}
break;
default:
elog(ERROR, "unrecognized join type: %d", (int) jointype);
}
joinrel->partexprs[cnt] = partexpr;
joinrel->nullable_partexprs[cnt] = nullable_partexpr;
}
}
/*
* build_child_join_reltarget
* Set up a child-join relation's reltarget from a parent-join relation.
*/
static void
build_child_join_reltarget(PlannerInfo *root,
RelOptInfo *parentrel,
RelOptInfo *childrel,
int nappinfos,
AppendRelInfo **appinfos)
{
/* Build the targetlist */
childrel->reltarget->exprs = (List *)
adjust_appendrel_attrs(root,
(Node *) parentrel->reltarget->exprs,
nappinfos, appinfos);
/* Set the cost and width fields */
childrel->reltarget->cost.startup = parentrel->reltarget->cost.startup;
childrel->reltarget->cost.per_tuple = parentrel->reltarget->cost.per_tuple;
childrel->reltarget->width = parentrel->reltarget->width;
}
|