1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
|
/*-------------------------------------------------------------------------
*
* bufpage.c
* POSTGRES standard buffer page code.
*
* Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/storage/page/bufpage.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "access/itup.h"
#include "access/xlog.h"
#include "pgstat.h"
#include "storage/checksum.h"
#include "utils/memdebug.h"
#include "utils/memutils.h"
/* GUC variable */
bool ignore_checksum_failure = false;
/* ----------------------------------------------------------------
* Page support functions
* ----------------------------------------------------------------
*/
/*
* PageInit
* Initializes the contents of a page.
* Note that we don't calculate an initial checksum here; that's not done
* until it's time to write.
*/
void
PageInit(Page page, Size pageSize, Size specialSize)
{
PageHeader p = (PageHeader) page;
specialSize = MAXALIGN(specialSize);
Assert(pageSize == BLCKSZ);
Assert(pageSize > specialSize + SizeOfPageHeaderData);
/* Make sure all fields of page are zero, as well as unused space */
MemSet(p, 0, pageSize);
p->pd_flags = 0;
p->pd_lower = SizeOfPageHeaderData;
p->pd_upper = pageSize - specialSize;
p->pd_special = pageSize - specialSize;
PageSetPageSizeAndVersion(page, pageSize, PG_PAGE_LAYOUT_VERSION);
/* p->pd_prune_xid = InvalidTransactionId; done by above MemSet */
}
/*
* PageIsVerifiedExtended
* Check that the page header and checksum (if any) appear valid.
*
* This is called when a page has just been read in from disk. The idea is
* to cheaply detect trashed pages before we go nuts following bogus line
* pointers, testing invalid transaction identifiers, etc.
*
* It turns out to be necessary to allow zeroed pages here too. Even though
* this routine is *not* called when deliberately adding a page to a relation,
* there are scenarios in which a zeroed page might be found in a table.
* (Example: a backend extends a relation, then crashes before it can write
* any WAL entry about the new page. The kernel will already have the
* zeroed page in the file, and it will stay that way after restart.) So we
* allow zeroed pages here, and are careful that the page access macros
* treat such a page as empty and without free space. Eventually, VACUUM
* will clean up such a page and make it usable.
*
* If flag PIV_LOG_WARNING is set, a WARNING is logged in the event of
* a checksum failure.
*
* If flag PIV_REPORT_STAT is set, a checksum failure is reported directly
* to pgstat.
*/
bool
PageIsVerifiedExtended(Page page, BlockNumber blkno, int flags)
{
PageHeader p = (PageHeader) page;
size_t *pagebytes;
int i;
bool checksum_failure = false;
bool header_sane = false;
bool all_zeroes = false;
uint16 checksum = 0;
/*
* Don't verify page data unless the page passes basic non-zero test
*/
if (!PageIsNew(page))
{
if (DataChecksumsEnabled())
{
checksum = pg_checksum_page((char *) page, blkno);
if (checksum != p->pd_checksum)
checksum_failure = true;
}
/*
* The following checks don't prove the header is correct, only that
* it looks sane enough to allow into the buffer pool. Later usage of
* the block can still reveal problems, which is why we offer the
* checksum option.
*/
if ((p->pd_flags & ~PD_VALID_FLAG_BITS) == 0 &&
p->pd_lower <= p->pd_upper &&
p->pd_upper <= p->pd_special &&
p->pd_special <= BLCKSZ &&
p->pd_special == MAXALIGN(p->pd_special))
header_sane = true;
if (header_sane && !checksum_failure)
return true;
}
/* Check all-zeroes case */
all_zeroes = true;
pagebytes = (size_t *) page;
for (i = 0; i < (BLCKSZ / sizeof(size_t)); i++)
{
if (pagebytes[i] != 0)
{
all_zeroes = false;
break;
}
}
if (all_zeroes)
return true;
/*
* Throw a WARNING if the checksum fails, but only after we've checked for
* the all-zeroes case.
*/
if (checksum_failure)
{
if ((flags & PIV_LOG_WARNING) != 0)
ereport(WARNING,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("page verification failed, calculated checksum %u but expected %u",
checksum, p->pd_checksum)));
if ((flags & PIV_REPORT_STAT) != 0)
pgstat_report_checksum_failure();
if (header_sane && ignore_checksum_failure)
return true;
}
return false;
}
/*
* PageAddItemExtended
*
* Add an item to a page. Return value is the offset at which it was
* inserted, or InvalidOffsetNumber if the item is not inserted for any
* reason. A WARNING is issued indicating the reason for the refusal.
*
* offsetNumber must be either InvalidOffsetNumber to specify finding a
* free line pointer, or a value between FirstOffsetNumber and one past
* the last existing item, to specify using that particular line pointer.
*
* If offsetNumber is valid and flag PAI_OVERWRITE is set, we just store
* the item at the specified offsetNumber, which must be either a
* currently-unused line pointer, or one past the last existing item.
*
* If offsetNumber is valid and flag PAI_OVERWRITE is not set, insert
* the item at the specified offsetNumber, moving existing items later
* in the array to make room.
*
* If offsetNumber is not valid, then assign a slot by finding the first
* one that is both unused and deallocated.
*
* If flag PAI_IS_HEAP is set, we enforce that there can't be more than
* MaxHeapTuplesPerPage line pointers on the page.
*
* !!! EREPORT(ERROR) IS DISALLOWED HERE !!!
