summaryrefslogtreecommitdiffstats
path: root/src/backend/parser/parse_coerce.c
blob: c4e958e4aa81af65c7cfbd291df3c4ff9610fcc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
/*-------------------------------------------------------------------------
 *
 * parse_coerce.c
 *		handle type coercions/conversions for parser
 *
 * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/parser/parse_coerce.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "catalog/pg_cast.h"
#include "catalog/pg_class.h"
#include "catalog/pg_inherits.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "parser/parse_coerce.h"
#include "parser/parse_relation.h"
#include "parser/parse_type.h"
#include "utils/builtins.h"
#include "utils/datum.h"		/* needed for datumIsEqual() */
#include "utils/fmgroids.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
#include "utils/typcache.h"


static Node *coerce_type_typmod(Node *node,
								Oid targetTypeId, int32 targetTypMod,
								CoercionContext ccontext, CoercionForm cformat,
								int location,
								bool hideInputCoercion);
static void hide_coercion_node(Node *node);
static Node *build_coercion_expression(Node *node,
									   CoercionPathType pathtype,
									   Oid funcId,
									   Oid targetTypeId, int32 targetTypMod,
									   CoercionContext ccontext, CoercionForm cformat,
									   int location);
static Node *coerce_record_to_complex(ParseState *pstate, Node *node,
									  Oid targetTypeId,
									  CoercionContext ccontext,
									  CoercionForm cformat,
									  int location);
static bool is_complex_array(Oid typid);
static bool typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId);


/*
 * coerce_to_target_type()
 *		Convert an expression to a target type and typmod.
 *
 * This is the general-purpose entry point for arbitrary type coercion
 * operations.  Direct use of the component operations can_coerce_type,
 * coerce_type, and coerce_type_typmod should be restricted to special
 * cases (eg, when the conversion is expected to succeed).
 *
 * Returns the possibly-transformed expression tree, or NULL if the type
 * conversion is not possible.  (We do this, rather than ereport'ing directly,
 * so that callers can generate custom error messages indicating context.)
 *
 * pstate - parse state (can be NULL, see coerce_type)
 * expr - input expression tree (already transformed by transformExpr)
 * exprtype - result type of expr
 * targettype - desired result type
 * targettypmod - desired result typmod
 * ccontext, cformat - context indicators to control coercions
 * location - parse location of the coercion request, or -1 if unknown/implicit
 */
Node *
coerce_to_target_type(ParseState *pstate, Node *expr, Oid exprtype,
					  Oid targettype, int32 targettypmod,
					  CoercionContext ccontext,
					  CoercionForm cformat,
					  int location)
{
	Node	   *result;
	Node	   *origexpr;

	if (!can_coerce_type(1, &exprtype, &targettype, ccontext))
		return NULL;

	/*
	 * If the input has a CollateExpr at the top, strip it off, perform the
	 * coercion, and put a new one back on.  This is annoying since it
	 * duplicates logic in coerce_type, but if we don't do this then it's too
	 * hard to tell whether coerce_type actually changed anything, and we
	 * *must* know that to avoid possibly calling hide_coercion_node on
	 * something that wasn't generated by coerce_type.  Note that if there are
	 * multiple stacked CollateExprs, we just discard all but the topmost.
	 * Also, if the target type isn't collatable, we discard the CollateExpr.
	 */
	origexpr = expr;
	while (expr && IsA(expr, CollateExpr))
		expr = (Node *) ((CollateExpr *) expr)->arg;

	result = coerce_type(pstate, expr, exprtype,
						 targettype, targettypmod,
						 ccontext, cformat, location);

	/*
	 * If the target is a fixed-length type, it may need a length coercion as
	 * well as a type coercion.  If we find ourselves adding both, force the
	 * inner coercion node to implicit display form.
	 */
	result = coerce_type_typmod(result,
								targettype, targettypmod,
								ccontext, cformat, location,
								(result != expr && !IsA(result, Const)));

	if (expr != origexpr && type_is_collatable(targettype))
	{
		/* Reinstall top CollateExpr */
		CollateExpr *coll = (CollateExpr *) origexpr;
		CollateExpr *newcoll = makeNode(CollateExpr);

		newcoll->arg = (Expr *) result;
		newcoll->collOid = coll->collOid;
		newcoll->location = coll->location;
		result = (Node *) newcoll;
	}

	return result;
}


/*
 * coerce_type()
 *		Convert an expression to a different type.
 *
 * The caller should already have determined that the coercion is possible;
 * see can_coerce_type.
 *
 * Normally, no coercion to a typmod (length) is performed here.  The caller
 * must call coerce_type_typmod as well, if a typmod constraint is wanted.
 * (But if the target type is a domain, it may internally contain a
 * typmod constraint, which will be applied inside coerce_to_domain.)
 * In some cases pg_cast specifies a type coercion function that also
 * applies length conversion, and in those cases only, the result will
 * already be properly coerced to the specified typmod.
 *
 * pstate is only used in the case that we are able to resolve the type of
 * a previously UNKNOWN Param.  It is okay to pass pstate = NULL if the
 * caller does not want type information updated for Params.
 *
 * Note: this function must not modify the given expression tree, only add
 * decoration on top of it.  See transformSetOperationTree, for example.
 */
Node *
coerce_type(ParseState *pstate, Node *node,
			Oid inputTypeId, Oid targetTypeId, int32 targetTypeMod,
			CoercionContext ccontext, CoercionForm cformat, int location)
{
	Node	   *result;
	CoercionPathType pathtype;
	Oid			funcId;

	if (targetTypeId == inputTypeId ||
		node == NULL)
	{
		/* no conversion needed */
		return node;
	}
	if (targetTypeId == ANYOID ||
		targetTypeId == ANYELEMENTOID ||
		targetTypeId == ANYNONARRAYOID ||
		targetTypeId == ANYCOMPATIBLEOID ||
		targetTypeId == ANYCOMPATIBLENONARRAYOID)
	{
		/*
		 * Assume can_coerce_type verified that implicit coercion is okay.
		 *
		 * Note: by returning the unmodified node here, we are saying that
		 * it's OK to treat an UNKNOWN constant as a valid input for a
		 * function accepting one of these pseudotypes.  This should be all
		 * right, since an UNKNOWN value is still a perfectly valid Datum.
		 *
		 * NB: we do NOT want a RelabelType here: the exposed type of the
		 * function argument must be its actual type, not the polymorphic
		 * pseudotype.
		 */
		return node;
	}
	if (targetTypeId == ANYARRAYOID ||
		targetTypeId == ANYENUMOID ||
		targetTypeId == ANYRANGEOID ||
		targetTypeId == ANYMULTIRANGEOID ||
		targetTypeId == ANYCOMPATIBLEARRAYOID ||
		targetTypeId == ANYCOMPATIBLERANGEOID ||
		targetTypeId == ANYCOMPATIBLEMULTIRANGEOID)
	{
		/*
		 * Assume can_coerce_type verified that implicit coercion is okay.
		 *
		 * These cases are unlike the ones above because the exposed type of
		 * the argument must be an actual array, enum, range, or multirange
		 * type.  In particular the argument must *not* be an UNKNOWN
		 * constant.  If it is, we just fall through; below, we'll call the
		 * pseudotype's input function, which will produce an error.  Also, if
		 * what we have is a domain over array, enum, range, or multirange, we
		 * have to relabel it to its base type.
		 *
		 * Note: currently, we can't actually see a domain-over-enum here,
		 * since the other functions in this file will not match such a
		 * parameter to ANYENUM.  But that should get changed eventually.
		 */
		if (inputTypeId != UNKNOWNOID)
		{
			Oid			baseTypeId = getBaseType(inputTypeId);

			if (baseTypeId != inputTypeId)
			{
				RelabelType *r = makeRelabelType((Expr *) node,
												 baseTypeId, -1,
												 InvalidOid,
												 cformat);

				r->location = location;
				return (Node *) r;
			}
			/* Not a domain type, so return it as-is */
			return node;
		}
	}
	if (inputTypeId == UNKNOWNOID && IsA(node, Const))
	{
		/*
		 * Input is a string constant with previously undetermined type. Apply
		 * the target type's typinput function to it to produce a constant of
		 * the target type.
		 *
		 * NOTE: this case cannot be folded together with the other
		 * constant-input case, since the typinput function does not
		 * necessarily behave the same as a type conversion function. For
		 * example, int4's typinput function will reject "1.2", whereas
		 * float-to-int type conversion will round to integer.
		 *
		 * XXX if the typinput function is not immutable, we really ought to
		 * postpone evaluation of the function call until runtime. But there
		 * is no way to represent a typinput function call as an expression
		 * tree, because C-string values are not Datums. (XXX This *is*
		 * possible as of 7.3, do we want to do it?)
		 */
		Const	   *con = (Const *) node;
		Const	   *newcon = makeNode(Const);
		Oid			baseTypeId;
		int32		baseTypeMod;
		int32		inputTypeMod;
		Type		baseType;
		ParseCallbackState pcbstate;

		/*
		 * If the target type is a domain, we want to call its base type's
		 * input routine, not domain_in().  This is to avoid premature failure
		 * when the domain applies a typmod: existing input routines follow
		 * implicit-coercion semantics for length checks, which is not always
		 * what we want here.  The needed check will be applied properly
		 * inside coerce_to_domain().
		 */
		baseTypeMod = targetTypeMod;
		baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);

		/*
		 * For most types we pass typmod -1 to the input routine, because
		 * existing input routines follow implicit-coercion semantics for
		 * length checks, which is not always what we want here.  Any length
		 * constraint will be applied later by our caller.  An exception
		 * however is the INTERVAL type, for which we *must* pass the typmod
		 * or it won't be able to obey the bizarre SQL-spec input rules. (Ugly
		 * as sin, but so is this part of the spec...)
		 */
		if (baseTypeId == INTERVALOID)
			inputTypeMod = baseTypeMod;
		else
			inputTypeMod = -1;

		baseType = typeidType(baseTypeId);

		newcon->consttype = baseTypeId;
		newcon->consttypmod = inputTypeMod;
		newcon->constcollid = typeTypeCollation(baseType);
		newcon->constlen = typeLen(baseType);
		newcon->constbyval = typeByVal(baseType);
		newcon->constisnull = con->constisnull;

		/*
		 * We use the original literal's location regardless of the position
		 * of the coercion.  This is a change from pre-9.2 behavior, meant to
		 * simplify life for pg_stat_statements.
		 */
		newcon->location = con->location;

		/*
		 * Set up to point at the constant's text if the input routine throws
		 * an error.
		 */
		setup_parser_errposition_callback(&pcbstate, pstate, con->location);

		/*
		 * We assume here that UNKNOWN's internal representation is the same
		 * as CSTRING.
		 */
		if (!con->constisnull)
			newcon->constvalue = stringTypeDatum(baseType,
												 DatumGetCString(con->constvalue),
												 inputTypeMod);
		else
			newcon->constvalue = stringTypeDatum(baseType,
												 NULL,
												 inputTypeMod);

		/*
		 * If it's a varlena value, force it to be in non-expanded
		 * (non-toasted) format; this avoids any possible dependency on
		 * external values and improves consistency of representation.
		 */
		if (!con->constisnull && newcon->constlen == -1)
			newcon->constvalue =
				PointerGetDatum(PG_DETOAST_DATUM(newcon->constvalue));

#ifdef RANDOMIZE_ALLOCATED_MEMORY

		/*
		 * For pass-by-reference data types, repeat the conversion to see if
		 * the input function leaves any uninitialized bytes in the result. We
		 * can only detect that reliably if RANDOMIZE_ALLOCATED_MEMORY is
		 * enabled, so we don't bother testing otherwise.  The reason we don't
		 * want any instability in the input function is that comparison of
		 * Const nodes relies on bytewise comparison of the datums, so if the
		 * input function leaves garbage then subexpressions that should be
		 * identical may not get recognized as such.  See pgsql-hackers
		 * discussion of 2008-04-04.
		 */
		if (!con->constisnull && !newcon->constbyval)
		{
			Datum		val2;

			val2 = stringTypeDatum(baseType,
								   DatumGetCString(con->constvalue),
								   inputTypeMod);
			if (newcon->constlen == -1)
				val2 = PointerGetDatum(PG_DETOAST_DATUM(val2));
			if (!datumIsEqual(newcon->constvalue, val2, false, newcon->constlen))
				elog(WARNING, "type %s has unstable input conversion for \"%s\"",
					 typeTypeName(baseType), DatumGetCString(con->constvalue));
		}
#endif

		cancel_parser_errposition_callback(&pcbstate);

		result = (Node *) newcon;

		/* If target is a domain, apply constraints. */
		if (baseTypeId != targetTypeId)
			result = coerce_to_domain(result,
									  baseTypeId, baseTypeMod,
									  targetTypeId,
									  ccontext, cformat, location,
									  false);

		ReleaseSysCache(baseType);

		return result;
	}
	if (IsA(node, Param) &&
		pstate != NULL && pstate->p_coerce_param_hook != NULL)
	{
		/*
		 * Allow the CoerceParamHook to decide what happens.  It can return a
		 * transformed node (very possibly the same Param node), or return
		 * NULL to indicate we should proceed with normal coercion.
		 */
		result = pstate->p_coerce_param_hook(pstate,
											 (Param *) node,
											 targetTypeId,
											 targetTypeMod,
											 location);
		if (result)
			return result;
	}
	if (IsA(node, CollateExpr))
	{
		/*
		 * If we have a COLLATE clause, we have to push the coercion
		 * underneath the COLLATE; or discard the COLLATE if the target type
		 * isn't collatable.  This is really ugly, but there is little choice
		 * because the above hacks on Consts and Params wouldn't happen
		 * otherwise.  This kluge has consequences in coerce_to_target_type.
		 */
		CollateExpr *coll = (CollateExpr *) node;

		result = coerce_type(pstate, (Node *) coll->arg,
							 inputTypeId, targetTypeId, targetTypeMod,
							 ccontext, cformat, location);
		if (type_is_collatable(targetTypeId))
		{
			CollateExpr *newcoll = makeNode(CollateExpr);

			newcoll->arg = (Expr *) result;
			newcoll->collOid = coll->collOid;
			newcoll->location = coll->location;
			result = (Node *) newcoll;
		}
		return result;
	}
	pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext,
									 &funcId);
	if (pathtype != COERCION_PATH_NONE)
	{
		if (pathtype != COERCION_PATH_RELABELTYPE)
		{
			/*
			 * Generate an expression tree representing run-time application
			 * of the conversion function.  If we are dealing with a domain
			 * target type, the conversion function will yield the base type,
			 * and we need to extract the correct typmod to use from the
			 * domain's typtypmod.
			 */
			Oid			baseTypeId;
			int32		baseTypeMod;

			baseTypeMod = targetTypeMod;
			baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);

			result = build_coercion_expression(node, pathtype, funcId,
											   baseTypeId, baseTypeMod,
											   ccontext, cformat, location);

