1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
|
/* Redis Object implementation.
*
* Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "server.h"
#include "functions.h"
#include <math.h>
#include <ctype.h>
#ifdef __CYGWIN__
#define strtold(a,b) ((long double)strtod((a),(b)))
#endif
/* ===================== Creation and parsing of objects ==================== */
robj *createObject(int type, void *ptr) {
robj *o = zmalloc(sizeof(*o));
o->type = type;
o->encoding = OBJ_ENCODING_RAW;
o->ptr = ptr;
o->refcount = 1;
/* Set the LRU to the current lruclock (minutes resolution), or
* alternatively the LFU counter. */
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
o->lru = (LFUGetTimeInMinutes()<<8) | LFU_INIT_VAL;
} else {
o->lru = LRU_CLOCK();
}
return o;
}
/* Set a special refcount in the object to make it "shared":
* incrRefCount and decrRefCount() will test for this special refcount
* and will not touch the object. This way it is free to access shared
* objects such as small integers from different threads without any
* mutex.
*
* A common patter to create shared objects:
*
* robj *myobject = makeObjectShared(createObject(...));
*
*/
robj *makeObjectShared(robj *o) {
serverAssert(o->refcount == 1);
o->refcount = OBJ_SHARED_REFCOUNT;
return o;
}
/* Create a string object with encoding OBJ_ENCODING_RAW, that is a plain
* string object where o->ptr points to a proper sds string. */
robj *createRawStringObject(const char *ptr, size_t len) {
return createObject(OBJ_STRING, sdsnewlen(ptr,len));
}
/* Create a string object with encoding OBJ_ENCODING_EMBSTR, that is
* an object where the sds string is actually an unmodifiable string
* allocated in the same chunk as the object itself. */
robj *createEmbeddedStringObject(const char *ptr, size_t len) {
robj *o = zmalloc(sizeof(robj)+sizeof(struct sdshdr8)+len+1);
struct sdshdr8 *sh = (void*)(o+1);
o->type = OBJ_STRING;
o->encoding = OBJ_ENCODING_EMBSTR;
o->ptr = sh+1;
o->refcount = 1;
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
o->lru = (LFUGetTimeInMinutes()<<8) | LFU_INIT_VAL;
} else {
o->lru = LRU_CLOCK();
}
sh->len = len;
sh->alloc = len;
sh->flags = SDS_TYPE_8;
if (ptr == SDS_NOINIT)
sh->buf[len] = '\0';
else if (ptr) {
memcpy(sh->buf,ptr,len);
sh->buf[len] = '\0';
} else {
memset(sh->buf,0,len+1);
}
return o;
}
/* Create a string object with EMBSTR encoding if it is smaller than
* OBJ_ENCODING_EMBSTR_SIZE_LIMIT, otherwise the RAW encoding is
* used.
*
* The current limit of 44 is chosen so that the biggest string object
* we allocate as EMBSTR will still fit into the 64 byte arena of jemalloc. */
#define OBJ_ENCODING_EMBSTR_SIZE_LIMIT 44
robj *createStringObject(const char *ptr, size_t len) {
if (len <= OBJ_ENCODING_EMBSTR_SIZE_LIMIT)
return createEmbeddedStringObject(ptr,len);
else
return createRawStringObject(ptr,len);
}
/* Same as CreateRawStringObject, can return NULL if allocation fails */
robj *tryCreateRawStringObject(const char *ptr, size_t len) {
sds str = sdstrynewlen(ptr,len);
if (!str) return NULL;
return createObject(OBJ_STRING, str);
}
/* Same as createStringObject, can return NULL if allocation fails */
robj *tryCreateStringObject(const char *ptr, size_t len) {
if (len <= OBJ_ENCODING_EMBSTR_SIZE_LIMIT)
return createEmbeddedStringObject(ptr,len);
else
return tryCreateRawStringObject(ptr,len);
}
/* Create a string object from a long long value. When possible returns a
* shared integer object, or at least an integer encoded one.
*
* If valueobj is non zero, the function avoids returning a shared
* integer, because the object is going to be used as value in the Redis key
* space (for instance when the INCR command is used), so we want LFU/LRU
* values specific for each key. */
robj *createStringObjectFromLongLongWithOptions(long long value, int valueobj) {
robj *o;
if (server.maxmemory == 0 ||
!(server.maxmemory_policy & MAXMEMORY_FLAG_NO_SHARED_INTEGERS))
{
/* If the maxmemory policy permits, we can still return shared integers
* even if valueobj is true. */
valueobj = 0;
}
if (value >= 0 && value < OBJ_SHARED_INTEGERS && valueobj == 0) {
incrRefCount(shared.integers[value]);
o = shared.integers[value];
} else {
if (value >= LONG_MIN && value <= LONG_MAX) {
o = createObject(OBJ_STRING, NULL);
o->encoding = OBJ_ENCODING_INT;
o->ptr = (void*)((long)value);
} else {
o = createObject(OBJ_STRING,sdsfromlonglong(value));
}
}
return o;
}
/* Wrapper for createStringObjectFromLongLongWithOptions() always demanding
* to create a shared object if possible. */
robj *createStringObjectFromLongLong(long long value) {
return createStringObjectFromLongLongWithOptions(value,0);
}
/* Wrapper for createStringObjectFromLongLongWithOptions() avoiding a shared
* object when LFU/LRU info are needed, that is, when the object is used
* as a value in the key space, and Redis is configured to evict based on
* LFU/LRU. */
robj *createStringObjectFromLongLongForValue(long long value) {
return createStringObjectFromLongLongWithOptions(value,1);
}
/* Create a string object from a long double. If humanfriendly is non-zero
* it does not use exponential format and trims trailing zeroes at the end,
* however this results in loss of precision. Otherwise exp format is used
* and the output of snprintf() is not modified.
*
* The 'humanfriendly' option is used for INCRBYFLOAT and HINCRBYFLOAT. */
robj *createStringObjectFromLongDouble(long double value, int humanfriendly) {
char buf[MAX_LONG_DOUBLE_CHARS];
int len = ld2string(buf,sizeof(buf),value,humanfriendly? LD_STR_HUMAN: LD_STR_AUTO);
return createStringObject(buf,len);
}
/* Duplicate a string object, with the guarantee that the returned object
* has the same encoding as the original one.
*
* This function also guarantees that duplicating a small integer object
* (or a string object that contains a representation of a small integer)
* will always result in a fresh object that is unshared (refcount == 1).
