diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-05 17:28:19 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-05 17:28:19 +0000 |
commit | 18657a960e125336f704ea058e25c27bd3900dcb (patch) | |
tree | 17b438b680ed45a996d7b59951e6aa34023783f2 /ext/fts2/fts2.c | |
parent | Initial commit. (diff) | |
download | sqlite3-18657a960e125336f704ea058e25c27bd3900dcb.tar.xz sqlite3-18657a960e125336f704ea058e25c27bd3900dcb.zip |
Adding upstream version 3.40.1.upstream/3.40.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ext/fts2/fts2.c')
-rw-r--r-- | ext/fts2/fts2.c | 6860 |
1 files changed, 6860 insertions, 0 deletions
diff --git a/ext/fts2/fts2.c b/ext/fts2/fts2.c new file mode 100644 index 0000000..0405fb7 --- /dev/null +++ b/ext/fts2/fts2.c @@ -0,0 +1,6860 @@ +/* fts2 has a design flaw which can lead to database corruption (see +** below). It is recommended not to use it any longer, instead use +** fts3 (or higher). If you believe that your use of fts2 is safe, +** add -DSQLITE_ENABLE_BROKEN_FTS2=1 to your CFLAGS. +*/ +#if (!defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)) \ + && !defined(SQLITE_ENABLE_BROKEN_FTS2) +#error fts2 has a design flaw and has been deprecated. +#endif +/* The flaw is that fts2 uses the content table's unaliased rowid as +** the unique docid. fts2 embeds the rowid in the index it builds, +** and expects the rowid to not change. The SQLite VACUUM operation +** will renumber such rowids, thereby breaking fts2. If you are using +** fts2 in a system which has disabled VACUUM, then you can continue +** to use it safely. Note that PRAGMA auto_vacuum does NOT disable +** VACUUM, though systems using auto_vacuum are unlikely to invoke +** VACUUM. +** +** Unlike fts1, which is safe across VACUUM if you never delete +** documents, fts2 has a second exposure to this flaw, in the segments +** table. So fts2 should be considered unsafe across VACUUM in all +** cases. +*/ + +/* +** 2006 Oct 10 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This is an SQLite module implementing full-text search. +*/ + +/* +** The code in this file is only compiled if: +** +** * The FTS2 module is being built as an extension +** (in which case SQLITE_CORE is not defined), or +** +** * The FTS2 module is being built into the core of +** SQLite (in which case SQLITE_ENABLE_FTS2 is defined). +*/ + +/* TODO(shess) Consider exporting this comment to an HTML file or the +** wiki. +*/ +/* The full-text index is stored in a series of b+tree (-like) +** structures called segments which map terms to doclists. The +** structures are like b+trees in layout, but are constructed from the +** bottom up in optimal fashion and are not updatable. Since trees +** are built from the bottom up, things will be described from the +** bottom up. +** +** +**** Varints **** +** The basic unit of encoding is a variable-length integer called a +** varint. We encode variable-length integers in little-endian order +** using seven bits * per byte as follows: +** +** KEY: +** A = 0xxxxxxx 7 bits of data and one flag bit +** B = 1xxxxxxx 7 bits of data and one flag bit +** +** 7 bits - A +** 14 bits - BA +** 21 bits - BBA +** and so on. +** +** This is identical to how sqlite encodes varints (see util.c). +** +** +**** Document lists **** +** A doclist (document list) holds a docid-sorted list of hits for a +** given term. Doclists hold docids, and can optionally associate +** token positions and offsets with docids. +** +** A DL_POSITIONS_OFFSETS doclist is stored like this: +** +** array { +** varint docid; +** array { (position list for column 0) +** varint position; (delta from previous position plus POS_BASE) +** varint startOffset; (delta from previous startOffset) +** varint endOffset; (delta from startOffset) +** } +** array { +** varint POS_COLUMN; (marks start of position list for new column) +** varint column; (index of new column) +** array { +** varint position; (delta from previous position plus POS_BASE) +** varint startOffset;(delta from previous startOffset) +** varint endOffset; (delta from startOffset) +** } +** } +** varint POS_END; (marks end of positions for this document. +** } +** +** Here, array { X } means zero or more occurrences of X, adjacent in +** memory. A "position" is an index of a token in the token stream +** generated by the tokenizer, while an "offset" is a byte offset, +** both based at 0. Note that POS_END and POS_COLUMN occur in the +** same logical place as the position element, and act as sentinals +** ending a position list array. +** +** A DL_POSITIONS doclist omits the startOffset and endOffset +** information. A DL_DOCIDS doclist omits both the position and +** offset information, becoming an array of varint-encoded docids. +** +** On-disk data is stored as type DL_DEFAULT, so we don't serialize +** the type. Due to how deletion is implemented in the segmentation +** system, on-disk doclists MUST store at least positions. +** +** +**** Segment leaf nodes **** +** Segment leaf nodes store terms and doclists, ordered by term. Leaf +** nodes are written using LeafWriter, and read using LeafReader (to +** iterate through a single leaf node's data) and LeavesReader (to +** iterate through a segment's entire leaf layer). Leaf nodes have +** the format: +** +** varint iHeight; (height from leaf level, always 0) +** varint nTerm; (length of first term) +** char pTerm[nTerm]; (content of first term) +** varint nDoclist; (length of term's associated doclist) +** char pDoclist[nDoclist]; (content of doclist) +** array { +** (further terms are delta-encoded) +** varint nPrefix; (length of prefix shared with previous term) +** varint nSuffix; (length of unshared suffix) +** char pTermSuffix[nSuffix];(unshared suffix of next term) +** varint nDoclist; (length of term's associated doclist) +** char pDoclist[nDoclist]; (content of doclist) +** } +** +** Here, array { X } means zero or more occurrences of X, adjacent in +** memory. +** +** Leaf nodes are broken into blocks which are stored contiguously in +** the %_segments table in sorted order. This means that when the end +** of a node is reached, the next term is in the node with the next +** greater node id. +** +** New data is spilled to a new leaf node when the current node +** exceeds LEAF_MAX bytes (default 2048). New data which itself is +** larger than STANDALONE_MIN (default 1024) is placed in a standalone +** node (a leaf node with a single term and doclist). The goal of +** these settings is to pack together groups of small doclists while +** making it efficient to directly access large doclists. The +** assumption is that large doclists represent terms which are more +** likely to be query targets. +** +** TODO(shess) It may be useful for blocking decisions to be more +** dynamic. For instance, it may make more sense to have a 2.5k leaf +** node rather than splitting into 2k and .5k nodes. My intuition is +** that this might extend through 2x or 4x the pagesize. +** +** +**** Segment interior nodes **** +** Segment interior nodes store blockids for subtree nodes and terms +** to describe what data is stored by the each subtree. Interior +** nodes are written using InteriorWriter, and read using +** InteriorReader. InteriorWriters are created as needed when +** SegmentWriter creates new leaf nodes, or when an interior node +** itself grows too big and must be split. The format of interior +** nodes: +** +** varint iHeight; (height from leaf level, always >0) +** varint iBlockid; (block id of node's leftmost subtree) +** optional { +** varint nTerm; (length of first term) +** char pTerm[nTerm]; (content of first term) +** array { +** (further terms are delta-encoded) +** varint nPrefix; (length of shared prefix with previous term) +** varint nSuffix; (length of unshared suffix) +** char pTermSuffix[nSuffix]; (unshared suffix of next term) +** } +** } +** +** Here, optional { X } means an optional element, while array { X } +** means zero or more occurrences of X, adjacent in memory. +** +** An interior node encodes n terms separating n+1 subtrees. The +** subtree blocks are contiguous, so only the first subtree's blockid +** is encoded. The subtree at iBlockid will contain all terms less +** than the first term encoded (or all terms if no term is encoded). +** Otherwise, for terms greater than or equal to pTerm[i] but less +** than pTerm[i+1], the subtree for that term will be rooted at +** iBlockid+i. Interior nodes only store enough term data to +** distinguish adjacent children (if the rightmost term of the left +** child is "something", and the leftmost term of the right child is +** "wicked", only "w" is stored). +** +** New data is spilled to a new interior node at the same height when +** the current node exceeds INTERIOR_MAX bytes (default 2048). +** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing +** interior nodes and making the tree too skinny. The interior nodes +** at a given height are naturally tracked by interior nodes at +** height+1, and so on. +** +** +**** Segment directory **** +** The segment directory in table %_segdir stores meta-information for +** merging and deleting segments, and also the root node of the +** segment's tree. +** +** The root node is the top node of the segment's tree after encoding +** the entire segment, restricted to ROOT_MAX bytes (default 1024). +** This could be either a leaf node or an interior node. If the top +** node requires more than ROOT_MAX bytes, it is flushed to %_segments +** and a new root interior node is generated (which should always fit +** within ROOT_MAX because it only needs space for 2 varints, the +** height and the blockid of the previous root). +** +** The meta-information in the segment directory is: +** level - segment level (see below) +** idx - index within level +** - (level,idx uniquely identify a segment) +** start_block - first leaf node +** leaves_end_block - last leaf node +** end_block - last block (including interior nodes) +** root - contents of root node +** +** If the root node is a leaf node, then start_block, +** leaves_end_block, and end_block are all 0. +** +** +**** Segment merging **** +** To amortize update costs, segments are groups into levels and +** merged in matches. Each increase in level represents exponentially +** more documents. +** +** New documents (actually, document updates) are tokenized and +** written individually (using LeafWriter) to a level 0 segment, with +** incrementing idx. When idx reaches MERGE_COUNT (default 16), all +** level 0 segments are merged into a single level 1 segment. Level 1 +** is populated like level 0, and eventually MERGE_COUNT level 1 +** segments are merged to a single level 2 segment (representing +** MERGE_COUNT^2 updates), and so on. +** +** A segment merge traverses all segments at a given level in +** parallel, performing a straightforward sorted merge. Since segment +** leaf nodes are written in to the %_segments table in order, this +** merge traverses the underlying sqlite disk structures efficiently. +** After the merge, all segment blocks from the merged level are +** deleted. +** +** MERGE_COUNT controls how often we merge segments. 16 seems to be +** somewhat of a sweet spot for insertion performance. 32 and 64 show +** very similar performance numbers to 16 on insertion, though they're +** a tiny bit slower (perhaps due to more overhead in merge-time +** sorting). 8 is about 20% slower than 16, 4 about 50% slower than +** 16, 2 about 66% slower than 16. +** +** At query time, high MERGE_COUNT increases the number of segments +** which need to be scanned and merged. For instance, with 100k docs +** inserted: +** +** MERGE_COUNT segments +** 16 25 +** 8 12 +** 4 10 +** 2 6 +** +** This appears to have only a moderate impact on queries for very +** frequent terms (which are somewhat dominated by segment merge +** costs), and infrequent and non-existent terms still seem to be fast +** even with many segments. +** +** TODO(shess) That said, it would be nice to have a better query-side +** argument for MERGE_COUNT of 16. Also, it is possible/likely that +** optimizations to things like doclist merging will swing the sweet +** spot around. +** +** +** +**** Handling of deletions and updates **** +** Since we're using a segmented structure, with no docid-oriented +** index into the term index, we clearly cannot simply update the term +** index when a document is deleted or updated. For deletions, we +** write an empty doclist (varint(docid) varint(POS_END)), for updates +** we simply write the new doclist. Segment merges overwrite older +** data for a particular docid with newer data, so deletes or updates +** will eventually overtake the earlier data and knock it out. The +** query logic likewise merges doclists so that newer data knocks out +** older data. +** +** TODO(shess) Provide a VACUUM type operation to clear out all +** deletions and duplications. This would basically be a forced merge +** into a single segment. +*/ + +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) + +#if defined(SQLITE_ENABLE_FTS2) && !defined(SQLITE_CORE) +# define SQLITE_CORE 1 +#endif + +#include <assert.h> +#include <stdlib.h> +#include <stdio.h> +#include <string.h> +#include "fts2.h" +#include "fts2_hash.h" +#include "fts2_tokenizer.h" +#include "sqlite3.h" +#include "sqlite3ext.h" +SQLITE_EXTENSION_INIT1 + + +/* TODO(shess) MAN, this thing needs some refactoring. At minimum, it +** would be nice to order the file better, perhaps something along the +** lines of: +** +** - utility functions +** - table setup functions +** - table update functions +** - table query functions +** +** Put the query functions last because they're likely to reference +** typedefs or functions from the table update section. +*/ + +#if 0 +# define TRACE(A) printf A; fflush(stdout) +#else +# define TRACE(A) +#endif + +/* It is not safe to call isspace(), tolower(), or isalnum() on +** hi-bit-set characters. This is the same solution used in the +** tokenizer. +*/ +/* TODO(shess) The snippet-generation code should be using the +** tokenizer-generated tokens rather than doing its own local +** tokenization. +*/ +/* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */ +static int safe_isspace(char c){ + return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f'; +} +static int safe_tolower(char c){ + return (c>='A' && c<='Z') ? (c - 'A' + 'a') : c; +} +static int safe_isalnum(char c){ + return (c>='0' && c<='9') || (c>='A' && c<='Z') || (c>='a' && c<='z'); +} + +typedef enum DocListType { + DL_DOCIDS, /* docids only */ + DL_POSITIONS, /* docids + positions */ + DL_POSITIONS_OFFSETS /* docids + positions + offsets */ +} DocListType; + +/* +** By default, only positions and not offsets are stored in the doclists. +** To change this so that offsets are stored too, compile with +** +** -DDL_DEFAULT=DL_POSITIONS_OFFSETS +** +** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted +** into (no deletes or updates). +*/ +#ifndef DL_DEFAULT +# define DL_DEFAULT DL_POSITIONS +#endif + +enum { + POS_END = 0, /* end of this position list */ + POS_COLUMN, /* followed by new column number */ + POS_BASE +}; + +/* MERGE_COUNT controls how often we merge segments (see comment at +** top of file). +*/ +#define MERGE_COUNT 16 + +/* utility functions */ + +/* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single +** record to prevent errors of the form: +** +** my_function(SomeType *b){ +** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b) +** } +*/ +/* TODO(shess) Obvious candidates for a header file. */ +#define CLEAR(b) memset(b, '\0', sizeof(*(b))) + +#ifndef NDEBUG +# define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b))) +#else +# define SCRAMBLE(b) +#endif + +/* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */ +#define VARINT_MAX 10 + +/* Write a 64-bit variable-length integer to memory starting at p[0]. + * The length of data written will be between 1 and VARINT_MAX bytes. + * The number of bytes written is returned. */ +static int putVarint(char *p, sqlite_int64 v){ + unsigned char *q = (unsigned char *) p; + sqlite_uint64 vu = v; + do{ + *q++ = (unsigned char) ((vu & 0x7f) | 0x80); + vu >>= 7; + }while( vu!