			/*
			 * If domain, coerce to the domain type and relabel with domain
			 * type ID, hiding the previous coercion node.
			 */
			if (targetTypeId != baseTypeId)
				result = coerce_to_domain(result, baseTypeId, baseTypeMod,
										  targetTypeId,
										  ccontext, cformat, location,
										  true);
		}
		else
		{
			/*
			 * We don't need to do a physical conversion, but we do need to
			 * attach a RelabelType node so that the expression will be seen
			 * to have the intended type when inspected by higher-level code.
			 *
			 * Also, domains may have value restrictions beyond the base type
			 * that must be accounted for.  If the destination is a domain
			 * then we won't need a RelabelType node.
			 */
			result = coerce_to_domain(node, InvalidOid, -1, targetTypeId,
									  ccontext, cformat, location,
									  false);
			if (result == node)
			{
				/*
				 * XXX could we label result with exprTypmod(node) instead of
				 * default -1 typmod, to save a possible length-coercion
				 * later? Would work if both types have same interpretation of
				 * typmod, which is likely but not certain.
				 */
				RelabelType *r = makeRelabelType((Expr *) result,
												 targetTypeId, -1,
												 InvalidOid,
												 cformat);

				r->location = location;
				result = (Node *) r;
			}
		}
		return result;
	}
	if (inputTypeId == RECORDOID &&
		ISCOMPLEX(targetTypeId))
	{
		/* Coerce a RECORD to a specific complex type */
		return coerce_record_to_complex(pstate, node, targetTypeId,
										ccontext, cformat, location);
	}
	if (targetTypeId == RECORDOID &&
		ISCOMPLEX(inputTypeId))
	{
		/* Coerce a specific complex type to RECORD */
		/* NB: we do NOT want a RelabelType here */
		return node;
	}
#ifdef NOT_USED
	if (inputTypeId == RECORDARRAYOID &&
		is_complex_array(targetTypeId))
	{
		/* Coerce record[] to a specific complex array type */
		/* not implemented yet ... */
	}
#endif
	if (targetTypeId == RECORDARRAYOID &&
		is_complex_array(inputTypeId))
	{
		/* Coerce a specific complex array type to record[] */
		/* NB: we do NOT want a RelabelType here */
		return node;
	}
	if (typeInheritsFrom(inputTypeId, targetTypeId)
		|| typeIsOfTypedTable(inputTypeId, targetTypeId))
	{
		/*
		 * Input class type is a subclass of target, so generate an
		 * appropriate runtime conversion (removing unneeded columns and
		 * possibly rearranging the ones that are wanted).
		 *
		 * We will also get here when the input is a domain over a subclass of
		 * the target type.  To keep life simple for the executor, we define
		 * ConvertRowtypeExpr as only working between regular composite types;
		 * therefore, in such cases insert a RelabelType to smash the input
		 * expression down to its base type.
		 */
		Oid			baseTypeId = getBaseType(inputTypeId);
		ConvertRowtypeExpr *r = makeNode(ConvertRowtypeExpr);

		if (baseTypeId != inputTypeId)
		{
			RelabelType *rt = makeRelabelType((Expr *) node,
											  baseTypeId, -1,
											  InvalidOid,
											  COERCE_IMPLICIT_CAST);

			rt->location = location;
			node = (Node *) rt;
		}
		r->arg = (Expr *) node;
		r->resulttype = targetTypeId;
		r->convertformat = cformat;
		r->location = location;
		return (Node *) r;
	}
	/* If we get here, caller blew it */
	elog(ERROR, "failed to find conversion function from %s to %s",
		 format_type_be(inputTypeId), format_type_be(targetTypeId));
	return NULL;				/* keep compiler quiet */
}


/*
 * can_coerce_type()
 *		Can input_typeids be coerced to target_typeids?
 *
 * We must be told the context (CAST construct, assignment, implicit coercion)
 * as this determines the set of available casts.
 */
bool
can_coerce_type(int nargs, const Oid *input_typeids, const Oid *target_typeids,
				CoercionContext ccontext)
{
	bool		have_generics = false;
	int			i;

	/* run through argument list... */
	for (i = 0; i < nargs; i++)
	{
		Oid			inputTypeId = input_typeids[i];
		Oid			targetTypeId = target_typeids[i];
		CoercionPathType pathtype;
		Oid			funcId;

		/* no problem if same type */
		if (inputTypeId == targetTypeId)
			continue;

		/* accept if target is ANY */
		if (targetTypeId == ANYOID)
			continue;

		/* accept if target is polymorphic, for now */
		if (IsPolymorphicType(targetTypeId))
		{
			have_generics = true;	/* do more checking later */
			continue;
		}

		/*
		 * If input is an untyped string constant, assume we can convert it to
		 * anything.
		 */
		if (inputTypeId == UNKNOWNOID)
			continue;

		/*
		 * If pg_cast shows that we can coerce, accept.  This test now covers
		 * both binary-compatible and coercion-function cases.
		 */
		pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext,
										 &funcId);
		if (pathtype != COERCION_PATH_NONE)
			continue;

		/*
		 * If input is RECORD and target is a composite type, assume we can
		 * coerce (may need tighter checking here)
		 */
		if (inputTypeId == RECORDOID &&
			ISCOMPLEX(targetTypeId))
			continue;

		/*
		 * If input is a composite type and target is RECORD, accept
		 */
		if (targetTypeId == RECORDOID &&
			ISCOMPLEX(inputTypeId))
			continue;

#ifdef NOT_USED					/* not implemented yet */

		/*
		 * If input is record[] and target is a composite array type, assume
		 * we can coerce (may need tighter checking here)
		 */
		if (inputTypeId == RECORDARRAYOID &&
			is_complex_array(targetTypeId))
			continue;
#endif

		/*
		 * If input is a composite array type and target is record[], accept
		 */
		if (targetTypeId == RECORDARRAYOID &&
			is_complex_array(inputTypeId))
			continue;

		/*
		 * If input is a class type that inherits from target, accept
		 */
		if (typeInheritsFrom(inputTypeId, targetTypeId)
			|| typeIsOfTypedTable(inputTypeId, targetTypeId))
			continue;

		/*
		 * Else, cannot coerce at this argument position
		 */
		return false;
	}

	/* If we found any generic argument types, cross-check them */
	if (have_generics)
	{
		if (!check_generic_type_consistency(input_typeids, target_typeids,
											nargs))
			return false;
	}

	return true;
}


/*
 * Create an expression tree to represent coercion to a domain type.
 *
 * 'arg': input expression
 * 'baseTypeId': base type of domain, if known (pass InvalidOid if caller
 *		has not bothered to look this up)
 * 'baseTypeMod': base type typmod of domain, if known (pass -1 if caller
 *		has not bothered to look this up)
 * 'typeId': target type to coerce to
 * 'ccontext': context indicator to control coercions
 * 'cformat': coercion display format
 * 'location': coercion request location
 * 'hideInputCoercion': if true, hide the input coercion under this one.
 *
 * If the target type isn't a domain, the given 'arg' is returned as-is.
 */
Node *
coerce_to_domain(Node *arg, Oid baseTypeId, int32 baseTypeMod, Oid typeId,
				 CoercionContext ccontext, CoercionForm cformat, int location,
				 bool hideInputCoercion)
{
	CoerceToDomain *result;

	/* Get the base type if it hasn't been supplied */
	if (baseTypeId == InvalidOid)
		baseTypeId = getBaseTypeAndTypmod(typeId, &baseTypeMod);

	/* If it isn't a domain, return the node as it was passed in */
	if (baseTypeId == typeId)
		return arg;

	/* Suppress display of nested coercion steps */
	if (hideInputCoercion)
		hide_coercion_node(arg);

	/*
	 * If the domain applies a typmod to its base type, build the appropriate
	 * coercion step.  Mark it implicit for display purposes, because we don't
	 * want it shown separately by ruleutils.c; but the isExplicit flag passed
	 * to the conversion function depends on the manner in which the domain
	 * coercion is invoked, so that the semantics of implicit and explicit
	 * coercion differ.  (Is that really the behavior we want?)
	 *
	 * NOTE: because we apply this as part of the fixed expression structure,
	 * ALTER DOMAIN cannot alter the typtypmod.  But it's unclear that that
	 * would be safe to do anyway, without lots of knowledge about what the
	 * base type thinks the typmod means.
	 */
	arg = coerce_type_typmod(arg, baseTypeId, baseTypeMod,
							 ccontext, COERCE_IMPLICIT_CAST, location,
							 false);

	/*
	 * Now build the domain coercion node.  This represents run-time checking
	 * of any constraints currently attached to the domain.  This also ensures
	 * that the expression is properly labeled as to result type.
	 */
	result = makeNode(CoerceToDomain);
	result->arg = (Expr *) arg;
	result->resulttype = typeId;
	result->resulttypmod = -1;	/* currently, always -1 for domains */
	/* resultcollid will be set by parse_collate.c */
	result->coercionformat = cformat;
	result->location = location;

	return (Node *) result;
}


/*
 * coerce_type_typmod()
 *		Force a value to a particular typmod, if meaningful and possible.
 *
 * This is applied to values that are going to be stored in a relation
 * (where we have an atttypmod for the column) as well as values being
 * explicitly CASTed (where the typmod comes from the target type spec).
 *
 * The caller must have already ensured that the value is of the correct
 * type, typically by applying coerce_type.
 *
 * ccontext may affect semantics, depending on whether the length coercion
 * function pays attention to the isExplicit flag it's passed.
 *
 * cformat determines the display properties of the generated node (if any).
 *
 * If hideInputCoercion is true *and* we generate a node, the input node is
 * forced to IMPLICIT display form, so that only the typmod coercion node will
 * be visible when displaying the expression.
 *
 * NOTE: this does not need to work on domain types, because any typmod
 * coercion for a domain is considered to be part of the type coercion
 * needed to produce the domain value in the first place.  So, no getBaseType.
 */
static Node *
coerce_type_typmod(Node *node, Oid targetTypeId, int32 targetTypMod,
				   CoercionContext ccontext, CoercionForm cformat,
				   int location,
				   bool hideInputCoercion)
{
	CoercionPathType pathtype;
	Oid			funcId;

	/* Skip coercion if already done */
	if (targetTypMod == exprTypmod(node))
		return node;

	/* Suppress display of nested coercion steps */
	if (hideInputCoercion)
		hide_coercion_node(node);

	/*
	 * A negative typmod means that no actual coercion is needed, but we still
	 * want a RelabelType to ensure that the expression exposes the intended
	 * typmod.
	 */
	if (targetTypMod < 0)
		pathtype = COERCION_PATH_NONE;
	else
		pathtype = find_typmod_coercion_function(targetTypeId, &funcId);

	if (pathtype != COERCION_PATH_NONE)
	{
		node = build_coercion_expression(node, pathtype, funcId,
										 targetTypeId, targetTypMod,
										 ccontext, cformat, location);
	}
	else
	{
		/*
		 * We don't need to perform any actual coercion step, but we should
		 * apply a RelabelType to ensure that the expression exposes the
		 * intended typmod.
		 */
		node = applyRelabelType(node, targetTypeId, targetTypMod,
								exprCollation(node),
								cformat, location, false);
	}

	return node;
}

/*
 * Mark a coercion node as IMPLICIT so it will never be displayed by
 * ruleutils.c.  We use this when we generate a nest of coercion nodes
 * to implement what is logically one conversion; the inner nodes are
 * forced to IMPLICIT_CAST format.  This does not change their semantics,
 * only display behavior.
 *
 * It is caller error to call this on something that doesn't have a
 * CoercionForm field.
 */
static void
hide_coercion_node(Node *node)
{
	if (IsA(node, FuncExpr))
		((FuncExpr *) node)->funcformat = COERCE_IMPLICIT_CAST;
	else if (IsA(node, RelabelType))
		((RelabelType *) node)->relabelformat = COERCE_IMPLICIT_CAST;
	else if (IsA(node, CoerceViaIO))
		((CoerceViaIO *) node)->coerceformat = COERCE_IMPLICIT_CAST;
	else if (IsA(node, ArrayCoerceExpr))
		((ArrayCoerceExpr *) node)->coerceformat = COERCE_IMPLICIT_CAST;
	else if (IsA(node, ConvertRowtypeExpr))
		((ConvertRowtypeExpr *) node)->convertformat = COERCE_IMPLICIT_CAST;
	else if (IsA(node, RowExpr))
		((RowExpr *) node)->row_format = COERCE_IMPLICIT_CAST;
	else if (IsA(node, CoerceToDomain))
		((CoerceToDomain *) node)->coercionformat = COERCE_IMPLICIT_CAST;
	else
		elog(ERROR, "unsupported node type: %d", (int) nodeTag(node));
}

/*
 * build_coercion_expression()
 *		Construct an expression tree for applying a pg_cast entry.
 *
 * This is used for both type-coercion and length-coercion operations,
 * since there is no difference in terms of the calling convention.
 */
static Node *
build_coercion_expression(Node *node,
						  CoercionPathType pathtype,
						  Oid funcId,
						  Oid targetTypeId, int32 targetTypMod,
						  CoercionContext ccontext, CoercionForm cformat,
						  int location)
{
	int			nargs = 0;

	if (OidIsValid(funcId))
	{
		HeapTuple	tp;
		Form_pg_proc procstruct;

		tp = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcId));
		if (!HeapTupleIsValid(tp))
			elog(ERROR, "cache lookup failed for function %u", funcId);
		procstruct = (Form_pg_proc) GETSTRUCT(tp);