*
* The resulting object always has refcount set to 1. */
robj *dupStringObject(const robj *o) {
robj *d;
serverAssert(o->type == OBJ_STRING);
switch(o->encoding) {
case OBJ_ENCODING_RAW:
return createRawStringObject(o->ptr,sdslen(o->ptr));
case OBJ_ENCODING_EMBSTR:
return createEmbeddedStringObject(o->ptr,sdslen(o->ptr));
case OBJ_ENCODING_INT:
d = createObject(OBJ_STRING, NULL);
d->encoding = OBJ_ENCODING_INT;
d->ptr = o->ptr;
return d;
default:
serverPanic("Wrong encoding.");
break;
}
}
robj *createQuicklistObject(void) {
quicklist *l = quicklistCreate();
robj *o = createObject(OBJ_LIST,l);
o->encoding = OBJ_ENCODING_QUICKLIST;
return o;
}
robj *createSetObject(void) {
dict *d = dictCreate(&setDictType);
robj *o = createObject(OBJ_SET,d);
o->encoding = OBJ_ENCODING_HT;
return o;
}
robj *createIntsetObject(void) {
intset *is = intsetNew();
robj *o = createObject(OBJ_SET,is);
o->encoding = OBJ_ENCODING_INTSET;
return o;
}
robj *createHashObject(void) {
unsigned char *zl = lpNew(0);
robj *o = createObject(OBJ_HASH, zl);
o->encoding = OBJ_ENCODING_LISTPACK;
return o;
}
robj *createZsetObject(void) {
zset *zs = zmalloc(sizeof(*zs));
robj *o;
zs->dict = dictCreate(&zsetDictType);
zs->zsl = zslCreate();
o = createObject(OBJ_ZSET,zs);
o->encoding = OBJ_ENCODING_SKIPLIST;
return o;
}
robj *createZsetListpackObject(void) {
unsigned char *lp = lpNew(0);
robj *o = createObject(OBJ_ZSET,lp);
o->encoding = OBJ_ENCODING_LISTPACK;
return o;
}
robj *createStreamObject(void) {
stream *s = streamNew();
robj *o = createObject(OBJ_STREAM,s);
o->encoding = OBJ_ENCODING_STREAM;
return o;
}
robj *createModuleObject(moduleType *mt, void *value) {
moduleValue *mv = zmalloc(sizeof(*mv));
mv->type = mt;
mv->value = value;
return createObject(OBJ_MODULE,mv);
}
void freeStringObject(robj *o) {
if (o->encoding == OBJ_ENCODING_RAW) {
sdsfree(o->ptr);
}
}
void freeListObject(robj *o) {
if (o->encoding == OBJ_ENCODING_QUICKLIST) {
quicklistRelease(o->ptr);
} else {
serverPanic("Unknown list encoding type");
}
}
void freeSetObject(robj *o) {
switch (o->encoding) {
case OBJ_ENCODING_HT:
dictRelease((dict*) o->ptr);
break;
case OBJ_ENCODING_INTSET:
zfree(o->ptr);
break;
default:
serverPanic("Unknown set encoding type");
}
}
void freeZsetObject(robj *o) {
zset *zs;
switch (o->encoding) {
case OBJ_ENCODING_SKIPLIST:
zs = o->ptr;
dictRelease(zs->dict);
zslFree(zs->zsl);
zfree(zs);
break;
case OBJ_ENCODING_LISTPACK:
zfree(o->ptr);
break;
default:
serverPanic("Unknown sorted set encoding");
}
}
void freeHashObject(robj *o) {
switch (o->encoding) {
case OBJ_ENCODING_HT:
dictRelease((dict*) o->ptr);
break;
case OBJ_ENCODING_LISTPACK:
lpFree(o->ptr);
break;
default:
serverPanic("Unknown hash encoding type");
break;
}
}
void freeModuleObject(robj *o) {
moduleValue *mv = o->ptr;
mv->type->free(mv->value);
zfree(mv);
}
void freeStreamObject(robj *o) {
freeStream(o->ptr);
}
void incrRefCount(robj *o) {
if (o->refcount < OBJ_FIRST_SPECIAL_REFCOUNT) {
o->refcount++;
} else {
if (o->refcount == OBJ_SHARED_REFCOUNT) {
/* Nothing to do: this refcount is immutable. */
} else if (o->refcount == OBJ_STATIC_REFCOUNT) {
serverPanic("You tried to retain an object allocated in the stack");
}
}
}
void decrRefCount(robj *o) {
if (o->refcount == 1) {
switch(o->type) {
case OBJ_STRING: freeStringObject(o); break;
case OBJ_LIST: freeListObject(o); break;
case OBJ_SET: freeSetObject(o); break;
case OBJ_ZSET: freeZsetObject(o); break;
case OBJ_HASH: freeHashObject(o); break;
case OBJ_MODULE: freeModuleObject(o); break;
case OBJ_STREAM: freeStreamObject(o); break;
default: serverPanic("Unknown object type"); break;
}
zfree(o);
} else {
if (o->refcount <= 0) serverPanic("decrRefCount against refcount <= 0");
if (o->refcount != OBJ_SHARED_REFCOUNT) o->refcount--;
}
}
/* See dismissObject() */
void dismissSds(sds s) {
dismissMemory(sdsAllocPtr(s), sdsAllocSize(s));
}
/* See dismissObject() */
void dismissStringObject(robj *o) {
if (o->encoding == OBJ_ENCODING_RAW) {
dismissSds(o->ptr);
}
}
/* See dismissObject() */
void dismissListObject(robj *o, size_t size_hint) {
if (o->encoding == OBJ_ENCODING_QUICKLIST) {
quicklist *ql = o->ptr;
serverAssert(ql->len != 0);
/* We iterate all nodes only when average node size is bigger than a
* page size, and there's a high chance we'll actually dismiss something. */
if (size_hint / ql->len >= server.page_size) {
quicklistNode *node = ql->head;
while (node) {
if (quicklistNodeIsCompressed(node)) {
dismissMemory(node->entry, ((quicklistLZF*)node->entry)->sz);
} else {
dismissMemory(node->entry, node->sz);
}
node = node->next;
}
}
} else {
serverPanic("Unknown list encoding type");
}
}
/* See dismissObject() */
void dismissSetObject(robj *o, size_t size_hint) {
if (o->encoding == OBJ_ENCODING_HT) {
dict *set = o->ptr;
serverAssert(dictSize(set) != 0);
/* We iterate all nodes only when average member size is bigger than a
* page size, and there's a high chance we'll actually dismiss something. */
if (size_hint / dictSize(set) >= server.page_size) {
dictEntry *de;
dictIterator *di = dictGetIterator(set);
while ((de = dictNext(di)) != NULL) {
dismissSds(dictGetKey(de));
}
dictReleaseIterator(di);
}
/* Dismiss hash table memory. */
dismissMemory(set->ht_table[0], DICTHT_SIZE(set->ht_size_exp[0])*sizeof(dictEntry*));
dismissMemory(set->ht_table[1], DICTHT_SIZE(set->ht_size_exp[1])*sizeof(dictEntry*));
} else if (o->encoding == OBJ_ENCODING_INTSET) {
dismissMemory(o->ptr, intsetBlobLen((intset*)o->ptr));
} else {
serverPanic("Unknown set encoding type");
}
}
/* See dismissObject() */
void dismissZsetObject(robj *o, size_t size_hint) {
if (o->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = o->ptr;
zskiplist *zsl = zs->zsl;
serverAssert(zsl->length != 0);
/* We iterate all nodes only when average member size is bigger than a
* page size, and there's a high chance we'll actually dismiss something. */
if (size_hint / zsl->length >= server.page_size) {
zskiplistNode *zn = zsl->tail;
while (zn != NULL) {
dismissSds(zn->ele);
zn = zn->backward;
}
}
/* Dismiss hash table memory. */
dict *d = zs->dict;
dismissMemory(d->ht_table[0], DICTHT_SIZE(d->ht_size_exp[0])*sizeof(dictEntry*));
dismissMemory(d->ht_table[1], DICTHT_SIZE(d->ht_size_exp[1])*sizeof(dictEntry*));
} else if (o->encoding == OBJ_ENCODING_LISTPACK) {
dismissMemory(o->ptr, lpBytes((unsigned char*)o->ptr));
} else {
serverPanic("Unknown zset encoding type");
}
}
/* See dismissObject() */
void dismissHashObject(robj *o, size_t size_hint) {
if (o->encoding == OBJ_ENCODING_HT) {
dict *d = o->ptr;
serverAssert(dictSize(d) != 0);
/* We iterate all fields only when average field/value size is bigger than
* a page size, and there's a high chance we'll actually dismiss something. */
if (size_hint / dictSize(d) >= server.page_size) {
dictEntry *de;
dictIterator *di = dictGetIterator(d);
while ((de = dictNext(di)) != NULL) {
/* Only dismiss values memory since the field size
* usually is small. */
dismissSds(dictGetVal(de));
}
dictReleaseIterator(di);
}
/* Dismiss hash table memory. */
dismissMemory(d->ht_table[0], DICTHT_SIZE(d->ht_size_exp[0])*sizeof(dictEntry*));
dismissMemory(d->ht_table[1], DICTHT_SIZE(d->ht_size_exp[1])*sizeof(dictEntry*));
} else if (o->encoding == OBJ_ENCODING_LISTPACK) {
dismissMemory(o->ptr, lpBytes((unsigned char*)o->ptr));
} else {
serverPanic("Unknown hash encoding type");
}
}
/* See dismissObject() */
void dismissStreamObject(robj *o, size_t size_hint) {
stream *s = o->ptr;
rax *rax = s->rax;
if (raxSize(rax) == 0) return;
/* Iterate only on stream entries, although size_hint may include serialized
* consumer groups info, but usually, stream entries take up most of
* the space. */
if (size_hint / raxSize(rax) >= server.page_size) {
raxIterator ri;
raxStart(&ri,rax);
raxSeek(&ri,"^",NULL,0);
while (raxNext(&ri)) {
dismissMemory(ri.data, lpBytes(ri.data));
}
raxStop(&ri);
}
}
/* When creating a snapshot in a fork child process, the main process and child
* process share the same physical memory pages, and if / when the parent
* modifies any keys due to write traffic, it'll cause CoW which consume
* physical memory. In the child process, after serializing the key and value,
* the data is definitely not accessed again, so to avoid unnecessary CoW, we
* try to release their memory back to OS. see dismissMemory().