=0 ); + q[-1] &= 0x7f; /* turn off high bit in final byte */ + assert( q - (unsigned char *)p <= VARINT_MAX ); + return (int) (q - (unsigned char *)p); +} + +/* Read a 64-bit variable-length integer from memory starting at p[0]. + * Return the number of bytes read, or 0 on error. + * The value is stored in *v. */ +static int getVarint(const char *p, sqlite_int64 *v){ + const unsigned char *q = (const unsigned char *) p; + sqlite_uint64 x = 0, y = 1; + while( (*q & 0x80) == 0x80 ){ + x += y * (*q++ & 0x7f); + y <<= 7; + if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */ + assert( 0 ); + return 0; + } + } + x += y * (*q++); + *v = (sqlite_int64) x; + return (int) (q - (unsigned char *)p); +} + +static int getVarint32(const char *p, int *pi){ + sqlite_int64 i; + int ret = getVarint(p, &i); + *pi = (int) i; + assert( *pi==i ); + return ret; +} + +/*******************************************************************/ +/* DataBuffer is used to collect data into a buffer in piecemeal +** fashion. It implements the usual distinction between amount of +** data currently stored (nData) and buffer capacity (nCapacity). +** +** dataBufferInit - create a buffer with given initial capacity. +** dataBufferReset - forget buffer's data, retaining capacity. +** dataBufferDestroy - free buffer's data. +** dataBufferSwap - swap contents of two buffers. +** dataBufferExpand - expand capacity without adding data. +** dataBufferAppend - append data. +** dataBufferAppend2 - append two pieces of data at once. +** dataBufferReplace - replace buffer's data. +*/ +typedef struct DataBuffer { + char *pData; /* Pointer to malloc'ed buffer. */ + int nCapacity; /* Size of pData buffer. */ + int nData; /* End of data loaded into pData. */ +} DataBuffer; + +static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){ + assert( nCapacity>=0 ); + pBuffer->nData = 0; + pBuffer->nCapacity = nCapacity; + pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity); +} +static void dataBufferReset(DataBuffer *pBuffer){ + pBuffer->nData = 0; +} +static void dataBufferDestroy(DataBuffer *pBuffer){ + if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData); + SCRAMBLE(pBuffer); +} +static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){ + DataBuffer tmp = *pBuffer1; + *pBuffer1 = *pBuffer2; + *pBuffer2 = tmp; +} +static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){ + assert( nAddCapacity>0 ); + /* TODO(shess) Consider expanding more aggressively. Note that the + ** underlying malloc implementation may take care of such things for + ** us already. + */ + if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){ + pBuffer->nCapacity = pBuffer->nData+nAddCapacity; + pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity); + } +} +static void dataBufferAppend(DataBuffer *pBuffer, + const char *pSource, int nSource){ + assert( nSource>0 && pSource!=NULL ); + dataBufferExpand(pBuffer, nSource); + memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource); + pBuffer->nData += nSource; +} +static void dataBufferAppend2(DataBuffer *pBuffer, + const char *pSource1, int nSource1, + const char *pSource2, int nSource2){ + assert( nSource1>0 && pSource1!=NULL ); + assert( nSource2>0 && pSource2!=NULL ); + dataBufferExpand(pBuffer, nSource1+nSource2); + memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1); + memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2); + pBuffer->nData += nSource1+nSource2; +} +static void dataBufferReplace(DataBuffer *pBuffer, + const char *pSource, int nSource){ + dataBufferReset(pBuffer); + dataBufferAppend(pBuffer, pSource, nSource); +} + +/* StringBuffer is a null-terminated version of DataBuffer. */ +typedef struct StringBuffer { + DataBuffer b; /* Includes null terminator. */ +} StringBuffer; + +static void initStringBuffer(StringBuffer *sb){ + dataBufferInit(&sb->b, 100); + dataBufferReplace(&sb->b, "", 1); +} +static int stringBufferLength(StringBuffer *sb){ + return sb->b.nData-1; +} +static char *stringBufferData(StringBuffer *sb){ + return sb->b.pData; +} +static void stringBufferDestroy(StringBuffer *sb){ + dataBufferDestroy(&sb->b); +} + +static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){ + assert( sb->b.nData>0 ); + if( nFrom>0 ){ + sb->b.nData--; + dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1); + } +} +static void append(StringBuffer *sb, const char *zFrom){ + nappend(sb, zFrom, strlen(zFrom)); +} + +/* Append a list of strings separated by commas. */ +static void appendList(StringBuffer *sb, int nString, char **azString){ + int i; + for(i=0; i<nString; ++i){ + if( i>0 ) append(sb, ", "); + append(sb, azString[i]); + } +} + +static int endsInWhiteSpace(StringBuffer *p){ + return stringBufferLength(p)>0 && + safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]); +} + +/* If the StringBuffer ends in something other than white space, add a +** single space character to the end. +*/ +static void appendWhiteSpace(StringBuffer *p){ + if( stringBufferLength(p)==0 ) return; + if( !endsInWhiteSpace(p) ) append(p, " "); +} + +/* Remove white space from the end of the StringBuffer */ +static void trimWhiteSpace(StringBuffer *p){ + while( endsInWhiteSpace(p) ){ + p->b.pData[--p->b.nData-1] = '\0'; + } +} + +/*******************************************************************/ +/* DLReader is used to read document elements from a doclist. The +** current docid is cached, so dlrDocid() is fast. DLReader does not +** own the doclist buffer. +** +** dlrAtEnd - true if there's no more data to read. +** dlrDocid - docid of current document. +** dlrDocData - doclist data for current document (including docid). +** dlrDocDataBytes - length of same. +** dlrAllDataBytes - length of all remaining data. +** dlrPosData - position data for current document. +** dlrPosDataLen - length of pos data for current document (incl POS_END). +** dlrStep - step to current document. +** dlrInit - initial for doclist of given type against given data. +** dlrDestroy - clean up. +** +** Expected usage is something like: +** +** DLReader reader; +** dlrInit(&reader, pData, nData); +** while( !dlrAtEnd(&reader) ){ +** // calls to dlrDocid() and kin. +** dlrStep(&reader); +** } +** dlrDestroy(&reader); +*/ +typedef struct DLReader { + DocListType iType; + const char *pData; + int nData; + + sqlite_int64 iDocid; + int nElement; +} DLReader; + +static int dlrAtEnd(DLReader *pReader){ + assert( pReader->nData>=0 ); + return pReader->nData==0; +} +static sqlite_int64 dlrDocid(DLReader *pReader){ + assert( !dlrAtEnd(pReader) ); + return pReader->iDocid; +} +static const char *dlrDocData(DLReader *pReader){ + assert( !dlrAtEnd(pReader) ); + return pReader->pData; +} +static int dlrDocDataBytes(DLReader *pReader){ + assert( !dlrAtEnd(pReader) ); + return pReader->nElement; +} +static int dlrAllDataBytes(DLReader *pReader){ + assert( !dlrAtEnd(pReader) ); + return pReader->nData; +} +/* TODO(shess) Consider adding a field to track iDocid varint length +** to make these two functions faster. This might matter (a tiny bit) +** for queries. +*/ +static const char *dlrPosData(DLReader *pReader){ + sqlite_int64 iDummy; + int n = getVarint(pReader->pData, &iDummy); + assert( !dlrAtEnd(pReader) ); + return pReader->pData+n; +} +static int dlrPosDataLen(DLReader *pReader){ + sqlite_int64 iDummy; + int n = getVarint(pReader->pData, &iDummy); + assert( !dlrAtEnd(pReader) ); + return pReader->nElement-n; +} +static void dlrStep(DLReader *pReader){ + assert( !dlrAtEnd(pReader) ); + + /* Skip past current doclist element. */ + assert( pReader->nElement<=pReader->nData ); + pReader->pData += pReader->nElement; + pReader->nData -= pReader->nElement; + + /* If there is more data, read the next doclist element. */ + if( pReader->nData!=0 ){ + sqlite_int64 iDocidDelta; + int iDummy, n = getVarint(pReader->pData, &iDocidDelta); + pReader->iDocid += iDocidDelta; + if( pReader->iType>=DL_POSITIONS ){ + assert( n<pReader->nData ); + while( 1 ){ + n += getVarint32(pReader->pData+n, &iDummy); + assert( n<=pReader->nData ); + if( iDummy==POS_END ) break; + if( iDummy==POS_COLUMN ){ + n += getVarint32(pReader->pData+n, &iDummy); + assert( n<pReader->nData ); + }else if( pReader->iType==DL_POSITIONS_OFFSETS ){ + n += getVarint32(pReader->pData+n, &iDummy); + n += getVarint32(pReader->pData+n, &iDummy); + assert( n<pReader->nData ); + } + } + } + pReader->nElement = n; + assert( pReader->nElement<=pReader->nData ); + } +} +static void dlrInit(DLReader *pReader, DocListType iType, + const char *pData, int nData){ + assert( pData!=NULL && nData!=0 ); + pReader->iType = iType; + pReader->pData = pData; + pReader->nData = nData; + pReader->nElement = 0; + pReader->iDocid = 0; + + /* Load the first element's data. There must be a first element. */ + dlrStep(pReader); +} +static void dlrDestroy(DLReader *pReader){ + SCRAMBLE(pReader); +} + +#ifndef NDEBUG +/* Verify that the doclist can be validly decoded. Also returns the +** last docid found because it is convenient in other assertions for +** DLWriter. +*/ +static void docListValidate(DocListType iType, const char *pData, int nData, + sqlite_int64 *pLastDocid){ + sqlite_int64 iPrevDocid = 0; + assert( nData>0 ); + assert( pData!=0 ); + assert( pData+nData>pData ); + while( nData!=0 ){ + sqlite_int64 iDocidDelta; + int n = getVarint(pData, &iDocidDelta); + iPrevDocid += iDocidDelta; + if( iType>DL_DOCIDS ){ + int iDummy; + while( 1 ){ + n += getVarint32(pData+n, &iDummy); + if( iDummy==POS_END ) break; + if( iDummy==POS_COLUMN ){ + n += getVarint32(pData+n, &iDummy); + }else if( iType>DL_POSITIONS ){ + n += getVarint32(pData+n, &iDummy); + n += getVarint32(pData+n, &iDummy); + } + assert( n<=nData ); + } + } + assert( n<=nData ); + pData += n; + nData -= n; + } + if( pLastDocid ) *pLastDocid = iPrevDocid; +} +#define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o) +#else +#define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 ) +#endif + +/*******************************************************************/ +/* DLWriter is used to write doclist data to a DataBuffer. DLWriter +** always appends to the buffer and does not own it. +** +** dlwInit - initialize to write a given type doclistto a buffer. +** dlwDestroy - clear the writer's memory. Does not free buffer. +** dlwAppend - append raw doclist data to buffer. +** dlwCopy - copy next doclist from reader to writer. +** dlwAdd - construct doclist element and append to buffer. +** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter). +*/ +typedef struct DLWriter { + DocListType iType; + DataBuffer *b; + sqlite_int64 iPrevDocid; +#ifndef NDEBUG + int has_iPrevDocid; +#endif +} DLWriter; + +static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){ + pWriter->b = b; + pWriter->iType = iType; + pWriter->iPrevDocid = 0; +#ifndef NDEBUG + pWriter->has_iPrevDocid = 0; +#endif +} +static void dlwDestroy(DLWriter *pWriter){ + SCRAMBLE(pWriter); +} +/* iFirstDocid is the first docid in the doclist in pData. It is +** needed because pData may point within a larger doclist, in which +** case the first item would be delta-encoded. +** +** iLastDocid is the final docid in the doclist in pData. It is +** needed to create the new iPrevDocid for future delta-encoding. The +** code could decode the passed doclist to recreate iLastDocid, but +** the only current user (docListMerge) already has decoded this +** information. +*/ +/* TODO(shess) This has become just a helper for docListMerge. +** Consider a refactor to make this cleaner. +*/ +static void dlwAppend(DLWriter *pWriter, + const char *pData, int nData, + sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){ + sqlite_int64 iDocid = 0; + char c[VARINT_MAX]; + int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */ +#ifndef NDEBUG + sqlite_int64 iLastDocidDelta; +#endif + + /* Recode the initial docid as delta from iPrevDocid. */ + nFirstOld = getVarint(pData, &iDocid); + assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) ); + nFirstNew = putVarint(c, iFirstDocid-pWriter->iPrevDocid); + + /* Verify that the incoming doclist is valid AND that it ends with + ** the expected docid. This is essential because we'll trust this + ** docid in future delta-encoding. + */ + ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta); + assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta ); + + /* Append recoded initial docid and everything else. Rest of docids + ** should have been delta-encoded from previous initial docid. + */ + if( nFirstOld<nData ){ + dataBufferAppend2(pWriter->b, c, nFirstNew, + pData+nFirstOld, nData-nFirstOld); + }else{ + dataBufferAppend(pWriter->b, c, nFirstNew); + } + pWriter->iPrevDocid = iLastDocid; +} +static void dlwCopy(DLWriter *pWriter, DLReader *pReader){ + dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader), + dlrDocid(pReader), dlrDocid(pReader)); +} +static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){ + char c[VARINT_MAX]; + int n = putVarint(c, iDocid-pWriter->iPrevDocid); + + /* Docids must ascend. */ + assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid ); + assert( pWriter->iType==DL_DOCIDS ); + + dataBufferAppend(pWriter->b, c, n); + pWriter->iPrevDocid = iDocid; +#ifndef NDEBUG + pWriter->has_iPrevDocid = 1; +#endif +} + +/*******************************************************************/ +/* PLReader is used to read data from a document's position list. As +** the caller steps through the list, data is cached so that varints +** only need to be decoded once. +** +** plrInit, plrDestroy - create/destroy a reader. +** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors +** plrAtEnd - at end of stream, only call plrDestroy once true. +** plrStep - step to the next element. +*/ +typedef struct PLReader { + /* These refer to the next position's data. nData will reach 0 when + ** reading the last position, so plrStep() signals EOF by setting + ** pData to NULL. + */ + const char *pData; + int nData; + + DocListType iType; + int iColumn; /* the last column read */ + int iPosition; /* the last position read */ + int iStartOffset; /* the last start offset read */ + int iEndOffset; /* the last end offset read */ +} PLReader; + +static int plrAtEnd(PLReader *pReader){ + return pReader->pData==NULL; +} +static int plrColumn(PLReader *pReader){ + assert( !plrAtEnd(pReader) ); + return pReader->iColumn; +} +static int plrPosition(PLReader *pReader){ + assert( !plrAtEnd(pReader) ); + return pReader->iPosition; +} +static int plrStartOffset(PLReader *pReader){ + assert( !plrAtEnd(pReader) ); + return pReader->iStartOffset; +} +static int plrEndOffset(PLReader *pReader){ + assert( !plrAtEnd(pReader) ); + return pReader->iEndOffset; +} +static void plrStep(PLReader *pReader){ + int i, n; + + assert( !plrAtEnd(pReader) ); + + if( pReader->nData==0 ){ + pReader->pData = NULL; + return; + } + + n = getVarint32(pReader->pData, &i); + if( i==POS_COLUMN ){ + n += getVarint32(pReader->pData+n, &pReader->iColumn); + pReader->iPosition = 0; + pReader->iStartOffset = 0; + n += getVarint32(pReader->pData+n, &i); + } + /* Should never see adjacent column changes. */ + assert( i!