*/
OffsetNumber
PageAddItemExtended(Page page,
Item item,
Size size,
OffsetNumber offsetNumber,
int flags)
{
PageHeader phdr = (PageHeader) page;
Size alignedSize;
int lower;
int upper;
ItemId itemId;
OffsetNumber limit;
bool needshuffle = false;
/*
* Be wary about corrupted page pointers
*/
if (phdr->pd_lower < SizeOfPageHeaderData ||
phdr->pd_lower > phdr->pd_upper ||
phdr->pd_upper > phdr->pd_special ||
phdr->pd_special > BLCKSZ)
ereport(PANIC,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
phdr->pd_lower, phdr->pd_upper, phdr->pd_special)));
/*
* Select offsetNumber to place the new item at
*/
limit = OffsetNumberNext(PageGetMaxOffsetNumber(page));
/* was offsetNumber passed in? */
if (OffsetNumberIsValid(offsetNumber))
{
/* yes, check it */
if ((flags & PAI_OVERWRITE) != 0)
{
if (offsetNumber < limit)
{
itemId = PageGetItemId(phdr, offsetNumber);
if (ItemIdIsUsed(itemId) || ItemIdHasStorage(itemId))
{
elog(WARNING, "will not overwrite a used ItemId");
return InvalidOffsetNumber;
}
}
}
else
{
if (offsetNumber < limit)
needshuffle = true; /* need to move existing linp's */
}
}
else
{
/* offsetNumber was not passed in, so find a free slot */
/* if no free slot, we'll put it at limit (1st open slot) */
if (PageHasFreeLinePointers(phdr))
{
/*
* Scan line pointer array to locate a "recyclable" (unused)
* ItemId.
*
* Always use earlier items first. PageTruncateLinePointerArray
* can only truncate unused items when they appear as a contiguous
* group at the end of the line pointer array.
*/
for (offsetNumber = FirstOffsetNumber;
offsetNumber < limit; /* limit is maxoff+1 */
offsetNumber++)
{
itemId = PageGetItemId(phdr, offsetNumber);
/*
* We check for no storage as well, just to be paranoid;
* unused items should never have storage. Assert() that the
* invariant is respected too.
*/
Assert(ItemIdIsUsed(itemId) || !ItemIdHasStorage(itemId));
if (!ItemIdIsUsed(itemId) && !ItemIdHasStorage(itemId))
break;
}
if (offsetNumber >= limit)
{
/* the hint is wrong, so reset it */
PageClearHasFreeLinePointers(phdr);
}
}
else
{
/* don't bother searching if hint says there's no free slot */
offsetNumber = limit;
}
}
/* Reject placing items beyond the first unused line pointer */
if (offsetNumber > limit)
{
elog(WARNING, "specified item offset is too large");
return InvalidOffsetNumber;
}
/* Reject placing items beyond heap boundary, if heap */
if ((flags & PAI_IS_HEAP) != 0 && offsetNumber > MaxHeapTuplesPerPage)
{
elog(WARNING, "can't put more than MaxHeapTuplesPerPage items in a heap page");
return InvalidOffsetNumber;
}
/*
* Compute new lower and upper pointers for page, see if it'll fit.
*
* Note: do arithmetic as signed ints, to avoid mistakes if, say,
* alignedSize > pd_upper.
*/
if (offsetNumber == limit || needshuffle)
lower = phdr->pd_lower + sizeof(ItemIdData);
else
lower = phdr->pd_lower;
alignedSize = MAXALIGN(size);
upper = (int) phdr->pd_upper - (int) alignedSize;
if (lower > upper)
return InvalidOffsetNumber;
/*
* OK to insert the item. First, shuffle the existing pointers if needed.
*/
itemId = PageGetItemId(phdr, offsetNumber);
if (needshuffle)
memmove(itemId + 1, itemId,
(limit - offsetNumber) * sizeof(ItemIdData));
/* set the line pointer */
ItemIdSetNormal(itemId, upper, size);
/*
* Items normally contain no uninitialized bytes. Core bufpage consumers
* conform, but this is not a necessary coding rule; a new index AM could
* opt to depart from it. However, data type input functions and other
* C-language functions that synthesize datums should initialize all
* bytes; datumIsEqual() relies on this. Testing here, along with the
* similar check in printtup(), helps to catch such mistakes.
*
* Values of the "name" type retrieved via index-only scans may contain
* uninitialized bytes; see comment in btrescan(). Valgrind will report
* this as an error, but it is safe to ignore.
*/
VALGRIND_CHECK_MEM_IS_DEFINED(item, size);
/* copy the item's data onto the page */
memcpy((char *) page + upper, item, size);
/* adjust page header */
phdr->pd_lower = (LocationIndex) lower;
phdr->pd_upper = (LocationIndex) upper;
return offsetNumber;
}
/*
* PageGetTempPage
* Get a temporary page in local memory for special processing.
* The returned page is not initialized at all; caller must do that.
*/
Page
PageGetTempPage(Page page)
{
Size pageSize;
Page temp;
pageSize = PageGetPageSize(page);
temp = (Page) palloc(pageSize);
return temp;
}
/*
* PageGetTempPageCopy
* Get a temporary page in local memory for special processing.
* The page is initialized by copying the contents of the given page.
*/
Page
PageGetTempPageCopy(Page page)
{
Size pageSize;
Page temp;
pageSize = PageGetPageSize(page);
temp = (Page) palloc(pageSize);
memcpy(temp, page, pageSize);
return temp;
}
/*
* PageGetTempPageCopySpecial
* Get a temporary page in local memory for special processing.
* The page is PageInit'd with the same special-space size as the
* given page, and the special space is copied from the given page.