*
* Because of the cost of iterating all node/field/member/entry of complex data
* types, we iterate and dismiss them only when approximate average we estimate
* the size of an individual allocation is more than a page size of OS.
* 'size_hint' is the size of serialized value. This method is not accurate, but
* it can reduce unnecessary iteration for complex data types that are probably
* not going to release any memory. */
void dismissObject(robj *o, size_t size_hint) {
/* madvise(MADV_DONTNEED) may not work if Transparent Huge Pages is enabled. */
if (server.thp_enabled) return;
/* Currently we use zmadvise_dontneed only when we use jemalloc with Linux.
* so we avoid these pointless loops when they're not going to do anything. */
#if defined(USE_JEMALLOC) && defined(__linux__)
if (o->refcount != 1) return;
switch(o->type) {
case OBJ_STRING: dismissStringObject(o); break;
case OBJ_LIST: dismissListObject(o, size_hint); break;
case OBJ_SET: dismissSetObject(o, size_hint); break;
case OBJ_ZSET: dismissZsetObject(o, size_hint); break;
case OBJ_HASH: dismissHashObject(o, size_hint); break;
case OBJ_STREAM: dismissStreamObject(o, size_hint); break;
default: break;
}
#else
UNUSED(o); UNUSED(size_hint);
#endif
}
/* This variant of decrRefCount() gets its argument as void, and is useful
* as free method in data structures that expect a 'void free_object(void*)'
* prototype for the free method. */
void decrRefCountVoid(void *o) {
decrRefCount(o);
}
int checkType(client *c, robj *o, int type) {
/* A NULL is considered an empty key */
if (o && o->type != type) {
addReplyErrorObject(c,shared.wrongtypeerr);
return 1;
}
return 0;
}
int isSdsRepresentableAsLongLong(sds s, long long *llval) {
return string2ll(s,sdslen(s),llval) ? C_OK : C_ERR;
}
int isObjectRepresentableAsLongLong(robj *o, long long *llval) {
serverAssertWithInfo(NULL,o,o->type == OBJ_STRING);
if (o->encoding == OBJ_ENCODING_INT) {
if (llval) *llval = (long) o->ptr;
return C_OK;
} else {
return isSdsRepresentableAsLongLong(o->ptr,llval);
}
}
/* Optimize the SDS string inside the string object to require little space,
* in case there is more than 10% of free space at the end of the SDS
* string. This happens because SDS strings tend to overallocate to avoid
* wasting too much time in allocations when appending to the string. */
void trimStringObjectIfNeeded(robj *o) {
if (o->encoding == OBJ_ENCODING_RAW &&
sdsavail(o->ptr) > sdslen(o->ptr)/10)
{
o->ptr = sdsRemoveFreeSpace(o->ptr, 0);
}
}
/* Try to encode a string object in order to save space */
robj *tryObjectEncoding(robj *o) {
long value;
sds s = o->ptr;
size_t len;
/* Make sure this is a string object, the only type we encode
* in this function. Other types use encoded memory efficient
* representations but are handled by the commands implementing
* the type. */
serverAssertWithInfo(NULL,o,o->type == OBJ_STRING);
/* We try some specialized encoding only for objects that are
* RAW or EMBSTR encoded, in other words objects that are still
* in represented by an actually array of chars. */
if (!sdsEncodedObject(o)) return o;
/* It's not safe to encode shared objects: shared objects can be shared
* everywhere in the "object space" of Redis and may end in places where
* they are not handled. We handle them only as values in the keyspace. */
if (o->refcount > 1) return o;
/* Check if we can represent this string as a long integer.
* Note that we are sure that a string larger than 20 chars is not
* representable as a 32 nor 64 bit integer. */
len = sdslen(s);
if (len <= 20 && string2l(s,len,&value)) {
/* This object is encodable as a long. Try to use a shared object.
* Note that we avoid using shared integers when maxmemory is used
* because every object needs to have a private LRU field for the LRU
* algorithm to work well. */
if ((server.maxmemory == 0 ||
!(server.maxmemory_policy & MAXMEMORY_FLAG_NO_SHARED_INTEGERS)) &&
value >= 0 &&
value < OBJ_SHARED_INTEGERS)
{
decrRefCount(o);
incrRefCount(shared.integers[value]);
return shared.integers[value];
} else {
if (o->encoding == OBJ_ENCODING_RAW) {
sdsfree(o->ptr);
o->encoding = OBJ_ENCODING_INT;
o->ptr = (void*) value;
return o;
} else if (o->encoding == OBJ_ENCODING_EMBSTR) {
decrRefCount(o);
return createStringObjectFromLongLongForValue(value);
}
}
}
/* If the string is small and is still RAW encoded,
* try the EMBSTR encoding which is more efficient.
* In this representation the object and the SDS string are allocated
* in the same chunk of memory to save space and cache misses. */
if (len <= OBJ_ENCODING_EMBSTR_SIZE_LIMIT) {
robj *emb;
if (o->encoding == OBJ_ENCODING_EMBSTR) return o;
emb = createEmbeddedStringObject(s,sdslen(s));
decrRefCount(o);
return emb;
}
/* We can't encode the object...
*
* Do the last try, and at least optimize the SDS string inside
* the string object to require little space, in case there
* is more than 10% of free space at the end of the SDS string.
*
* We do that only for relatively large strings as this branch
* is only entered if the length of the string is greater than
* OBJ_ENCODING_EMBSTR_SIZE_LIMIT. */
trimStringObjectIfNeeded(o);
/* Return the original object. */
return o;
}
/* Get a decoded version of an encoded object (returned as a new object).
* If the object is already raw-encoded just increment the ref count. */
robj *getDecodedObject(robj *o) {
robj *dec;
if (sdsEncodedObject(o)) {
incrRefCount(o);
return o;
}
if (o->type == OBJ_STRING && o->encoding == OBJ_ENCODING_INT) {
char buf[32];
ll2string(buf,32,(long)o->ptr);
dec = createStringObject(buf,strlen(buf));
return dec;
} else {
serverPanic("Unknown encoding type");
}
}
/* Compare two string objects via strcmp() or strcoll() depending on flags.
* Note that the objects may be integer-encoded. In such a case we
* use ll2string() to get a string representation of the numbers on the stack
* and compare the strings, it's much faster than calling getDecodedObject().