		/*
		 * These Asserts essentially check that function is a legal coercion
		 * function.  We can't make the seemingly obvious tests on prorettype
		 * and proargtypes[0], even in the COERCION_PATH_FUNC case, because of
		 * various binary-compatibility cases.
		 */
		/* Assert(targetTypeId == procstruct->prorettype); */
		Assert(!procstruct->proretset);
		Assert(procstruct->prokind == PROKIND_FUNCTION);
		nargs = procstruct->pronargs;
		Assert(nargs >= 1 && nargs <= 3);
		/* Assert(procstruct->proargtypes.values[0] == exprType(node)); */
		Assert(nargs < 2 || procstruct->proargtypes.values[1] == INT4OID);
		Assert(nargs < 3 || procstruct->proargtypes.values[2] == BOOLOID);

		ReleaseSysCache(tp);
	}

	if (pathtype == COERCION_PATH_FUNC)
	{
		/* We build an ordinary FuncExpr with special arguments */
		FuncExpr   *fexpr;
		List	   *args;
		Const	   *cons;

		Assert(OidIsValid(funcId));

		args = list_make1(node);

		if (nargs >= 2)
		{
			/* Pass target typmod as an int4 constant */
			cons = makeConst(INT4OID,
							 -1,
							 InvalidOid,
							 sizeof(int32),
							 Int32GetDatum(targetTypMod),
							 false,
							 true);

			args = lappend(args, cons);
		}

		if (nargs == 3)
		{
			/* Pass it a boolean isExplicit parameter, too */
			cons = makeConst(BOOLOID,
							 -1,
							 InvalidOid,
							 sizeof(bool),
							 BoolGetDatum(ccontext == COERCION_EXPLICIT),
							 false,
							 true);

			args = lappend(args, cons);
		}

		fexpr = makeFuncExpr(funcId, targetTypeId, args,
							 InvalidOid, InvalidOid, cformat);
		fexpr->location = location;
		return (Node *) fexpr;
	}
	else if (pathtype == COERCION_PATH_ARRAYCOERCE)
	{
		/* We need to build an ArrayCoerceExpr */
		ArrayCoerceExpr *acoerce = makeNode(ArrayCoerceExpr);
		CaseTestExpr *ctest = makeNode(CaseTestExpr);
		Oid			sourceBaseTypeId;
		int32		sourceBaseTypeMod;
		Oid			targetElementType;
		Node	   *elemexpr;

		/*
		 * Look through any domain over the source array type.  Note we don't
		 * expect that the target type is a domain; it must be a plain array.
		 * (To get to a domain target type, we'll do coerce_to_domain later.)
		 */
		sourceBaseTypeMod = exprTypmod(node);
		sourceBaseTypeId = getBaseTypeAndTypmod(exprType(node),
												&sourceBaseTypeMod);

		/*
		 * Set up a CaseTestExpr representing one element of the source array.
		 * This is an abuse of CaseTestExpr, but it's OK as long as there
		 * can't be any CaseExpr or ArrayCoerceExpr within the completed
		 * elemexpr.
		 */
		ctest->typeId = get_element_type(sourceBaseTypeId);
		Assert(OidIsValid(ctest->typeId));
		ctest->typeMod = sourceBaseTypeMod;
		ctest->collation = InvalidOid;	/* Assume coercions don't care */

		/* And coerce it to the target element type */
		targetElementType = get_element_type(targetTypeId);
		Assert(OidIsValid(targetElementType));

		elemexpr = coerce_to_target_type(NULL,
										 (Node *) ctest,
										 ctest->typeId,
										 targetElementType,
										 targetTypMod,
										 ccontext,
										 cformat,
										 location);
		if (elemexpr == NULL)	/* shouldn't happen */
			elog(ERROR, "failed to coerce array element type as expected");

		acoerce->arg = (Expr *) node;
		acoerce->elemexpr = (Expr *) elemexpr;
		acoerce->resulttype = targetTypeId;

		/*
		 * Label the output as having a particular element typmod only if we
		 * ended up with a per-element expression that is labeled that way.
		 */
		acoerce->resulttypmod = exprTypmod(elemexpr);
		/* resultcollid will be set by parse_collate.c */
		acoerce->coerceformat = cformat;
		acoerce->location = location;

		return (Node *) acoerce;
	}
	else if (pathtype == COERCION_PATH_COERCEVIAIO)
	{
		/* We need to build a CoerceViaIO node */
		CoerceViaIO *iocoerce = makeNode(CoerceViaIO);

		Assert(!OidIsValid(funcId));

		iocoerce->arg = (Expr *) node;
		iocoerce->resulttype = targetTypeId;
		/* resultcollid will be set by parse_collate.c */
		iocoerce->coerceformat = cformat;
		iocoerce->location = location;

		return (Node *) iocoerce;
	}
	else
	{
		elog(ERROR, "unsupported pathtype %d in build_coercion_expression",
			 (int) pathtype);
		return NULL;			/* keep compiler quiet */
	}
}


/*
 * coerce_record_to_complex
 *		Coerce a RECORD to a specific composite type.
 *
 * Currently we only support this for inputs that are RowExprs or whole-row
 * Vars.
 */
static Node *
coerce_record_to_complex(ParseState *pstate, Node *node,
						 Oid targetTypeId,
						 CoercionContext ccontext,
						 CoercionForm cformat,
						 int location)
{
	RowExpr    *rowexpr;
	Oid			baseTypeId;
	int32		baseTypeMod = -1;
	TupleDesc	tupdesc;
	List	   *args = NIL;
	List	   *newargs;
	int			i;
	int			ucolno;
	ListCell   *arg;

	if (node && IsA(node, RowExpr))
	{
		/*
		 * Since the RowExpr must be of type RECORD, we needn't worry about it
		 * containing any dropped columns.
		 */
		args = ((RowExpr *) node)->args;
	}
	else if (node && IsA(node, Var) &&
			 ((Var *) node)->varattno == InvalidAttrNumber)
	{
		int			rtindex = ((Var *) node)->varno;
		int			sublevels_up = ((Var *) node)->varlevelsup;
		int			vlocation = ((Var *) node)->location;
		ParseNamespaceItem *nsitem;

		nsitem = GetNSItemByRangeTablePosn(pstate, rtindex, sublevels_up);
		args = expandNSItemVars(nsitem, sublevels_up, vlocation, NULL);
	}
	else
		ereport(ERROR,
				(errcode(ERRCODE_CANNOT_COERCE),
				 errmsg("cannot cast type %s to %s",
						format_type_be(RECORDOID),
						format_type_be(targetTypeId)),
				 parser_coercion_errposition(pstate, location, node)));

	/*
	 * Look up the composite type, accounting for possibility that what we are
	 * given is a domain over composite.
	 */
	baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
	tupdesc = lookup_rowtype_tupdesc(baseTypeId, baseTypeMod);

	/* Process the fields */
	newargs = NIL;
	ucolno = 1;
	arg = list_head(args);
	for (i = 0; i < tupdesc->natts; i++)
	{
		Node	   *expr;
		Node	   *cexpr;
		Oid			exprtype;
		Form_pg_attribute attr = TupleDescAttr(tupdesc, i);

		/* Fill in NULLs for dropped columns in rowtype */
		if (attr->attisdropped)
		{
			/*
			 * can't use atttypid here, but it doesn't really matter what type
			 * the Const claims to be.
			 */
			newargs = lappend(newargs,
							  makeNullConst(INT4OID, -1, InvalidOid));
			continue;
		}

		if (arg == NULL)
			ereport(ERROR,
					(errcode(ERRCODE_CANNOT_COERCE),
					 errmsg("cannot cast type %s to %s",
							format_type_be(RECORDOID),
							format_type_be(targetTypeId)),
					 errdetail("Input has too few columns."),
					 parser_coercion_errposition(pstate, location, node)));
		expr = (Node *) lfirst(arg);
		exprtype = exprType(expr);

		cexpr = coerce_to_target_type(pstate,
									  expr, exprtype,
									  attr->atttypid,
									  attr->atttypmod,
									  ccontext,
									  COERCE_IMPLICIT_CAST,
									  -1);
		if (cexpr == NULL)
			ereport(ERROR,
					(errcode(ERRCODE_CANNOT_COERCE),
					 errmsg("cannot cast type %s to %s",
							format_type_be(RECORDOID),
							format_type_be(targetTypeId)),
					 errdetail("Cannot cast type %s to %s in column %d.",
							   format_type_be(exprtype),
							   format_type_be(attr->atttypid),
							   ucolno),
					 parser_coercion_errposition(pstate, location, expr)));
		newargs = lappend(newargs, cexpr);
		ucolno++;
		arg = lnext(args, arg);
	}
	if (arg != NULL)
		ereport(ERROR,
				(errcode(ERRCODE_CANNOT_COERCE),
				 errmsg("cannot cast type %s to %s",
						format_type_be(RECORDOID),
						format_type_be(targetTypeId)),
				 errdetail("Input has too many columns."),
				 parser_coercion_errposition(pstate, location, node)));

	ReleaseTupleDesc(tupdesc);

	rowexpr = makeNode(RowExpr);
	rowexpr->args = newargs;
	rowexpr->row_typeid = baseTypeId;
	rowexpr->row_format = cformat;
	rowexpr->colnames = NIL;	/* not needed for named target type */
	rowexpr->location = location;

	/* If target is a domain, apply constraints */
	if (baseTypeId != targetTypeId)
	{
		rowexpr->row_format = COERCE_IMPLICIT_CAST;
		return coerce_to_domain((Node *) rowexpr,
								baseTypeId, baseTypeMod,
								targetTypeId,
								ccontext, cformat, location,
								false);
	}

	return (Node *) rowexpr;
}

/*
 * coerce_to_boolean()
 *		Coerce an argument of a construct that requires boolean input
 *		(AND, OR, NOT, etc).  Also check that input is not a set.
 *
 * Returns the possibly-transformed node tree.
 *
 * As with coerce_type, pstate may be NULL if no special unknown-Param
 * processing is wanted.
 */
Node *
coerce_to_boolean(ParseState *pstate, Node *node,
				  const char *constructName)
{
	Oid			inputTypeId = exprType(node);

	if (inputTypeId != BOOLOID)
	{
		Node	   *newnode;

		newnode = coerce_to_target_type(pstate, node, inputTypeId,
										BOOLOID, -1,
										COERCION_ASSIGNMENT,
										COERCE_IMPLICIT_CAST,
										-1);
		if (newnode == NULL)
			ereport(ERROR,
					(errcode(ERRCODE_DATATYPE_MISMATCH),
			/* translator: first %s is name of a SQL construct, eg WHERE */
					 errmsg("argument of %s must be type %s, not type %s",
							constructName, "boolean",
							format_type_be(inputTypeId)),
					 parser_errposition(pstate, exprLocation(node))));
		node = newnode;
	}

	if (expression_returns_set(node))
		ereport(ERROR,
				(errcode(ERRCODE_DATATYPE_MISMATCH),
		/* translator: %s is name of a SQL construct, eg WHERE */
				 errmsg("argument of %s must not return a set",
						constructName),
				 parser_errposition(pstate, exprLocation(node))));

	return node;
}

/*
 * coerce_to_specific_type_typmod()
 *		Coerce an argument of a construct that requires a specific data type,
 *		with a specific typmod.  Also check that input is not a set.
 *
 * Returns the possibly-transformed node tree.
 *
 * As with coerce_type, pstate may be NULL if no special unknown-Param
 * processing is wanted.
 */
Node *
coerce_to_specific_type_typmod(ParseState *pstate, Node *node,
							   Oid targetTypeId, int32 targetTypmod,
							   const char *constructName)
{
	Oid			inputTypeId = exprType(node);

	if (inputTypeId != targetTypeId)
	{
		Node	   *newnode;

		newnode = coerce_to_target_type(pstate, node, inputTypeId,
										targetTypeId, targetTypmod,
										COERCION_ASSIGNMENT,
										COERCE_IMPLICIT_CAST,
										-1);
		if (newnode == NULL)
			ereport(ERROR,
					(errcode(ERRCODE_DATATYPE_MISMATCH),
			/* translator: first %s is name of a SQL construct, eg LIMIT */
					 errmsg("argument of %s must be type %s, not type %s",
							constructName,
							format_type_be(targetTypeId),
							format_type_be(inputTypeId)),
					 parser_errposition(pstate, exprLocation(node))));
		node = newnode;
	}

	if (expression_returns_set(node))
		ereport(ERROR,
				(errcode(ERRCODE_DATATYPE_MISMATCH),
		/* translator: %s is name of a SQL construct, eg LIMIT */
				 errmsg("argument of %s must not return a set",
						constructName),
				 parser_errposition(pstate, exprLocation(node))));

	return node;
}

/*
 * coerce_to_specific_type()
 *		Coerce an argument of a construct that requires a specific data type.
 *		Also check that input is not a set.
 *
 * Returns the possibly-transformed node tree.
 *
 * As with coerce_type, pstate may be NULL if no special unknown-Param
 * processing is wanted.
 */
Node *
coerce_to_specific_type(ParseState *pstate, Node *node,
						Oid targetTypeId,
						const char *constructName)
{
	return coerce_to_specific_type_typmod(pstate, node,
										  targetTypeId, -1,
										  constructName);
}

/*
 * parser_coercion_errposition - report coercion error location, if possible
 *
 * We prefer to point at the coercion request (CAST, ::, etc) if possible;
 * but there may be no such location in the case of an implicit coercion.
 * In that case point at the input expression.
 *
 * XXX possibly this is more generally useful than coercion errors;
 * if so, should rename and place with parser_errposition.
 */
int
parser_coercion_errposition(ParseState *pstate,
							int coerce_location,
							Node *input_expr)
{
	if (coerce_location >= 0)
		return parser_errposition(pstate, coerce_location);
	else
		return parser_errposition(pstate, exprLocation(input_expr));
}


/*
 * select_common_type()
 *		Determine the common supertype of a list of input expressions.
 *		This is used for determining the output type of CASE, UNION,
 *		and similar constructs.
 *
 * 'exprs' is a *nonempty* list of expressions.  Note that earlier items
 * in the list will be preferred if there is doubt.
 * 'context' is a phrase to use in the error message if we fail to select
 * a usable type.  Pass NULL to have the routine return InvalidOid
 * rather than throwing an error on failure.
 * 'which_expr': if not NULL, receives a pointer to the particular input
 * expression from which the result type was taken.
 *
 * Caution: "failure" just means that there were inputs of different type
 * categories.  It is not guaranteed that all the inputs are coercible to the
 * selected type; caller must check that (see verify_common_type).
 */
Oid
select_common_type(ParseState *pstate, List *exprs, const char *context,
				   Node **which_expr)
{
	Node	   *pexpr;
	Oid			ptype;
	TYPCATEGORY pcategory;
	bool		pispreferred;
	ListCell   *lc;