*/
Page
PageGetTempPageCopySpecial(Page page)
{
Size pageSize;
Page temp;
pageSize = PageGetPageSize(page);
temp = (Page) palloc(pageSize);
PageInit(temp, pageSize, PageGetSpecialSize(page));
memcpy(PageGetSpecialPointer(temp),
PageGetSpecialPointer(page),
PageGetSpecialSize(page));
return temp;
}
/*
* PageRestoreTempPage
* Copy temporary page back to permanent page after special processing
* and release the temporary page.
*/
void
PageRestoreTempPage(Page tempPage, Page oldPage)
{
Size pageSize;
pageSize = PageGetPageSize(tempPage);
memcpy((char *) oldPage, (char *) tempPage, pageSize);
pfree(tempPage);
}
/*
* Tuple defrag support for PageRepairFragmentation and PageIndexMultiDelete
*/
typedef struct itemIdCompactData
{
uint16 offsetindex; /* linp array index */
int16 itemoff; /* page offset of item data */
uint16 alignedlen; /* MAXALIGN(item data len) */
} itemIdCompactData;
typedef itemIdCompactData *itemIdCompact;
/*
* After removing or marking some line pointers unused, move the tuples to
* remove the gaps caused by the removed items and reorder them back into
* reverse line pointer order in the page.
*
* This function can often be fairly hot, so it pays to take some measures to
* make it as optimal as possible.
*
* Callers may pass 'presorted' as true if the 'itemidbase' array is sorted in
* descending order of itemoff. When this is true we can just memmove()
* tuples towards the end of the page. This is quite a common case as it's
* the order that tuples are initially inserted into pages. When we call this
* function to defragment the tuples in the page then any new line pointers
* added to the page will keep that presorted order, so hitting this case is
* still very common for tables that are commonly updated.
*
* When the 'itemidbase' array is not presorted then we're unable to just
* memmove() tuples around freely. Doing so could cause us to overwrite the
* memory belonging to a tuple we've not moved yet. In this case, we copy all
* the tuples that need to be moved into a temporary buffer. We can then
* simply memcpy() out of that temp buffer back into the page at the correct
* location. Tuples are copied back into the page in the same order as the
* 'itemidbase' array, so we end up reordering the tuples back into reverse
* line pointer order. This will increase the chances of hitting the
* presorted case the next time around.
*
* Callers must ensure that nitems is > 0
*/
static void
compactify_tuples(itemIdCompact itemidbase, int nitems, Page page, bool presorted)
{
PageHeader phdr = (PageHeader) page;
Offset upper;
Offset copy_tail;
Offset copy_head;
itemIdCompact itemidptr;
int i;
/* Code within will not work correctly if nitems == 0 */
Assert(nitems > 0);
if (presorted)
{
#ifdef USE_ASSERT_CHECKING
{
/*
* Verify we've not gotten any new callers that are incorrectly
* passing a true presorted value.
*/
Offset lastoff = phdr->pd_special;
for (i = 0; i < nitems; i++)
{
itemidptr = &itemidbase[i];
Assert(lastoff > itemidptr->itemoff);
lastoff = itemidptr->itemoff;
}
}
#endif /* USE_ASSERT_CHECKING */
/*
* 'itemidbase' is already in the optimal order, i.e, lower item
* pointers have a higher offset. This allows us to memmove() the
* tuples up to the end of the page without having to worry about
* overwriting other tuples that have not been moved yet.
*
* There's a good chance that there are tuples already right at the
* end of the page that we can simply skip over because they're
* already in the correct location within the page. We'll do that
* first...
*/
upper = phdr->pd_special;
i = 0;
do
{
itemidptr = &itemidbase[i];
if (upper != itemidptr->itemoff + itemidptr->alignedlen)
break;
upper -= itemidptr->alignedlen;
i++;
} while (i < nitems);
/*
* Now that we've found the first tuple that needs to be moved, we can
* do the tuple compactification. We try and make the least number of
* memmove() calls and only call memmove() when there's a gap. When
* we see a gap we just move all tuples after the gap up until the
* point of the last move operation.
*/
copy_tail = copy_head = itemidptr->itemoff + itemidptr->alignedlen;
for (; i < nitems; i++)
{
ItemId lp;
itemidptr = &itemidbase[i];
lp = PageGetItemId(page, itemidptr->offsetindex + 1);
if (copy_head != itemidptr->itemoff + itemidptr->alignedlen)
{
memmove((char *) page + upper,
page + copy_head,
copy_tail - copy_head);
/*
* We've now moved all tuples already seen, but not the
* current tuple, so we set the copy_tail to the end of this
* tuple so it can be moved in another iteration of the loop.
*/
copy_tail = itemidptr->itemoff + itemidptr->alignedlen;
}
/* shift the target offset down by the length of this tuple */
upper -= itemidptr->alignedlen;
/* point the copy_head to the start of this tuple */
copy_head = itemidptr->itemoff;
/* update the line pointer to reference the new offset */
lp->lp_off = upper;
}
/* move the remaining tuples. */
memmove((char *) page + upper,
page + copy_head,
copy_tail - copy_head);
}
else
{
PGAlignedBlock scratch;
char *scratchptr = scratch.data;
/*
* Non-presorted case: The tuples in the itemidbase array may be in
* any order. So, in order to move these to the end of the page we
* must make a temp copy of each tuple that needs to be moved before
* we copy them back into the page at the new offset.
*
* If a large percentage of tuples have been pruned (>75%) then we'll
* copy these into the temp buffer tuple-by-tuple, otherwise, we'll
* just do a single memcpy() for all tuples that need to be moved.
* When so many tuples have been removed there's likely to be a lot of
* gaps and it's unlikely that many non-movable tuples remain at the
* end of the page.