*
* Important note: when REDIS_COMPARE_BINARY is used a binary-safe comparison
* is used. */
#define REDIS_COMPARE_BINARY (1<<0)
#define REDIS_COMPARE_COLL (1<<1)
int compareStringObjectsWithFlags(robj *a, robj *b, int flags) {
serverAssertWithInfo(NULL,a,a->type == OBJ_STRING && b->type == OBJ_STRING);
char bufa[128], bufb[128], *astr, *bstr;
size_t alen, blen, minlen;
if (a == b) return 0;
if (sdsEncodedObject(a)) {
astr = a->ptr;
alen = sdslen(astr);
} else {
alen = ll2string(bufa,sizeof(bufa),(long) a->ptr);
astr = bufa;
}
if (sdsEncodedObject(b)) {
bstr = b->ptr;
blen = sdslen(bstr);
} else {
blen = ll2string(bufb,sizeof(bufb),(long) b->ptr);
bstr = bufb;
}
if (flags & REDIS_COMPARE_COLL) {
return strcoll(astr,bstr);
} else {
int cmp;
minlen = (alen < blen) ? alen : blen;
cmp = memcmp(astr,bstr,minlen);
if (cmp == 0) return alen-blen;
return cmp;
}
}
/* Wrapper for compareStringObjectsWithFlags() using binary comparison. */
int compareStringObjects(robj *a, robj *b) {
return compareStringObjectsWithFlags(a,b,REDIS_COMPARE_BINARY);
}
/* Wrapper for compareStringObjectsWithFlags() using collation. */
int collateStringObjects(robj *a, robj *b) {
return compareStringObjectsWithFlags(a,b,REDIS_COMPARE_COLL);
}
/* Equal string objects return 1 if the two objects are the same from the
* point of view of a string comparison, otherwise 0 is returned. Note that
* this function is faster then checking for (compareStringObject(a,b) == 0)
* because it can perform some more optimization. */
int equalStringObjects(robj *a, robj *b) {
if (a->encoding == OBJ_ENCODING_INT &&
b->encoding == OBJ_ENCODING_INT){
/* If both strings are integer encoded just check if the stored
* long is the same. */
return a->ptr == b->ptr;
} else {
return compareStringObjects(a,b) == 0;
}
}
size_t stringObjectLen(robj *o) {
serverAssertWithInfo(NULL,o,o->type == OBJ_STRING);
if (sdsEncodedObject(o)) {
return sdslen(o->ptr);
} else {
return sdigits10((long)o->ptr);
}
}
int getDoubleFromObject(const robj *o, double *target) {
double value;
if (o == NULL) {
value = 0;
} else {
serverAssertWithInfo(NULL,o,o->type == OBJ_STRING);
if (sdsEncodedObject(o)) {
if (!string2d(o->ptr, sdslen(o->ptr), &value))
return C_ERR;
} else if (o->encoding == OBJ_ENCODING_INT) {
value = (long)o->ptr;
} else {
serverPanic("Unknown string encoding");
}
}
*target = value;
return C_OK;
}
int getDoubleFromObjectOrReply(client *c, robj *o, double *target, const char *msg) {
double value;
if (getDoubleFromObject(o, &value) != C_OK) {
if (msg != NULL) {
addReplyError(c,(char*)msg);
} else {
addReplyError(c,"value is not a valid float");
}
return C_ERR;
}
*target = value;
return C_OK;
}
int getLongDoubleFromObject(robj *o, long double *target) {
long double value;
if (o == NULL) {
value = 0;
} else {
serverAssertWithInfo(NULL,o,o->type == OBJ_STRING);
if (sdsEncodedObject(o)) {
if (!string2ld(o->ptr, sdslen(o->ptr), &value))
return C_ERR;
} else if (o->encoding == OBJ_ENCODING_INT) {
value = (long)o->ptr;
} else {
serverPanic("Unknown string encoding");
}
}
*target = value;
return C_OK;
}
int getLongDoubleFromObjectOrReply(client *c, robj *o, long double *target, const char *msg) {
long double value;
if (getLongDoubleFromObject(o, &value) != C_OK) {
if (msg != NULL) {
addReplyError(c,(char*)msg);
} else {
addReplyError(c,"value is not a valid float");
}
return C_ERR;
}
*target = value;
return C_OK;
}
int getLongLongFromObject(robj *o, long long *target) {
long long value;
if (o == NULL) {
value = 0;
} else {
serverAssertWithInfo(NULL,o,o->type == OBJ_STRING);
if (sdsEncodedObject(o)) {
if (string2ll(o->ptr,sdslen(o->ptr),&value) == 0) return C_ERR;
} else if (o->encoding == OBJ_ENCODING_INT) {
value = (long)o->ptr;
} else {
serverPanic("Unknown string encoding");
}
}
if (target) *target = value;
return C_OK;
}
int getLongLongFromObjectOrReply(client *c, robj *o, long long *target, const char *msg) {
long long value;
if (getLongLongFromObject(o, &value) != C_OK) {
if (msg != NULL) {
addReplyError(c,(char*)msg);
} else {
addReplyError(c,"value is not an integer or out of range");
}
return C_ERR;
}
*target = value;
return C_OK;
}
int getLongFromObjectOrReply(client *c, robj *o, long *target, const char *msg) {
long long value;
if (getLongLongFromObjectOrReply(c, o, &value, msg) != C_OK) return C_ERR;
if (value < LONG_MIN || value > LONG_MAX) {
if (msg != NULL) {
addReplyError(c,(char*)msg);
} else {
addReplyError(c,"value is out of range");
}
return C_ERR;
}
*target = value;
return C_OK;
}
int getRangeLongFromObjectOrReply(client *c, robj *o, long min, long max, long *target, const char *msg) {
if (getLongFromObjectOrReply(c, o, target, msg) != C_OK) return C_ERR;
if (*target < min || *target > max) {
if (msg != NULL) {
addReplyError(c,(char*)msg);
} else {
addReplyErrorFormat(c,"value is out of range, value must between %ld and %ld", min, max);
}
return C_ERR;
}
return C_OK;
}
int getPositiveLongFromObjectOrReply(client *c, robj *o, long *target, const char *msg) {
if (msg) {
return getRangeLongFromObjectOrReply(c, o, 0, LONG_MAX, target, msg);
} else {
return getRangeLongFromObjectOrReply(c, o, 0, LONG_MAX, target, "value is out of range, must be positive");
}
}
int getIntFromObjectOrReply(client *c, robj *o, int *target, const char *msg) {
long value;
if (getRangeLongFromObjectOrReply(c, o, INT_MIN, INT_MAX, &value, msg) != C_OK)
return C_ERR;
*target = value;
return C_OK;
}
char *strEncoding(int encoding) {
switch(encoding) {
case OBJ_ENCODING_RAW: return "raw";
case OBJ_ENCODING_INT: return "int";
case OBJ_ENCODING_HT: return "hashtable";
case OBJ_ENCODING_QUICKLIST: return "quicklist";
case OBJ_ENCODING_LISTPACK: return "listpack";
case OBJ_ENCODING_INTSET: return "intset";
case OBJ_ENCODING_SKIPLIST: return "skiplist";
case OBJ_ENCODING_EMBSTR: return "embstr";
case OBJ_ENCODING_STREAM: return "stream";
default: return "unknown";
}
}
/* =========================== Memory introspection ========================= */
/* This is a helper function with the goal of estimating the memory
* size of a radix tree that is used to store Stream IDs.
*
* Note: to guess the size of the radix tree is not trivial, so we
* approximate it considering 16 bytes of data overhead for each
* key (the ID), and then adding the number of bare nodes, plus some
* overhead due by the data and child pointers. This secret recipe
* was obtained by checking the average radix tree created by real
* workloads, and then adjusting the constants to get numbers that
* more or less match the real memory usage.