	Assert(exprs != NIL);
	pexpr = (Node *) linitial(exprs);
	lc = list_second_cell(exprs);
	ptype = exprType(pexpr);

	/*
	 * If all input types are valid and exactly the same, just pick that type.
	 * This is the only way that we will resolve the result as being a domain
	 * type; otherwise domains are smashed to their base types for comparison.
	 */
	if (ptype != UNKNOWNOID)
	{
		for_each_cell(lc, exprs, lc)
		{
			Node	   *nexpr = (Node *) lfirst(lc);
			Oid			ntype = exprType(nexpr);

			if (ntype != ptype)
				break;
		}
		if (lc == NULL)			/* got to the end of the list? */
		{
			if (which_expr)
				*which_expr = pexpr;
			return ptype;
		}
	}

	/*
	 * Nope, so set up for the full algorithm.  Note that at this point, lc
	 * points to the first list item with type different from pexpr's; we need
	 * not re-examine any items the previous loop advanced over.
	 */
	ptype = getBaseType(ptype);
	get_type_category_preferred(ptype, &pcategory, &pispreferred);

	for_each_cell(lc, exprs, lc)
	{
		Node	   *nexpr = (Node *) lfirst(lc);
		Oid			ntype = getBaseType(exprType(nexpr));

		/* move on to next one if no new information... */
		if (ntype != UNKNOWNOID && ntype != ptype)
		{
			TYPCATEGORY ncategory;
			bool		nispreferred;

			get_type_category_preferred(ntype, &ncategory, &nispreferred);
			if (ptype == UNKNOWNOID)
			{
				/* so far, only unknowns so take anything... */
				pexpr = nexpr;
				ptype = ntype;
				pcategory = ncategory;
				pispreferred = nispreferred;
			}
			else if (ncategory != pcategory)
			{
				/*
				 * both types in different categories? then not much hope...
				 */
				if (context == NULL)
					return InvalidOid;
				ereport(ERROR,
						(errcode(ERRCODE_DATATYPE_MISMATCH),
				/*------
				  translator: first %s is name of a SQL construct, eg CASE */
						 errmsg("%s types %s and %s cannot be matched",
								context,
								format_type_be(ptype),
								format_type_be(ntype)),
						 parser_errposition(pstate, exprLocation(nexpr))));
			}
			else if (!pispreferred &&
					 can_coerce_type(1, &ptype, &ntype, COERCION_IMPLICIT) &&
					 !can_coerce_type(1, &ntype, &ptype, COERCION_IMPLICIT))
			{
				/*
				 * take new type if can coerce to it implicitly but not the
				 * other way; but if we have a preferred type, stay on it.
				 */
				pexpr = nexpr;
				ptype = ntype;
				pcategory = ncategory;
				pispreferred = nispreferred;
			}
		}
	}

	/*
	 * If all the inputs were UNKNOWN type --- ie, unknown-type literals ---
	 * then resolve as type TEXT.  This situation comes up with constructs
	 * like SELECT (CASE WHEN foo THEN 'bar' ELSE 'baz' END); SELECT 'foo'
	 * UNION SELECT 'bar'; It might seem desirable to leave the construct's
	 * output type as UNKNOWN, but that really doesn't work, because we'd
	 * probably end up needing a runtime coercion from UNKNOWN to something
	 * else, and we usually won't have it.  We need to coerce the unknown
	 * literals while they are still literals, so a decision has to be made
	 * now.
	 */
	if (ptype == UNKNOWNOID)
		ptype = TEXTOID;

	if (which_expr)
		*which_expr = pexpr;
	return ptype;
}

/*
 * select_common_type_from_oids()
 *		Determine the common supertype of an array of type OIDs.
 *
 * This is the same logic as select_common_type(), but working from
 * an array of type OIDs not a list of expressions.  As in that function,
 * earlier entries in the array have some preference over later ones.
 * On failure, return InvalidOid if noerror is true, else throw an error.
 *
 * Caution: "failure" just means that there were inputs of different type
 * categories.  It is not guaranteed that all the inputs are coercible to the
 * selected type; caller must check that (see verify_common_type_from_oids).
 *
 * Note: neither caller will pass any UNKNOWNOID entries, so the tests
 * for that in this function are dead code.  However, they don't cost much,
 * and it seems better to keep this logic as close to select_common_type()
 * as possible.
 */
static Oid
select_common_type_from_oids(int nargs, const Oid *typeids, bool noerror)
{
	Oid			ptype;
	TYPCATEGORY pcategory;
	bool		pispreferred;
	int			i = 1;

	Assert(nargs > 0);
	ptype = typeids[0];

	/* If all input types are valid and exactly the same, pick that type. */
	if (ptype != UNKNOWNOID)
	{
		for (; i < nargs; i++)
		{
			if (typeids[i] != ptype)
				break;
		}
		if (i == nargs)
			return ptype;
	}

	/*
	 * Nope, so set up for the full algorithm.  Note that at this point, we
	 * can skip array entries before "i"; they are all equal to ptype.
	 */
	ptype = getBaseType(ptype);
	get_type_category_preferred(ptype, &pcategory, &pispreferred);

	for (; i < nargs; i++)
	{
		Oid			ntype = getBaseType(typeids[i]);

		/* move on to next one if no new information... */
		if (ntype != UNKNOWNOID && ntype != ptype)
		{
			TYPCATEGORY ncategory;
			bool		nispreferred;

			get_type_category_preferred(ntype, &ncategory, &nispreferred);
			if (ptype == UNKNOWNOID)
			{
				/* so far, only unknowns so take anything... */
				ptype = ntype;
				pcategory = ncategory;
				pispreferred = nispreferred;
			}
			else if (ncategory != pcategory)
			{
				/*
				 * both types in different categories? then not much hope...
				 */
				if (noerror)
					return InvalidOid;
				ereport(ERROR,
						(errcode(ERRCODE_DATATYPE_MISMATCH),
						 errmsg("argument types %s and %s cannot be matched",
								format_type_be(ptype),
								format_type_be(ntype))));
			}
			else if (!pispreferred &&
					 can_coerce_type(1, &ptype, &ntype, COERCION_IMPLICIT) &&
					 !can_coerce_type(1, &ntype, &ptype, COERCION_IMPLICIT))
			{
				/*
				 * take new type if can coerce to it implicitly but not the
				 * other way; but if we have a preferred type, stay on it.
				 */
				ptype = ntype;
				pcategory = ncategory;
				pispreferred = nispreferred;
			}
		}
	}

	/* Like select_common_type(), choose TEXT if all inputs were UNKNOWN */
	if (ptype == UNKNOWNOID)
		ptype = TEXTOID;

	return ptype;
}

/*
 * coerce_to_common_type()
 *		Coerce an expression to the given type.
 *
 * This is used following select_common_type() to coerce the individual
 * expressions to the desired type.  'context' is a phrase to use in the
 * error message if we fail to coerce.
 *
 * As with coerce_type, pstate may be NULL if no special unknown-Param
 * processing is wanted.
 */
Node *
coerce_to_common_type(ParseState *pstate, Node *node,
					  Oid targetTypeId, const char *context)
{
	Oid			inputTypeId = exprType(node);

	if (inputTypeId == targetTypeId)
		return node;			/* no work */
	if (can_coerce_type(1, &inputTypeId, &targetTypeId, COERCION_IMPLICIT))
		node = coerce_type(pstate, node, inputTypeId, targetTypeId, -1,
						   COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1);
	else
		ereport(ERROR,
				(errcode(ERRCODE_CANNOT_COERCE),
		/* translator: first %s is name of a SQL construct, eg CASE */
				 errmsg("%s could not convert type %s to %s",
						context,
						format_type_be(inputTypeId),
						format_type_be(targetTypeId)),
				 parser_errposition(pstate, exprLocation(node))));
	return node;
}

/*
 * verify_common_type()
 *		Verify that all input types can be coerced to a proposed common type.
 *		Return true if so, false if not all coercions are possible.
 *
 * Most callers of select_common_type() don't need to do this explicitly
 * because the checks will happen while trying to convert input expressions
 * to the right type, e.g. in coerce_to_common_type().  However, if a separate
 * check step is needed to validate the applicability of the common type, call
 * this.
 */
bool
verify_common_type(Oid common_type, List *exprs)
{
	ListCell   *lc;

	foreach(lc, exprs)
	{
		Node	   *nexpr = (Node *) lfirst(lc);
		Oid			ntype = exprType(nexpr);

		if (!can_coerce_type(1, &ntype, &common_type, COERCION_IMPLICIT))
			return false;
	}
	return true;
}

/*
 * verify_common_type_from_oids()
 *		As above, but work from an array of type OIDs.
 */
static bool
verify_common_type_from_oids(Oid common_type, int nargs, const Oid *typeids)
{
	for (int i = 0; i < nargs; i++)
	{
		if (!can_coerce_type(1, &typeids[i], &common_type, COERCION_IMPLICIT))
			return false;
	}
	return true;
}

/*
 * select_common_typmod()
 *		Determine the common typmod of a list of input expressions.
 *
 * common_type is the selected common type of the expressions, typically
 * computed using select_common_type().
 */
int32
select_common_typmod(ParseState *pstate, List *exprs, Oid common_type)
{
	ListCell   *lc;
	bool		first = true;
	int32		result = -1;

	foreach(lc, exprs)
	{
		Node	   *expr = (Node *) lfirst(lc);

		/* Types must match */
		if (exprType(expr) != common_type)
			return -1;
		else if (first)
		{
			result = exprTypmod(expr);
			first = false;
		}
		else
		{
			/* As soon as we see a non-matching typmod, fall back to -1 */
			if (result != exprTypmod(expr))
				return -1;
		}
	}

	return result;
}

/*
 * check_generic_type_consistency()
 *		Are the actual arguments potentially compatible with a
 *		polymorphic function?
 *
 * The argument consistency rules are:
 *
 * 1) All arguments declared ANYELEMENT must have the same datatype.
 * 2) All arguments declared ANYARRAY must have the same datatype,
 *	  which must be a varlena array type.
 * 3) All arguments declared ANYRANGE must be the same range type.
 *	  Similarly, all arguments declared ANYMULTIRANGE must be the same
 *	  multirange type; and if both of these appear, the ANYRANGE type
 *	  must be the element type of the ANYMULTIRANGE type.
 * 4) If there are arguments of more than one of these polymorphic types,
 *	  the array element type and/or range subtype must be the same as each
 *	  other and the same as the ANYELEMENT type.
 * 5) ANYENUM is treated the same as ANYELEMENT except that if it is used
 *	  (alone or in combination with plain ANYELEMENT), we add the extra
 *	  condition that the ANYELEMENT type must be an enum.
 * 6) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used,
 *	  we add the extra condition that the ANYELEMENT type must not be an array.
 *	  (This is a no-op if used in combination with ANYARRAY or ANYENUM, but
 *	  is an extra restriction if not.)
 * 7) All arguments declared ANYCOMPATIBLE must be implicitly castable
 *	  to a common supertype (chosen as per select_common_type's rules).
 *	  ANYCOMPATIBLENONARRAY works like ANYCOMPATIBLE but also requires the
 *	  common supertype to not be an array.  If there are ANYCOMPATIBLEARRAY
 *	  or ANYCOMPATIBLERANGE or ANYCOMPATIBLEMULTIRANGE arguments, their element
 *	  types or subtypes are included while making the choice of common supertype.
 * 8) The resolved type of ANYCOMPATIBLEARRAY arguments will be the array
 *	  type over the common supertype (which might not be the same array type
 *	  as any of the original arrays).
 * 9) All ANYCOMPATIBLERANGE arguments must be the exact same range type
 *	  (after domain flattening), since we have no preference rule that would
 *	  let us choose one over another.  Furthermore, that range's subtype
 *	  must exactly match the common supertype chosen by rule 7.
 * 10) All ANYCOMPATIBLEMULTIRANGE arguments must be the exact same multirange
 *	  type (after domain flattening), since we have no preference rule that
 *	  would let us choose one over another.  Furthermore, if ANYCOMPATIBLERANGE
 *	  also appears, that range type must be the multirange's element type;
 *	  otherwise, the multirange's range's subtype must exactly match the
 *	  common supertype chosen by rule 7.
 *
 * Domains over arrays match ANYARRAY, and are immediately flattened to their
 * base type.  (Thus, for example, we will consider it a match if one ANYARRAY
 * argument is a domain over int4[] while another one is just int4[].)	Also
 * notice that such a domain does *not* match ANYNONARRAY.  The same goes
 * for ANYCOMPATIBLEARRAY and ANYCOMPATIBLENONARRAY.
 *
 * Similarly, domains over ranges match ANYRANGE or ANYCOMPATIBLERANGE,
 * and are immediately flattened to their base type.  Likewise, domains
 * over multiranges match ANYMULTIRANGE or ANYCOMPATIBLEMULTIRANGE and are
 * immediately flattened to their base type.
 *
 * Note that domains aren't currently considered to match ANYENUM,
 * even if their base type would match.
 *
 * If we have UNKNOWN input (ie, an untyped literal) for any polymorphic
 * argument, assume it is okay.
 *
 * We do not ereport here, but just return false if a rule is violated.
 */
bool
check_generic_type_consistency(const Oid *actual_arg_types,
							   const Oid *declared_arg_types,
							   int nargs)
{
	Oid			elem_typeid = InvalidOid;
	Oid			array_typeid = InvalidOid;
	Oid			range_typeid = InvalidOid;
	Oid			multirange_typeid = InvalidOid;
	Oid			anycompatible_range_typeid = InvalidOid;
	Oid			anycompatible_range_typelem = InvalidOid;
	Oid			anycompatible_multirange_typeid = InvalidOid;
	Oid			anycompatible_multirange_typelem = InvalidOid;
	Oid			range_typelem = InvalidOid;
	bool		have_anynonarray = false;
	bool		have_anyenum = false;
	bool		have_anycompatible_nonarray = false;
	int			n_anycompatible_args = 0;
	Oid			anycompatible_actual_types[FUNC_MAX_ARGS];