=POS_COLUMN ); + + if( i==POS_END ){ + pReader->nData = 0; + pReader->pData = NULL; + return; + } + + pReader->iPosition += i-POS_BASE; + if( pReader->iType==DL_POSITIONS_OFFSETS ){ + n += getVarint32(pReader->pData+n, &i); + pReader->iStartOffset += i; + n += getVarint32(pReader->pData+n, &i); + pReader->iEndOffset = pReader->iStartOffset+i; + } + assert( n<=pReader->nData ); + pReader->pData += n; + pReader->nData -= n; +} + +static void plrInit(PLReader *pReader, DLReader *pDLReader){ + pReader->pData = dlrPosData(pDLReader); + pReader->nData = dlrPosDataLen(pDLReader); + pReader->iType = pDLReader->iType; + pReader->iColumn = 0; + pReader->iPosition = 0; + pReader->iStartOffset = 0; + pReader->iEndOffset = 0; + plrStep(pReader); +} +static void plrDestroy(PLReader *pReader){ + SCRAMBLE(pReader); +} + +/*******************************************************************/ +/* PLWriter is used in constructing a document's position list. As a +** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op. +** PLWriter writes to the associated DLWriter's buffer. +** +** plwInit - init for writing a document's poslist. +** plwDestroy - clear a writer. +** plwAdd - append position and offset information. +** plwCopy - copy next position's data from reader to writer. +** plwTerminate - add any necessary doclist terminator. +** +** Calling plwAdd() after plwTerminate() may result in a corrupt +** doclist. +*/ +/* TODO(shess) Until we've written the second item, we can cache the +** first item's information. Then we'd have three states: +** +** - initialized with docid, no positions. +** - docid and one position. +** - docid and multiple positions. +** +** Only the last state needs to actually write to dlw->b, which would +** be an improvement in the DLCollector case. +*/ +typedef struct PLWriter { + DLWriter *dlw; + + int iColumn; /* the last column written */ + int iPos; /* the last position written */ + int iOffset; /* the last start offset written */ +} PLWriter; + +/* TODO(shess) In the case where the parent is reading these values +** from a PLReader, we could optimize to a copy if that PLReader has +** the same type as pWriter. +*/ +static void plwAdd(PLWriter *pWriter, int iColumn, int iPos, + int iStartOffset, int iEndOffset){ + /* Worst-case space for POS_COLUMN, iColumn, iPosDelta, + ** iStartOffsetDelta, and iEndOffsetDelta. + */ + char c[5*VARINT_MAX]; + int n = 0; + + /* Ban plwAdd() after plwTerminate(). */ + assert( pWriter->iPos!=-1 ); + + if( pWriter->dlw->iType==DL_DOCIDS ) return; + + if( iColumn!=pWriter->iColumn ){ + n += putVarint(c+n, POS_COLUMN); + n += putVarint(c+n, iColumn); + pWriter->iColumn = iColumn; + pWriter->iPos = 0; + pWriter->iOffset = 0; + } + assert( iPos>=pWriter->iPos ); + n += putVarint(c+n, POS_BASE+(iPos-pWriter->iPos)); + pWriter->iPos = iPos; + if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){ + assert( iStartOffset>=pWriter->iOffset ); + n += putVarint(c+n, iStartOffset-pWriter->iOffset); + pWriter->iOffset = iStartOffset; + assert( iEndOffset>=iStartOffset ); + n += putVarint(c+n, iEndOffset-iStartOffset); + } + dataBufferAppend(pWriter->dlw->b, c, n); +} +static void plwCopy(PLWriter *pWriter, PLReader *pReader){ + plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader), + plrStartOffset(pReader), plrEndOffset(pReader)); +} +static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){ + char c[VARINT_MAX]; + int n; + + pWriter->dlw = dlw; + + /* Docids must ascend. */ + assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid ); + n = putVarint(c, iDocid-pWriter->dlw->iPrevDocid); + dataBufferAppend(pWriter->dlw->b, c, n); + pWriter->dlw->iPrevDocid = iDocid; +#ifndef NDEBUG + pWriter->dlw->has_iPrevDocid = 1; +#endif + + pWriter->iColumn = 0; + pWriter->iPos = 0; + pWriter->iOffset = 0; +} +/* TODO(shess) Should plwDestroy() also terminate the doclist? But +** then plwDestroy() would no longer be just a destructor, it would +** also be doing work, which isn't consistent with the overall idiom. +** Another option would be for plwAdd() to always append any necessary +** terminator, so that the output is always correct. But that would +** add incremental work to the common case with the only benefit being +** API elegance. Punt for now. +*/ +static void plwTerminate(PLWriter *pWriter){ + if( pWriter->dlw->iType>DL_DOCIDS ){ + char c[VARINT_MAX]; + int n = putVarint(c, POS_END); + dataBufferAppend(pWriter->dlw->b, c, n); + } +#ifndef NDEBUG + /* Mark as terminated for assert in plwAdd(). */ + pWriter->iPos = -1; +#endif +} +static void plwDestroy(PLWriter *pWriter){ + SCRAMBLE(pWriter); +} + +/*******************************************************************/ +/* DLCollector wraps PLWriter and DLWriter to provide a +** dynamically-allocated doclist area to use during tokenization. +** +** dlcNew - malloc up and initialize a collector. +** dlcDelete - destroy a collector and all contained items. +** dlcAddPos - append position and offset information. +** dlcAddDoclist - add the collected doclist to the given buffer. +** dlcNext - terminate the current document and open another. +*/ +typedef struct DLCollector { + DataBuffer b; + DLWriter dlw; + PLWriter plw; +} DLCollector; + +/* TODO(shess) This could also be done by calling plwTerminate() and +** dataBufferAppend(). I tried that, expecting nominal performance +** differences, but it seemed to pretty reliably be worth 1% to code +** it this way. I suspect it is the incremental malloc overhead (some +** percentage of the plwTerminate() calls will cause a realloc), so +** this might be worth revisiting if the DataBuffer implementation +** changes. +*/ +static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){ + if( pCollector->dlw.iType>DL_DOCIDS ){ + char c[VARINT_MAX]; + int n = putVarint(c, POS_END); + dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n); + }else{ + dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData); + } +} +static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){ + plwTerminate(&pCollector->plw); + plwDestroy(&pCollector->plw); + plwInit(&pCollector->plw, &pCollector->dlw, iDocid); +} +static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos, + int iStartOffset, int iEndOffset){ + plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset); +} + +static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){ + DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector)); + dataBufferInit(&pCollector->b, 0); + dlwInit(&pCollector->dlw, iType, &pCollector->b); + plwInit(&pCollector->plw, &pCollector->dlw, iDocid); + return pCollector; +} +static void dlcDelete(DLCollector *pCollector){ + plwDestroy(&pCollector->plw); + dlwDestroy(&pCollector->dlw); + dataBufferDestroy(&pCollector->b); + SCRAMBLE(pCollector); + sqlite3_free(pCollector); +} + + +/* Copy the doclist data of iType in pData/nData into *out, trimming +** unnecessary data as we go. Only columns matching iColumn are +** copied, all columns copied if iColumn is -1. Elements with no +** matching columns are dropped. The output is an iOutType doclist. +*/ +/* NOTE(shess) This code is only valid after all doclists are merged. +** If this is run before merges, then doclist items which represent +** deletion will be trimmed, and will thus not effect a deletion +** during the merge. +*/ +static void docListTrim(DocListType iType, const char *pData, int nData, + int iColumn, DocListType iOutType, DataBuffer *out){ + DLReader dlReader; + DLWriter dlWriter; + + assert( iOutType<=iType ); + + dlrInit(&dlReader, iType, pData, nData); + dlwInit(&dlWriter, iOutType, out); + + while( !dlrAtEnd(&dlReader) ){ + PLReader plReader; + PLWriter plWriter; + int match = 0; + + plrInit(&plReader, &dlReader); + + while( !plrAtEnd(&plReader) ){ + if( iColumn==-1 || plrColumn(&plReader)==iColumn ){ + if( !match ){ + plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader)); + match = 1; + } + plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader), + plrStartOffset(&plReader), plrEndOffset(&plReader)); + } + plrStep(&plReader); + } + if( match ){ + plwTerminate(&plWriter); + plwDestroy(&plWriter); + } + + plrDestroy(&plReader); + dlrStep(&dlReader); + } + dlwDestroy(&dlWriter); + dlrDestroy(&dlReader); +} + +/* Used by docListMerge() to keep doclists in the ascending order by +** docid, then ascending order by age (so the newest comes first). +*/ +typedef struct OrderedDLReader { + DLReader *pReader; + + /* TODO(shess) If we assume that docListMerge pReaders is ordered by + ** age (which we do), then we could use pReader comparisons to break + ** ties. + */ + int idx; +} OrderedDLReader; + +/* Order eof to end, then by docid asc, idx desc. */ +static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){ + if( dlrAtEnd(r1->pReader) ){ + if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */ + return 1; /* Only r1 atEnd(). */ + } + if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */ + + if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1; + if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1; + + /* Descending on idx. */ + return r2->idx-r1->idx; +} + +/* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that +** p[1..n-1] is already sorted. +*/ +/* TODO(shess) Is this frequent enough to warrant a binary search? +** Before implementing that, instrument the code to check. In most +** current usage, I expect that p[0] will be less than p[1] a very +** high proportion of the time. +*/ +static void orderedDLReaderReorder(OrderedDLReader *p, int n){ + while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){ + OrderedDLReader tmp = p[0]; + p[0] = p[1]; + p[1] = tmp; + n--; + p++; + } +} + +/* Given an array of doclist readers, merge their doclist elements +** into out in sorted order (by docid), dropping elements from older +** readers when there is a duplicate docid. pReaders is assumed to be +** ordered by age, oldest first. +*/ +/* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably +** be fixed. +*/ +static void docListMerge(DataBuffer *out, + DLReader *pReaders, int nReaders){ + OrderedDLReader readers[MERGE_COUNT]; + DLWriter writer; + int i, n; + const char *pStart = 0; + int nStart = 0; + sqlite_int64 iFirstDocid = 0, iLastDocid = 0; + + assert( nReaders>0 ); + if( nReaders==1 ){ + dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders)); + return; + } + + assert( nReaders<=MERGE_COUNT ); + n = 0; + for(i=0; i<nReaders; i++){ + assert( pReaders[i].iType==pReaders[0].iType ); + readers[i].pReader = pReaders+i; + readers[i].idx = i; + n += dlrAllDataBytes(&pReaders[i]); + } + /* Conservatively size output to sum of inputs. Output should end + ** up strictly smaller than input. + */ + dataBufferExpand(out, n); + + /* Get the readers into sorted order. */ + while( i-->0 ){ + orderedDLReaderReorder(readers+i, nReaders-i); + } + + dlwInit(&writer, pReaders[0].iType, out); + while( !dlrAtEnd(readers[0].pReader) ){ + sqlite_int64 iDocid = dlrDocid(readers[0].pReader); + + /* If this is a continuation of the current buffer to copy, extend + ** that buffer. memcpy() seems to be more efficient if it has a + ** lots of data to copy. + */ + if( dlrDocData(readers[0].pReader)==pStart+nStart ){ + nStart += dlrDocDataBytes(readers[0].pReader); + }else{ + if( pStart!=0 ){ + dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); + } + pStart = dlrDocData(readers[0].pReader); + nStart = dlrDocDataBytes(readers[0].pReader); + iFirstDocid = iDocid; + } + iLastDocid = iDocid; + dlrStep(readers[0].pReader); + + /* Drop all of the older elements with the same docid. */ + for(i=1; i<nReaders && + !dlrAtEnd(readers[i].pReader) && + dlrDocid(readers[i].pReader)==iDocid; i++){ + dlrStep(readers[i].pReader); + } + + /* Get the readers back into order. */ + while( i-->0 ){ + orderedDLReaderReorder(readers+i, nReaders-i); + } + } + + /* Copy over any remaining elements. */ + if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); + dlwDestroy(&writer); +} + +/* Helper function for posListUnion(). Compares the current position +** between left and right, returning as standard C idiom of <0 if +** left<right, >0 if left>right, and 0 if left==right. "End" always +** compares greater. +*/ +static int posListCmp(PLReader *pLeft, PLReader *pRight){ + assert( pLeft->iType==pRight->iType ); + if( pLeft->iType==DL_DOCIDS ) return 0; + + if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1; + if( plrAtEnd(pRight) ) return -1; + + if( plrColumn(pLeft)<plrColumn(pRight) ) return -1; + if( plrColumn(pLeft)>plrColumn(pRight) ) return 1; + + if( plrPosition(pLeft)<plrPosition(pRight) ) return -1; + if( plrPosition(pLeft)>plrPosition(pRight) ) return 1; + if( pLeft->iType==DL_POSITIONS ) return 0; + + if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1; + if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1; + + if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1; + if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1; + + return 0; +} + +/* Write the union of position lists in pLeft and pRight to pOut. +** "Union" in this case meaning "All unique position tuples". Should +** work with any doclist type, though both inputs and the output +** should be the same type. +*/ +static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){ + PLReader left, right; + PLWriter writer; + + assert( dlrDocid(pLeft)==dlrDocid(pRight) ); + assert( pLeft->iType==pRight->iType ); + assert( pLeft->iType==pOut->iType ); + + plrInit(&left, pLeft); + plrInit(&right, pRight); + plwInit(&writer, pOut, dlrDocid(pLeft)); + + while( !plrAtEnd(&left) || !plrAtEnd(&right) ){ + int c = posListCmp(&left, &right); + if( c<0 ){ + plwCopy(&writer, &left); + plrStep(&left); + }else if( c>0 ){ + plwCopy(&writer, &right); + plrStep(&right); + }else{ + plwCopy(&writer, &left); + plrStep(&left); + plrStep(&right); + } + } + + plwTerminate(&writer); + plwDestroy(&writer); + plrDestroy(&left); + plrDestroy(&right); +} + +/* Write the union of doclists in pLeft and pRight to pOut. For +** docids in common between the inputs, the union of the position +** lists is written. Inputs and outputs are always type DL_DEFAULT. +*/ +static void docListUnion( + const char *pLeft, int nLeft, + const char *pRight, int nRight, + DataBuffer *pOut /* Write the combined doclist here */ +){ + DLReader left, right; + DLWriter writer; + + if( nLeft==0 ){ + if( nRight!