*/
if (nitems < PageGetMaxOffsetNumber(page) / 4)
{
i = 0;
do
{
itemidptr = &itemidbase[i];
memcpy(scratchptr + itemidptr->itemoff, page + itemidptr->itemoff,
itemidptr->alignedlen);
i++;
} while (i < nitems);
/* Set things up for the compactification code below */
i = 0;
itemidptr = &itemidbase[0];
upper = phdr->pd_special;
}
else
{
upper = phdr->pd_special;
/*
* Many tuples are likely to already be in the correct location.
* There's no need to copy these into the temp buffer. Instead
* we'll just skip forward in the itemidbase array to the position
* that we do need to move tuples from so that the code below just
* leaves these ones alone.
*/
i = 0;
do
{
itemidptr = &itemidbase[i];
if (upper != itemidptr->itemoff + itemidptr->alignedlen)
break;
upper -= itemidptr->alignedlen;
i++;
} while (i < nitems);
/* Copy all tuples that need to be moved into the temp buffer */
memcpy(scratchptr + phdr->pd_upper,
page + phdr->pd_upper,
upper - phdr->pd_upper);
}
/*
* Do the tuple compactification. itemidptr is already pointing to
* the first tuple that we're going to move. Here we collapse the
* memcpy calls for adjacent tuples into a single call. This is done
* by delaying the memcpy call until we find a gap that needs to be
* closed.
*/
copy_tail = copy_head = itemidptr->itemoff + itemidptr->alignedlen;
for (; i < nitems; i++)
{
ItemId lp;
itemidptr = &itemidbase[i];
lp = PageGetItemId(page, itemidptr->offsetindex + 1);
/* copy pending tuples when we detect a gap */
if (copy_head != itemidptr->itemoff + itemidptr->alignedlen)
{
memcpy((char *) page + upper,
scratchptr + copy_head,
copy_tail - copy_head);
/*
* We've now copied all tuples already seen, but not the
* current tuple, so we set the copy_tail to the end of this
* tuple.
*/
copy_tail = itemidptr->itemoff + itemidptr->alignedlen;
}
/* shift the target offset down by the length of this tuple */
upper -= itemidptr->alignedlen;
/* point the copy_head to the start of this tuple */
copy_head = itemidptr->itemoff;
/* update the line pointer to reference the new offset */
lp->lp_off = upper;
}
/* Copy the remaining chunk */
memcpy((char *) page + upper,
scratchptr + copy_head,
copy_tail - copy_head);
}
phdr->pd_upper = upper;
}
/*
* PageRepairFragmentation
*
* Frees fragmented space on a heap page following pruning.
*
* This routine is usable for heap pages only, but see PageIndexMultiDelete.
*
* This routine removes unused line pointers from the end of the line pointer
* array. This is possible when dead heap-only tuples get removed by pruning,
* especially when there were HOT chains with several tuples each beforehand.
*
* Caller had better have a full cleanup lock on page's buffer. As a side
* effect the page's PD_HAS_FREE_LINES hint bit will be set or unset as
* needed. Caller might also need to account for a reduction in the length of
* the line pointer array following array truncation.
*/
void
PageRepairFragmentation(Page page)
{
Offset pd_lower = ((PageHeader) page)->pd_lower;
Offset pd_upper = ((PageHeader) page)->pd_upper;
Offset pd_special = ((PageHeader) page)->pd_special;
Offset last_offset;
itemIdCompactData itemidbase[MaxHeapTuplesPerPage];
itemIdCompact itemidptr;
ItemId lp;
int nline,
nstorage,
nunused;
OffsetNumber finalusedlp = InvalidOffsetNumber;
int i;
Size totallen;
bool presorted = true; /* For now */
/*
* It's worth the trouble to be more paranoid here than in most places,
* because we are about to reshuffle data in (what is usually) a shared
* disk buffer. If we aren't careful then corrupted pointers, lengths,
* etc could cause us to clobber adjacent disk buffers, spreading the data
* loss further. So, check everything.
*/
if (pd_lower < SizeOfPageHeaderData ||
pd_lower > pd_upper ||
pd_upper > pd_special ||
pd_special > BLCKSZ ||
pd_special != MAXALIGN(pd_special))
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
pd_lower, pd_upper, pd_special)));
/*
* Run through the line pointer array and collect data about live items.
*/
nline = PageGetMaxOffsetNumber(page);
itemidptr = itemidbase;
nunused = totallen = 0;
last_offset = pd_special;
for (i = FirstOffsetNumber; i <= nline; i++)
{
lp = PageGetItemId(page, i);
if (ItemIdIsUsed(lp))
{
if (ItemIdHasStorage(lp))
{
itemidptr->offsetindex = i - 1;
itemidptr->itemoff = ItemIdGetOffset(lp);
if (last_offset > itemidptr->itemoff)
last_offset = itemidptr->itemoff;
else
presorted = false;
if (unlikely(itemidptr->itemoff < (int) pd_upper ||
itemidptr->itemoff >= (int) pd_special))
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted line pointer: %u",
itemidptr->itemoff)));
itemidptr->alignedlen = MAXALIGN(ItemIdGetLength(lp));
totallen += itemidptr->alignedlen;
itemidptr++;
}
finalusedlp = i; /* Could be the final non-LP_UNUSED item */
}
else
{
/* Unused entries should have lp_len = 0, but make sure */
Assert(!ItemIdHasStorage(lp));
ItemIdSetUnused(lp);
nunused++;
}
}
nstorage = itemidptr - itemidbase;
if (nstorage == 0)
{
/* Page is completely empty, so just reset it quickly */
((PageHeader) page)->pd_upper = pd_special;
}
else
{
/* Need to compact the page the hard way */
if (totallen > (Size) (pd_special - pd_lower))
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted item lengths: total %u, available space %u",
(unsigned int) totallen, pd_special - pd_lower)));
compactify_tuples(itemidbase, nstorage, page, presorted);
}
if (finalusedlp != nline)
{
/* The last line pointer is not the last used line pointer */
int nunusedend = nline - finalusedlp;
Assert(nunused >= nunusedend && nunusedend > 0);
/* remove trailing unused line pointers from the count */
nunused -= nunusedend;
/* truncate the line pointer array */
((PageHeader) page)->pd_lower -= (sizeof(ItemIdData) * nunusedend);
}
/* Set hint bit for PageAddItemExtended */
if (nunused > 0)
PageSetHasFreeLinePointers(page);
else
PageClearHasFreeLinePointers(page);
}
/*
* PageTruncateLinePointerArray
*
* Removes unused line pointers at the end of the line pointer array.