*
* Actually the number of nodes and keys may be different depending
* on the insertion speed and thus the ability of the radix tree
* to compress prefixes. */
size_t streamRadixTreeMemoryUsage(rax *rax) {
size_t size = sizeof(*rax);
size = rax->numele * sizeof(streamID);
size += rax->numnodes * sizeof(raxNode);
/* Add a fixed overhead due to the aux data pointer, children, ... */
size += rax->numnodes * sizeof(long)*30;
return size;
}
/* Returns the size in bytes consumed by the key's value in RAM.
* Note that the returned value is just an approximation, especially in the
* case of aggregated data types where only "sample_size" elements
* are checked and averaged to estimate the total size. */
#define OBJ_COMPUTE_SIZE_DEF_SAMPLES 5 /* Default sample size. */
size_t objectComputeSize(robj *key, robj *o, size_t sample_size, int dbid) {
sds ele, ele2;
dict *d;
dictIterator *di;
struct dictEntry *de;
size_t asize = 0, elesize = 0, samples = 0;
if (o->type == OBJ_STRING) {
if(o->encoding == OBJ_ENCODING_INT) {
asize = sizeof(*o);
} else if(o->encoding == OBJ_ENCODING_RAW) {
asize = sdsZmallocSize(o->ptr)+sizeof(*o);
} else if(o->encoding == OBJ_ENCODING_EMBSTR) {
asize = zmalloc_size((void *)o);
} else {
serverPanic("Unknown string encoding");
}
} else if (o->type == OBJ_LIST) {
if (o->encoding == OBJ_ENCODING_QUICKLIST) {
quicklist *ql = o->ptr;
quicklistNode *node = ql->head;
asize = sizeof(*o)+sizeof(quicklist);
do {
elesize += sizeof(quicklistNode)+zmalloc_size(node->entry);
samples++;
} while ((node = node->next) && samples < sample_size);
asize += (double)elesize/samples*ql->len;
} else {
serverPanic("Unknown list encoding");
}
} else if (o->type == OBJ_SET) {
if (o->encoding == OBJ_ENCODING_HT) {
d = o->ptr;
di = dictGetIterator(d);
asize = sizeof(*o)+sizeof(dict)+(sizeof(struct dictEntry*)*dictSlots(d));
while((de = dictNext(di)) != NULL && samples < sample_size) {
ele = dictGetKey(de);
elesize += sizeof(struct dictEntry) + sdsZmallocSize(ele);
samples++;
}
dictReleaseIterator(di);
if (samples) asize += (double)elesize/samples*dictSize(d);
} else if (o->encoding == OBJ_ENCODING_INTSET) {
asize = sizeof(*o)+zmalloc_size(o->ptr);
} else {
serverPanic("Unknown set encoding");
}
} else if (o->type == OBJ_ZSET) {
if (o->encoding == OBJ_ENCODING_LISTPACK) {
asize = sizeof(*o)+zmalloc_size(o->ptr);
} else if (o->encoding == OBJ_ENCODING_SKIPLIST) {
d = ((zset*)o->ptr)->dict;
zskiplist *zsl = ((zset*)o->ptr)->zsl;
zskiplistNode *znode = zsl->header->level[0].forward;
asize = sizeof(*o)+sizeof(zset)+sizeof(zskiplist)+sizeof(dict)+
(sizeof(struct dictEntry*)*dictSlots(d))+
zmalloc_size(zsl->header);
while(znode != NULL && samples < sample_size) {
elesize += sdsZmallocSize(znode->ele);
elesize += sizeof(struct dictEntry)+zmalloc_size(znode);
samples++;
znode = znode->level[0].forward;
}
if (samples) asize += (double)elesize/samples*dictSize(d);
} else {
serverPanic("Unknown sorted set encoding");
}
} else if (o->type == OBJ_HASH) {
if (o->encoding == OBJ_ENCODING_LISTPACK) {
asize = sizeof(*o)+zmalloc_size(o->ptr);
} else if (o->encoding == OBJ_ENCODING_HT) {
d = o->ptr;
di = dictGetIterator(d);
asize = sizeof(*o)+sizeof(dict)+(sizeof(struct dictEntry*)*dictSlots(d));
while((de = dictNext(di)) != NULL && samples < sample_size) {
ele = dictGetKey(de);
ele2 = dictGetVal(de);
elesize += sdsZmallocSize(ele) + sdsZmallocSize(ele2);
elesize += sizeof(struct dictEntry);
samples++;
}
dictReleaseIterator(di);
if (samples) asize += (double)elesize/samples*dictSize(d);
} else {
serverPanic("Unknown hash encoding");
}
} else if (o->type == OBJ_STREAM) {
stream *s = o->ptr;
asize = sizeof(*o)+sizeof(*s);
asize += streamRadixTreeMemoryUsage(s->rax);
/* Now we have to add the listpacks. The last listpack is often non
* complete, so we estimate the size of the first N listpacks, and
* use the average to compute the size of the first N-1 listpacks, and
* finally add the real size of the last node. */
raxIterator ri;
raxStart(&ri,s->rax);
raxSeek(&ri,"^",NULL,0);
size_t lpsize = 0, samples = 0;
while(samples < sample_size && raxNext(&ri)) {
unsigned char *lp = ri.data;
/* Use the allocated size, since we overprovision the node initially. */
lpsize += zmalloc_size(lp);
samples++;
}
if (s->rax->numele <= samples) {
asize += lpsize;
} else {
if (samples) lpsize /= samples; /* Compute the average. */
asize += lpsize * (s->rax->numele-1);
/* No need to check if seek succeeded, we enter this branch only
* if there are a few elements in the radix tree. */
raxSeek(&ri,"$",NULL,0);
raxNext(&ri);
/* Use the allocated size, since we overprovision the node initially. */
asize += zmalloc_size(ri.data);
}
raxStop(&ri);
/* Consumer groups also have a non trivial memory overhead if there
* are many consumers and many groups, let's count at least the
* overhead of the pending entries in the groups and consumers
* PELs. */
if (s->cgroups) {
raxStart(&ri,s->cgroups);
raxSeek(&ri,"^",NULL,0);
while(raxNext(&ri)) {
streamCG *cg = ri.data;
asize += sizeof(*cg);
asize += streamRadixTreeMemoryUsage(cg->pel);
asize += sizeof(streamNACK)*raxSize(cg->pel);
/* For each consumer we also need to add the basic data
* structures and the PEL memory usage. */
raxIterator cri;
raxStart(&cri,cg->consumers);
raxSeek(&cri,"^",NULL,0);
while(raxNext(&cri)) {
streamConsumer *consumer = cri.data;
asize += sizeof(*consumer);
asize += sdslen(consumer->name);
asize += streamRadixTreeMemoryUsage(consumer->pel);
/* Don't count NACKs again, they are shared with the
* consumer group PEL. */
}
raxStop(&cri);
}
raxStop(&ri);
}
} else if (o->type == OBJ_MODULE) {
asize = moduleGetMemUsage(key, o, sample_size, dbid);
} else {
serverPanic("Unknown object type");
}
return asize;
}
/* Release data obtained with getMemoryOverheadData(). */
void freeMemoryOverheadData(struct redisMemOverhead *mh) {
zfree(mh->db);
zfree(mh);
}
/* Return a struct redisMemOverhead filled with memory overhead
* information used for the MEMORY OVERHEAD and INFO command. The returned
* structure pointer should be freed calling freeMemoryOverheadData(). */
struct redisMemOverhead *getMemoryOverheadData(void) {
int j;
size_t mem_total = 0;
size_t mem = 0;
size_t zmalloc_used = zmalloc_used_memory();
struct redisMemOverhead *mh = zcalloc(sizeof(*mh));
mh->total_allocated = zmalloc_used;
mh->startup_allocated = server.initial_memory_usage;
mh->peak_allocated = server.stat_peak_memory;
mh->total_frag =
(float)server.cron_malloc_stats.process_rss / server.cron_malloc_stats.zmalloc_used;
mh->total_frag_bytes =
server.cron_malloc_stats.process_rss - server.cron_malloc_stats.zmalloc_used;
mh->allocator_frag =
(float)server.cron_malloc_stats.allocator_active / server.cron_malloc_stats.allocator_allocated;
mh->allocator_frag_bytes =
server.cron_malloc_stats.allocator_active - server.cron_malloc_stats.allocator_allocated;
mh->allocator_rss =
(float)server.cron_malloc_stats.allocator_resident / server.cron_malloc_stats.allocator_active;
mh->allocator_rss_bytes =
server.cron_malloc_stats.allocator_resident - server.cron_malloc_stats.allocator_active;
mh->rss_extra =
(float)server.cron_malloc_stats.process_rss / server.cron_malloc_stats.allocator_resident;
mh->rss_extra_bytes =