=0) dataBufferAppend(pOut, pRight, nRight); + return; + } + if( nRight==0 ){ + dataBufferAppend(pOut, pLeft, nLeft); + return; + } + + dlrInit(&left, DL_DEFAULT, pLeft, nLeft); + dlrInit(&right, DL_DEFAULT, pRight, nRight); + dlwInit(&writer, DL_DEFAULT, pOut); + + while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ + if( dlrAtEnd(&right) ){ + dlwCopy(&writer, &left); + dlrStep(&left); + }else if( dlrAtEnd(&left) ){ + dlwCopy(&writer, &right); + dlrStep(&right); + }else if( dlrDocid(&left)<dlrDocid(&right) ){ + dlwCopy(&writer, &left); + dlrStep(&left); + }else if( dlrDocid(&left)>dlrDocid(&right) ){ + dlwCopy(&writer, &right); + dlrStep(&right); + }else{ + posListUnion(&left, &right, &writer); + dlrStep(&left); + dlrStep(&right); + } + } + + dlrDestroy(&left); + dlrDestroy(&right); + dlwDestroy(&writer); +} + +/* pLeft and pRight are DLReaders positioned to the same docid. +** +** If there are no instances in pLeft or pRight where the position +** of pLeft is one less than the position of pRight, then this +** routine adds nothing to pOut. +** +** If there are one or more instances where positions from pLeft +** are exactly one less than positions from pRight, then add a new +** document record to pOut. If pOut wants to hold positions, then +** include the positions from pRight that are one more than a +** position in pLeft. In other words: pRight.iPos==pLeft.iPos+1. +*/ +static void posListPhraseMerge(DLReader *pLeft, DLReader *pRight, + DLWriter *pOut){ + PLReader left, right; + PLWriter writer; + int match = 0; + + assert( dlrDocid(pLeft)==dlrDocid(pRight) ); + assert( pOut->iType!=DL_POSITIONS_OFFSETS ); + + plrInit(&left, pLeft); + plrInit(&right, pRight); + + while( !plrAtEnd(&left) && !plrAtEnd(&right) ){ + if( plrColumn(&left)<plrColumn(&right) ){ + plrStep(&left); + }else if( plrColumn(&left)>plrColumn(&right) ){ + plrStep(&right); + }else if( plrPosition(&left)+1<plrPosition(&right) ){ + plrStep(&left); + }else if( plrPosition(&left)+1>plrPosition(&right) ){ + plrStep(&right); + }else{ + if( !match ){ + plwInit(&writer, pOut, dlrDocid(pLeft)); + match = 1; + } + plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0); + plrStep(&left); + plrStep(&right); + } + } + + if( match ){ + plwTerminate(&writer); + plwDestroy(&writer); + } + + plrDestroy(&left); + plrDestroy(&right); +} + +/* We have two doclists with positions: pLeft and pRight. +** Write the phrase intersection of these two doclists into pOut. +** +** A phrase intersection means that two documents only match +** if pLeft.iPos+1==pRight.iPos. +** +** iType controls the type of data written to pOut. If iType is +** DL_POSITIONS, the positions are those from pRight. +*/ +static void docListPhraseMerge( + const char *pLeft, int nLeft, + const char *pRight, int nRight, + DocListType iType, + DataBuffer *pOut /* Write the combined doclist here */ +){ + DLReader left, right; + DLWriter writer; + + if( nLeft==0 || nRight==0 ) return; + + assert( iType!=DL_POSITIONS_OFFSETS ); + + dlrInit(&left, DL_POSITIONS, pLeft, nLeft); + dlrInit(&right, DL_POSITIONS, pRight, nRight); + dlwInit(&writer, iType, pOut); + + while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){ + if( dlrDocid(&left)<dlrDocid(&right) ){ + dlrStep(&left); + }else if( dlrDocid(&right)<dlrDocid(&left) ){ + dlrStep(&right); + }else{ + posListPhraseMerge(&left, &right, &writer); + dlrStep(&left); + dlrStep(&right); + } + } + + dlrDestroy(&left); + dlrDestroy(&right); + dlwDestroy(&writer); +} + +/* We have two DL_DOCIDS doclists: pLeft and pRight. +** Write the intersection of these two doclists into pOut as a +** DL_DOCIDS doclist. +*/ +static void docListAndMerge( + const char *pLeft, int nLeft, + const char *pRight, int nRight, + DataBuffer *pOut /* Write the combined doclist here */ +){ + DLReader left, right; + DLWriter writer; + + if( nLeft==0 || nRight==0 ) return; + + dlrInit(&left, DL_DOCIDS, pLeft, nLeft); + dlrInit(&right, DL_DOCIDS, pRight, nRight); + dlwInit(&writer, DL_DOCIDS, pOut); + + while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){ + if( dlrDocid(&left)<dlrDocid(&right) ){ + dlrStep(&left); + }else if( dlrDocid(&right)<dlrDocid(&left) ){ + dlrStep(&right); + }else{ + dlwAdd(&writer, dlrDocid(&left)); + dlrStep(&left); + dlrStep(&right); + } + } + + dlrDestroy(&left); + dlrDestroy(&right); + dlwDestroy(&writer); +} + +/* We have two DL_DOCIDS doclists: pLeft and pRight. +** Write the union of these two doclists into pOut as a +** DL_DOCIDS doclist. +*/ +static void docListOrMerge( + const char *pLeft, int nLeft, + const char *pRight, int nRight, + DataBuffer *pOut /* Write the combined doclist here */ +){ + DLReader left, right; + DLWriter writer; + + if( nLeft==0 ){ + if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight); + return; + } + if( nRight==0 ){ + dataBufferAppend(pOut, pLeft, nLeft); + return; + } + + dlrInit(&left, DL_DOCIDS, pLeft, nLeft); + dlrInit(&right, DL_DOCIDS, pRight, nRight); + dlwInit(&writer, DL_DOCIDS, pOut); + + while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ + if( dlrAtEnd(&right) ){ + dlwAdd(&writer, dlrDocid(&left)); + dlrStep(&left); + }else if( dlrAtEnd(&left) ){ + dlwAdd(&writer, dlrDocid(&right)); + dlrStep(&right); + }else if( dlrDocid(&left)<dlrDocid(&right) ){ + dlwAdd(&writer, dlrDocid(&left)); + dlrStep(&left); + }else if( dlrDocid(&right)<dlrDocid(&left) ){ + dlwAdd(&writer, dlrDocid(&right)); + dlrStep(&right); + }else{ + dlwAdd(&writer, dlrDocid(&left)); + dlrStep(&left); + dlrStep(&right); + } + } + + dlrDestroy(&left); + dlrDestroy(&right); + dlwDestroy(&writer); +} + +/* We have two DL_DOCIDS doclists: pLeft and pRight. +** Write into pOut as DL_DOCIDS doclist containing all documents that +** occur in pLeft but not in pRight. +*/ +static void docListExceptMerge( + const char *pLeft, int nLeft, + const char *pRight, int nRight, + DataBuffer *pOut /* Write the combined doclist here */ +){ + DLReader left, right; + DLWriter writer; + + if( nLeft==0 ) return; + if( nRight==0 ){ + dataBufferAppend(pOut, pLeft, nLeft); + return; + } + + dlrInit(&left, DL_DOCIDS, pLeft, nLeft); + dlrInit(&right, DL_DOCIDS, pRight, nRight); + dlwInit(&writer, DL_DOCIDS, pOut); + + while( !dlrAtEnd(&left) ){ + while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){ + dlrStep(&right); + } + if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){ + dlwAdd(&writer, dlrDocid(&left)); + } + dlrStep(&left); + } + + dlrDestroy(&left); + dlrDestroy(&right); + dlwDestroy(&writer); +} + +static char *string_dup_n(const char *s, int n){ + char *str = sqlite3_malloc(n + 1); + memcpy(str, s, n); + str[n] = '\0'; + return str; +} + +/* Duplicate a string; the caller must free() the returned string. + * (We don't use strdup() since it is not part of the standard C library and + * may not be available everywhere.) */ +static char *string_dup(const char *s){ + return string_dup_n(s, strlen(s)); +} + +/* Format a string, replacing each occurrence of the % character with + * zDb.zName. This may be more convenient than sqlite_mprintf() + * when one string is used repeatedly in a format string. + * The caller must free() the returned string. */ +static char *string_format(const char *zFormat, + const char *zDb, const char *zName){ + const char *p; + size_t len = 0; + size_t nDb = strlen(zDb); + size_t nName = strlen(zName); + size_t nFullTableName = nDb+1+nName; + char *result; + char *r; + + /* first compute length needed */ + for(p = zFormat ; *p ; ++p){ + len += (*p=='%' ? nFullTableName : 1); + } + len += 1; /* for null terminator */ + + r = result = sqlite3_malloc(len); + for(p = zFormat; *p; ++p){ + if( *p=='%' ){ + memcpy(r, zDb, nDb); + r += nDb; + *r++ = '.'; + memcpy(r, zName, nName); + r += nName; + } else { + *r++ = *p; + } + } + *r++ = '\0'; + assert( r == result + len ); + return result; +} + +static int sql_exec(sqlite3 *db, const char *zDb, const char *zName, + const char *zFormat){ + char *zCommand = string_format(zFormat, zDb, zName); + int rc; + TRACE(("FTS2 sql: %s\n", zCommand)); + rc = sqlite3_exec(db, zCommand, NULL, 0, NULL); + sqlite3_free(zCommand); + return rc; +} + +static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName, + sqlite3_stmt **ppStmt, const char *zFormat){ + char *zCommand = string_format(zFormat, zDb, zName); + int rc; + TRACE(("FTS2 prepare: %s\n", zCommand)); + rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL); + sqlite3_free(zCommand); + return rc; +} + +/* end utility functions */ + +/* Forward reference */ +typedef struct fulltext_vtab fulltext_vtab; + +/* A single term in a query is represented by an instances of +** the following structure. +*/ +typedef struct QueryTerm { + short int nPhrase; /* How many following terms are part of the same phrase */ + short int iPhrase; /* This is the i-th term of a phrase. */ + short int iColumn; /* Column of the index that must match this term */ + signed char isOr; /* this term is preceded by "OR" */ + signed char isNot; /* this term is preceded by "-" */ + signed char isPrefix; /* this term is followed by "*" */ + char *pTerm; /* text of the term. '\000' terminated. malloced */ + int nTerm; /* Number of bytes in pTerm[] */ +} QueryTerm; + + +/* A query string is parsed into a Query structure. + * + * We could, in theory, allow query strings to be complicated + * nested expressions with precedence determined by parentheses. + * But none of the major search engines do this. (Perhaps the + * feeling is that an parenthesized expression is two complex of + * an idea for the average user to grasp.) Taking our lead from + * the major search engines, we will allow queries to be a list + * of terms (with an implied AND operator) or phrases in double-quotes, + * with a single optional "-" before each non-phrase term to designate + * negation and an optional OR connector. + * + * OR binds more tightly than the implied AND, which is what the + * major search engines seem to do. So, for example: + * + * [one two OR three] ==> one AND (two OR three) + * [one OR two three] ==> (one OR two) AND three + * + * A "-" before a term matches all entries that lack that term. + * The "-" must occur immediately before the term with in intervening + * space. This is how the search engines do it. + * + * A NOT term cannot be the right-hand operand of an OR. If this + * occurs in the query string, the NOT is ignored: + * + * [one OR -two] ==> one OR two + * + */ +typedef struct Query { + fulltext_vtab *pFts; /* The full text index */ + int nTerms; /* Number of terms in the query */ + QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */ + int nextIsOr; /* Set the isOr flag on the next inserted term */ + int nextColumn; /* Next word parsed must be in this column */ + int dfltColumn; /* The default column */ +} Query; + + +/* +** An instance of the following structure keeps track of generated +** matching-word offset information and snippets. +*/ +typedef struct Snippet { + int nMatch; /* Total number of matches */ + int nAlloc; /* Space allocated for aMatch[] */ + struct snippetMatch { /* One entry for each matching term */ + char snStatus; /* Status flag for use while constructing snippets */ + short int iCol; /* The column that contains the match */ + short int iTerm; /* The index in Query.pTerms[] of the matching term */ + short int nByte; /* Number of bytes in the term */ + int iStart; /* The offset to the first character of the term */ + } *aMatch; /* Points to space obtained from malloc */ + char *zOffset; /* Text rendering of aMatch[] */ + int nOffset; /* strlen(zOffset) */ + char *zSnippet; /* Snippet text */ + int nSnippet; /* strlen(zSnippet) */ +} Snippet; + + +typedef enum QueryType { + QUERY_GENERIC, /* table scan */ + QUERY_ROWID, /* lookup by rowid */ + QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/ +} QueryType; + +typedef enum fulltext_statement { + CONTENT_INSERT_STMT, + CONTENT_SELECT_STMT, + CONTENT_UPDATE_STMT, + CONTENT_DELETE_STMT, + CONTENT_EXISTS_STMT, + + BLOCK_INSERT_STMT, + BLOCK_SELECT_STMT, + BLOCK_DELETE_STMT, + BLOCK_DELETE_ALL_STMT, + + SEGDIR_MAX_INDEX_STMT, + SEGDIR_SET_STMT, + SEGDIR_SELECT_LEVEL_STMT, + SEGDIR_SPAN_STMT, + SEGDIR_DELETE_STMT, + SEGDIR_SELECT_SEGMENT_STMT, + SEGDIR_SELECT_ALL_STMT, + SEGDIR_DELETE_ALL_STMT, + SEGDIR_COUNT_STMT, + + MAX_STMT /* Always at end! */ +} fulltext_statement; + +/* These must exactly match the enum above. */ +/* TODO(shess): Is there some risk that a statement will be used in two +** cursors at once, e.g. if a query joins a virtual table to itself? +** If so perhaps we should move some of these to the cursor object. +*/ +static const char *const fulltext_zStatement[MAX_STMT] = { + /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */ + /* CONTENT_SELECT */ "select * from %_content where rowid = ?", + /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */ + /* CONTENT_DELETE */ "delete from %_content where rowid = ?", + /* CONTENT_EXISTS */ "select rowid from %_content limit 1", + + /* BLOCK_INSERT */ "insert into %_segments values (?)", + /* BLOCK_SELECT */ "select block from %_segments where rowid = ?", + /* BLOCK_DELETE */ "delete from %_segments where rowid between ? and ?", + /* BLOCK_DELETE_ALL */ "delete from %_segments", + + /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?", + /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)", + /* SEGDIR_SELECT_LEVEL */ + "select start_block, leaves_end_block, root from %_segdir " + " where level = ? order by idx", + /* SEGDIR_SPAN */ + "select min(start_block), max(end_block) from %_segdir " + " where level = ? and start_block <> 0", + /* SEGDIR_DELETE */ "delete from %_segdir where level = ?", + + /* NOTE(shess): The first three results of the following two + ** statements must match. + */ + /* SEGDIR_SELECT_SEGMENT */ + "select start_block, leaves_end_block, root from %_segdir " + " where level = ? and idx = ?", + /* SEGDIR_SELECT_ALL */ + "select start_block, leaves_end_block, root from %_segdir " + " order by level desc, idx asc", + /* SEGDIR_DELETE_ALL */ "delete from %_segdir", + /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir", +}; + +/* +** A connection to a fulltext index is an instance of the following +** structure. The xCreate and xConnect methods create an instance +** of this structure and xDestroy