*
* This routine is usable for heap pages only. It is called by VACUUM during
* its second pass over the heap. We expect at least one LP_UNUSED line
* pointer on the page (if VACUUM didn't have an LP_DEAD item on the page that
* it just set to LP_UNUSED then it should not call here).
*
* We avoid truncating the line pointer array to 0 items, if necessary by
* leaving behind a single remaining LP_UNUSED item. This is a little
* arbitrary, but it seems like a good idea to avoid leaving a PageIsEmpty()
* page behind.
*
* Caller can have either an exclusive lock or a full cleanup lock on page's
* buffer. The page's PD_HAS_FREE_LINES hint bit will be set or unset based
* on whether or not we leave behind any remaining LP_UNUSED items.
*/
void
PageTruncateLinePointerArray(Page page)
{
PageHeader phdr = (PageHeader) page;
bool countdone = false,
sethint = false;
int nunusedend = 0;
/* Scan line pointer array back-to-front */
for (int i = PageGetMaxOffsetNumber(page); i >= FirstOffsetNumber; i--)
{
ItemId lp = PageGetItemId(page, i);
if (!countdone && i > FirstOffsetNumber)
{
/*
* Still determining which line pointers from the end of the array
* will be truncated away. Either count another line pointer as
* safe to truncate, or notice that it's not safe to truncate
* additional line pointers (stop counting line pointers).
*/
if (!ItemIdIsUsed(lp))
nunusedend++;
else
countdone = true;
}
else
{
/*
* Once we've stopped counting we still need to figure out if
* there are any remaining LP_UNUSED line pointers somewhere more
* towards the front of the array.
*/
if (!ItemIdIsUsed(lp))
{
/*
* This is an unused line pointer that we won't be truncating
* away -- so there is at least one. Set hint on page.
*/
sethint = true;
break;
}
}
}
if (nunusedend > 0)
{
phdr->pd_lower -= sizeof(ItemIdData) * nunusedend;
#ifdef CLOBBER_FREED_MEMORY
memset((char *) page + phdr->pd_lower, 0x7F,
sizeof(ItemIdData) * nunusedend);
#endif
}
else
Assert(sethint);
/* Set hint bit for PageAddItemExtended */
if (sethint)
PageSetHasFreeLinePointers(page);
else
PageClearHasFreeLinePointers(page);
}
/*
* PageGetFreeSpace
* Returns the size of the free (allocatable) space on a page,
* reduced by the space needed for a new line pointer.
*
* Note: this should usually only be used on index pages. Use
* PageGetHeapFreeSpace on heap pages.
*/
Size
PageGetFreeSpace(Page page)
{
int space;
/*
* Use signed arithmetic here so that we behave sensibly if pd_lower >
* pd_upper.
*/
space = (int) ((PageHeader) page)->pd_upper -
(int) ((PageHeader) page)->pd_lower;
if (space < (int) sizeof(ItemIdData))
return 0;
space -= sizeof(ItemIdData);
return (Size) space;
}
/*
* PageGetFreeSpaceForMultipleTuples
* Returns the size of the free (allocatable) space on a page,
* reduced by the space needed for multiple new line pointers.
*
* Note: this should usually only be used on index pages. Use
* PageGetHeapFreeSpace on heap pages.
*/
Size
PageGetFreeSpaceForMultipleTuples(Page page, int ntups)
{
int space;
/*
* Use signed arithmetic here so that we behave sensibly if pd_lower >
* pd_upper.
*/
space = (int) ((PageHeader) page)->pd_upper -
(int) ((PageHeader) page)->pd_lower;
if (space < (int) (ntups * sizeof(ItemIdData)))
return 0;
space -= ntups * sizeof(ItemIdData);
return (Size) space;
}
/*
* PageGetExactFreeSpace
* Returns the size of the free (allocatable) space on a page,
* without any consideration for adding/removing line pointers.
*/
Size
PageGetExactFreeSpace(Page page)
{
int space;
/*
* Use signed arithmetic here so that we behave sensibly if pd_lower >
* pd_upper.
*/
space = (int) ((PageHeader) page)->pd_upper -
(int) ((PageHeader) page)->pd_lower;
if (space < 0)
return 0;
return (Size) space;
}
/*
* PageGetHeapFreeSpace
* Returns the size of the free (allocatable) space on a page,
* reduced by the space needed for a new line pointer.