server.cron_malloc_stats.process_rss - server.cron_malloc_stats.allocator_resident;
mem_total += server.initial_memory_usage;
/* Replication backlog and replicas share one global replication buffer,
* only if replication buffer memory is more than the repl backlog setting,
* we consider the excess as replicas' memory. Otherwise, replication buffer
* memory is the consumption of repl backlog. */
if (listLength(server.slaves) &&
(long long)server.repl_buffer_mem > server.repl_backlog_size)
{
mh->clients_slaves = server.repl_buffer_mem - server.repl_backlog_size;
mh->repl_backlog = server.repl_backlog_size;
} else {
mh->clients_slaves = 0;
mh->repl_backlog = server.repl_buffer_mem;
}
if (server.repl_backlog) {
/* The approximate memory of rax tree for indexed blocks. */
mh->repl_backlog +=
server.repl_backlog->blocks_index->numnodes * sizeof(raxNode) +
raxSize(server.repl_backlog->blocks_index) * sizeof(void*);
}
mem_total += mh->repl_backlog;
mem_total += mh->clients_slaves;
/* Computing the memory used by the clients would be O(N) if done
* here online. We use our values computed incrementally by
* updateClientMemoryUsage(). */
mh->clients_normal = server.stat_clients_type_memory[CLIENT_TYPE_MASTER]+
server.stat_clients_type_memory[CLIENT_TYPE_PUBSUB]+
server.stat_clients_type_memory[CLIENT_TYPE_NORMAL];
mem_total += mh->clients_normal;
mh->cluster_links = server.stat_cluster_links_memory;
mem_total += mh->cluster_links;
mem = 0;
if (server.aof_state != AOF_OFF) {
mem += sdsZmallocSize(server.aof_buf);
}
mh->aof_buffer = mem;
mem_total+=mem;
mem = evalScriptsMemory();
mh->lua_caches = mem;
mem_total+=mem;
mh->functions_caches = functionsMemoryOverhead();
mem_total+=mh->functions_caches;
for (j = 0; j < server.dbnum; j++) {
redisDb *db = server.db+j;
long long keyscount = dictSize(db->dict);
if (keyscount==0) continue;
mh->total_keys += keyscount;
mh->db = zrealloc(mh->db,sizeof(mh->db[0])*(mh->num_dbs+1));
mh->db[mh->num_dbs].dbid = j;
mem = dictSize(db->dict) * sizeof(dictEntry) +
dictSlots(db->dict) * sizeof(dictEntry*) +
dictSize(db->dict) * sizeof(robj);
mh->db[mh->num_dbs].overhead_ht_main = mem;
mem_total+=mem;
mem = dictSize(db->expires) * sizeof(dictEntry) +
dictSlots(db->expires) * sizeof(dictEntry*);
mh->db[mh->num_dbs].overhead_ht_expires = mem;
mem_total+=mem;
/* Account for the slot to keys map in cluster mode */
mem = dictSize(db->dict) * dictMetadataSize(db->dict);
mh->db[mh->num_dbs].overhead_ht_slot_to_keys = mem;
mem_total+=mem;
mh->num_dbs++;
}
mh->overhead_total = mem_total;
mh->dataset = zmalloc_used - mem_total;
mh->peak_perc = (float)zmalloc_used*100/mh->peak_allocated;
/* Metrics computed after subtracting the startup memory from
* the total memory. */
size_t net_usage = 1;
if (zmalloc_used > mh->startup_allocated)
net_usage = zmalloc_used - mh->startup_allocated;
mh->dataset_perc = (float)mh->dataset*100/net_usage;
mh->bytes_per_key = mh->total_keys ? (net_usage / mh->total_keys) : 0;
return mh;
}
/* Helper for "MEMORY allocator-stats", used as a callback for the jemalloc
* stats output. */
void inputCatSds(void *result, const char *str) {
/* result is actually a (sds *), so re-cast it here */
sds *info = (sds *)result;
*info = sdscat(*info, str);
}
/* This implements MEMORY DOCTOR. An human readable analysis of the Redis
* memory condition. */
sds getMemoryDoctorReport(void) {
int empty = 0; /* Instance is empty or almost empty. */
int big_peak = 0; /* Memory peak is much larger than used mem. */
int high_frag = 0; /* High fragmentation. */
int high_alloc_frag = 0;/* High allocator fragmentation. */
int high_proc_rss = 0; /* High process rss overhead. */
int high_alloc_rss = 0; /* High rss overhead. */
int big_slave_buf = 0; /* Slave buffers are too big. */
int big_client_buf = 0; /* Client buffers are too big. */
int many_scripts = 0; /* Script cache has too many scripts. */
int num_reports = 0;
struct redisMemOverhead *mh = getMemoryOverheadData();
if (mh->total_allocated < (1024*1024*5)) {
empty = 1;
num_reports++;
} else {
/* Peak is > 150% of current used memory? */
if (((float)mh->peak_allocated / mh->total_allocated) > 1.5) {
big_peak = 1;
num_reports++;
}
/* Fragmentation is higher than 1.4 and 10MB ?*/
if (mh->total_frag > 1.4 && mh->total_frag_bytes > 10<<20) {
high_frag = 1;
num_reports++;
}
/* External fragmentation is higher than 1.1 and 10MB? */
if (mh->allocator_frag > 1.1 && mh->allocator_frag_bytes > 10<<20) {
high_alloc_frag = 1;
num_reports++;
}
/* Allocator rss is higher than 1.1 and 10MB ? */
if (mh->allocator_rss > 1.1 && mh->allocator_rss_bytes > 10<<20) {
high_alloc_rss = 1;
num_reports++;
}
/* Non-Allocator rss is higher than 1.1 and 10MB ? */
if (mh->rss_extra > 1.1 && mh->rss_extra_bytes > 10<<20) {
high_proc_rss = 1;
num_reports++;
}
/* Clients using more than 200k each average? */
long numslaves = listLength(server.slaves);
long numclients = listLength(server.clients)-numslaves;
if (mh->clients_normal / numclients > (1024*200)) {
big_client_buf = 1;
num_reports++;
}
/* Slaves using more than 10 MB each? */
if (numslaves > 0 && mh->clients_slaves > (1024*1024*10)) {
big_slave_buf = 1;
num_reports++;
}
/* Too many scripts are cached? */
if (dictSize(evalScriptsDict()) > 1000) {
many_scripts = 1;
num_reports++;
}
}
sds s;
if (num_reports == 0) {
s = sdsnew(
"Hi Sam, I can't find any memory issue in your instance. "
"I can only account for what occurs on this base.\n");
} else if (empty == 1) {
s = sdsnew(
"Hi Sam, this instance is empty or is using very little memory, "
"my issues detector can't be used in these conditions. "
"Please, leave for your mission on Earth and fill it with some data. "
"The new Sam and I will be back to our programming as soon as I "
"finished rebooting.\n");
} else {
s = sdsnew("Sam, I detected a few issues in this Redis instance memory implants:\n\n");
if (big_peak) {
s = sdscat(s," * Peak memory: In the past this instance used more than 150% the memory that is currently using. The allocator is normally not able to release memory after a peak, so you can expect to see a big fragmentation ratio, however this is actually harmless and is only due to the memory peak, and if the Redis instance Resident Set Size (RSS) is currently bigger than expected, the memory will be used as soon as you fill the Redis instance with more data. If the memory peak was only occasional and you want to try to reclaim memory, please try the MEMORY PURGE command, otherwise the only other option is to shutdown and restart the instance.\n\n");
}
if (high_frag) {
s = sdscatprintf(s," * High total RSS: This instance has a memory fragmentation and RSS overhead greater than 1.4 (this means that the Resident Set Size of the Redis process is much larger than the sum of the logical allocations Redis performed). This problem is usually due either to a large peak memory (check if there is a peak memory entry above in the report) or may result from a workload that causes the allocator to fragment memory a lot. If the problem is a large peak memory, then there is no issue. Otherwise, make sure you are using the Jemalloc allocator and not the default libc malloc. Note: The currently used allocator is \"%s\".\n\n", ZMALLOC_LIB);
}
if (high_alloc_frag) {