and xDisconnect free that instance. +** All other methods receive a pointer to the structure as one of their +** arguments. +*/ +struct fulltext_vtab { + sqlite3_vtab base; /* Base class used by SQLite core */ + sqlite3 *db; /* The database connection */ + const char *zDb; /* logical database name */ + const char *zName; /* virtual table name */ + int nColumn; /* number of columns in virtual table */ + char **azColumn; /* column names. malloced */ + char **azContentColumn; /* column names in content table; malloced */ + sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ + + /* Precompiled statements which we keep as long as the table is + ** open. + */ + sqlite3_stmt *pFulltextStatements[MAX_STMT]; + + /* Precompiled statements used for segment merges. We run a + ** separate select across the leaf level of each tree being merged. + */ + sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT]; + /* The statement used to prepare pLeafSelectStmts. */ +#define LEAF_SELECT \ + "select block from %_segments where rowid between ? and ? order by rowid" + + /* These buffer pending index updates during transactions. + ** nPendingData estimates the memory size of the pending data. It + ** doesn't include the hash-bucket overhead, nor any malloc + ** overhead. When nPendingData exceeds kPendingThreshold, the + ** buffer is flushed even before the transaction closes. + ** pendingTerms stores the data, and is only valid when nPendingData + ** is >=0 (nPendingData<0 means pendingTerms has not been + ** initialized). iPrevDocid is the last docid written, used to make + ** certain we're inserting in sorted order. + */ + int nPendingData; +#define kPendingThreshold (1*1024*1024) + sqlite_int64 iPrevDocid; + fts2Hash pendingTerms; +}; + +/* +** When the core wants to do a query, it create a cursor using a +** call to xOpen. This structure is an instance of a cursor. It +** is destroyed by xClose. +*/ +typedef struct fulltext_cursor { + sqlite3_vtab_cursor base; /* Base class used by SQLite core */ + QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */ + sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ + int eof; /* True if at End Of Results */ + Query q; /* Parsed query string */ + Snippet snippet; /* Cached snippet for the current row */ + int iColumn; /* Column being searched */ + DataBuffer result; /* Doclist results from fulltextQuery */ + DLReader reader; /* Result reader if result not empty */ +} fulltext_cursor; + +static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){ + return (fulltext_vtab *) c->base.pVtab; +} + +static const sqlite3_module fts2Module; /* forward declaration */ + +/* Return a dynamically generated statement of the form + * insert into %_content (rowid, ...) values (?, ...) + */ +static const char *contentInsertStatement(fulltext_vtab *v){ + StringBuffer sb; + int i; + + initStringBuffer(&sb); + append(&sb, "insert into %_content (rowid, "); + appendList(&sb, v->nColumn, v->azContentColumn); + append(&sb, ") values (?"); + for(i=0; i<v->nColumn; ++i) + append(&sb, ", ?"); + append(&sb, ")"); + return stringBufferData(&sb); +} + +/* Return a dynamically generated statement of the form + * update %_content set [col_0] = ?, [col_1] = ?, ... + * where rowid = ? + */ +static const char *contentUpdateStatement(fulltext_vtab *v){ + StringBuffer sb; + int i; + + initStringBuffer(&sb); + append(&sb, "update %_content set "); + for(i=0; i<v->nColumn; ++i) { + if( i>0 ){ + append(&sb, ", "); + } + append(&sb, v->azContentColumn[i]); + append(&sb, " = ?"); + } + append(&sb, " where rowid = ?"); + return stringBufferData(&sb); +} + +/* Puts a freshly-prepared statement determined by iStmt in *ppStmt. +** If the indicated statement has never been prepared, it is prepared +** and cached, otherwise the cached version is reset. +*/ +static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt, + sqlite3_stmt **ppStmt){ + assert( iStmt<MAX_STMT ); + if( v->pFulltextStatements[iStmt]==NULL ){ + const char *zStmt; + int rc; + switch( iStmt ){ + case CONTENT_INSERT_STMT: + zStmt = contentInsertStatement(v); break; + case CONTENT_UPDATE_STMT: + zStmt = contentUpdateStatement(v); break; + default: + zStmt = fulltext_zStatement[iStmt]; + } + rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt], + zStmt); + if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt); + if( rc!=SQLITE_OK ) return rc; + } else { + int rc = sqlite3_reset(v->pFulltextStatements[iStmt]); + if( rc!=SQLITE_OK ) return rc; + } + + *ppStmt = v->pFulltextStatements[iStmt]; + return SQLITE_OK; +} + +/* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and +** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE, +** where we expect no results. +*/ +static int sql_single_step(sqlite3_stmt *s){ + int rc = sqlite3_step(s); + return (rc==SQLITE_DONE) ? SQLITE_OK : rc; +} + +/* Like sql_get_statement(), but for special replicated LEAF_SELECT +** statements. idx -1 is a special case for an uncached version of +** the statement (used in the optimize implementation). +*/ +/* TODO(shess) Write version for generic statements and then share +** that between the cached-statement functions. +*/ +static int sql_get_leaf_statement(fulltext_vtab *v, int idx, + sqlite3_stmt **ppStmt){ + assert( idx>=-1 && idx<MERGE_COUNT ); + if( idx==-1 ){ + return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT); + }else if( v->pLeafSelectStmts[idx]==NULL ){ + int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx], + LEAF_SELECT); + if( rc!=SQLITE_OK ) return rc; + }else{ + int rc = sqlite3_reset(v->pLeafSelectStmts[idx]); + if( rc!=SQLITE_OK ) return rc; + } + + *ppStmt = v->pLeafSelectStmts[idx]; + return SQLITE_OK; +} + +/* insert into %_content (rowid, ...) values ([rowid], [pValues]) */ +static int content_insert(fulltext_vtab *v, sqlite3_value *rowid, + sqlite3_value **pValues){ + sqlite3_stmt *s; + int i; + int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_value(s, 1, rowid); + if( rc!=SQLITE_OK ) return rc; + + for(i=0; i<v->nColumn; ++i){ + rc = sqlite3_bind_value(s, 2+i, pValues[i]); + if( rc!=SQLITE_OK ) return rc; + } + + return sql_single_step(s); +} + +/* update %_content set col0 = pValues[0], col1 = pValues[1], ... + * where rowid = [iRowid] */ +static int content_update(fulltext_vtab *v, sqlite3_value **pValues, + sqlite_int64 iRowid){ + sqlite3_stmt *s; + int i; + int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + for(i=0; i<v->nColumn; ++i){ + rc = sqlite3_bind_value(s, 1+i, pValues[i]); + if( rc!=SQLITE_OK ) return rc; + } + + rc = sqlite3_bind_int64(s, 1+v->nColumn, iRowid); + if( rc!=SQLITE_OK ) return rc; + + return sql_single_step(s); +} + +static void freeStringArray(int nString, const char **pString){ + int i; + + for (i=0 ; i < nString ; ++i) { + if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]); + } + sqlite3_free((void *) pString); +} + +/* select * from %_content where rowid = [iRow] + * The caller must delete the returned array and all strings in it. + * null fields will be NULL in the returned array. + * + * TODO: Perhaps we should return pointer/length strings here for consistency + * with other code which uses pointer/length. */ +static int content_select(fulltext_vtab *v, sqlite_int64 iRow, + const char ***pValues){ + sqlite3_stmt *s; + const char **values; + int i; + int rc; + + *pValues = NULL; + + rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iRow); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + if( rc!=SQLITE_ROW ) return rc; + + values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *)); + for(i=0; i<v->nColumn; ++i){ + if( sqlite3_column_type(s, i)==SQLITE_NULL ){ + values[i] = NULL; + }else{ + values[i] = string_dup((char*)sqlite3_column_text(s, i)); + } + } + + /* We expect only one row. We must execute another sqlite3_step() + * to complete the iteration; otherwise the table will remain locked. */ + rc = sqlite3_step(s); + if( rc==SQLITE_DONE ){ + *pValues = values; + return SQLITE_OK; + } + + freeStringArray(v->nColumn, values); + return rc; +} + +/* delete from %_content where rowid = [iRow ] */ +static int content_delete(fulltext_vtab *v, sqlite_int64 iRow){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iRow); + if( rc!=SQLITE_OK ) return rc; + + return sql_single_step(s); +} + +/* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if +** no rows exist, and any error in case of failure. +*/ +static int content_exists(fulltext_vtab *v){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + if( rc!=SQLITE_ROW ) return rc; + + /* We expect only one row. We must execute another sqlite3_step() + * to complete the iteration; otherwise the table will remain locked. */ + rc = sqlite3_step(s); + if( rc==SQLITE_DONE ) return SQLITE_ROW; + if( rc==SQLITE_ROW ) return SQLITE_ERROR; + return rc; +} + +/* insert into %_segments values ([pData]) +** returns assigned rowid in *piBlockid +*/ +static int block_insert(fulltext_vtab *v, const char *pData, int nData, + sqlite_int64 *piBlockid){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + if( rc==SQLITE_ROW ) return SQLITE_ERROR; + if( rc!=SQLITE_DONE ) return rc; + + *piBlockid = sqlite3_last_insert_rowid(v->db); + return SQLITE_OK; +} + +/* delete from %_segments +** where rowid between [iStartBlockid] and [iEndBlockid] +** +** Deletes the range of blocks, inclusive, used to delete the blocks +** which form a segment. +*/ +static int block_delete(fulltext_vtab *v, + sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iStartBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 2, iEndBlockid); + if( rc!=SQLITE_OK ) return rc; + + return sql_single_step(s); +} + +/* Returns SQLITE_ROW with *pidx set to the maximum segment idx found +** at iLevel. Returns SQLITE_DONE if there are no segments at +** iLevel. Otherwise returns an error. +*/ +static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int(s, 1, iLevel); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + /* Should always get at least one row due to how max() works. */ + if( rc==SQLITE_DONE ) return SQLITE_DONE; + if( rc!=SQLITE_ROW ) return rc; + + /* NULL means that there were no inputs to max(). */ + if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ + rc = sqlite3_step(s); + if( rc==SQLITE_ROW ) return SQLITE_ERROR; + return rc; + } + + *pidx = sqlite3_column_int(s, 0); + + /* We expect only one row. We must execute another sqlite3_step() + * to complete the iteration; otherwise the table will remain locked. */ + rc = sqlite3_step(s); + if( rc==SQLITE_ROW ) return SQLITE_ERROR; + if( rc!=SQLITE_DONE ) return rc; + return SQLITE_ROW; +} + +/* insert into %_segdir values ( +** [iLevel], [idx], +** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid], +** [pRootData] +** ) +*/ +static int segdir_set(fulltext_vtab *v, int iLevel, int idx, + sqlite_int64 iStartBlockid, + sqlite_int64 iLeavesEndBlockid, + sqlite_int64 iEndBlockid, + const char *pRootData, int nRootData){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int(s, 1, iLevel); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int(s, 2, idx); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 3, iStartBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 5, iEndBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC); + if( rc!=SQLITE_OK ) return rc; + + return sql_single_step(s); +} + +/* Queries %_segdir for the block span of the segments in level +** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel, +** SQLITE_ROW if there are blocks, else an error. +*/ +static int segdir_span(fulltext_vtab *v, int iLevel, + sqlite_int64 *piStartBlockid, + sqlite_int64 *piEndBlockid){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int(s, 1, iLevel); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */ + if( rc!=SQLITE_ROW ) return rc; + + /* This happens if all segments at this level are entirely inline. */ + if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ + /* We expect only one row. We must execute another sqlite3_step() + * to complete the iteration; otherwise the table will remain locked. */ + int rc2 = sqlite3_step(s); + if( rc2==SQLITE_ROW ) return SQLITE_ERROR; + return rc2; + } + + *piStartBlockid = sqlite3_column_int64(s, 0); + *piEndBlockid = sqlite3_column_int64(s, 1); + + /* We expect only one row. We must execute another sqlite3_step() + * to complete the iteration; otherwise the table will remain locked. */ + rc = sqlite3_step(s); + if( rc==SQLITE_ROW ) return SQLITE_ERROR; + if( rc!=SQLITE_DONE ) return rc; + return SQLITE_ROW; +} + +/* Delete the segment blocks and segment directory records for all +** segments at iLevel. +*/ +static int segdir_delete(fulltext_vtab *v, int iLevel){ + sqlite3_stmt *s; + sqlite_int64 iStartBlockid, iEndBlockid; + int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid); + if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc; + + if( rc==SQLITE_ROW ){ + rc = block_delete(v, iStartBlockid, iEndBlockid); + if( rc!=SQLITE_OK ) return rc; + } + + /* Delete the segment directory itself. */ + rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iLevel); + if( rc!=SQLITE_OK ) return rc; + + return sql_single_step(s); +} + +/* Delete entire fts index, SQLITE_OK on success, relevant error on +** failure. +*/ +static int segdir_delete_all(fulltext_vtab *v){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sql_single_step(s); + if( rc!=SQLITE_OK ) return rc; + + rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + return sql_single_step(s); +} + +/* Returns SQLITE_OK with *pnSegments set to the number of entries in +** %_segdir and *piMaxLevel set to the highest level which has a +** segment. Otherwise returns the SQLite error which caused failure. +*/ +static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + /* TODO(shess): This case should not be possible? Should stronger + ** measures be taken if it happens? + */ + if( rc==SQLITE_DONE ){ + *pnSegments = 0; + *piMaxLevel = 0; + return SQLITE_OK; + } + if( rc!=SQLITE_ROW ) return rc; + + *pnSegments = sqlite3_column_int(s, 0); + *piMaxLevel = sqlite3_column_int(s, 1); + + /* We expect only one row. We must execute another sqlite3_step() + * to complete the iteration; otherwise the table will remain locked. */ + rc = sqlite3_step(s); + if( rc==SQLITE_DONE ) return SQLITE_OK; + if( rc==SQLITE_ROW ) return SQLITE_ERROR; + return rc; +} + +/* TODO(shess) clearPendingTerms() is far down the file because +** writeZeroSegment() is far down the file because LeafWriter is far +** down the file. Consider refactoring the code to move the non-vtab +** code above the vtab code so that we don't need this forward +** reference. +*/ +static int clearPendingTerms(fulltext_vtab *v); + +/* +** Free the memory used to contain a fulltext_vtab structure. +*/ +static void fulltext_vtab_destroy(fulltext_vtab *v){ + int iStmt, i; + + TRACE(("FTS2 Destroy %p\n", v)); + for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){ + if( v->pFulltextStatements[iStmt]!