*
* The difference between this and PageGetFreeSpace is that this will return
* zero if there are already MaxHeapTuplesPerPage line pointers in the page
* and none are free. We use this to enforce that no more than
* MaxHeapTuplesPerPage line pointers are created on a heap page. (Although
* no more tuples than that could fit anyway, in the presence of redirected
* or dead line pointers it'd be possible to have too many line pointers.
* To avoid breaking code that assumes MaxHeapTuplesPerPage is a hard limit
* on the number of line pointers, we make this extra check.)
*/
Size
PageGetHeapFreeSpace(Page page)
{
Size space;
space = PageGetFreeSpace(page);
if (space > 0)
{
OffsetNumber offnum,
nline;
/*
* Are there already MaxHeapTuplesPerPage line pointers in the page?
*/
nline = PageGetMaxOffsetNumber(page);
if (nline >= MaxHeapTuplesPerPage)
{
if (PageHasFreeLinePointers((PageHeader) page))
{
/*
* Since this is just a hint, we must confirm that there is
* indeed a free line pointer
*/
for (offnum = FirstOffsetNumber; offnum <= nline; offnum = OffsetNumberNext(offnum))
{
ItemId lp = PageGetItemId(page, offnum);
if (!ItemIdIsUsed(lp))
break;
}
if (offnum > nline)
{
/*
* The hint is wrong, but we can't clear it here since we
* don't have the ability to mark the page dirty.
*/
space = 0;
}
}
else
{
/*
* Although the hint might be wrong, PageAddItem will believe
* it anyway, so we must believe it too.
*/
space = 0;
}
}
}
return space;
}
/*
* PageIndexTupleDelete
*
* This routine does the work of removing a tuple from an index page.
*
* Unlike heap pages, we compact out the line pointer for the removed tuple.
*/
void
PageIndexTupleDelete(Page page, OffsetNumber offnum)
{
PageHeader phdr = (PageHeader) page;
char *addr;
ItemId tup;
Size size;
unsigned offset;
int nbytes;
int offidx;
int nline;
/*
* As with PageRepairFragmentation, paranoia seems justified.
*/
if (phdr->pd_lower < SizeOfPageHeaderData ||
phdr->pd_lower > phdr->pd_upper ||
phdr->pd_upper > phdr->pd_special ||
phdr->pd_special > BLCKSZ ||
phdr->pd_special != MAXALIGN(phdr->pd_special))
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
phdr->pd_lower, phdr->pd_upper, phdr->pd_special)));
nline = PageGetMaxOffsetNumber(page);
if ((int) offnum <= 0 || (int) offnum > nline)
elog(ERROR, "invalid index offnum: %u", offnum);
/* change offset number to offset index */
offidx = offnum - 1;
tup = PageGetItemId(page, offnum);
Assert(ItemIdHasStorage(tup));
size = ItemIdGetLength(tup);
offset = ItemIdGetOffset(tup);
if (offset < phdr->pd_upper || (offset + size) > phdr->pd_special ||
offset != MAXALIGN(offset))
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted line pointer: offset = %u, size = %u",
offset, (unsigned int) size)));
/* Amount of space to actually be deleted */
size = MAXALIGN(size);
/*
* First, we want to get rid of the pd_linp entry for the index tuple. We
* copy all subsequent linp's back one slot in the array. We don't use
* PageGetItemId, because we are manipulating the _array_, not individual
* linp's.
*/
nbytes = phdr->pd_lower -
((char *) &phdr->pd_linp[offidx + 1] - (char *) phdr);
if (nbytes > 0)
memmove((char *) &(phdr->pd_linp[offidx]),
(char *) &(phdr->pd_linp[offidx + 1]),
nbytes);
/*
* Now move everything between the old upper bound (beginning of tuple
* space) and the beginning of the deleted tuple forward, so that space in
* the middle of the page is left free. If we've just deleted the tuple
* at the beginning of tuple space, then there's no need to do the copy.
*/
/* beginning of tuple space */
addr = (char *) page + phdr->pd_upper;
if (offset > phdr->pd_upper)
memmove(addr + size, addr, offset - phdr->pd_upper);
/* adjust free space boundary pointers */
phdr->pd_upper += size;
phdr->pd_lower -= sizeof(ItemIdData);
/*
* Finally, we need to adjust the linp entries that remain.
*
* Anything that used to be before the deleted tuple's data was moved
* forward by the size of the deleted tuple.
*/
if (!PageIsEmpty(page))
{
int i;
nline--; /* there's one less than when we started */
for (i = 1; i <= nline; i++)
{
ItemId ii = PageGetItemId(phdr, i);
Assert(ItemIdHasStorage(ii));
if (ItemIdGetOffset(ii) <= offset)
ii->lp_off += size;
}
}
}
/*
* PageIndexMultiDelete
*
* This routine handles the case of deleting multiple tuples from an
* index page at once. It is considerably faster than a loop around
* PageIndexTupleDelete ... however, the caller *must* supply the array
* of item numbers to be deleted in item number order!
*/
void
PageIndexMultiDelete(Page page, OffsetNumber *itemnos, int nitems)
{
PageHeader phdr = (PageHeader) page;
Offset pd_lower = phdr->pd_lower;
Offset pd_upper = phdr->pd_upper;
Offset pd_special = phdr->pd_special;
Offset last_offset;
itemIdCompactData itemidbase[MaxIndexTuplesPerPage];
ItemIdData newitemids[MaxIndexTuplesPerPage];
itemIdCompact itemidptr;
ItemId lp;
int nline,
nused;
Size totallen;
Size size;
unsigned offset;
int nextitm;
OffsetNumber offnum;
bool presorted = true; /* For now */
Assert(nitems <= MaxIndexTuplesPerPage);
/*
* If there aren't very many items to delete, then retail
* PageIndexTupleDelete is the best way. Delete the items in reverse
* order so we don't have to think about adjusting item numbers for
* previous deletions.