	/*
	 * Loop through the arguments to see if we have any that are polymorphic.
	 * If so, require the actual types to be consistent.
	 */
	Assert(nargs <= FUNC_MAX_ARGS);
	for (int j = 0; j < nargs; j++)
	{
		Oid			decl_type = declared_arg_types[j];
		Oid			actual_type = actual_arg_types[j];

		if (decl_type == ANYELEMENTOID ||
			decl_type == ANYNONARRAYOID ||
			decl_type == ANYENUMOID)
		{
			if (decl_type == ANYNONARRAYOID)
				have_anynonarray = true;
			else if (decl_type == ANYENUMOID)
				have_anyenum = true;
			if (actual_type == UNKNOWNOID)
				continue;
			if (OidIsValid(elem_typeid) && actual_type != elem_typeid)
				return false;
			elem_typeid = actual_type;
		}
		else if (decl_type == ANYARRAYOID)
		{
			if (actual_type == UNKNOWNOID)
				continue;
			actual_type = getBaseType(actual_type); /* flatten domains */
			if (OidIsValid(array_typeid) && actual_type != array_typeid)
				return false;
			array_typeid = actual_type;
		}
		else if (decl_type == ANYRANGEOID)
		{
			if (actual_type == UNKNOWNOID)
				continue;
			actual_type = getBaseType(actual_type); /* flatten domains */
			if (OidIsValid(range_typeid) && actual_type != range_typeid)
				return false;
			range_typeid = actual_type;
		}
		else if (decl_type == ANYMULTIRANGEOID)
		{
			if (actual_type == UNKNOWNOID)
				continue;
			actual_type = getBaseType(actual_type); /* flatten domains */
			if (OidIsValid(multirange_typeid) && actual_type != multirange_typeid)
				return false;
			multirange_typeid = actual_type;
		}
		else if (decl_type == ANYCOMPATIBLEOID ||
				 decl_type == ANYCOMPATIBLENONARRAYOID)
		{
			if (decl_type == ANYCOMPATIBLENONARRAYOID)
				have_anycompatible_nonarray = true;
			if (actual_type == UNKNOWNOID)
				continue;
			/* collect the actual types of non-unknown COMPATIBLE args */
			anycompatible_actual_types[n_anycompatible_args++] = actual_type;
		}
		else if (decl_type == ANYCOMPATIBLEARRAYOID)
		{
			Oid			elem_type;

			if (actual_type == UNKNOWNOID)
				continue;
			actual_type = getBaseType(actual_type); /* flatten domains */
			elem_type = get_element_type(actual_type);
			if (!OidIsValid(elem_type))
				return false;	/* not an array */
			/* collect the element type for common-supertype choice */
			anycompatible_actual_types[n_anycompatible_args++] = elem_type;
		}
		else if (decl_type == ANYCOMPATIBLERANGEOID)
		{
			if (actual_type == UNKNOWNOID)
				continue;
			actual_type = getBaseType(actual_type); /* flatten domains */
			if (OidIsValid(anycompatible_range_typeid))
			{
				/* All ANYCOMPATIBLERANGE arguments must be the same type */
				if (anycompatible_range_typeid != actual_type)
					return false;
			}
			else
			{
				anycompatible_range_typeid = actual_type;
				anycompatible_range_typelem = get_range_subtype(actual_type);
				if (!OidIsValid(anycompatible_range_typelem))
					return false;	/* not a range type */
				/* collect the subtype for common-supertype choice */
				anycompatible_actual_types[n_anycompatible_args++] = anycompatible_range_typelem;
			}
		}
		else if (decl_type == ANYCOMPATIBLEMULTIRANGEOID)
		{
			if (actual_type == UNKNOWNOID)
				continue;
			actual_type = getBaseType(actual_type); /* flatten domains */
			if (OidIsValid(anycompatible_multirange_typeid))
			{
				/* All ANYCOMPATIBLEMULTIRANGE arguments must be the same type */
				if (anycompatible_multirange_typeid != actual_type)
					return false;
			}
			else
			{
				anycompatible_multirange_typeid = actual_type;
				anycompatible_multirange_typelem = get_multirange_range(actual_type);
				if (!OidIsValid(anycompatible_multirange_typelem))
					return false;	/* not a multirange type */
				/* we'll consider the subtype below */
			}
		}
	}

	/* Get the element type based on the array type, if we have one */
	if (OidIsValid(array_typeid))
	{
		if (array_typeid == ANYARRAYOID)
		{
			/*
			 * Special case for matching ANYARRAY input to an ANYARRAY
			 * argument: allow it for now.  enforce_generic_type_consistency()
			 * might complain later, depending on the presence of other
			 * polymorphic arguments or results, but it will deliver a less
			 * surprising error message than "function does not exist".
			 *
			 * (If you think to change this, note that can_coerce_type will
			 * consider such a situation as a match, so that we might not even
			 * get here.)
			 */
		}
		else
		{
			Oid			array_typelem;

			array_typelem = get_element_type(array_typeid);
			if (!OidIsValid(array_typelem))
				return false;	/* should be an array, but isn't */

			if (!OidIsValid(elem_typeid))
			{
				/*
				 * if we don't have an element type yet, use the one we just
				 * got
				 */
				elem_typeid = array_typelem;
			}
			else if (array_typelem != elem_typeid)
			{
				/* otherwise, they better match */
				return false;
			}
		}
	}

	/* Deduce range type from multirange type, or check that they agree */
	if (OidIsValid(multirange_typeid))
	{
		Oid			multirange_typelem;

		multirange_typelem = get_multirange_range(multirange_typeid);
		if (!OidIsValid(multirange_typelem))
			return false;		/* should be a multirange, but isn't */

		if (!OidIsValid(range_typeid))
		{
			/* If we don't have a range type yet, use the one we just got */
			range_typeid = multirange_typelem;
			range_typelem = get_range_subtype(multirange_typelem);
			if (!OidIsValid(range_typelem))
				return false;	/* should be a range, but isn't */
		}
		else if (multirange_typelem != range_typeid)
		{
			/* otherwise, they better match */
			return false;
		}
	}

	/* Get the element type based on the range type, if we have one */
	if (OidIsValid(range_typeid))
	{
		range_typelem = get_range_subtype(range_typeid);
		if (!OidIsValid(range_typelem))
			return false;		/* should be a range, but isn't */

		if (!OidIsValid(elem_typeid))
		{
			/*
			 * If we don't have an element type yet, use the one we just got
			 */
			elem_typeid = range_typelem;
		}
		else if (range_typelem != elem_typeid)
		{
			/* otherwise, they better match */
			return false;
		}
	}

	if (have_anynonarray)
	{
		/* require the element type to not be an array or domain over array */
		if (type_is_array_domain(elem_typeid))
			return false;
	}

	if (have_anyenum)
	{
		/* require the element type to be an enum */
		if (!type_is_enum(elem_typeid))
			return false;
	}

	/* Deduce range type from multirange type, or check that they agree */
	if (OidIsValid(anycompatible_multirange_typeid))
	{
		if (OidIsValid(anycompatible_range_typeid))
		{
			if (anycompatible_multirange_typelem !=
				anycompatible_range_typeid)
				return false;
		}
		else
		{
			anycompatible_range_typeid = anycompatible_multirange_typelem;
			anycompatible_range_typelem = get_range_subtype(anycompatible_range_typeid);
			if (!OidIsValid(anycompatible_range_typelem))
				return false;	/* not a range type */
			/* collect the subtype for common-supertype choice */
			anycompatible_actual_types[n_anycompatible_args++] =
				anycompatible_range_typelem;
		}
	}

	/* Check matching of ANYCOMPATIBLE-family arguments, if any */
	if (n_anycompatible_args > 0)
	{
		Oid			anycompatible_typeid;

		anycompatible_typeid =
			select_common_type_from_oids(n_anycompatible_args,
										 anycompatible_actual_types,
										 true);

		if (!OidIsValid(anycompatible_typeid))
			return false;		/* there's definitely no common supertype */

		/* We have to verify that the selected type actually works */
		if (!verify_common_type_from_oids(anycompatible_typeid,
										  n_anycompatible_args,
										  anycompatible_actual_types))
			return false;

		if (have_anycompatible_nonarray)
		{
			/*
			 * require the anycompatible type to not be an array or domain
			 * over array
			 */
			if (type_is_array_domain(anycompatible_typeid))
				return false;
		}

		/*
		 * The anycompatible type must exactly match the range element type,
		 * if we were able to identify one. This checks compatibility for
		 * anycompatiblemultirange too since that also sets
		 * anycompatible_range_typelem above.
		 */
		if (OidIsValid(anycompatible_range_typelem) &&
			anycompatible_range_typelem != anycompatible_typeid)
			return false;
	}

	/* Looks valid */
	return true;
}

/*
 * enforce_generic_type_consistency()
 *		Make sure a polymorphic function is legally callable, and
 *		deduce actual argument and result types.
 *
 * If any polymorphic pseudotype is used in a function's arguments or
 * return type, we make sure the actual data types are consistent with
 * each other.  The argument consistency rules are shown above for
 * check_generic_type_consistency().
 *
 * If we have UNKNOWN input (ie, an untyped literal) for any polymorphic
 * argument, we attempt to deduce the actual type it should have.  If
 * successful, we alter that position of declared_arg_types[] so that
 * make_fn_arguments will coerce the literal to the right thing.
 *
 * If we have polymorphic arguments of the ANYCOMPATIBLE family,
 * we similarly alter declared_arg_types[] entries to show the resolved
 * common supertype, so that make_fn_arguments will coerce the actual
 * arguments to the proper type.
 *
 * Rules are applied to the function's return type (possibly altering it)
 * if it is declared as a polymorphic type and there is at least one
 * polymorphic argument type:
 *
 * 1) If return type is ANYELEMENT, and any argument is ANYELEMENT, use the
 *	  argument's actual type as the function's return type.
 * 2) If return type is ANYARRAY, and any argument is ANYARRAY, use the
 *	  argument's actual type as the function's return type.
 * 3) Similarly, if return type is ANYRANGE or ANYMULTIRANGE, and any
 *	  argument is ANYRANGE or ANYMULTIRANGE, use that argument's actual type
 *	  (or the corresponding range or multirange type) as the function's return
 *	  type.
 * 4) Otherwise, if return type is ANYELEMENT or ANYARRAY, and there is
 *	  at least one ANYELEMENT, ANYARRAY, ANYRANGE, or ANYMULTIRANGE input,
 *	  deduce the return type from those inputs, or throw error if we can't.
 * 5) Otherwise, if return type is ANYRANGE or ANYMULTIRANGE, throw error.
 *	  (We have no way to select a specific range type if the arguments don't
 *	  include ANYRANGE or ANYMULTIRANGE.)
 * 6) ANYENUM is treated the same as ANYELEMENT except that if it is used
 *	  (alone or in combination with plain ANYELEMENT), we add the extra
 *	  condition that the ANYELEMENT type must be an enum.
 * 7) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used,
 *	  we add the extra condition that the ANYELEMENT type must not be an array.
 *	  (This is a no-op if used in combination with ANYARRAY or ANYENUM, but
 *	  is an extra restriction if not.)
 * 8) ANYCOMPATIBLE, ANYCOMPATIBLEARRAY, and ANYCOMPATIBLENONARRAY are handled
 *	  by resolving the common supertype of those arguments (or their element
 *	  types, for array inputs), and then coercing all those arguments to the
 *	  common supertype, or the array type over the common supertype for
 *	  ANYCOMPATIBLEARRAY.
 * 9) For ANYCOMPATIBLERANGE and ANYCOMPATIBLEMULTIRANGE, there must be at
 *	  least one non-UNKNOWN input matching those arguments, and all such
 *	  inputs must be the same range type (or its multirange type, as
 *	  appropriate), since we cannot deduce a range type from non-range types.
 *	  Furthermore, the range type's subtype is included while choosing the
 *	  common supertype for ANYCOMPATIBLE et al, and it must exactly match
 *	  that common supertype.
 *
 * Domains over arrays or ranges match ANYARRAY or ANYRANGE arguments,
 * respectively, and are immediately flattened to their base type.  (In
 * particular, if the return type is also ANYARRAY or ANYRANGE, we'll set
 * it to the base type not the domain type.)  The same is true for
 * ANYMULTIRANGE, ANYCOMPATIBLEARRAY, ANYCOMPATIBLERANGE, and
 * ANYCOMPATIBLEMULTIRANGE.
 *
 * When allow_poly is false, we are not expecting any of the actual_arg_types
 * to be polymorphic, and we should not return a polymorphic result type
 * either.  When allow_poly is true, it is okay to have polymorphic "actual"
 * arg types, and we can return a matching polymorphic type as the result.
 * (This case is currently used only to check compatibility of an aggregate's
 * declaration with the underlying transfn.)
 *
 * A special case is that we could see ANYARRAY as an actual_arg_type even
 * when allow_poly is false (this is possible only because pg_statistic has
 * columns shown as anyarray in the catalogs).  We allow this to match a
 * declared ANYARRAY argument, but only if there is no other polymorphic
 * argument that we would need to match it with, and no need to determine
 * the element type to infer the result type.  Note this means that functions
 * taking ANYARRAY had better behave sanely if applied to the pg_statistic
 * columns; they can't just assume that successive inputs are of the same
 * actual element type.  There is no similar logic for ANYCOMPATIBLEARRAY;
 * there isn't a need for it since there are no catalog columns of that type,
 * so we won't see it as input.  We could consider matching an actual ANYARRAY
 * input to an ANYCOMPATIBLEARRAY argument, but at present that seems useless
 * as well, since there's no value in using ANYCOMPATIBLEARRAY unless there's
 * at least one other ANYCOMPATIBLE-family argument or result.
 *
 * Also, if there are no arguments declared to be of polymorphic types,
 * we'll return the rettype unmodified even if it's polymorphic.  This should
 * never occur for user-declared functions, because CREATE FUNCTION prevents
 * it.  But it does happen for some built-in functions, such as array_in().
 */
Oid
enforce_generic_type_consistency(const Oid *actual_arg_types,
								 Oid *declared_arg_types,
								 int nargs,
								 Oid rettype,
								 bool allow_poly)
{
	bool		have_poly_anycompatible = false;
	bool		have_poly_unknowns = false;
	Oid			elem_typeid = InvalidOid;
	Oid			array_typeid = InvalidOid;
	Oid			range_typeid = InvalidOid;
	Oid			multirange_typeid = InvalidOid;
	Oid			anycompatible_typeid = InvalidOid;
	Oid			anycompatible_array_typeid = InvalidOid;
	Oid			anycompatible_range_typeid = InvalidOid;
	Oid			anycompatible_range_typelem = InvalidOid;
	Oid			anycompatible_multirange_typeid = InvalidOid;
	Oid			anycompatible_multirange_typelem = InvalidOid;
	bool		have_anynonarray = (rettype == ANYNONARRAYOID);
	bool		have_anyenum = (rettype == ANYENUMOID);
	bool		have_anymultirange = (rettype == ANYMULTIRANGEOID);
	bool		have_anycompatible_nonarray = (rettype == ANYCOMPATIBLENONARRAYOID);
	bool		have_anycompatible_array = (rettype == ANYCOMPATIBLEARRAYOID);
	bool		have_anycompatible_range = (rettype == ANYCOMPATIBLERANGEOID);
	bool		have_anycompatible_multirange = (rettype == ANYCOMPATIBLEMULTIRANGEOID);
	int			n_poly_args = 0;	/* this counts all family-1 arguments */
	int			n_anycompatible_args = 0;	/* this counts only non-unknowns */
	Oid			anycompatible_actual_types[FUNC_MAX_ARGS];