s = sdscatprintf(s," * High allocator fragmentation: This instance has an allocator external fragmentation greater than 1.1. This problem is usually due either to a large peak memory (check if there is a peak memory entry above in the report) or may result from a workload that causes the allocator to fragment memory a lot. You can try enabling 'activedefrag' config option.\n\n");
}
if (high_alloc_rss) {
s = sdscatprintf(s," * High allocator RSS overhead: This instance has an RSS memory overhead is greater than 1.1 (this means that the Resident Set Size of the allocator is much larger than the sum what the allocator actually holds). This problem is usually due to a large peak memory (check if there is a peak memory entry above in the report), you can try the MEMORY PURGE command to reclaim it.\n\n");
}
if (high_proc_rss) {
s = sdscatprintf(s," * High process RSS overhead: This instance has non-allocator RSS memory overhead is greater than 1.1 (this means that the Resident Set Size of the Redis process is much larger than the RSS the allocator holds). This problem may be due to Lua scripts or Modules.\n\n");
}
if (big_slave_buf) {
s = sdscat(s," * Big replica buffers: The replica output buffers in this instance are greater than 10MB for each replica (on average). This likely means that there is some replica instance that is struggling receiving data, either because it is too slow or because of networking issues. As a result, data piles on the master output buffers. Please try to identify what replica is not receiving data correctly and why. You can use the INFO output in order to check the replicas delays and the CLIENT LIST command to check the output buffers of each replica.\n\n");
}
if (big_client_buf) {
s = sdscat(s," * Big client buffers: The clients output buffers in this instance are greater than 200K per client (on average). This may result from different causes, like Pub/Sub clients subscribed to channels bot not receiving data fast enough, so that data piles on the Redis instance output buffer, or clients sending commands with large replies or very large sequences of commands in the same pipeline. Please use the CLIENT LIST command in order to investigate the issue if it causes problems in your instance, or to understand better why certain clients are using a big amount of memory.\n\n");
}
if (many_scripts) {
s = sdscat(s," * Many scripts: There seem to be many cached scripts in this instance (more than 1000). This may be because scripts are generated and `EVAL`ed, instead of being parameterized (with KEYS and ARGV), `SCRIPT LOAD`ed and `EVALSHA`ed. Unless `SCRIPT FLUSH` is called periodically, the scripts' caches may end up consuming most of your memory.\n\n");
}
s = sdscat(s,"I'm here to keep you safe, Sam. I want to help you.\n");
}
freeMemoryOverheadData(mh);
return s;
}
/* Set the object LRU/LFU depending on server.maxmemory_policy.
* The lfu_freq arg is only relevant if policy is MAXMEMORY_FLAG_LFU.
* The lru_idle and lru_clock args are only relevant if policy
* is MAXMEMORY_FLAG_LRU.
* Either or both of them may be <0, in that case, nothing is set. */
int objectSetLRUOrLFU(robj *val, long long lfu_freq, long long lru_idle,
long long lru_clock, int lru_multiplier) {
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
if (lfu_freq >= 0) {
serverAssert(lfu_freq <= 255);
val->lru = (LFUGetTimeInMinutes()<<8) | lfu_freq;
return 1;
}
} else if (lru_idle >= 0) {
/* Provided LRU idle time is in seconds. Scale
* according to the LRU clock resolution this Redis
* instance was compiled with (normally 1000 ms, so the
* below statement will expand to lru_idle*1000/1000. */
lru_idle = lru_idle*lru_multiplier/LRU_CLOCK_RESOLUTION;
long lru_abs = lru_clock - lru_idle; /* Absolute access time. */
/* If the LRU field underflows (since lru_clock is a wrapping clock),
* we need to make it positive again. This be handled by the unwrapping
* code in estimateObjectIdleTime. I.e. imagine a day when lru_clock
* wrap arounds (happens once in some 6 months), and becomes a low
* value, like 10, an lru_idle of 1000 should be near LRU_CLOCK_MAX. */
if (lru_abs < 0)
lru_abs += LRU_CLOCK_MAX;
val->lru = lru_abs;
return 1;
}
return 0;
}
/* ======================= The OBJECT and MEMORY commands =================== */
/* This is a helper function for the OBJECT command. We need to lookup keys
* without any modification of LRU or other parameters. */
robj *objectCommandLookup(client *c, robj *key) {
return lookupKeyReadWithFlags(c->db,key,LOOKUP_NOTOUCH|LOOKUP_NONOTIFY);
}
robj *objectCommandLookupOrReply(client *c, robj *key, robj *reply) {
robj *o = objectCommandLookup(c,key);
if (!o) addReplyOrErrorObject(c, reply);
return o;
}
/* Object command allows to inspect the internals of a Redis Object.
* Usage: OBJECT <refcount|encoding|idletime|freq> <key> */
void objectCommand(client *c) {
robj *o;
if (c->argc == 2 && !strcasecmp(c->argv[1]->ptr,"help")) {
const char *help[] = {
"ENCODING <key>",
" Return the kind of internal representation used in order to store the value",
" associated with a <key>.",
"FREQ <key>",
" Return the access frequency index of the <key>. The returned integer is",
" proportional to the logarithm of the recent access frequency of the key.",
"IDLETIME <key>",
" Return the idle time of the <key>, that is the approximated number of",
" seconds elapsed since the last access to the key.",
"REFCOUNT <key>",
" Return the number of references of the value associated with the specified",
" <key>.",
NULL
};
addReplyHelp(c, help);
} else if (!strcasecmp(c->argv[1]->ptr,"refcount") && c->argc == 3) {
if ((o = objectCommandLookupOrReply(c,c->argv[2],shared.null[c->resp]))
== NULL) return;
addReplyLongLong(c,o->refcount);
} else if (!strcasecmp(c->argv[1]->ptr,"encoding") && c->argc == 3) {
if ((o = objectCommandLookupOrReply(c,c->argv[2],shared.null[c->resp]))
== NULL) return;
addReplyBulkCString(c,strEncoding(o->encoding));
} else if (!strcasecmp(c->argv[1]->ptr,"idletime") && c->argc == 3) {
if ((o = objectCommandLookupOrReply(c,c->argv[2],shared.null[c->resp]))
== NULL) return;
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
addReplyError(c,"An LFU maxmemory policy is selected, idle time not tracked. Please note that when switching between policies at runtime LRU and LFU data will take some time to adjust.");
return;
}
addReplyLongLong(c,estimateObjectIdleTime(o)/1000);
} else if (!strcasecmp(c->argv[1]->ptr,"freq") && c->argc == 3) {
if ((o = objectCommandLookupOrReply(c,c->argv[2],shared.null[c->resp]))
== NULL) return;
if (!(server.maxmemory_policy & MAXMEMORY_FLAG_LFU)) {
addReplyError(c,"An LFU maxmemory policy is not selected, access frequency not tracked. Please note that when switching between policies at runtime LRU and LFU data will take some time to adjust.");
return;
}
/* LFUDecrAndReturn should be called
* in case of the key has not been accessed for a long time,
* because we update the access time only
* when the key is read or overwritten. */
addReplyLongLong(c,LFUDecrAndReturn(o));
} else {
addReplySubcommandSyntaxError(c);
}
}
/* The memory command will eventually be a complete interface for the
* memory introspection capabilities of Redis.