*
* TODO: tune the magic number here
*/
if (nitems <= 2)
{
while (--nitems >= 0)
PageIndexTupleDelete(page, itemnos[nitems]);
return;
}
/*
* As with PageRepairFragmentation, paranoia seems justified.
*/
if (pd_lower < SizeOfPageHeaderData ||
pd_lower > pd_upper ||
pd_upper > pd_special ||
pd_special > BLCKSZ ||
pd_special != MAXALIGN(pd_special))
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
pd_lower, pd_upper, pd_special)));
/*
* Scan the line pointer array and build a list of just the ones we are
* going to keep. Notice we do not modify the page yet, since we are
* still validity-checking.
*/
nline = PageGetMaxOffsetNumber(page);
itemidptr = itemidbase;
totallen = 0;
nused = 0;
nextitm = 0;
last_offset = pd_special;
for (offnum = FirstOffsetNumber; offnum <= nline; offnum = OffsetNumberNext(offnum))
{
lp = PageGetItemId(page, offnum);
Assert(ItemIdHasStorage(lp));
size = ItemIdGetLength(lp);
offset = ItemIdGetOffset(lp);
if (offset < pd_upper ||
(offset + size) > pd_special ||
offset != MAXALIGN(offset))
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted line pointer: offset = %u, size = %u",
offset, (unsigned int) size)));
if (nextitm < nitems && offnum == itemnos[nextitm])
{
/* skip item to be deleted */
nextitm++;
}
else
{
itemidptr->offsetindex = nused; /* where it will go */
itemidptr->itemoff = offset;
if (last_offset > itemidptr->itemoff)
last_offset = itemidptr->itemoff;
else
presorted = false;
itemidptr->alignedlen = MAXALIGN(size);
totallen += itemidptr->alignedlen;
newitemids[nused] = *lp;
itemidptr++;
nused++;
}
}
/* this will catch invalid or out-of-order itemnos[] */
if (nextitm != nitems)
elog(ERROR, "incorrect index offsets supplied");
if (totallen > (Size) (pd_special - pd_lower))
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted item lengths: total %u, available space %u",
(unsigned int) totallen, pd_special - pd_lower)));
/*
* Looks good. Overwrite the line pointers with the copy, from which we've
* removed all the unused items.
*/
memcpy(phdr->pd_linp, newitemids, nused * sizeof(ItemIdData));
phdr->pd_lower = SizeOfPageHeaderData + nused * sizeof(ItemIdData);
/* and compactify the tuple data */
if (nused > 0)
compactify_tuples(itemidbase, nused, page, presorted);
else
phdr->pd_upper = pd_special;
}
/*
* PageIndexTupleDeleteNoCompact
*
* Remove the specified tuple from an index page, but set its line pointer
* to "unused" instead of compacting it out, except that it can be removed
* if it's the last line pointer on the page.
*
* This is used for index AMs that require that existing TIDs of live tuples
* remain unchanged, and are willing to allow unused line pointers instead.
*/
void
PageIndexTupleDeleteNoCompact(Page page, OffsetNumber offnum)
{
PageHeader phdr = (PageHeader) page;
char *addr;
ItemId tup;
Size size;
unsigned offset;
int nline;
/*
* As with PageRepairFragmentation, paranoia seems justified.
*/
if (phdr->pd_lower < SizeOfPageHeaderData ||
phdr->pd_lower > phdr->pd_upper ||
phdr->pd_upper > phdr->pd_special ||
phdr->pd_special > BLCKSZ ||
phdr->pd_special != MAXALIGN(phdr->pd_special))
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
phdr->pd_lower, phdr->pd_upper, phdr->pd_special)));
nline = PageGetMaxOffsetNumber(page);
if ((int) offnum <= 0 || (int) offnum > nline)
elog(ERROR, "invalid index offnum: %u", offnum);
tup = PageGetItemId(page, offnum);
Assert(ItemIdHasStorage(tup));
size = ItemIdGetLength(tup);
offset = ItemIdGetOffset(tup);
if (offset < phdr->pd_upper || (offset + size) > phdr->pd_special ||
offset != MAXALIGN(offset))
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted line pointer: offset = %u, size = %u",
offset, (unsigned int) size)));
/* Amount of space to actually be deleted */
size = MAXALIGN(size);
/*
* Either set the line pointer to "unused", or zap it if it's the last
* one. (Note: it's possible that the next-to-last one(s) are already
* unused, but we do not trouble to try to compact them out if so.)
*/
if ((int) offnum < nline)
ItemIdSetUnused(tup);
else
{
phdr->pd_lower -= sizeof(ItemIdData);
nline--; /* there's one less than when we started */
}
/*
* Now move everything between the old upper bound (beginning of tuple
* space) and the beginning of the deleted tuple forward, so that space in
* the middle of the page is left free. If we've just deleted the tuple
* at the beginning of tuple space, then there's no need to do the copy.
*/
/* beginning of tuple space */
addr = (char *) page + phdr->pd_upper;
if (offset > phdr->pd_upper)
memmove(addr + size, addr, offset - phdr->pd_upper);
/* adjust free space boundary pointer */
phdr->pd_upper += size;
/*
* Finally, we need to adjust the linp entries that remain.
*
* Anything that used to be before the deleted tuple's data was moved
* forward by the size of the deleted tuple.
