1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
|
/*
ctdb ip takeover code
Copyright (C) Ronnie Sahlberg 2007
Copyright (C) Andrew Tridgell 2007
Copyright (C) Martin Schwenke 2011
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "replace.h"
#include "system/network.h"
#include "lib/util/debug.h"
#include "common/logging.h"
#include "protocol/protocol_util.h"
#include "server/ipalloc_private.h"
/*
* This is the length of the longtest common prefix between the IPs.
* It is calculated by XOR-ing the 2 IPs together and counting the
* number of leading zeroes. The implementation means that all
* addresses end up being 128 bits long.
*
* FIXME? Should we consider IPv4 and IPv6 separately given that the
* 12 bytes of 0 prefix padding will hurt the algorithm if there are
* lots of nodes and IP addresses?
*/
static uint32_t ip_distance(ctdb_sock_addr *ip1, ctdb_sock_addr *ip2)
{
uint32_t ip1_k[IP_KEYLEN];
uint32_t *t;
int i;
uint32_t x;
uint32_t distance = 0;
memcpy(ip1_k, ip_key(ip1), sizeof(ip1_k));
t = ip_key(ip2);
for (i=0; i<IP_KEYLEN; i++) {
x = ip1_k[i] ^ t[i];
if (x == 0) {
distance += 32;
} else {
/* Count number of leading zeroes.
* FIXME? This could be optimised...
*/
while ((x & ((uint32_t)1 << 31)) == 0) {
x <<= 1;
distance += 1;
}
}
}
return distance;
}
/* Calculate the IP distance for the given IP relative to IPs on the
given node. The ips argument is generally the all_ips variable
used in the main part of the algorithm.
*/
static uint32_t ip_distance_2_sum(ctdb_sock_addr *ip,
struct public_ip_list *ips,
unsigned int pnn)
{
struct public_ip_list *t;
uint32_t d;
uint32_t sum = 0;
for (t = ips; t != NULL; t = t->next) {
if (t->pnn != pnn) {
continue;
}
/* Optimisation: We never calculate the distance
* between an address and itself. This allows us to
* calculate the effect of removing an address from a
* node by simply calculating the distance between
* that address and all of the exitsing addresses.
* Moreover, we assume that we're only ever dealing
* with addresses from all_ips so we can identify an
* address via a pointer rather than doing a more
* expensive address comparison. */
if (&(t->addr) == ip) {
continue;
}
d = ip_distance(ip, &(t->addr));
sum += d * d; /* Cheaper than pulling in math.h :-) */
}
return sum;
}
/* Return the LCP2 imbalance metric for addresses currently assigned
to the given node.
*/
static uint32_t lcp2_imbalance(struct public_ip_list * all_ips,
unsigned int pnn)
{
struct public_ip_list *t;
uint32_t imbalance = 0;
for (t = all_ips; t != NULL; t = t->next) {
if (t->pnn != pnn) {
continue;
}
/* Pass the rest of the IPs rather than the whole
all_ips input list.
*/
imbalance += ip_distance_2_sum(&(t->addr), t->next, pnn);
}
return imbalance;
}
static bool lcp2_init(struct ipalloc_state *ipalloc_state,
uint32_t **lcp2_imbalances,
bool **rebalance_candidates)
{
unsigned int i, numnodes;
struct public_ip_list *t;
numnodes = ipalloc_state->num;
*rebalance_candidates = talloc_array(ipalloc_state, bool, numnodes);
if (*rebalance_candidates == NULL) {
DEBUG(DEBUG_ERR, (__location__ " out of memory\n"));
return false;
}
*lcp2_imbalances = talloc_array(ipalloc_state, uint32_t, numnodes);
if (*lcp2_imbalances == NULL) {
DEBUG(DEBUG_ERR, (__location__ " out of memory\n"));
return false;
}
for (i=0; i<numnodes; i++) {
(*lcp2_imbalances)[i] =
lcp2_imbalance(ipalloc_state->all_ips, i);
/* First step: assume all nodes are candidates */
(*rebalance_candidates)[i] = true;
}
/* 2nd step: if a node has IPs assigned then it must have been
* healthy before, so we remove it from consideration. This
* is overkill but is all we have because we don't maintain
* state between takeover runs. An alternative would be to
* keep state and invalidate it every time the recovery master
* changes.
*/
for (t = ipalloc_state->all_ips; t != NULL; t = t->next) {
if (t->pnn != CTDB_UNKNOWN_PNN) {
(*rebalance_candidates)[t->pnn] = false;
}
}
/* 3rd step: if a node is forced to re-balance then
we allow failback onto the node */
if (ipalloc_state->force_rebalance_nodes == NULL) {
return true;
}
for (i = 0;
i < talloc_array_length(ipalloc_state->force_rebalance_nodes);
i++) {
uint32_t pnn = ipalloc_state->force_rebalance_nodes[i];
if (pnn >= numnodes) {
DEBUG(DEBUG_ERR,
(__location__ "unknown node %u\n", pnn));
continue;
}
DEBUG(DEBUG_NOTICE,
("Forcing rebalancing of IPs to node %u\n", pnn));
(*rebalance_candidates)[pnn] = true;
}
return true;
}
/* Allocate any unassigned addresses using the LCP2 algorithm to find
* the IP/node combination that will cost the least.