=NULL ){ + sqlite3_finalize(v->pFulltextStatements[iStmt]); + v->pFulltextStatements[iStmt] = NULL; + } + } + + for( i=0; i<MERGE_COUNT; i++ ){ + if( v->pLeafSelectStmts[i]!=NULL ){ + sqlite3_finalize(v->pLeafSelectStmts[i]); + v->pLeafSelectStmts[i] = NULL; + } + } + + if( v->pTokenizer!=NULL ){ + v->pTokenizer->pModule->xDestroy(v->pTokenizer); + v->pTokenizer = NULL; + } + + clearPendingTerms(v); + + sqlite3_free(v->azColumn); + for(i = 0; i < v->nColumn; ++i) { + sqlite3_free(v->azContentColumn[i]); + } + sqlite3_free(v->azContentColumn); + sqlite3_free(v); +} + +/* +** Token types for parsing the arguments to xConnect or xCreate. +*/ +#define TOKEN_EOF 0 /* End of file */ +#define TOKEN_SPACE 1 /* Any kind of whitespace */ +#define TOKEN_ID 2 /* An identifier */ +#define TOKEN_STRING 3 /* A string literal */ +#define TOKEN_PUNCT 4 /* A single punctuation character */ + +/* +** If X is a character that can be used in an identifier then +** IdChar(X) will be true. Otherwise it is false. +** +** For ASCII, any character with the high-order bit set is +** allowed in an identifier. For 7-bit characters, +** sqlite3IsIdChar[X] must be 1. +** +** Ticket #1066. the SQL standard does not allow '$' in the +** middle of identfiers. But many SQL implementations do. +** SQLite will allow '$' in identifiers for compatibility. +** But the feature is undocumented. +*/ +static const char isIdChar[] = { +/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ + 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ +}; +#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isIdChar[c-0x20])) + + +/* +** Return the length of the token that begins at z[0]. +** Store the token type in *tokenType before returning. +*/ +static int getToken(const char *z, int *tokenType){ + int i, c; + switch( *z ){ + case 0: { + *tokenType = TOKEN_EOF; + return 0; + } + case ' ': case '\t': case '\n': case '\f': case '\r': { + for(i=1; safe_isspace(z[i]); i++){} + *tokenType = TOKEN_SPACE; + return i; + } + case '`': + case '\'': + case '"': { + int delim = z[0]; + for(i=1; (c=z[i])!=0; i++){ + if( c==delim ){ + if( z[i+1]==delim ){ + i++; + }else{ + break; + } + } + } + *tokenType = TOKEN_STRING; + return i + (c!=0); + } + case '[': { + for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} + *tokenType = TOKEN_ID; + return i; + } + default: { + if( !IdChar(*z) ){ + break; + } + for(i=1; IdChar(z[i]); i++){} + *tokenType = TOKEN_ID; + return i; + } + } + *tokenType = TOKEN_PUNCT; + return 1; +} + +/* +** A token extracted from a string is an instance of the following +** structure. +*/ +typedef struct Token { + const char *z; /* Pointer to token text. Not '\000' terminated */ + short int n; /* Length of the token text in bytes. */ +} Token; + +/* +** Given a input string (which is really one of the argv[] parameters +** passed into xConnect or xCreate) split the string up into tokens. +** Return an array of pointers to '\000' terminated strings, one string +** for each non-whitespace token. +** +** The returned array is terminated by a single NULL pointer. +** +** Space to hold the returned array is obtained from a single +** malloc and should be freed by passing the return value to free(). +** The individual strings within the token list are all a part of +** the single memory allocation and will all be freed at once. +*/ +static char **tokenizeString(const char *z, int *pnToken){ + int nToken = 0; + Token *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) ); + int n = 1; + int e, i; + int totalSize = 0; + char **azToken; + char *zCopy; + while( n>0 ){ + n = getToken(z, &e); + if( e!=TOKEN_SPACE ){ + aToken[nToken].z = z; + aToken[nToken].n = n; + nToken++; + totalSize += n+1; + } + z += n; + } + azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize ); + zCopy = (char*)&azToken[nToken]; + nToken--; + for(i=0; i<nToken; i++){ + azToken[i] = zCopy; + n = aToken[i].n; + memcpy(zCopy, aToken[i].z, n); + zCopy[n] = 0; + zCopy += n+1; + } + azToken[nToken] = 0; + sqlite3_free(aToken); + *pnToken = nToken; + return azToken; +} + +/* +** Convert an SQL-style quoted string into a normal string by removing +** the quote characters. The conversion is done in-place. If the +** input does not begin with a quote character, then this routine +** is a no-op. +** +** Examples: +** +** "abc" becomes abc +** 'xyz' becomes xyz +** [pqr] becomes pqr +** `mno` becomes mno +*/ +static void dequoteString(char *z){ + int quote; + int i, j; + if( z==0 ) return; + quote = z[0]; + switch( quote ){ + case '\'': break; + case '"': break; + case '`': break; /* For MySQL compatibility */ + case '[': quote = ']'; break; /* For MS SqlServer compatibility */ + default: return; + } + for(i=1, j=0; z[i]; i++){ + if( z[i]==quote ){ + if( z[i+1]==quote ){ + z[j++] = quote; + i++; + }else{ + z[j++] = 0; + break; + } + }else{ + z[j++] = z[i]; + } + } +} + +/* +** The input azIn is a NULL-terminated list of tokens. Remove the first +** token and all punctuation tokens. Remove the quotes from +** around string literal tokens. +** +** Example: +** +** input: tokenize chinese ( 'simplifed' , 'mixed' ) +** output: chinese simplifed mixed +** +** Another example: +** +** input: delimiters ( '[' , ']' , '...' ) +** output: [ ] ... +*/ +static void tokenListToIdList(char **azIn){ + int i, j; + if( azIn ){ + for(i=0, j=-1; azIn[i]; i++){ + if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){ + dequoteString(azIn[i]); + if( j>=0 ){ + azIn[j] = azIn[i]; + } + j++; + } + } + azIn[j] = 0; + } +} + + +/* +** Find the first alphanumeric token in the string zIn. Null-terminate +** this token. Remove any quotation marks. And return a pointer to +** the result. +*/ +static char *firstToken(char *zIn, char **pzTail){ + int n, ttype; + while(1){ + n = getToken(zIn, &ttype); + if( ttype==TOKEN_SPACE ){ + zIn += n; + }else if( ttype==TOKEN_EOF ){ + *pzTail = zIn; + return 0; + }else{ + zIn[n] = 0; + *pzTail = &zIn[1]; + dequoteString(zIn); + return zIn; + } + } + /*NOTREACHED*/ +} + +/* Return true if... +** +** * s begins with the string t, ignoring case +** * s is longer than t +** * The first character of s beyond t is not a alphanumeric +** +** Ignore leading space in *s. +** +** To put it another way, return true if the first token of +** s[] is t[]. +*/ +static int startsWith(const char *s, const char *t){ + while( safe_isspace(*s) ){ s++; } + while( *t ){ + if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0; + } + return *s!='_' && !safe_isalnum(*s); +} + +/* +** An instance of this structure defines the "spec" of a +** full text index. This structure is populated by parseSpec +** and use by fulltextConnect and fulltextCreate. +*/ +typedef struct TableSpec { + const char *zDb; /* Logical database name */ + const char *zName; /* Name of the full-text index */ + int nColumn; /* Number of columns to be indexed */ + char **azColumn; /* Original names of columns to be indexed */ + char **azContentColumn; /* Column names for %_content */ + char **azTokenizer; /* Name of tokenizer and its arguments */ +} TableSpec; + +/* +** Reclaim all of the memory used by a TableSpec +*/ +static void clearTableSpec(TableSpec *p) { + sqlite3_free(p->azColumn); + sqlite3_free(p->azContentColumn); + sqlite3_free(p->azTokenizer); +} + +/* Parse a CREATE VIRTUAL TABLE statement, which looks like this: + * + * CREATE VIRTUAL TABLE email + * USING fts2(subject, body, tokenize mytokenizer(myarg)) + * + * We return parsed information in a TableSpec structure. + * + */ +static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv, + char**pzErr){ + int i, n; + char *z, *zDummy; + char **azArg; + const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */ + + assert( argc>=3 ); + /* Current interface: + ** argv[0] - module name + ** argv[1] - database name + ** argv[2] - table name + ** argv[3..] - columns, optionally followed by tokenizer specification + ** and snippet delimiters specification. + */ + + /* Make a copy of the complete argv[][] array in a single allocation. + ** The argv[][] array is read-only and transient. We can write to the + ** copy in order to modify things and the copy is persistent. + */ + CLEAR(pSpec); + for(i=n=0; i<argc; i++){ + n += strlen(argv[i]) + 1; + } + azArg = sqlite3_malloc( sizeof(char*)*argc + n ); + if( azArg==0 ){ + return SQLITE_NOMEM; + } + z = (char*)&azArg[argc]; + for(i=0; i<argc; i++){ + azArg[i] = z; + strcpy(z, argv[i]); + z += strlen(z)+1; + } + + /* Identify the column names and the tokenizer and delimiter arguments + ** in the argv[][] array. + */ + pSpec->zDb = azArg[1]; + pSpec->zName = azArg[2]; + pSpec->nColumn = 0; + pSpec->azColumn = azArg; + zTokenizer = "tokenize simple"; + for(i=3; i<argc; ++i){ + if( startsWith(azArg[i],"tokenize") ){ + zTokenizer = azArg[i]; + }else{ + z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy); + pSpec->nColumn++; + } + } + if( pSpec->nColumn==0 ){ + azArg[0] = "content"; + pSpec->nColumn = 1; + } + + /* + ** Construct the list of content column names. + ** + ** Each content column name will be of the form cNNAAAA + ** where NN is the column number and AAAA is the sanitized + ** column name. "sanitized" means that special characters are + ** converted to "_". The cNN prefix guarantees that all column + ** names are unique. + ** + ** The AAAA suffix is not strictly necessary. It is included + ** for the convenience of people who might examine the generated + ** %_content table and wonder what the columns are used for. + */ + pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) ); + if( pSpec->azContentColumn==0 ){ + clearTableSpec(pSpec); + return SQLITE_NOMEM; + } + for(i=0; i<pSpec->nColumn; i++){ + char *p; + pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]); + for (p = pSpec->azContentColumn[i]; *p ; ++p) { + if( !safe_isalnum(*p) ) *p = '_'; + } + } + + /* + ** Parse the tokenizer specification string. + */ + pSpec->azTokenizer = tokenizeString(zTokenizer, &n); + tokenListToIdList(pSpec->azTokenizer); + + return SQLITE_OK; +} + +/* +** Generate a CREATE TABLE statement that describes the schema of +** the virtual table. Return a pointer to this schema string. +** +** Space is obtained from sqlite3_mprintf() and should be freed +** using sqlite3_free(). +*/ +static char *fulltextSchema( + int nColumn, /* Number of columns */ + const char *const* azColumn, /* List of columns */ + const char *zTableName /* Name of the table */ +){ + int i; + char *zSchema, *zNext; + const char *zSep = "("; + zSchema = sqlite3_mprintf("CREATE TABLE x"); + for(i=0; i<nColumn; i++){ + zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]); + sqlite3_free(zSchema); + zSchema = zNext; + zSep = ","; + } + zNext = sqlite3_mprintf("%s,%Q)", zSchema, zTableName); + sqlite3_free(zSchema); + return zNext; +} + +/* +** Build a new sqlite3_vtab structure that will describe the +** fulltext index defined by spec. +*/ +static int constructVtab( + sqlite3 *db, /* The SQLite database connection */ + fts2Hash *pHash, /* Hash table containing tokenizers */ + TableSpec *spec, /* Parsed spec information from parseSpec() */ + sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ + char **pzErr /* Write any error message here */ +){ + int rc; + int n; + fulltext_vtab *v = 0; + const sqlite3_tokenizer_module *m = NULL; + char *schema; + + char const *zTok; /* Name of tokenizer to use for this fts table */ + int nTok; /* Length of zTok, including nul terminator */ + + v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab)); + if( v==0 ) return SQLITE_NOMEM; + CLEAR(v); + /* sqlite will initialize v->base */ + v->db = db; + v->zDb = spec->zDb; /* Freed when azColumn is freed */ + v->zName = spec->zName; /* Freed when azColumn is freed */ + v->nColumn = spec->nColumn; + v->azContentColumn = spec->azContentColumn; + spec->azContentColumn = 0; + v->azColumn = spec->azColumn; + spec->azColumn = 0; + + if( spec->azTokenizer==0 ){ + return SQLITE_NOMEM; + } + + zTok = spec->azTokenizer[0]; + if( !zTok ){ + zTok = "simple"; + } + nTok = strlen(zTok)+1; + + m = (sqlite3_tokenizer_module *)sqlite3Fts2HashFind(pHash, zTok, nTok); + if( !m ){ + *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]); + rc = SQLITE_ERROR; + goto err; + } + + for(n=0; spec->azTokenizer[n]; n++){} + if( n ){ + rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1], + &v->pTokenizer); + }else{ + rc = m->xCreate(0, 0, &v->pTokenizer); + } + if( rc!=SQLITE_OK ) goto err; + v->pTokenizer->pModule = m; + + /* TODO: verify the existence of backing tables foo_content, foo_term */ + + schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn, + spec->zName); + rc = sqlite3_declare_vtab(db, schema); + sqlite3_free(schema); + if( rc!=SQLITE_OK ) goto err; + + memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements)); + + /* Indicate that the buffer is not live. */ + v->nPendingData = -1; + + *ppVTab = &v->base; + TRACE(("FTS2 Connect %p\n", v)); + + return rc; + +err: + fulltext_vtab_destroy(v); + return rc; +} + +static int fulltextConnect( + sqlite3 *db, + void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, + char **pzErr +){ + TableSpec spec; + int rc = parseSpec(&spec, argc, argv, pzErr); + if( rc!=SQLITE_OK ) return rc; + + rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr); + clearTableSpec(&spec); + return rc; +} + +/* The %_content table holds the text of each document, with +** the rowid used as the docid. +*/ +/* TODO(shess) This comment needs elaboration to match the updated +** code. Work it into the top-of-file comment at that time. +*/ +static int fulltextCreate(sqlite3 *db, void *pAux, + int argc, const char * const *argv, + sqlite3_vtab **ppVTab, char **pzErr){ + int rc; + TableSpec spec; + StringBuffer schema; + TRACE(("FTS2 Create\n")); + + rc = parseSpec(&spec, argc, argv, pzErr); + if( rc!=SQLITE_OK ) return rc; + + initStringBuffer(&schema); + append(&schema, "CREATE TABLE %_content("); + appendList(&schema, spec.nColumn, spec.azContentColumn); + append(&schema, ")"); + rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema)); + stringBufferDestroy(&schema); + if( rc!=SQLITE_OK ) goto out; + + rc = sql_exec(db, spec.zDb, spec.zName, + "create table %_segments(block blob);"); + if( rc!=SQLITE_OK ) goto out; + + rc = sql_exec(db, spec.zDb, spec.zName, + "create table %_segdir(" + " level integer," + " idx integer," + " start_block integer," + " leaves_end_block integer," + " end_block integer," + " root blob," + " primary key(level, idx)" + ");"); + if( rc!