	/*
	 * Loop through the arguments to see if we have any that are polymorphic.
	 * If so, require the actual types to be consistent.
	 */
	Assert(nargs <= FUNC_MAX_ARGS);
	for (int j = 0; j < nargs; j++)
	{
		Oid			decl_type = declared_arg_types[j];
		Oid			actual_type = actual_arg_types[j];

		if (decl_type == ANYELEMENTOID ||
			decl_type == ANYNONARRAYOID ||
			decl_type == ANYENUMOID)
		{
			n_poly_args++;
			if (decl_type == ANYNONARRAYOID)
				have_anynonarray = true;
			else if (decl_type == ANYENUMOID)
				have_anyenum = true;
			if (actual_type == UNKNOWNOID)
			{
				have_poly_unknowns = true;
				continue;
			}
			if (allow_poly && decl_type == actual_type)
				continue;		/* no new information here */
			if (OidIsValid(elem_typeid) && actual_type != elem_typeid)
				ereport(ERROR,
						(errcode(ERRCODE_DATATYPE_MISMATCH),
						 errmsg("arguments declared \"%s\" are not all alike", "anyelement"),
						 errdetail("%s versus %s",
								   format_type_be(elem_typeid),
								   format_type_be(actual_type))));
			elem_typeid = actual_type;
		}
		else if (decl_type == ANYARRAYOID)
		{
			n_poly_args++;
			if (actual_type == UNKNOWNOID)
			{
				have_poly_unknowns = true;
				continue;
			}
			if (allow_poly && decl_type == actual_type)
				continue;		/* no new information here */
			actual_type = getBaseType(actual_type); /* flatten domains */
			if (OidIsValid(array_typeid) && actual_type != array_typeid)
				ereport(ERROR,
						(errcode(ERRCODE_DATATYPE_MISMATCH),
						 errmsg("arguments declared \"%s\" are not all alike", "anyarray"),
						 errdetail("%s versus %s",
								   format_type_be(array_typeid),
								   format_type_be(actual_type))));
			array_typeid = actual_type;
		}
		else if (decl_type == ANYRANGEOID)
		{
			n_poly_args++;
			if (actual_type == UNKNOWNOID)
			{
				have_poly_unknowns = true;
				continue;
			}
			if (allow_poly && decl_type == actual_type)
				continue;		/* no new information here */
			actual_type = getBaseType(actual_type); /* flatten domains */
			if (OidIsValid(range_typeid) && actual_type != range_typeid)
				ereport(ERROR,
						(errcode(ERRCODE_DATATYPE_MISMATCH),
						 errmsg("arguments declared \"%s\" are not all alike", "anyrange"),
						 errdetail("%s versus %s",
								   format_type_be(range_typeid),
								   format_type_be(actual_type))));
			range_typeid = actual_type;
		}
		else if (decl_type == ANYMULTIRANGEOID)
		{
			n_poly_args++;
			have_anymultirange = true;
			if (actual_type == UNKNOWNOID)
			{
				have_poly_unknowns = true;
				continue;
			}
			if (allow_poly && decl_type == actual_type)
				continue;		/* no new information here */
			actual_type = getBaseType(actual_type); /* flatten domains */
			if (OidIsValid(multirange_typeid) && actual_type != multirange_typeid)
				ereport(ERROR,
						(errcode(ERRCODE_DATATYPE_MISMATCH),
						 errmsg("arguments declared \"%s\" are not all alike", "anymultirange"),
						 errdetail("%s versus %s",
								   format_type_be(multirange_typeid),
								   format_type_be(actual_type))));
			multirange_typeid = actual_type;
		}
		else if (decl_type == ANYCOMPATIBLEOID ||
				 decl_type == ANYCOMPATIBLENONARRAYOID)
		{
			have_poly_anycompatible = true;
			if (decl_type == ANYCOMPATIBLENONARRAYOID)
				have_anycompatible_nonarray = true;
			if (actual_type == UNKNOWNOID)
				continue;
			if (allow_poly && decl_type == actual_type)
				continue;		/* no new information here */
			/* collect the actual types of non-unknown COMPATIBLE args */
			anycompatible_actual_types[n_anycompatible_args++] = actual_type;
		}
		else if (decl_type == ANYCOMPATIBLEARRAYOID)
		{
			Oid			anycompatible_elem_type;

			have_poly_anycompatible = true;
			have_anycompatible_array = true;
			if (actual_type == UNKNOWNOID)
				continue;
			if (allow_poly && decl_type == actual_type)
				continue;		/* no new information here */
			actual_type = getBaseType(actual_type); /* flatten domains */
			anycompatible_elem_type = get_element_type(actual_type);
			if (!OidIsValid(anycompatible_elem_type))
				ereport(ERROR,
						(errcode(ERRCODE_DATATYPE_MISMATCH),
						 errmsg("argument declared %s is not an array but type %s",
								"anycompatiblearray",
								format_type_be(actual_type))));
			/* collect the element type for common-supertype choice */
			anycompatible_actual_types[n_anycompatible_args++] = anycompatible_elem_type;
		}
		else if (decl_type == ANYCOMPATIBLERANGEOID)
		{
			have_poly_anycompatible = true;
			have_anycompatible_range = true;
			if (actual_type == UNKNOWNOID)
				continue;
			if (allow_poly && decl_type == actual_type)
				continue;		/* no new information here */
			actual_type = getBaseType(actual_type); /* flatten domains */
			if (OidIsValid(anycompatible_range_typeid))
			{
				/* All ANYCOMPATIBLERANGE arguments must be the same type */
				if (anycompatible_range_typeid != actual_type)
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("arguments declared \"%s\" are not all alike", "anycompatiblerange"),
							 errdetail("%s versus %s",
									   format_type_be(anycompatible_range_typeid),
									   format_type_be(actual_type))));
			}
			else
			{
				anycompatible_range_typeid = actual_type;
				anycompatible_range_typelem = get_range_subtype(actual_type);
				if (!OidIsValid(anycompatible_range_typelem))
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("argument declared %s is not a range type but type %s",
									"anycompatiblerange",
									format_type_be(actual_type))));
				/* collect the subtype for common-supertype choice */
				anycompatible_actual_types[n_anycompatible_args++] = anycompatible_range_typelem;
			}
		}
		else if (decl_type == ANYCOMPATIBLEMULTIRANGEOID)
		{
			have_poly_anycompatible = true;
			have_anycompatible_multirange = true;
			if (actual_type == UNKNOWNOID)
				continue;
			if (allow_poly && decl_type == actual_type)
				continue;		/* no new information here */
			actual_type = getBaseType(actual_type); /* flatten domains */
			if (OidIsValid(anycompatible_multirange_typeid))
			{
				/* All ANYCOMPATIBLEMULTIRANGE arguments must be the same type */
				if (anycompatible_multirange_typeid != actual_type)
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("arguments declared \"%s\" are not all alike", "anycompatiblemultirange"),
							 errdetail("%s versus %s",
									   format_type_be(anycompatible_multirange_typeid),
									   format_type_be(actual_type))));
			}
			else
			{
				anycompatible_multirange_typeid = actual_type;
				anycompatible_multirange_typelem = get_multirange_range(actual_type);
				if (!OidIsValid(anycompatible_multirange_typelem))
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("argument declared %s is not a multirange type but type %s",
									"anycompatiblemultirange",
									format_type_be(actual_type))));
				/* we'll consider the subtype below */
			}
		}
	}

	/*
	 * Fast Track: if none of the arguments are polymorphic, return the
	 * unmodified rettype.  Not our job to resolve it if it's polymorphic.
	 */
	if (n_poly_args == 0 && !have_poly_anycompatible)
		return rettype;

	/* Check matching of family-1 polymorphic arguments, if any */
	if (n_poly_args)
	{
		/* Get the element type based on the array type, if we have one */
		if (OidIsValid(array_typeid))
		{
			Oid			array_typelem;

			if (array_typeid == ANYARRAYOID)
			{
				/*
				 * Special case for matching ANYARRAY input to an ANYARRAY
				 * argument: allow it iff no other arguments are family-1
				 * polymorphics (otherwise we couldn't be sure whether the
				 * array element type matches up) and the result type doesn't
				 * require us to infer a specific element type.
				 */
				if (n_poly_args != 1 ||
					(rettype != ANYARRAYOID &&
					 IsPolymorphicTypeFamily1(rettype)))
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("cannot determine element type of \"anyarray\" argument")));
				array_typelem = ANYELEMENTOID;
			}
			else
			{
				array_typelem = get_element_type(array_typeid);
				if (!OidIsValid(array_typelem))
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("argument declared %s is not an array but type %s",
									"anyarray", format_type_be(array_typeid))));
			}

			if (!OidIsValid(elem_typeid))
			{
				/*
				 * if we don't have an element type yet, use the one we just
				 * got
				 */
				elem_typeid = array_typelem;
			}
			else if (array_typelem != elem_typeid)
			{
				/* otherwise, they better match */
				ereport(ERROR,
						(errcode(ERRCODE_DATATYPE_MISMATCH),
						 errmsg("argument declared %s is not consistent with argument declared %s",
								"anyarray", "anyelement"),
						 errdetail("%s versus %s",
								   format_type_be(array_typeid),
								   format_type_be(elem_typeid))));
			}
		}

		/* Deduce range type from multirange type, or vice versa */
		if (OidIsValid(multirange_typeid))
		{
			Oid			multirange_typelem;

			multirange_typelem = get_multirange_range(multirange_typeid);
			if (!OidIsValid(multirange_typelem))
				ereport(ERROR,
						(errcode(ERRCODE_DATATYPE_MISMATCH),
						 errmsg("argument declared %s is not a multirange type but type %s",
								"anymultirange",
								format_type_be(multirange_typeid))));

			if (!OidIsValid(range_typeid))
			{
				/* if we don't have a range type yet, use the one we just got */
				range_typeid = multirange_typelem;
			}
			else if (multirange_typelem != range_typeid)
			{
				/* otherwise, they better match */
				ereport(ERROR,
						(errcode(ERRCODE_DATATYPE_MISMATCH),
						 errmsg("argument declared %s is not consistent with argument declared %s",
								"anymultirange", "anyrange"),
						 errdetail("%s versus %s",
								   format_type_be(multirange_typeid),
								   format_type_be(range_typeid))));
			}
		}
		else if (have_anymultirange && OidIsValid(range_typeid))
		{
			multirange_typeid = get_range_multirange(range_typeid);
			/* We'll complain below if that didn't work */
		}

		/* Get the element type based on the range type, if we have one */
		if (OidIsValid(range_typeid))
		{
			Oid			range_typelem;

			range_typelem = get_range_subtype(range_typeid);
			if (!OidIsValid(range_typelem))
				ereport(ERROR,
						(errcode(ERRCODE_DATATYPE_MISMATCH),
						 errmsg("argument declared %s is not a range type but type %s",
								"anyrange",
								format_type_be(range_typeid))));

			if (!OidIsValid(elem_typeid))
			{
				/*
				 * if we don't have an element type yet, use the one we just
				 * got
				 */
				elem_typeid = range_typelem;
			}
			else if (range_typelem != elem_typeid)
			{
				/* otherwise, they better match */
				ereport(ERROR,
						(errcode(ERRCODE_DATATYPE_MISMATCH),
						 errmsg("argument declared %s is not consistent with argument declared %s",
								"anyrange", "anyelement"),
						 errdetail("%s versus %s",
								   format_type_be(range_typeid),
								   format_type_be(elem_typeid))));
			}
		}

		if (!OidIsValid(elem_typeid))
		{
			if (allow_poly)
			{
				elem_typeid = ANYELEMENTOID;
				array_typeid = ANYARRAYOID;
				range_typeid = ANYRANGEOID;
				multirange_typeid = ANYMULTIRANGEOID;
			}
			else
			{
				/*
				 * Only way to get here is if all the family-1 polymorphic
				 * arguments have UNKNOWN inputs.
				 */
				ereport(ERROR,
						(errcode(ERRCODE_DATATYPE_MISMATCH),
						 errmsg("could not determine polymorphic type because input has type %s",
								"unknown")));
			}
		}

		if (have_anynonarray && elem_typeid != ANYELEMENTOID)
		{
			/*
			 * require the element type to not be an array or domain over
			 * array
			 */
			if (type_is_array_domain(elem_typeid))
				ereport(ERROR,
						(errcode(ERRCODE_DATATYPE_MISMATCH),
						 errmsg("type matched to anynonarray is an array type: %s",
								format_type_be(elem_typeid))));
		}

		if (have_anyenum && elem_typeid != ANYELEMENTOID)
		{
			/* require the element type to be an enum */
			if (!type_is_enum(elem_typeid))
				ereport(ERROR,
						(errcode(ERRCODE_DATATYPE_MISMATCH),
						 errmsg("type matched to anyenum is not an enum type: %s",
								format_type_be(elem_typeid))));
		}
	}