*/
static void lcp2_allocate_unassigned(struct ipalloc_state *ipalloc_state,
uint32_t *lcp2_imbalances)
{
struct public_ip_list *t;
unsigned int dstnode, numnodes;
unsigned int minnode;
uint32_t mindsum, dstdsum, dstimbl;
uint32_t minimbl = 0;
struct public_ip_list *minip;
bool should_loop = true;
bool have_unassigned = true;
numnodes = ipalloc_state->num;
while (have_unassigned && should_loop) {
should_loop = false;
DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
DEBUG(DEBUG_DEBUG,(" CONSIDERING MOVES (UNASSIGNED)\n"));
minnode = CTDB_UNKNOWN_PNN;
mindsum = 0;
minip = NULL;
/* loop over each unassigned ip. */
for (t = ipalloc_state->all_ips; t != NULL ; t = t->next) {
if (t->pnn != CTDB_UNKNOWN_PNN) {
continue;
}
for (dstnode = 0; dstnode < numnodes; dstnode++) {
/* only check nodes that can actually takeover this ip */
if (!can_node_takeover_ip(ipalloc_state,
dstnode,
t)) {
/* no it couldnt so skip to the next node */
continue;
}
dstdsum = ip_distance_2_sum(&(t->addr),
ipalloc_state->all_ips,
dstnode);
dstimbl = lcp2_imbalances[dstnode] + dstdsum;
DEBUG(DEBUG_DEBUG,
(" %s -> %d [+%d]\n",
ctdb_sock_addr_to_string(ipalloc_state,
&(t->addr),
false),
dstnode,
dstimbl - lcp2_imbalances[dstnode]));
if (minnode == CTDB_UNKNOWN_PNN ||
dstdsum < mindsum) {
minnode = dstnode;
minimbl = dstimbl;
mindsum = dstdsum;
minip = t;
should_loop = true;
}
}
}
DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
/* If we found one then assign it to the given node. */
if (minnode != CTDB_UNKNOWN_PNN) {
minip->pnn = minnode;
lcp2_imbalances[minnode] = minimbl;
DEBUG(DEBUG_INFO,(" %s -> %d [+%d]\n",
ctdb_sock_addr_to_string(
ipalloc_state,
&(minip->addr), false),
minnode,
mindsum));
}
/* There might be a better way but at least this is clear. */
have_unassigned = false;
for (t = ipalloc_state->all_ips; t != NULL; t = t->next) {
if (t->pnn == CTDB_UNKNOWN_PNN) {
have_unassigned = true;
}
}
}
/* We know if we have an unassigned addresses so we might as
* well optimise.
*/
if (have_unassigned) {
for (t = ipalloc_state->all_ips; t != NULL; t = t->next) {
if (t->pnn == CTDB_UNKNOWN_PNN) {
DEBUG(DEBUG_WARNING,
("Failed to find node to cover ip %s\n",
ctdb_sock_addr_to_string(ipalloc_state,
&t->addr,
false)));
}
}
}
}
/* LCP2 algorithm for rebalancing the cluster. Given a candidate node
* to move IPs from, determines the best IP/destination node
* combination to move from the source node.
*/
static bool lcp2_failback_candidate(struct ipalloc_state *ipalloc_state,
unsigned int srcnode,
uint32_t *lcp2_imbalances,
bool *rebalance_candidates)
{
unsigned int dstnode, mindstnode, numnodes;
uint32_t srcdsum, dstimbl, dstdsum;
uint32_t minsrcimbl, mindstimbl;
struct public_ip_list *minip;
struct public_ip_list *t;
/* Find an IP and destination node that best reduces imbalance. */
minip = NULL;
minsrcimbl = 0;
mindstnode = CTDB_UNKNOWN_PNN;
mindstimbl = 0;
numnodes = ipalloc_state->num;
DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
DEBUG(DEBUG_DEBUG,(" CONSIDERING MOVES FROM %d [%d]\n",
srcnode, lcp2_imbalances[srcnode]));
for (t = ipalloc_state->all_ips; t != NULL; t = t->next) {
uint32_t srcimbl;
/* Only consider addresses on srcnode. */
if (t->pnn != srcnode) {
continue;
}
/* What is this IP address costing the source node? */
srcdsum = ip_distance_2_sum(&(t->addr),
ipalloc_state->all_ips,
srcnode);
srcimbl = lcp2_imbalances[srcnode] - srcdsum;
/* Consider this IP address would cost each potential
* destination node. Destination nodes are limited to
* those that are newly healthy, since we don't want
* to do gratuitous failover of IPs just to make minor
* balance improvements.