*
* Usage: MEMORY usage <key> */
void memoryCommand(client *c) {
if (!strcasecmp(c->argv[1]->ptr,"help") && c->argc == 2) {
const char *help[] = {
"DOCTOR",
" Return memory problems reports.",
"MALLOC-STATS",
" Return internal statistics report from the memory allocator.",
"PURGE",
" Attempt to purge dirty pages for reclamation by the allocator.",
"STATS",
" Return information about the memory usage of the server.",
"USAGE <key> [SAMPLES <count>]",
" Return memory in bytes used by <key> and its value. Nested values are",
" sampled up to <count> times (default: 5, 0 means sample all).",
NULL
};
addReplyHelp(c, help);
} else if (!strcasecmp(c->argv[1]->ptr,"usage") && c->argc >= 3) {
dictEntry *de;
long long samples = OBJ_COMPUTE_SIZE_DEF_SAMPLES;
for (int j = 3; j < c->argc; j++) {
if (!strcasecmp(c->argv[j]->ptr,"samples") &&
j+1 < c->argc)
{
if (getLongLongFromObjectOrReply(c,c->argv[j+1],&samples,NULL)
== C_ERR) return;
if (samples < 0) {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
if (samples == 0) samples = LLONG_MAX;
j++; /* skip option argument. */
} else {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
}
if ((de = dictFind(c->db->dict,c->argv[2]->ptr)) == NULL) {
addReplyNull(c);
return;
}
size_t usage = objectComputeSize(c->argv[2],dictGetVal(de),samples,c->db->id);
usage += sdsZmallocSize(dictGetKey(de));
usage += sizeof(dictEntry);
usage += dictMetadataSize(c->db->dict);
addReplyLongLong(c,usage);
} else if (!strcasecmp(c->argv[1]->ptr,"stats") && c->argc == 2) {
struct redisMemOverhead *mh = getMemoryOverheadData();
addReplyMapLen(c,27+mh->num_dbs);
addReplyBulkCString(c,"peak.allocated");
addReplyLongLong(c,mh->peak_allocated);
addReplyBulkCString(c,"total.allocated");
addReplyLongLong(c,mh->total_allocated);
addReplyBulkCString(c,"startup.allocated");
addReplyLongLong(c,mh->startup_allocated);
addReplyBulkCString(c,"replication.backlog");
addReplyLongLong(c,mh->repl_backlog);
addReplyBulkCString(c,"clients.slaves");
addReplyLongLong(c,mh->clients_slaves);
addReplyBulkCString(c,"clients.normal");
addReplyLongLong(c,mh->clients_normal);
addReplyBulkCString(c,"cluster.links");
addReplyLongLong(c,mh->cluster_links);
addReplyBulkCString(c,"aof.buffer");
addReplyLongLong(c,mh->aof_buffer);
addReplyBulkCString(c,"lua.caches");
addReplyLongLong(c,mh->lua_caches);
addReplyBulkCString(c,"functions.caches");
addReplyLongLong(c,mh->functions_caches);
for (size_t j = 0; j < mh->num_dbs; j++) {
char dbname[32];
snprintf(dbname,sizeof(dbname),"db.%zd",mh->db[j].dbid);
addReplyBulkCString(c,dbname);
addReplyMapLen(c,3);
addReplyBulkCString(c,"overhead.hashtable.main");
addReplyLongLong(c,mh->db[j].overhead_ht_main);
addReplyBulkCString(c,"overhead.hashtable.expires");
addReplyLongLong(c,mh->db[j].overhead_ht_expires);
addReplyBulkCString(c,"overhead.hashtable.slot-to-keys");
addReplyLongLong(c,mh->db[j].overhead_ht_slot_to_keys);
}
addReplyBulkCString(c,"overhead.total");
addReplyLongLong(c,mh->overhead_total);
addReplyBulkCString(c,"keys.count");
addReplyLongLong(c,mh->total_keys);
addReplyBulkCString(c,"keys.bytes-per-key");
addReplyLongLong(c,mh->bytes_per_key);
addReplyBulkCString(c,"dataset.bytes");
addReplyLongLong(c,mh->dataset);
addReplyBulkCString(c,"dataset.percentage");
addReplyDouble(c,mh->dataset_perc);
addReplyBulkCString(c,"peak.percentage");
addReplyDouble(c,mh->peak_perc);
addReplyBulkCString(c,"allocator.allocated");
addReplyLongLong(c,server.cron_malloc_stats.allocator_allocated);
addReplyBulkCString(c,"allocator.active");
addReplyLongLong(c,server.cron_malloc_stats.allocator_active);
addReplyBulkCString(c,"allocator.resident");
addReplyLongLong(c,server.cron_malloc_stats.allocator_resident);
addReplyBulkCString(c,"allocator-fragmentation.ratio");
addReplyDouble(c,mh->allocator_frag);
addReplyBulkCString(c,"allocator-fragmentation.bytes");
addReplyLongLong(c,mh->allocator_frag_bytes);
addReplyBulkCString(c,"allocator-rss.ratio");
addReplyDouble(c,mh->allocator_rss);
addReplyBulkCString(c,"allocator-rss.bytes");
addReplyLongLong(c,mh->allocator_rss_bytes);
addReplyBulkCString(c,"rss-overhead.ratio");
addReplyDouble(c,mh->rss_extra);
addReplyBulkCString(c,"rss-overhead.bytes");
addReplyLongLong(c,mh->rss_extra_bytes);
addReplyBulkCString(c,"fragmentation"); /* this is the total RSS overhead, including fragmentation */
addReplyDouble(c,mh->total_frag); /* it is kept here for backwards compatibility */
addReplyBulkCString(c,"fragmentation.bytes");
addReplyLongLong(c,mh->total_frag_bytes);
freeMemoryOverheadData(mh);
} else if (!strcasecmp(c->argv[1]->ptr,"malloc-stats") && c->argc == 2) {
#if defined(USE_JEMALLOC)
sds info = sdsempty();
je_malloc_stats_print(inputCatSds, &info, NULL);
addReplyVerbatim(c,info,sdslen(info),"txt");
sdsfree(info);
#else
addReplyBulkCString(c,"Stats not supported for the current allocator");
#endif
} else if (!strcasecmp(c->argv[1]->ptr,"doctor") && c->argc == 2) {
sds report = getMemoryDoctorReport();
addReplyVerbatim(c,report,sdslen(report),"txt");
sdsfree(report);
} else if (!strcasecmp(c->argv[1]->ptr,"purge") && c->argc == 2) {
if (jemalloc_purge() == 0)
addReply(c, shared.ok);
else
addReplyError(c, "Error purging dirty pages");
} else {
addReplySubcommandSyntaxError(c);
}
}
|