=SQLITE_OK ) goto out; + + rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr); + +out: + clearTableSpec(&spec); + return rc; +} + +/* Decide how to handle an SQL query. */ +static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ + int i; + TRACE(("FTS2 BestIndex\n")); + + for(i=0; i<pInfo->nConstraint; ++i){ + const struct sqlite3_index_constraint *pConstraint; + pConstraint = &pInfo->aConstraint[i]; + if( pConstraint->usable ) { + if( pConstraint->iColumn==-1 && + pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ + pInfo->idxNum = QUERY_ROWID; /* lookup by rowid */ + TRACE(("FTS2 QUERY_ROWID\n")); + } else if( pConstraint->iColumn>=0 && + pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ + /* full-text search */ + pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn; + TRACE(("FTS2 QUERY_FULLTEXT %d\n", pConstraint->iColumn)); + } else continue; + + pInfo->aConstraintUsage[i].argvIndex = 1; + pInfo->aConstraintUsage[i].omit = 1; + + /* An arbitrary value for now. + * TODO: Perhaps rowid matches should be considered cheaper than + * full-text searches. */ + pInfo->estimatedCost = 1.0; + + return SQLITE_OK; + } + } + pInfo->idxNum = QUERY_GENERIC; + return SQLITE_OK; +} + +static int fulltextDisconnect(sqlite3_vtab *pVTab){ + TRACE(("FTS2 Disconnect %p\n", pVTab)); + fulltext_vtab_destroy((fulltext_vtab *)pVTab); + return SQLITE_OK; +} + +static int fulltextDestroy(sqlite3_vtab *pVTab){ + fulltext_vtab *v = (fulltext_vtab *)pVTab; + int rc; + + TRACE(("FTS2 Destroy %p\n", pVTab)); + rc = sql_exec(v->db, v->zDb, v->zName, + "drop table if exists %_content;" + "drop table if exists %_segments;" + "drop table if exists %_segdir;" + ); + if( rc!=SQLITE_OK ) return rc; + + fulltext_vtab_destroy((fulltext_vtab *)pVTab); + return SQLITE_OK; +} + +static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ + fulltext_cursor *c; + + c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor)); + if( c ){ + memset(c, 0, sizeof(fulltext_cursor)); + /* sqlite will initialize c->base */ + *ppCursor = &c->base; + TRACE(("FTS2 Open %p: %p\n", pVTab, c)); + return SQLITE_OK; + }else{ + return SQLITE_NOMEM; + } +} + + +/* Free all of the dynamically allocated memory held by *q +*/ +static void queryClear(Query *q){ + int i; + for(i = 0; i < q->nTerms; ++i){ + sqlite3_free(q->pTerms[i].pTerm); + } + sqlite3_free(q->pTerms); + CLEAR(q); +} + +/* Free all of the dynamically allocated memory held by the +** Snippet +*/ +static void snippetClear(Snippet *p){ + sqlite3_free(p->aMatch); + sqlite3_free(p->zOffset); + sqlite3_free(p->zSnippet); + CLEAR(p); +} +/* +** Append a single entry to the p->aMatch[] log. +*/ +static void snippetAppendMatch( + Snippet *p, /* Append the entry to this snippet */ + int iCol, int iTerm, /* The column and query term */ + int iStart, int nByte /* Offset and size of the match */ +){ + int i; + struct snippetMatch *pMatch; + if( p->nMatch+1>=p->nAlloc ){ + p->nAlloc = p->nAlloc*2 + 10; + p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) ); + if( p->aMatch==0 ){ + p->nMatch = 0; + p->nAlloc = 0; + return; + } + } + i = p->nMatch++; + pMatch = &p->aMatch[i]; + pMatch->iCol = iCol; + pMatch->iTerm = iTerm; + pMatch->iStart = iStart; + pMatch->nByte = nByte; +} + +/* +** Sizing information for the circular buffer used in snippetOffsetsOfColumn() +*/ +#define FTS2_ROTOR_SZ (32) +#define FTS2_ROTOR_MASK (FTS2_ROTOR_SZ-1) + +/* +** Add entries to pSnippet->aMatch[] for every match that occurs against +** document zDoc[0..nDoc-1] which is stored in column iColumn. +*/ +static void snippetOffsetsOfColumn( + Query *pQuery, + Snippet *pSnippet, + int iColumn, + const char *zDoc, + int nDoc +){ + const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */ + sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */ + sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */ + fulltext_vtab *pVtab; /* The full text index */ + int nColumn; /* Number of columns in the index */ + const QueryTerm *aTerm; /* Query string terms */ + int nTerm; /* Number of query string terms */ + int i, j; /* Loop counters */ + int rc; /* Return code */ + unsigned int match, prevMatch; /* Phrase search bitmasks */ + const char *zToken; /* Next token from the tokenizer */ + int nToken; /* Size of zToken */ + int iBegin, iEnd, iPos; /* Offsets of beginning and end */ + + /* The following variables keep a circular buffer of the last + ** few tokens */ + unsigned int iRotor = 0; /* Index of current token */ + int iRotorBegin[FTS2_ROTOR_SZ]; /* Beginning offset of token */ + int iRotorLen[FTS2_ROTOR_SZ]; /* Length of token */ + + pVtab = pQuery->pFts; + nColumn = pVtab->nColumn; + pTokenizer = pVtab->pTokenizer; + pTModule = pTokenizer->pModule; + rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor); + if( rc ) return; + pTCursor->pTokenizer = pTokenizer; + aTerm = pQuery->pTerms; + nTerm = pQuery->nTerms; + if( nTerm>=FTS2_ROTOR_SZ ){ + nTerm = FTS2_ROTOR_SZ - 1; + } + prevMatch = 0; + while(1){ + rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos); + if( rc ) break; + iRotorBegin[iRotor&FTS2_ROTOR_MASK] = iBegin; + iRotorLen[iRotor&FTS2_ROTOR_MASK] = iEnd-iBegin; + match = 0; + for(i=0; i<nTerm; i++){ + int iCol; + iCol = aTerm[i].iColumn; + if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue; + if( aTerm[i].nTerm>nToken ) continue; + if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue; + assert( aTerm[i].nTerm<=nToken ); + if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue; + if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue; + match |= 1<<i; + if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){ + for(j=aTerm[i].iPhrase-1; j>=0; j--){ + int k = (iRotor-j) & FTS2_ROTOR_MASK; + snippetAppendMatch(pSnippet, iColumn, i-j, + iRotorBegin[k], iRotorLen[k]); + } + } + } + prevMatch = match<<1; + iRotor++; + } + pTModule->xClose(pTCursor); +} + + +/* +** Compute all offsets for the current row of the query. +** If the offsets have already been computed, this routine is a no-op. +*/ +static void snippetAllOffsets(fulltext_cursor *p){ + int nColumn; + int iColumn, i; + int iFirst, iLast; + fulltext_vtab *pFts; + + if( p->snippet.nMatch ) return; + if( p->q.nTerms==0 ) return; + pFts = p->q.pFts; + nColumn = pFts->nColumn; + iColumn = (p->iCursorType - QUERY_FULLTEXT); + if( iColumn<0 || iColumn>=nColumn ){ + iFirst = 0; + iLast = nColumn-1; + }else{ + iFirst = iColumn; + iLast = iColumn; + } + for(i=iFirst; i<=iLast; i++){ + const char *zDoc; + int nDoc; + zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1); + nDoc = sqlite3_column_bytes(p->pStmt, i+1); + snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc); + } +} + +/* +** Convert the information in the aMatch[] array of the snippet +** into the string zOffset[0..nOffset-1]. +*/ +static void snippetOffsetText(Snippet *p){ + int i; + int cnt = 0; + StringBuffer sb; + char zBuf[200]; + if( p->zOffset ) return; + initStringBuffer(&sb); + for(i=0; i<p->nMatch; i++){ + struct snippetMatch *pMatch = &p->aMatch[i]; + zBuf[0] = ' '; + sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d", + pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte); + append(&sb, zBuf); + cnt++; + } + p->zOffset = stringBufferData(&sb); + p->nOffset = stringBufferLength(&sb); +} + +/* +** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set +** of matching words some of which might be in zDoc. zDoc is column +** number iCol. +** +** iBreak is suggested spot in zDoc where we could begin or end an +** excerpt. Return a value similar to iBreak but possibly adjusted +** to be a little left or right so that the break point is better. +*/ +static int wordBoundary( + int iBreak, /* The suggested break point */ + const char *zDoc, /* Document text */ + int nDoc, /* Number of bytes in zDoc[] */ + struct snippetMatch *aMatch, /* Matching words */ + int nMatch, /* Number of entries in aMatch[] */ + int iCol /* The column number for zDoc[] */ +){ + int i; + if( iBreak<=10 ){ + return 0; + } + if( iBreak>=nDoc-10 ){ + return nDoc; + } + for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){} + while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; } + if( i<nMatch ){ + if( aMatch[i].iStart<iBreak+10 ){ + return aMatch[i].iStart; + } + if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){ + return aMatch[i-1].iStart; + } + } + for(i=1; i<=10; i++){ + if( safe_isspace(zDoc[iBreak-i]) ){ + return iBreak - i + 1; + } + if( safe_isspace(zDoc[iBreak+i]) ){ + return iBreak + i + 1; + } + } + return iBreak; +} + + + +/* +** Allowed values for Snippet.aMatch[].snStatus +*/ +#define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */ +#define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */ + +/* +** Generate the text of a snippet. +*/ +static void snippetText( + fulltext_cursor *pCursor, /* The cursor we need the snippet for */ + const char *zStartMark, /* Markup to appear before each match */ + const char *zEndMark, /* Markup to appear after each match */ + const char *zEllipsis /* Ellipsis mark */ +){ + int i, j; + struct snippetMatch *aMatch; + int nMatch; + int nDesired; + StringBuffer sb; + int tailCol; + int tailOffset; + int iCol; + int nDoc; + const char *zDoc; + int iStart, iEnd; + int tailEllipsis = 0; + int iMatch; + + + sqlite3_free(pCursor->snippet.zSnippet); + pCursor->snippet.zSnippet = 0; + aMatch = pCursor->snippet.aMatch; + nMatch = pCursor->snippet.nMatch; + initStringBuffer(&sb); + + for(i=0; i<nMatch; i++){ + aMatch[i].snStatus = SNIPPET_IGNORE; + } + nDesired = 0; + for(i=0; i<pCursor->q.nTerms; i++){ + for(j=0; j<nMatch; j++){ + if( aMatch[j].iTerm==i ){ + aMatch[j].snStatus = SNIPPET_DESIRED; + nDesired++; + break; + } + } + } + + iMatch = 0; + tailCol = -1; + tailOffset = 0; + for(i=0; i<nMatch && nDesired>0; i++){ + if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue; + nDesired--; + iCol = aMatch[i].iCol; + zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1); + nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1); + iStart = aMatch[i].iStart - 40; + iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol); + if( iStart<=10 ){ + iStart = 0; + } + if( iCol==tailCol && iStart<=tailOffset+20 ){ + iStart = tailOffset; + } + if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){ + trimWhiteSpace(&sb); + appendWhiteSpace(&sb); + append(&sb, zEllipsis); + appendWhiteSpace(&sb); + } + iEnd = aMatch[i].iStart + aMatch[i].nByte + 40; + iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol); + if( iEnd>=nDoc-10 ){ + iEnd = nDoc; + tailEllipsis = 0; + }else{ + tailEllipsis = 1; + } + while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; } + while( iStart<iEnd ){ + while( iMatch<nMatch && aMatch[iMatch].iStart<iStart + && aMatch[iMatch].iCol<=iCol ){ + iMatch++; + } + if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd + && aMatch[iMatch].iCol==iCol ){ + nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart); + iStart = aMatch[iMatch].iStart; + append(&sb, zStartMark); + nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte); + append(&sb, zEndMark); + iStart += aMatch[iMatch].nByte; + for(j=iMatch+1; j<nMatch; j++){ + if( aMatch[j].iTerm==aMatch[iMatch].iTerm + && aMatch[j].snStatus==SNIPPET_DESIRED ){ + nDesired--; + aMatch[j].snStatus = SNIPPET_IGNORE; + } + } + }else{ + nappend(&sb, &zDoc[iStart], iEnd - iStart); + iStart = iEnd; + } + } + tailCol = iCol; + tailOffset = iEnd; + } + trimWhiteSpace(&sb); + if( tailEllipsis ){ + appendWhiteSpace(&sb); + append(&sb, zEllipsis); + } + pCursor->snippet.zSnippet = stringBufferData(&sb); + pCursor->snippet.nSnippet = stringBufferLength(&sb); +} + + +/* +** Close the cursor. For additional information see the documentation +** on the xClose method of the virtual table interface. +*/ +static int fulltextClose(sqlite3_vtab_cursor *pCursor){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + TRACE(("FTS2 Close %p\n", c)); + sqlite3_finalize(c->pStmt); + queryClear(&c->q); + snippetClear(&c->snippet); + if( c->result.nData!=0 ) dlrDestroy(&c->reader); + dataBufferDestroy(&c->result); + sqlite3_free(c); + return SQLITE_OK; +} + +static int fulltextNext(sqlite3_vtab_cursor *pCursor){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + int rc; + + TRACE(("FTS2 Next %p\n", pCursor)); + snippetClear(&c->snippet); + if( c->iCursorType < QUERY_FULLTEXT ){ + /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ + rc = sqlite3_step(c->pStmt); + switch( rc ){ + case SQLITE_ROW: + c->eof = 0; + return SQLITE_OK; + case SQLITE_DONE: + c->eof = 1; + return SQLITE_OK; + default: + c->eof = 1; + return rc; + } + } else { /* full-text query */ + rc = sqlite3_reset(c->pStmt); + if( rc!=SQLITE_OK ) return rc; + + if( c->result.nData==0 || dlrAtEnd(&c->reader) ){ + c->eof = 1; + return SQLITE_OK; + } + rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader)); + dlrStep(&c->reader); + if( rc!=SQLITE_OK ) return rc; + /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ + rc = sqlite3_step(c->pStmt); + if( rc==SQLITE_ROW ){ /* the case we expect */ + c->eof = 0; + return SQLITE_OK; + } + /* an error occurred; abort */ + return rc==SQLITE_DONE ? SQLITE_ERROR : rc; + } +} + + +/* TODO(shess) If we pushed LeafReader to the top of the file, or to +** another file, term_select() could be pushed above +** docListOfTerm(). +*/ +static int termSelect(fulltext_vtab *v, int iColumn, + const char *pTerm, int nTerm, int isPrefix, + DocListType iType, DataBuffer *out); + +/* Return a DocList corresponding to the query term *pTerm. If *pTerm +** is the first term of a phrase query, go ahead and evaluate the phrase +** query and return the doclist for the entire phrase query. +** +** The resulting DL_DOCIDS doclist is stored in pResult, which is +** overwritten. +*/ +static int docListOfTerm( + fulltext_vtab *v, /* The full text index */ + int iColumn, /* column to restrict to. No restriction if >=nColumn */ + QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */ + DataBuffer *pResult /* Write the result here */ +){ + DataBuffer left, right, new; + int i, rc; + + /* No phrase search if no position info. */ + assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS ); + + /* This code should never be called with buffered updates. */ + assert( v->nPendingData<0 ); + + dataBufferInit(&left, 0); + rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix, + 0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &left); + if( rc ) return rc; + for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){ + dataBufferInit(&right, 0); + rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm, + pQTerm[i].isPrefix, DL_POSITIONS, &right); + if( rc ){ + dataBufferDestroy(&left); + return rc; + } + dataBufferInit(&new, 0); + docListPhraseMerge(left.pData, left.nData, right.pData, right.nData, + i<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &new); + dataBufferDestroy(&left); + dataBufferDestroy(&right); + left = new; + } + *pResult = left; + return SQLITE_OK; +} + +/* Add a new term pTerm[0..nTerm-1] to the query *q. +*/ +static void queryAdd(Query *q, const char *pTerm, int nTerm){ + QueryTerm *t; + ++q->nTerms; + q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0])); + if( q->pTerms==0 ){ + q->nTerms = 0; + return; + } + t = &q->pTerms[q->nTerms - 1]; + CLEAR(t); + t->pTerm = sqlite3_malloc(nTerm+1); + memcpy(t->pTerm, pTerm, nTerm); + t->pTerm[nTerm] = 0; + t->nTerm = nTerm; + t->isOr = q->nextIsOr; + t->isPrefix = 0; + q->nextIsOr = 0; + t->iColumn = q->nextColumn; + q->nextColumn = q->dfltColumn; +} + +/* +** Check to see if the string zToken[0...nToken-1] matches any +** column name in the virtual table. If it does, +** return the zero-indexed column number. If not, return -1. +*/ +static int checkColumnSpecifier( + fulltext_vtab *pVtab, /* The virtual table */ + const char *zToken, /* Text of the token */ + int nToken /* Number of characters in the token */ +){ + int i; + for(i=0; i<pVtab->nColumn; i++){ + if( memcmp(pVtab->azColumn[i], zToken, nToken)==0 + && pVtab->azColumn[i][nToken]==0 ){ + return i; + } + } + return -1; +} + +/* +** Parse the text at pSegment[0..nSegment-1]. Add additional terms +** to the query being assemblied in pQuery. +** +** inPhrase is true if pSegment[0..nSegement-1] is contained within +** double-quotes. If inPhrase is true, then the first term +** is marked with the number of terms in the phrase less one and +** OR and "-" syntax is ignored. If inPhrase is false, then every +** term found is marked with nPhrase=0 and OR and "-" syntax is significant. +*/ +static int tokenizeSegment( + sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */ + const char *pSegment, int nSegment, /* Query expression being parsed */ + int inPhrase, /* True if within "..." */ + Query *pQuery /* Append results here */ +){ + const sqlite3_tokenizer_module *pModule = pTokenizer->pModule; + sqlite3_tokenizer_cursor *pCursor; + int firstIndex = pQuery->nTerms; + int iCol; + int nTerm = 1; + + int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor); + if( rc!