	/* Check matching of family-2 polymorphic arguments, if any */
	if (have_poly_anycompatible)
	{
		/* Deduce range type from multirange type, or vice versa */
		if (OidIsValid(anycompatible_multirange_typeid))
		{
			if (OidIsValid(anycompatible_range_typeid))
			{
				if (anycompatible_multirange_typelem !=
					anycompatible_range_typeid)
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("argument declared %s is not consistent with argument declared %s",
									"anycompatiblemultirange",
									"anycompatiblerange"),
							 errdetail("%s versus %s",
									   format_type_be(anycompatible_multirange_typeid),
									   format_type_be(anycompatible_range_typeid))));
			}
			else
			{
				anycompatible_range_typeid = anycompatible_multirange_typelem;
				anycompatible_range_typelem = get_range_subtype(anycompatible_range_typeid);
				if (!OidIsValid(anycompatible_range_typelem))
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("argument declared %s is not a multirange type but type %s",
									"anycompatiblemultirange",
									format_type_be(anycompatible_multirange_typeid))));
				/* this enables element type matching check below */
				have_anycompatible_range = true;
				/* collect the subtype for common-supertype choice */
				anycompatible_actual_types[n_anycompatible_args++] =
					anycompatible_range_typelem;
			}
		}
		else if (have_anycompatible_multirange &&
				 OidIsValid(anycompatible_range_typeid))
		{
			anycompatible_multirange_typeid = get_range_multirange(anycompatible_range_typeid);
			/* We'll complain below if that didn't work */
		}

		if (n_anycompatible_args > 0)
		{
			anycompatible_typeid =
				select_common_type_from_oids(n_anycompatible_args,
											 anycompatible_actual_types,
											 false);

			/* We have to verify that the selected type actually works */
			if (!verify_common_type_from_oids(anycompatible_typeid,
											  n_anycompatible_args,
											  anycompatible_actual_types))
				ereport(ERROR,
						(errcode(ERRCODE_DATATYPE_MISMATCH),
						 errmsg("arguments of anycompatible family cannot be cast to a common type")));

			if (have_anycompatible_array)
			{
				anycompatible_array_typeid = get_array_type(anycompatible_typeid);
				if (!OidIsValid(anycompatible_array_typeid))
					ereport(ERROR,
							(errcode(ERRCODE_UNDEFINED_OBJECT),
							 errmsg("could not find array type for data type %s",
									format_type_be(anycompatible_typeid))));
			}

			if (have_anycompatible_range)
			{
				/* we can't infer a range type from the others */
				if (!OidIsValid(anycompatible_range_typeid))
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("could not determine polymorphic type %s because input has type %s",
									"anycompatiblerange", "unknown")));

				/*
				 * the anycompatible type must exactly match the range element
				 * type
				 */
				if (anycompatible_range_typelem != anycompatible_typeid)
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("anycompatiblerange type %s does not match anycompatible type %s",
									format_type_be(anycompatible_range_typeid),
									format_type_be(anycompatible_typeid))));
			}

			if (have_anycompatible_multirange)
			{
				/* we can't infer a multirange type from the others */
				if (!OidIsValid(anycompatible_multirange_typeid))
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("could not determine polymorphic type %s because input has type %s",
									"anycompatiblemultirange", "unknown")));

				/*
				 * the anycompatible type must exactly match the multirange
				 * element type
				 */
				if (anycompatible_range_typelem != anycompatible_typeid)
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("anycompatiblemultirange type %s does not match anycompatible type %s",
									format_type_be(anycompatible_multirange_typeid),
									format_type_be(anycompatible_typeid))));
			}

			if (have_anycompatible_nonarray)
			{
				/*
				 * require the element type to not be an array or domain over
				 * array
				 */
				if (type_is_array_domain(anycompatible_typeid))
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("type matched to anycompatiblenonarray is an array type: %s",
									format_type_be(anycompatible_typeid))));
			}
		}
		else
		{
			if (allow_poly)
			{
				anycompatible_typeid = ANYCOMPATIBLEOID;
				anycompatible_array_typeid = ANYCOMPATIBLEARRAYOID;
				anycompatible_range_typeid = ANYCOMPATIBLERANGEOID;
				anycompatible_multirange_typeid = ANYCOMPATIBLEMULTIRANGEOID;
			}
			else
			{
				/*
				 * Only way to get here is if all the family-2 polymorphic
				 * arguments have UNKNOWN inputs.  Resolve to TEXT as
				 * select_common_type() would do.  That doesn't license us to
				 * use TEXTRANGE or TEXTMULTIRANGE, though.
				 */
				anycompatible_typeid = TEXTOID;
				anycompatible_array_typeid = TEXTARRAYOID;
				if (have_anycompatible_range)
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("could not determine polymorphic type %s because input has type %s",
									"anycompatiblerange", "unknown")));
				if (have_anycompatible_multirange)
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("could not determine polymorphic type %s because input has type %s",
									"anycompatiblemultirange", "unknown")));
			}
		}

		/* replace family-2 polymorphic types by selected types */
		for (int j = 0; j < nargs; j++)
		{
			Oid			decl_type = declared_arg_types[j];

			if (decl_type == ANYCOMPATIBLEOID ||
				decl_type == ANYCOMPATIBLENONARRAYOID)
				declared_arg_types[j] = anycompatible_typeid;
			else if (decl_type == ANYCOMPATIBLEARRAYOID)
				declared_arg_types[j] = anycompatible_array_typeid;
			else if (decl_type == ANYCOMPATIBLERANGEOID)
				declared_arg_types[j] = anycompatible_range_typeid;
			else if (decl_type == ANYCOMPATIBLEMULTIRANGEOID)
				declared_arg_types[j] = anycompatible_multirange_typeid;
		}
	}

	/*
	 * If we had any UNKNOWN inputs for family-1 polymorphic arguments,
	 * re-scan to assign correct types to them.
	 *
	 * Note: we don't have to consider unknown inputs that were matched to
	 * family-2 polymorphic arguments, because we forcibly updated their
	 * declared_arg_types[] positions just above.
	 */
	if (have_poly_unknowns)
	{
		for (int j = 0; j < nargs; j++)
		{
			Oid			decl_type = declared_arg_types[j];
			Oid			actual_type = actual_arg_types[j];

			if (actual_type != UNKNOWNOID)
				continue;

			if (decl_type == ANYELEMENTOID ||
				decl_type == ANYNONARRAYOID ||
				decl_type == ANYENUMOID)
				declared_arg_types[j] = elem_typeid;
			else if (decl_type == ANYARRAYOID)
			{
				if (!OidIsValid(array_typeid))
				{
					array_typeid = get_array_type(elem_typeid);
					if (!OidIsValid(array_typeid))
						ereport(ERROR,
								(errcode(ERRCODE_UNDEFINED_OBJECT),
								 errmsg("could not find array type for data type %s",
										format_type_be(elem_typeid))));
				}
				declared_arg_types[j] = array_typeid;
			}
			else if (decl_type == ANYRANGEOID)
			{
				if (!OidIsValid(range_typeid))
				{
					/* we can't infer a range type from the others */
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("could not determine polymorphic type %s because input has type %s",
									"anyrange", "unknown")));
				}
				declared_arg_types[j] = range_typeid;
			}
			else if (decl_type == ANYMULTIRANGEOID)
			{
				if (!OidIsValid(multirange_typeid))
				{
					/* we can't infer a multirange type from the others */
					ereport(ERROR,
							(errcode(ERRCODE_DATATYPE_MISMATCH),
							 errmsg("could not determine polymorphic type %s because input has type %s",
									"anymultirange", "unknown")));
				}
				declared_arg_types[j] = multirange_typeid;
			}
		}
	}

	/* if we return ANYELEMENT use the appropriate argument type */
	if (rettype == ANYELEMENTOID ||
		rettype == ANYNONARRAYOID ||
		rettype == ANYENUMOID)
		return elem_typeid;

	/* if we return ANYARRAY use the appropriate argument type */
	if (rettype == ANYARRAYOID)
	{
		if (!OidIsValid(array_typeid))
		{
			array_typeid = get_array_type(elem_typeid);
			if (!OidIsValid(array_typeid))
				ereport(ERROR,
						(errcode(ERRCODE_UNDEFINED_OBJECT),
						 errmsg("could not find array type for data type %s",
								format_type_be(elem_typeid))));
		}
		return array_typeid;
	}

	/* if we return ANYRANGE use the appropriate argument type */
	if (rettype == ANYRANGEOID)
	{
		/* this error is unreachable if the function signature is valid: */
		if (!OidIsValid(range_typeid))
			ereport(ERROR,
					(errcode(ERRCODE_DATATYPE_MISMATCH),
					 errmsg_internal("could not determine polymorphic type %s because input has type %s",
									 "anyrange", "unknown")));
		return range_typeid;
	}

	/* if we return ANYMULTIRANGE use the appropriate argument type */
	if (rettype == ANYMULTIRANGEOID)
	{
		/* this error is unreachable if the function signature is valid: */
		if (!OidIsValid(multirange_typeid))
			ereport(ERROR,
					(errcode(ERRCODE_DATATYPE_MISMATCH),
					 errmsg_internal("could not determine polymorphic type %s because input has type %s",
									 "anymultirange", "unknown")));
		return multirange_typeid;
	}

	/* if we return ANYCOMPATIBLE use the appropriate type */
	if (rettype == ANYCOMPATIBLEOID ||
		rettype == ANYCOMPATIBLENONARRAYOID)
	{
		/* this error is unreachable if the function signature is valid: */
		if (!OidIsValid(anycompatible_typeid))
			ereport(ERROR,
					(errcode(ERRCODE_DATATYPE_MISMATCH),
					 errmsg_internal("could not identify anycompatible type")));
		return anycompatible_typeid;
	}

	/* if we return ANYCOMPATIBLEARRAY use the appropriate type */
	if (rettype == ANYCOMPATIBLEARRAYOID)
	{
		/* this error is unreachable if the function signature is valid: */
		if (!OidIsValid(anycompatible_array_typeid))
			ereport(ERROR,
					(errcode(ERRCODE_DATATYPE_MISMATCH),
					 errmsg_internal("could not identify anycompatiblearray type")));
		return anycompatible_array_typeid;
	}

	/* if we return ANYCOMPATIBLERANGE use the appropriate argument type */
	if (rettype == ANYCOMPATIBLERANGEOID)
	{
		/* this error is unreachable if the function signature is valid: */
		if (!OidIsValid(anycompatible_range_typeid))
			ereport(ERROR,
					(errcode(ERRCODE_DATATYPE_MISMATCH),
					 errmsg_internal("could not identify anycompatiblerange type")));
		return anycompatible_range_typeid;
	}

	/* if we return ANYCOMPATIBLEMULTIRANGE use the appropriate argument type */
	if (rettype == ANYCOMPATIBLEMULTIRANGEOID)
	{
		/* this error is unreachable if the function signature is valid: */
		if (!OidIsValid(anycompatible_multirange_typeid))
			ereport(ERROR,
					(errcode(ERRCODE_DATATYPE_MISMATCH),
					 errmsg_internal("could not identify anycompatiblemultirange type")));
		return anycompatible_multirange_typeid;
	}

	/* we don't return a generic type; send back the original return type */
	return rettype;
}

/*
 * check_valid_polymorphic_signature()
 *		Is a proposed function signature valid per polymorphism rules?
 *
 * Returns NULL if the signature is valid (either ret_type is not polymorphic,
 * or it can be deduced from the given declared argument types).  Otherwise,
 * returns a palloc'd, already translated errdetail string saying why not.
 */
char *
check_valid_polymorphic_signature(Oid ret_type,
								  const Oid *declared_arg_types,
								  int nargs)
{
	if (ret_type == ANYRANGEOID || ret_type == ANYMULTIRANGEOID)
	{
		/*
		 * ANYRANGE and ANYMULTIRANGE require an ANYRANGE or ANYMULTIRANGE
		 * input, else we can't tell which of several range types with the
		 * same element type to use.
		 */
		for (int i = 0; i < nargs; i++)
		{
			if (declared_arg_types[i] == ANYRANGEOID ||
				declared_arg_types[i] == ANYMULTIRANGEOID)
				return NULL;	/* OK */
		}
		return psprintf(_("A result of type %s requires at least one input of type anyrange or anymultirange."),
						format_type_be(ret_type));
	}
	else if (ret_type == ANYCOMPATIBLERANGEOID || ret_type == ANYCOMPATIBLEMULTIRANGEOID)
	{
		/*
		 * ANYCOMPATIBLERANGE and ANYCOMPATIBLEMULTIRANGE require an
		 * ANYCOMPATIBLERANGE or ANYCOMPATIBLEMULTIRANGE input, else we can't
		 * tell which of several range types with the same element type to
		 * use.
		 */
		for (int i = 0; i < nargs; i++)
		{
			if (declared_arg_types[i] == ANYCOMPATIBLERANGEOID ||
				declared_arg_types[i] == ANYCOMPATIBLEMULTIRANGEOID)
				return NULL;	/* OK */
		}
		return psprintf(_("A result of type %s requires at least one input of type anycompatiblerange or anycompatiblemultirange."),
						format_type_be(ret_type));
	}
	else if (IsPolymorphicTypeFamily1(ret_type))
	{
		/* Otherwise, any family-1 type can be deduced from any other */
		for (int i = 0; i < nargs; i++)
		{
			if (IsPolymorphicTypeFamily1(declared_arg_types[i]))
				return NULL;	/* OK */
		}
		/* Keep this list in sync with IsPolymorphicTypeFamily1! */
		return psprintf(_("A result of type %s requires at least one input of type anyelement, anyarray, anynonarray, anyenum, anyrange, or anymultirange."),
						format_type_be(ret_type));
	}
	else if (IsPolymorphicTypeFamily2(ret_type))
	{
		/* Otherwise, any family-2 type can be deduced from any other */
		for (int i = 0; i < nargs; i++)
		{
			if (IsPolymorphicTypeFamily2(declared_arg_types[i]))
				return NULL;	/* OK */
		}
		/* Keep this list in sync with IsPolymorphicTypeFamily2! */
		return psprintf(_("A result of type %s requires at least one input of type anycompatible, anycompatiblearray, anycompatiblenonarray, anycompatiblerange, or anycompatiblemultirange."),
						format_type_be(ret_type));
	}
	else
		return NULL;			/* OK, ret_type is not polymorphic */
}

/*
 * check_valid_internal_signature()
 *		Is a proposed function signature valid per INTERNAL safety rules?
 *
 * Returns NULL if OK, or a suitable error message if ret_type is INTERNAL but
 * none of the declared arg types are.  (It's unsafe to create such a function
 * since it would allow invocation of INTERNAL-consuming functions directly
 * from SQL.)  It's overkill to return the error detail message, since there
 * is only one possibility, but we do it like this to keep the API similar to
 * check_valid_polymorphic_signature().
 */
char *
check_valid_internal_signature(Oid ret_type,
							   const Oid *declared_arg_types,
							   int nargs)
{
	if (ret_type == INTERNALOID)
	{
		for (int i = 0; i < nargs; i++)
		{
			if (declared_arg_types[i] == ret_type)
				return NULL;	/* OK */
		}
		return pstrdup(_("A result of type internal requires at least one input of type internal."));
	}
	else
		return NULL;			/* OK, ret_type is not INTERNAL */
}