*/
if (!PageIsEmpty(page))
{
int i;
for (i = 1; i <= nline; i++)
{
ItemId ii = PageGetItemId(phdr, i);
if (ItemIdHasStorage(ii) && ItemIdGetOffset(ii) <= offset)
ii->lp_off += size;
}
}
}
/*
* PageIndexTupleOverwrite
*
* Replace a specified tuple on an index page.
*
* The new tuple is placed exactly where the old one had been, shifting
* other tuples' data up or down as needed to keep the page compacted.
* This is better than deleting and reinserting the tuple, because it
* avoids any data shifting when the tuple size doesn't change; and
* even when it does, we avoid moving the line pointers around.
* This could be used by an index AM that doesn't want to unset the
* LP_DEAD bit when it happens to be set. It could conceivably also be
* used by an index AM that cares about the physical order of tuples as
* well as their logical/ItemId order.
*
* If there's insufficient space for the new tuple, return false. Other
* errors represent data-corruption problems, so we just elog.
*/
bool
PageIndexTupleOverwrite(Page page, OffsetNumber offnum,
Item newtup, Size newsize)
{
PageHeader phdr = (PageHeader) page;
ItemId tupid;
int oldsize;
unsigned offset;
Size alignednewsize;
int size_diff;
int itemcount;
/*
* As with PageRepairFragmentation, paranoia seems justified.
*/
if (phdr->pd_lower < SizeOfPageHeaderData ||
phdr->pd_lower > phdr->pd_upper ||
phdr->pd_upper > phdr->pd_special ||
phdr->pd_special > BLCKSZ ||
phdr->pd_special != MAXALIGN(phdr->pd_special))
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
phdr->pd_lower, phdr->pd_upper, phdr->pd_special)));
itemcount = PageGetMaxOffsetNumber(page);
if ((int) offnum <= 0 || (int) offnum > itemcount)
elog(ERROR, "invalid index offnum: %u", offnum);
tupid = PageGetItemId(page, offnum);
Assert(ItemIdHasStorage(tupid));
oldsize = ItemIdGetLength(tupid);
offset = ItemIdGetOffset(tupid);
if (offset < phdr->pd_upper || (offset + oldsize) > phdr->pd_special ||
offset != MAXALIGN(offset))
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted line pointer: offset = %u, size = %u",
offset, (unsigned int) oldsize)));
/*
* Determine actual change in space requirement, check for page overflow.
*/
oldsize = MAXALIGN(oldsize);
alignednewsize = MAXALIGN(newsize);
if (alignednewsize > oldsize + (phdr->pd_upper - phdr->pd_lower))
return false;
/*
* Relocate existing data and update line pointers, unless the new tuple
* is the same size as the old (after alignment), in which case there's
* nothing to do. Notice that what we have to relocate is data before the
* target tuple, not data after, so it's convenient to express size_diff
* as the amount by which the tuple's size is decreasing, making it the
* delta to add to pd_upper and affected line pointers.
*/
size_diff = oldsize - (int) alignednewsize;
if (size_diff != 0)
{
char *addr = (char *) page + phdr->pd_upper;
int i;
/* relocate all tuple data before the target tuple */
memmove(addr + size_diff, addr, offset - phdr->pd_upper);
/* adjust free space boundary pointer */
phdr->pd_upper += size_diff;
/* adjust affected line pointers too */
for (i = FirstOffsetNumber; i <= itemcount; i++)
{
ItemId ii = PageGetItemId(phdr, i);
/* Allow items without storage; currently only BRIN needs that */
if (ItemIdHasStorage(ii) && ItemIdGetOffset(ii) <= offset)
ii->lp_off += size_diff;
}
}
/* Update the item's tuple length without changing its lp_flags field */
tupid->lp_off = offset + size_diff;
tupid->lp_len = newsize;
/* Copy new tuple data onto page */
memcpy(PageGetItem(page, tupid), newtup, newsize);
return true;
}
/*
* Set checksum for a page in shared buffers.
*
* If checksums are disabled, or if the page is not initialized, just return
* the input. Otherwise, we must make a copy of the page before calculating
* the checksum, to prevent concurrent modifications (e.g. setting hint bits)
* from making the final checksum invalid. It doesn't matter if we include or
* exclude hints during the copy, as long as we write a valid page and
* associated checksum.
*
* Returns a pointer to the block-sized data that needs to be written. Uses
* statically-allocated memory, so the caller must immediately write the
* returned page and not refer to it again.
*/
char *
PageSetChecksumCopy(Page page, BlockNumber blkno)
{
static char *pageCopy = NULL;
/* If we don't need a checksum, just return the passed-in data */
if (PageIsNew(page) || !DataChecksumsEnabled())
return (char *) page;
/*
* We allocate the copy space once and use it over on each subsequent
* call. The point of palloc'ing here, rather than having a static char
* array, is first to ensure adequate alignment for the checksumming code
* and second to avoid wasting space in processes that never call this.
*/
if (pageCopy == NULL)
pageCopy = MemoryContextAlloc(TopMemoryContext, BLCKSZ);
memcpy(pageCopy, (char *) page, BLCKSZ);
((PageHeader) pageCopy)->pd_checksum = pg_checksum_page(pageCopy, blkno);
return pageCopy;
}
/*
* Set checksum for a page in private memory.
*
* This must only be used when we know that no other process can be modifying
* the page buffer.
*/
void
PageSetChecksumInplace(Page page, BlockNumber blkno)
{
/* If we don't need a checksum, just return */
if (PageIsNew(page) || !DataChecksumsEnabled())
return;
((PageHeader) page)->pd_checksum = pg_checksum_page((char *) page, blkno);
}
|