summaryrefslogtreecommitdiffstats
path: root/src/common/pg_prng.c
blob: 3d2f42724e7149bf143cf635c97f79f41fbb4dfa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/*-------------------------------------------------------------------------
 *
 * Pseudo-Random Number Generator
 *
 * We use Blackman and Vigna's xoroshiro128** 1.0 algorithm
 * to have a small, fast PRNG suitable for generating reasonably
 * good-quality 64-bit data.  This should not be considered
 * cryptographically strong, however.
 *
 * About these generators: https://prng.di.unimi.it/
 * See also https://en.wikipedia.org/wiki/List_of_random_number_generators
 *
 * Copyright (c) 2021-2022, PostgreSQL Global Development Group
 *
 * src/common/pg_prng.c
 *
 *-------------------------------------------------------------------------
 */

#include "c.h"

#include <math.h>				/* for ldexp() */

#include "common/pg_prng.h"
#include "port/pg_bitutils.h"

/* process-wide state vector */
pg_prng_state pg_global_prng_state;


/*
 * 64-bit rotate left
 */
static inline uint64
rotl(uint64 x, int bits)
{
	return (x << bits) | (x >> (64 - bits));
}

/*
 * The basic xoroshiro128** algorithm.
 * Generates and returns a 64-bit uniformly distributed number,
 * updating the state vector for next time.
 *
 * Note: the state vector must not be all-zeroes, as that is a fixed point.
 */
static uint64
xoroshiro128ss(pg_prng_state *state)
{
	uint64		s0 = state->s0,
				sx = state->s1 ^ s0,
				val = rotl(s0 * 5, 7) * 9;

	/* update state */
	state->s0 = rotl(s0, 24) ^ sx ^ (sx << 16);
	state->s1 = rotl(sx, 37);

	return val;
}

/*
 * We use this generator just to fill the xoroshiro128** state vector
 * from a 64-bit seed.
 */
static uint64
splitmix64(uint64 *state)
{
	/* state update */
	uint64		val = (*state += UINT64CONST(0x9E3779B97f4A7C15));

	/* value extraction */
	val = (val ^ (val >> 30)) * UINT64CONST(0xBF58476D1CE4E5B9);
	val = (val ^ (val >> 27)) * UINT64CONST(0x94D049BB133111EB);

	return val ^ (val >> 31);
}

/*
 * Initialize the PRNG state from a 64-bit integer,
 * taking care that we don't produce all-zeroes.
 */
void
pg_prng_seed(pg_prng_state *state, uint64 seed)
{
	state->s0 = splitmix64(&seed);
	state->s1 = splitmix64(&seed);
	/* Let's just make sure we didn't get all-zeroes */
	(void) pg_prng_seed_check(state);
}

/*
 * Initialize the PRNG state from a double in the range [-1.0, 1.0],
 * taking care that we don't produce all-zeroes.
 */
void
pg_prng_fseed(pg_prng_state *state, double fseed)
{
	/* Assume there's about 52 mantissa bits; the sign contributes too. */
	int64		seed = ((double) ((UINT64CONST(1) << 52) - 1)) * fseed;

	pg_prng_seed(state, (uint64) seed);
}

/*
 * Validate a PRNG seed value.
 */
bool
pg_prng_seed_check(pg_prng_state *state)
{
	/*
	 * If the seeding mechanism chanced to produce all-zeroes, insert
	 * something nonzero.  Anything would do; use Knuth's LCG parameters.
	 */
	if (unlikely(state->s0 == 0 && state->s1 == 0))
	{
		state->s0 = UINT64CONST(0x5851F42D4C957F2D);
		state->s1 = UINT64CONST(0x14057B7EF767814F);
	}

	/* As a convenience for the pg_prng_strong_seed macro, return true */
	return true;
}

/*
 * Select a random uint64 uniformly from the range [0, PG_UINT64_MAX].
 */
uint64
pg_prng_uint64(pg_prng_state *state)
{
	return xoroshiro128ss(state);
}

/*
 * Select a random uint64 uniformly from the range [rmin, rmax].
 * If the range is empty, rmin is always produced.
 */
uint64
pg_prng_uint64_range(pg_prng_state *state, uint64 rmin, uint64 rmax)
{
	uint64		val;

	if (likely(rmax > rmin))
	{
		/*
		 * Use bitmask rejection method to generate an offset in 0..range.
		 * Each generated val is less than twice "range", so on average we
		 * should not have to iterate more than twice.
		 */
		uint64		range = rmax - rmin;
		uint32		rshift = 63 - pg_leftmost_one_pos64(range);

		do
		{
			val = xoroshiro128ss(state) >> rshift;
		} while (val > range);
	}
	else
		val = 0;

	return rmin + val;
}

/*
 * Select a random int64 uniformly from the range [PG_INT64_MIN, PG_INT64_MAX].
 */
int64
pg_prng_int64(pg_prng_state *state)
{
	return (int64) xoroshiro128ss(state);
}

/*
 * Select a random int64 uniformly from the range [0, PG_INT64_MAX].
 */
int64
pg_prng_int64p(pg_prng_state *state)
{
	return (int64) (xoroshiro128ss(state) & UINT64CONST(0x7FFFFFFFFFFFFFFF));
}

/*
 * Select a random uint32 uniformly from the range [0, PG_UINT32_MAX].
 */
uint32
pg_prng_uint32(pg_prng_state *state)
{
	/*
	 * Although xoroshiro128** is not known to have any weaknesses in
	 * randomness of low-order bits, we prefer to use the upper bits of its
	 * result here and below.
	 */
	uint64		v = xoroshiro128ss(state);

	return (uint32) (v >> 32);
}

/*
 * Select a random int32 uniformly from the range [PG_INT32_MIN, PG_INT32_MAX].
 */
int32
pg_prng_int32(pg_prng_state *state)
{
	uint64		v = xoroshiro128ss(state);

	return (int32) (v >> 32);
}

/*
 * Select a random int32 uniformly from the range [0, PG_INT32_MAX].
 */
int32
pg_prng_int32p(pg_prng_state *state)
{
	uint64		v = xoroshiro128ss(state);

	return (int32) (v >> 33);
}

/*
 * Select a random double uniformly from the range [0.0, 1.0).
 *
 * Note: if you want a result in the range (0.0, 1.0], the standard way
 * to get that is "1.0 - pg_prng_double(state)".
 */
double
pg_prng_double(pg_prng_state *state)
{
	uint64		v = xoroshiro128ss(state);

	/*
	 * As above, assume there's 52 mantissa bits in a double.  This result
	 * could round to 1.0 if double's precision is less than that; but we
	 * assume IEEE float arithmetic elsewhere in Postgres, so this seems OK.
	 */
	return ldexp((double) (v >> (64 - 52)), -52);
}

/*
 * Select a random boolean value.
 */
bool
pg_prng_bool(pg_prng_state *state)
{
	uint64		v = xoroshiro128ss(state);

	return (bool) (v >> 63);
}