/* TypeCategory()
 *		Assign a category to the specified type OID.
 *
 * NB: this must not return TYPCATEGORY_INVALID.
 */
TYPCATEGORY
TypeCategory(Oid type)
{
	char		typcategory;
	bool		typispreferred;

	get_type_category_preferred(type, &typcategory, &typispreferred);
	Assert(typcategory != TYPCATEGORY_INVALID);
	return (TYPCATEGORY) typcategory;
}


/* IsPreferredType()
 *		Check if this type is a preferred type for the given category.
 *
 * If category is TYPCATEGORY_INVALID, then we'll return true for preferred
 * types of any category; otherwise, only for preferred types of that
 * category.
 */
bool
IsPreferredType(TYPCATEGORY category, Oid type)
{
	char		typcategory;
	bool		typispreferred;

	get_type_category_preferred(type, &typcategory, &typispreferred);
	if (category == typcategory || category == TYPCATEGORY_INVALID)
		return typispreferred;
	else
		return false;
}


/* IsBinaryCoercible()
 *		Check if srctype is binary-coercible to targettype.
 *
 * This notion allows us to cheat and directly exchange values without
 * going through the trouble of calling a conversion function.  Note that
 * in general, this should only be an implementation shortcut.  Before 7.4,
 * this was also used as a heuristic for resolving overloaded functions and
 * operators, but that's basically a bad idea.
 *
 * As of 7.3, binary coercibility isn't hardwired into the code anymore.
 * We consider two types binary-coercible if there is an implicitly
 * invokable, no-function-needed pg_cast entry.  Also, a domain is always
 * binary-coercible to its base type, though *not* vice versa (in the other
 * direction, one must apply domain constraint checks before accepting the
 * value as legitimate).  We also need to special-case various polymorphic
 * types.
 *
 * This function replaces IsBinaryCompatible(), which was an inherently
 * symmetric test.  Since the pg_cast entries aren't necessarily symmetric,
 * the order of the operands is now significant.
 */
bool
IsBinaryCoercible(Oid srctype, Oid targettype)
{
	HeapTuple	tuple;
	Form_pg_cast castForm;
	bool		result;

	/* Fast path if same type */
	if (srctype == targettype)
		return true;

	/* Anything is coercible to ANY or ANYELEMENT or ANYCOMPATIBLE */
	if (targettype == ANYOID || targettype == ANYELEMENTOID ||
		targettype == ANYCOMPATIBLEOID)
		return true;

	/* If srctype is a domain, reduce to its base type */
	if (OidIsValid(srctype))
		srctype = getBaseType(srctype);

	/* Somewhat-fast path for domain -> base type case */
	if (srctype == targettype)
		return true;

	/* Also accept any array type as coercible to ANY[COMPATIBLE]ARRAY */
	if (targettype == ANYARRAYOID || targettype == ANYCOMPATIBLEARRAYOID)
		if (type_is_array(srctype))
			return true;

	/* Also accept any non-array type as coercible to ANY[COMPATIBLE]NONARRAY */
	if (targettype == ANYNONARRAYOID || targettype == ANYCOMPATIBLENONARRAYOID)
		if (!type_is_array(srctype))
			return true;

	/* Also accept any enum type as coercible to ANYENUM */
	if (targettype == ANYENUMOID)
		if (type_is_enum(srctype))
			return true;

	/* Also accept any range type as coercible to ANY[COMPATIBLE]RANGE */
	if (targettype == ANYRANGEOID || targettype == ANYCOMPATIBLERANGEOID)
		if (type_is_range(srctype))
			return true;

	/* Also, any multirange type is coercible to ANY[COMPATIBLE]MULTIRANGE */
	if (targettype == ANYMULTIRANGEOID || targettype == ANYCOMPATIBLEMULTIRANGEOID)
		if (type_is_multirange(srctype))
			return true;

	/* Also accept any composite type as coercible to RECORD */
	if (targettype == RECORDOID)
		if (ISCOMPLEX(srctype))
			return true;

	/* Also accept any composite array type as coercible to RECORD[] */
	if (targettype == RECORDARRAYOID)
		if (is_complex_array(srctype))
			return true;

	/* Else look in pg_cast */
	tuple = SearchSysCache2(CASTSOURCETARGET,
							ObjectIdGetDatum(srctype),
							ObjectIdGetDatum(targettype));
	if (!HeapTupleIsValid(tuple))
		return false;			/* no cast */
	castForm = (Form_pg_cast) GETSTRUCT(tuple);

	result = (castForm->castmethod == COERCION_METHOD_BINARY &&
			  castForm->castcontext == COERCION_CODE_IMPLICIT);

	ReleaseSysCache(tuple);

	return result;
}


/*
 * find_coercion_pathway
 *		Look for a coercion pathway between two types.
 *
 * Currently, this deals only with scalar-type cases; it does not consider
 * polymorphic types nor casts between composite types.  (Perhaps fold
 * those in someday?)
 *
 * ccontext determines the set of available casts.
 *
 * The possible result codes are:
 *	COERCION_PATH_NONE: failed to find any coercion pathway
 *				*funcid is set to InvalidOid
 *	COERCION_PATH_FUNC: apply the coercion function returned in *funcid
 *	COERCION_PATH_RELABELTYPE: binary-compatible cast, no function needed
 *				*funcid is set to InvalidOid
 *	COERCION_PATH_ARRAYCOERCE: need an ArrayCoerceExpr node
 *				*funcid is set to InvalidOid
 *	COERCION_PATH_COERCEVIAIO: need a CoerceViaIO node
 *				*funcid is set to InvalidOid
 *
 * Note: COERCION_PATH_RELABELTYPE does not necessarily mean that no work is
 * needed to do the coercion; if the target is a domain then we may need to
 * apply domain constraint checking.  If you want to check for a zero-effort
 * conversion then use IsBinaryCoercible().
 */
CoercionPathType
find_coercion_pathway(Oid targetTypeId, Oid sourceTypeId,
					  CoercionContext ccontext,
					  Oid *funcid)
{
	CoercionPathType result = COERCION_PATH_NONE;
	HeapTuple	tuple;

	*funcid = InvalidOid;

	/* Perhaps the types are domains; if so, look at their base types */
	if (OidIsValid(sourceTypeId))
		sourceTypeId = getBaseType(sourceTypeId);
	if (OidIsValid(targetTypeId))
		targetTypeId = getBaseType(targetTypeId);

	/* Domains are always coercible to and from their base type */
	if (sourceTypeId == targetTypeId)
		return COERCION_PATH_RELABELTYPE;

	/* Look in pg_cast */
	tuple = SearchSysCache2(CASTSOURCETARGET,
							ObjectIdGetDatum(sourceTypeId),
							ObjectIdGetDatum(targetTypeId));

	if (HeapTupleIsValid(tuple))
	{
		Form_pg_cast castForm = (Form_pg_cast) GETSTRUCT(tuple);
		CoercionContext castcontext;

		/* convert char value for castcontext to CoercionContext enum */
		switch (castForm->castcontext)
		{
			case COERCION_CODE_IMPLICIT:
				castcontext = COERCION_IMPLICIT;
				break;
			case COERCION_CODE_ASSIGNMENT:
				castcontext = COERCION_ASSIGNMENT;
				break;
			case COERCION_CODE_EXPLICIT:
				castcontext = COERCION_EXPLICIT;
				break;
			default:
				elog(ERROR, "unrecognized castcontext: %d",
					 (int) castForm->castcontext);
				castcontext = 0;	/* keep compiler quiet */
				break;
		}

		/* Rely on ordering of enum for correct behavior here */
		if (ccontext >= castcontext)
		{
			switch (castForm->castmethod)
			{
				case COERCION_METHOD_FUNCTION:
					result = COERCION_PATH_FUNC;
					*funcid = castForm->castfunc;
					break;
				case COERCION_METHOD_INOUT:
					result = COERCION_PATH_COERCEVIAIO;
					break;
				case COERCION_METHOD_BINARY:
					result = COERCION_PATH_RELABELTYPE;
					break;
				default:
					elog(ERROR, "unrecognized castmethod: %d",
						 (int) castForm->castmethod);
					break;
			}
		}

		ReleaseSysCache(tuple);
	}
	else
	{
		/*
		 * If there's no pg_cast entry, perhaps we are dealing with a pair of
		 * array types.  If so, and if their element types have a conversion
		 * pathway, report that we can coerce with an ArrayCoerceExpr.
		 *
		 * Hack: disallow coercions to oidvector and int2vector, which
		 * otherwise tend to capture coercions that should go to "real" array
		 * types.  We want those types to be considered "real" arrays for many
		 * purposes, but not this one.  (Also, ArrayCoerceExpr isn't
		 * guaranteed to produce an output that meets the restrictions of
		 * these datatypes, such as being 1-dimensional.)
		 */
		if (targetTypeId != OIDVECTOROID && targetTypeId != INT2VECTOROID)
		{
			Oid			targetElem;
			Oid			sourceElem;

			if ((targetElem = get_element_type(targetTypeId)) != InvalidOid &&
				(sourceElem = get_element_type(sourceTypeId)) != InvalidOid)
			{
				CoercionPathType elempathtype;
				Oid			elemfuncid;

				elempathtype = find_coercion_pathway(targetElem,
													 sourceElem,
													 ccontext,
													 &elemfuncid);
				if (elempathtype != COERCION_PATH_NONE)
				{
					result = COERCION_PATH_ARRAYCOERCE;
				}
			}
		}

		/*
		 * If we still haven't found a possibility, consider automatic casting
		 * using I/O functions.  We allow assignment casts to string types and
		 * explicit casts from string types to be handled this way. (The
		 * CoerceViaIO mechanism is a lot more general than that, but this is
		 * all we want to allow in the absence of a pg_cast entry.) It would
		 * probably be better to insist on explicit casts in both directions,
		 * but this is a compromise to preserve something of the pre-8.3
		 * behavior that many types had implicit (yipes!) casts to text.
		 */
		if (result == COERCION_PATH_NONE)
		{
			if (ccontext >= COERCION_ASSIGNMENT &&
				TypeCategory(targetTypeId) == TYPCATEGORY_STRING)
				result = COERCION_PATH_COERCEVIAIO;
			else if (ccontext >= COERCION_EXPLICIT &&
					 TypeCategory(sourceTypeId) == TYPCATEGORY_STRING)
				result = COERCION_PATH_COERCEVIAIO;
		}
	}

	/*
	 * When parsing PL/pgSQL assignments, allow an I/O cast to be used
	 * whenever no normal coercion is available.
	 */
	if (result == COERCION_PATH_NONE &&
		ccontext == COERCION_PLPGSQL)
		result = COERCION_PATH_COERCEVIAIO;

	return result;
}


/*
 * find_typmod_coercion_function -- does the given type need length coercion?
 *
 * If the target type possesses a pg_cast function from itself to itself,
 * it must need length coercion.
 *
 * "bpchar" (ie, char(N)) and "numeric" are examples of such types.
 *
 * If the given type is a varlena array type, we do not look for a coercion
 * function associated directly with the array type, but instead look for
 * one associated with the element type.  An ArrayCoerceExpr node must be
 * used to apply such a function.  (Note: currently, it's pointless to
 * return the funcid in this case, because it'll just get looked up again
 * in the recursive construction of the ArrayCoerceExpr's elemexpr.)
 *
 * We use the same result enum as find_coercion_pathway, but the only possible
 * result codes are:
 *	COERCION_PATH_NONE: no length coercion needed
 *	COERCION_PATH_FUNC: apply the function returned in *funcid
 *	COERCION_PATH_ARRAYCOERCE: apply the function using ArrayCoerceExpr
 */
CoercionPathType
find_typmod_coercion_function(Oid typeId,
							  Oid *funcid)
{
	CoercionPathType result;
	Type		targetType;
	Form_pg_type typeForm;
	HeapTuple	tuple;

	*funcid = InvalidOid;
	result = COERCION_PATH_FUNC;

	targetType = typeidType(typeId);
	typeForm = (Form_pg_type) GETSTRUCT(targetType);

	/* Check for a "true" array type */
	if (IsTrueArrayType(typeForm))
	{
		/* Yes, switch our attention to the element type */
		typeId = typeForm->typelem;
		result = COERCION_PATH_ARRAYCOERCE;
	}
	ReleaseSysCache(targetType);

	/* Look in pg_cast */
	tuple = SearchSysCache2(CASTSOURCETARGET,
							ObjectIdGetDatum(typeId),
							ObjectIdGetDatum(typeId));

	if (HeapTupleIsValid(tuple))
	{
		Form_pg_cast castForm = (Form_pg_cast) GETSTRUCT(tuple);

		*funcid = castForm->castfunc;
		ReleaseSysCache(tuple);
	}

	if (!OidIsValid(*funcid))
		result = COERCION_PATH_NONE;

	return result;
}

/*
 * is_complex_array
 *		Is this type an array of composite?
 *
 * Note: this will not return true for record[]; check for RECORDARRAYOID
 * separately if needed.
 */
static bool
is_complex_array(Oid typid)
{
	Oid			elemtype = get_element_type(typid);

	return (OidIsValid(elemtype) && ISCOMPLEX(elemtype));
}


/*
 * Check whether reltypeId is the row type of a typed table of type
 * reloftypeId, or is a domain over such a row type.  (This is conceptually
 * similar to the subtype relationship checked by typeInheritsFrom().)
 */
static bool
typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId)
{
	Oid			relid = typeOrDomainTypeRelid(reltypeId);
	bool		result = false;

	if (relid)
	{
		HeapTuple	tp;
		Form_pg_class reltup;

		tp = SearchSysCache1(RELOID, ObjectIdGetDatum(relid));
		if (!HeapTupleIsValid(tp))
			elog(ERROR, "cache lookup failed for relation %u", relid);

		reltup = (Form_pg_class) GETSTRUCT(tp);
		if (reltup->reloftype == reloftypeId)
			result = true;

		ReleaseSysCache(tp);
	}

	return result;
}