*/
for (dstnode = 0; dstnode < numnodes; dstnode++) {
if (!rebalance_candidates[dstnode]) {
continue;
}
/* only check nodes that can actually takeover this ip */
if (!can_node_takeover_ip(ipalloc_state, dstnode,
t)) {
/* no it couldnt so skip to the next node */
continue;
}
dstdsum = ip_distance_2_sum(&(t->addr),
ipalloc_state->all_ips,
dstnode);
dstimbl = lcp2_imbalances[dstnode] + dstdsum;
DEBUG(DEBUG_DEBUG,(" %d [%d] -> %s -> %d [+%d]\n",
srcnode, -srcdsum,
ctdb_sock_addr_to_string(
ipalloc_state,
&(t->addr), false),
dstnode, dstdsum));
if ((dstimbl < lcp2_imbalances[srcnode]) &&
(dstdsum < srcdsum) && \
((mindstnode == CTDB_UNKNOWN_PNN) || \
((srcimbl + dstimbl) < (minsrcimbl + mindstimbl)))) {
minip = t;
minsrcimbl = srcimbl;
mindstnode = dstnode;
mindstimbl = dstimbl;
}
}
}
DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
if (mindstnode != CTDB_UNKNOWN_PNN) {
/* We found a move that makes things better... */
DEBUG(DEBUG_INFO,
("%d [%d] -> %s -> %d [+%d]\n",
srcnode, minsrcimbl - lcp2_imbalances[srcnode],
ctdb_sock_addr_to_string(ipalloc_state,
&(minip->addr), false),
mindstnode, mindstimbl - lcp2_imbalances[mindstnode]));
lcp2_imbalances[srcnode] = minsrcimbl;
lcp2_imbalances[mindstnode] = mindstimbl;
minip->pnn = mindstnode;
return true;
}
return false;
}
struct lcp2_imbalance_pnn {
uint32_t imbalance;
unsigned int pnn;
};
static int lcp2_cmp_imbalance_pnn(const void * a, const void * b)
{
const struct lcp2_imbalance_pnn * lipa = (const struct lcp2_imbalance_pnn *) a;
const struct lcp2_imbalance_pnn * lipb = (const struct lcp2_imbalance_pnn *) b;
if (lipa->imbalance > lipb->imbalance) {
return -1;
} else if (lipa->imbalance == lipb->imbalance) {
return 0;
} else {
return 1;
}
}
/* LCP2 algorithm for rebalancing the cluster. This finds the source
* node with the highest LCP2 imbalance, and then determines the best
* IP/destination node combination to move from the source node.
*/
static void lcp2_failback(struct ipalloc_state *ipalloc_state,
uint32_t *lcp2_imbalances,
bool *rebalance_candidates)
{
int i, numnodes;
struct lcp2_imbalance_pnn * lips;
bool again;
numnodes = ipalloc_state->num;
try_again:
/* Put the imbalances and nodes into an array, sort them and
* iterate through candidates. Usually the 1st one will be
* used, so this doesn't cost much...
*/
DEBUG(DEBUG_DEBUG,("+++++++++++++++++++++++++++++++++++++++++\n"));
DEBUG(DEBUG_DEBUG,("Selecting most imbalanced node from:\n"));
lips = talloc_array(ipalloc_state, struct lcp2_imbalance_pnn, numnodes);
for (i = 0; i < numnodes; i++) {
lips[i].imbalance = lcp2_imbalances[i];
lips[i].pnn = i;
DEBUG(DEBUG_DEBUG,(" %d [%d]\n", i, lcp2_imbalances[i]));
}
qsort(lips, numnodes, sizeof(struct lcp2_imbalance_pnn),
lcp2_cmp_imbalance_pnn);
again = false;
for (i = 0; i < numnodes; i++) {
/* This means that all nodes had 0 or 1 addresses, so
* can't be imbalanced.
*/
if (lips[i].imbalance == 0) {
break;
}
if (lcp2_failback_candidate(ipalloc_state,
lips[i].pnn,
lcp2_imbalances,
rebalance_candidates)) {
again = true;
break;
}
}
talloc_free(lips);
if (again) {
goto try_again;
}
}
bool ipalloc_lcp2(struct ipalloc_state *ipalloc_state)
{
uint32_t *lcp2_imbalances;
bool *rebalance_candidates;
int numnodes, i;
bool have_rebalance_candidates;
bool ret = true;
unassign_unsuitable_ips(ipalloc_state);
if (!lcp2_init(ipalloc_state,
&lcp2_imbalances, &rebalance_candidates)) {
ret = false;
goto finished;
}
lcp2_allocate_unassigned(ipalloc_state, lcp2_imbalances);
/* If we don't want IPs to fail back then don't rebalance IPs. */
if (ipalloc_state->no_ip_failback) {
goto finished;
}
/* It is only worth continuing if we have suitable target
* nodes to transfer IPs to. This check is much cheaper than
* continuing on...
*/
numnodes = ipalloc_state->num;
have_rebalance_candidates = false;
for (i=0; i<numnodes; i++) {
if (rebalance_candidates[i]) {
have_rebalance_candidates = true;
break;
}
}
if (!have_rebalance_candidates) {
goto finished;
}
/* Now, try to make sure the ip adresses are evenly distributed
across the nodes.
*/
lcp2_failback(ipalloc_state, lcp2_imbalances, rebalance_candidates);
finished:
return ret;
}
|