diff options
Diffstat (limited to 'deps/jemalloc/test/unit/smoothstep.c')
-rw-r--r-- | deps/jemalloc/test/unit/smoothstep.c | 102 |
1 files changed, 102 insertions, 0 deletions
diff --git a/deps/jemalloc/test/unit/smoothstep.c b/deps/jemalloc/test/unit/smoothstep.c new file mode 100644 index 0000000..7c5dbb7 --- /dev/null +++ b/deps/jemalloc/test/unit/smoothstep.c @@ -0,0 +1,102 @@ +#include "test/jemalloc_test.h" + +static const uint64_t smoothstep_tab[] = { +#define STEP(step, h, x, y) \ + h, + SMOOTHSTEP +#undef STEP +}; + +TEST_BEGIN(test_smoothstep_integral) { + uint64_t sum, min, max; + unsigned i; + + /* + * The integral of smoothstep in the [0..1] range equals 1/2. Verify + * that the fixed point representation's integral is no more than + * rounding error distant from 1/2. Regarding rounding, each table + * element is rounded down to the nearest fixed point value, so the + * integral may be off by as much as SMOOTHSTEP_NSTEPS ulps. + */ + sum = 0; + for (i = 0; i < SMOOTHSTEP_NSTEPS; i++) { + sum += smoothstep_tab[i]; + } + + max = (KQU(1) << (SMOOTHSTEP_BFP-1)) * (SMOOTHSTEP_NSTEPS+1); + min = max - SMOOTHSTEP_NSTEPS; + + assert_u64_ge(sum, min, + "Integral too small, even accounting for truncation"); + assert_u64_le(sum, max, "Integral exceeds 1/2"); + if (false) { + malloc_printf("%"FMTu64" ulps under 1/2 (limit %d)\n", + max - sum, SMOOTHSTEP_NSTEPS); + } +} +TEST_END + +TEST_BEGIN(test_smoothstep_monotonic) { + uint64_t prev_h; + unsigned i; + + /* + * The smoothstep function is monotonic in [0..1], i.e. its slope is + * non-negative. In practice we want to parametrize table generation + * such that piecewise slope is greater than zero, but do not require + * that here. + */ + prev_h = 0; + for (i = 0; i < SMOOTHSTEP_NSTEPS; i++) { + uint64_t h = smoothstep_tab[i]; + assert_u64_ge(h, prev_h, "Piecewise non-monotonic, i=%u", i); + prev_h = h; + } + assert_u64_eq(smoothstep_tab[SMOOTHSTEP_NSTEPS-1], + (KQU(1) << SMOOTHSTEP_BFP), "Last step must equal 1"); +} +TEST_END + +TEST_BEGIN(test_smoothstep_slope) { + uint64_t prev_h, prev_delta; + unsigned i; + + /* + * The smoothstep slope strictly increases until x=0.5, and then + * strictly decreases until x=1.0. Verify the slightly weaker + * requirement of monotonicity, so that inadequate table precision does + * not cause false test failures. + */ + prev_h = 0; + prev_delta = 0; + for (i = 0; i < SMOOTHSTEP_NSTEPS / 2 + SMOOTHSTEP_NSTEPS % 2; i++) { + uint64_t h = smoothstep_tab[i]; + uint64_t delta = h - prev_h; + assert_u64_ge(delta, prev_delta, + "Slope must monotonically increase in 0.0 <= x <= 0.5, " + "i=%u", i); + prev_h = h; + prev_delta = delta; + } + + prev_h = KQU(1) << SMOOTHSTEP_BFP; + prev_delta = 0; + for (i = SMOOTHSTEP_NSTEPS-1; i >= SMOOTHSTEP_NSTEPS / 2; i--) { + uint64_t h = smoothstep_tab[i]; + uint64_t delta = prev_h - h; + assert_u64_ge(delta, prev_delta, + "Slope must monotonically decrease in 0.5 <= x <= 1.0, " + "i=%u", i); + prev_h = h; + prev_delta = delta; + } +} +TEST_END + +int +main(void) { + return test( + test_smoothstep_integral, + test_smoothstep_monotonic, + test_smoothstep_slope); +} |