=SQLITE_OK ) return rc; + pCursor->pTokenizer = pTokenizer; + + while( 1 ){ + const char *pToken; + int nToken, iBegin, iEnd, iPos; + + rc = pModule->xNext(pCursor, + &pToken, &nToken, + &iBegin, &iEnd, &iPos); + if( rc!=SQLITE_OK ) break; + if( !inPhrase && + pSegment[iEnd]==':' && + (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){ + pQuery->nextColumn = iCol; + continue; + } + if( !inPhrase && pQuery->nTerms>0 && nToken==2 + && pSegment[iBegin]=='O' && pSegment[iBegin+1]=='R' ){ + pQuery->nextIsOr = 1; + continue; + } + queryAdd(pQuery, pToken, nToken); + if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){ + pQuery->pTerms[pQuery->nTerms-1].isNot = 1; + } + if( iEnd<nSegment && pSegment[iEnd]=='*' ){ + pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1; + } + pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm; + if( inPhrase ){ + nTerm++; + } + } + + if( inPhrase && pQuery->nTerms>firstIndex ){ + pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1; + } + + return pModule->xClose(pCursor); +} + +/* Parse a query string, yielding a Query object pQuery. +** +** The calling function will need to queryClear() to clean up +** the dynamically allocated memory held by pQuery. +*/ +static int parseQuery( + fulltext_vtab *v, /* The fulltext index */ + const char *zInput, /* Input text of the query string */ + int nInput, /* Size of the input text */ + int dfltColumn, /* Default column of the index to match against */ + Query *pQuery /* Write the parse results here. */ +){ + int iInput, inPhrase = 0; + + if( zInput==0 ) nInput = 0; + if( nInput<0 ) nInput = strlen(zInput); + pQuery->nTerms = 0; + pQuery->pTerms = NULL; + pQuery->nextIsOr = 0; + pQuery->nextColumn = dfltColumn; + pQuery->dfltColumn = dfltColumn; + pQuery->pFts = v; + + for(iInput=0; iInput<nInput; ++iInput){ + int i; + for(i=iInput; i<nInput && zInput[i]!='"'; ++i){} + if( i>iInput ){ + tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase, + pQuery); + } + iInput = i; + if( i<nInput ){ + assert( zInput[i]=='"' ); + inPhrase = !inPhrase; + } + } + + if( inPhrase ){ + /* unmatched quote */ + queryClear(pQuery); + return SQLITE_ERROR; + } + return SQLITE_OK; +} + +/* TODO(shess) Refactor the code to remove this forward decl. */ +static int flushPendingTerms(fulltext_vtab *v); + +/* Perform a full-text query using the search expression in +** zInput[0..nInput-1]. Return a list of matching documents +** in pResult. +** +** Queries must match column iColumn. Or if iColumn>=nColumn +** they are allowed to match against any column. +*/ +static int fulltextQuery( + fulltext_vtab *v, /* The full text index */ + int iColumn, /* Match against this column by default */ + const char *zInput, /* The query string */ + int nInput, /* Number of bytes in zInput[] */ + DataBuffer *pResult, /* Write the result doclist here */ + Query *pQuery /* Put parsed query string here */ +){ + int i, iNext, rc; + DataBuffer left, right, or, new; + int nNot = 0; + QueryTerm *aTerm; + + /* TODO(shess) Instead of flushing pendingTerms, we could query for + ** the relevant term and merge the doclist into what we receive from + ** the database. Wait and see if this is a common issue, first. + ** + ** A good reason not to flush is to not generate update-related + ** error codes from here. + */ + + /* Flush any buffered updates before executing the query. */ + rc = flushPendingTerms(v); + if( rc!=SQLITE_OK ) return rc; + + /* TODO(shess) I think that the queryClear() calls below are not + ** necessary, because fulltextClose() already clears the query. + */ + rc = parseQuery(v, zInput, nInput, iColumn, pQuery); + if( rc!=SQLITE_OK ) return rc; + + /* Empty or NULL queries return no results. */ + if( pQuery->nTerms==0 ){ + dataBufferInit(pResult, 0); + return SQLITE_OK; + } + + /* Merge AND terms. */ + /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */ + aTerm = pQuery->pTerms; + for(i = 0; i<pQuery->nTerms; i=iNext){ + if( aTerm[i].isNot ){ + /* Handle all NOT terms in a separate pass */ + nNot++; + iNext = i + aTerm[i].nPhrase+1; + continue; + } + iNext = i + aTerm[i].nPhrase + 1; + rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); + if( rc ){ + if( i!=nNot ) dataBufferDestroy(&left); + queryClear(pQuery); + return rc; + } + while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){ + rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or); + iNext += aTerm[iNext].nPhrase + 1; + if( rc ){ + if( i!=nNot ) dataBufferDestroy(&left); + dataBufferDestroy(&right); + queryClear(pQuery); + return rc; + } + dataBufferInit(&new, 0); + docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new); + dataBufferDestroy(&right); + dataBufferDestroy(&or); + right = new; + } + if( i==nNot ){ /* first term processed. */ + left = right; + }else{ + dataBufferInit(&new, 0); + docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new); + dataBufferDestroy(&right); + dataBufferDestroy(&left); + left = new; + } + } + + if( nNot==pQuery->nTerms ){ + /* We do not yet know how to handle a query of only NOT terms */ + return SQLITE_ERROR; + } + + /* Do the EXCEPT terms */ + for(i=0; i<pQuery->nTerms; i += aTerm[i].nPhrase + 1){ + if( !aTerm[i].isNot ) continue; + rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); + if( rc ){ + queryClear(pQuery); + dataBufferDestroy(&left); + return rc; + } + dataBufferInit(&new, 0); + docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new); + dataBufferDestroy(&right); + dataBufferDestroy(&left); + left = new; + } + + *pResult = left; + return rc; +} + +/* +** This is the xFilter interface for the virtual table. See +** the virtual table xFilter method documentation for additional +** information. +** +** If idxNum==QUERY_GENERIC then do a full table scan against +** the %_content table. +** +** If idxNum==QUERY_ROWID then do a rowid lookup for a single entry +** in the %_content table. +** +** If idxNum>=QUERY_FULLTEXT then use the full text index. The +** column on the left-hand side of the MATCH operator is column +** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand +** side of the MATCH operator. +*/ +/* TODO(shess) Upgrade the cursor initialization and destruction to +** account for fulltextFilter() being called multiple times on the +** same cursor. The current solution is very fragile. Apply fix to +** fts2 as appropriate. +*/ +static int fulltextFilter( + sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ + int idxNum, const char *idxStr, /* Which indexing scheme to use */ + int argc, sqlite3_value **argv /* Arguments for the indexing scheme */ +){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + fulltext_vtab *v = cursor_vtab(c); + int rc; + + TRACE(("FTS2 Filter %p\n",pCursor)); + + /* If the cursor has a statement that was not prepared according to + ** idxNum, clear it. I believe all calls to fulltextFilter with a + ** given cursor will have the same idxNum , but in this case it's + ** easy to be safe. + */ + if( c->pStmt && c->iCursorType!=idxNum ){ + sqlite3_finalize(c->pStmt); + c->pStmt = NULL; + } + + /* Get a fresh statement appropriate to idxNum. */ + /* TODO(shess): Add a prepared-statement cache in the vt structure. + ** The cache must handle multiple open cursors. Easier to cache the + ** statement variants at the vt to reduce malloc/realloc/free here. + ** Or we could have a StringBuffer variant which allowed stack + ** construction for small values. + */ + if( !c->pStmt ){ + char *zSql = sqlite3_mprintf("select rowid, * from %%_content %s", + idxNum==QUERY_GENERIC ? "" : "where rowid=?"); + rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, zSql); + sqlite3_free(zSql); + if( rc!=SQLITE_OK ) return rc; + c->iCursorType = idxNum; + }else{ + sqlite3_reset(c->pStmt); + assert( c->iCursorType==idxNum ); + } + + switch( idxNum ){ + case QUERY_GENERIC: + break; + + case QUERY_ROWID: + rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0])); + if( rc!=SQLITE_OK ) return rc; + break; + + default: /* full-text search */ + { + const char *zQuery = (const char *)sqlite3_value_text(argv[0]); + assert( idxNum<=QUERY_FULLTEXT+v->nColumn); + assert( argc==1 ); + queryClear(&c->q); + if( c->result.nData!=0 ){ + /* This case happens if the same cursor is used repeatedly. */ + dlrDestroy(&c->reader); + dataBufferReset(&c->result); + }else{ + dataBufferInit(&c->result, 0); + } + rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q); + if( rc!=SQLITE_OK ) return rc; + if( c->result.nData!=0 ){ + dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData); + } + break; + } + } + + return fulltextNext(pCursor); +} + +/* This is the xEof method of the virtual table. The SQLite core +** calls this routine to find out if it has reached the end of +** a query's results set. +*/ +static int fulltextEof(sqlite3_vtab_cursor *pCursor){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + return c->eof; +} + +/* This is the xColumn method of the virtual table. The SQLite +** core calls this method during a query when it needs the value +** of a column from the virtual table. This method needs to use +** one of the sqlite3_result_*() routines to store the requested +** value back in the pContext. +*/ +static int fulltextColumn(sqlite3_vtab_cursor *pCursor, + sqlite3_context *pContext, int idxCol){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + fulltext_vtab *v = cursor_vtab(c); + + if( idxCol<v->nColumn ){ + sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1); + sqlite3_result_value(pContext, pVal); + }else if( idxCol==v->nColumn ){ + /* The extra column whose name is the same as the table. + ** Return a blob which is a pointer to the cursor + */ + sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT); + } + return SQLITE_OK; +} + +/* This is the xRowid method. The SQLite core calls this routine to +** retrive the rowid for the current row of the result set. The +** rowid should be written to *pRowid. +*/ +static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + + *pRowid = sqlite3_column_int64(c->pStmt, 0); + return SQLITE_OK; +} + +/* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0, +** we also store positions and offsets in the hash table using that +** column number. +*/ +static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid, + const char *zText, int iColumn){ + sqlite3_tokenizer *pTokenizer = v->pTokenizer; + sqlite3_tokenizer_cursor *pCursor; + const char *pToken; + int nTokenBytes; + int iStartOffset, iEndOffset, iPosition; + int rc; + + rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor); + if( rc!=SQLITE_OK ) return rc; + + pCursor->pTokenizer = pTokenizer; + while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor, + &pToken, &nTokenBytes, + &iStartOffset, &iEndOffset, + &iPosition)) ){ + DLCollector *p; + int nData; /* Size of doclist before our update. */ + + /* Positions can't be negative; we use -1 as a terminator + * internally. Token can't be NULL or empty. */ + if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){ + rc = SQLITE_ERROR; + break; + } + + p = fts2HashFind(&v->pendingTerms, pToken, nTokenBytes); + if( p==NULL ){ + nData = 0; + p = dlcNew(iDocid, DL_DEFAULT); + fts2HashInsert(&v->pendingTerms, pToken, nTokenBytes, p); + + /* Overhead for our hash table entry, the key, and the value. */ + v->nPendingData += sizeof(struct fts2HashElem)+sizeof(*p)+nTokenBytes; + }else{ + nData = p->b.nData; + if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid); + } + if( iColumn>=0 ){ + dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset); + } + + /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */ + v->nPendingData += p->b.nData-nData; + } + + /* TODO(shess) Check return? Should this be able to cause errors at + ** this point? Actually, same question about sqlite3_finalize(), + ** though one could argue that failure there means that the data is + ** not durable. *ponder* + */ + pTokenizer->pModule->xClose(pCursor); + if( SQLITE_DONE == rc ) return SQLITE_OK; + return rc; +} + +/* Add doclists for all terms in [pValues] to pendingTerms table. */ +static int insertTerms(fulltext_vtab *v, sqlite_int64 iRowid, + sqlite3_value **pValues){ + int i; + for(i = 0; i < v->nColumn ; ++i){ + char *zText = (char*)sqlite3_value_text(pValues[i]); + int rc = buildTerms(v, iRowid, zText, i); + if( rc!=SQLITE_OK ) return rc; + } + return SQLITE_OK; +} + +/* Add empty doclists for all terms in the given row's content to +** pendingTerms. +*/ +static int deleteTerms(fulltext_vtab *v, sqlite_int64 iRowid){ + const char **pValues; + int i, rc; + + /* TODO(shess) Should we allow such tables at all? */ + if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR; + + rc = content_select(v, iRowid, &pValues); + if( rc!=SQLITE_OK ) return rc; + + for(i = 0 ; i < v->nColumn; ++i) { + rc = buildTerms(v, iRowid, pValues[i], -1); + if( rc!=SQLITE_OK ) break; + } + + freeStringArray(v->nColumn, pValues); + return SQLITE_OK; +} + +/* TODO(shess) Refactor the code to remove this forward decl. */ +static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid); + +/* Insert a row into the %_content table; set *piRowid to be the ID of the +** new row. Add doclists for terms to pendingTerms. +*/ +static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestRowid, + sqlite3_value **pValues, sqlite_int64 *piRowid){ + int rc; + + rc = content_insert(v, pRequestRowid, pValues); /* execute an SQL INSERT */ + if( rc!=SQLITE_OK ) return rc; + + *piRowid = sqlite3_last_insert_rowid(v->db); + rc = initPendingTerms(v, *piRowid); + if( rc!=SQLITE_OK ) return rc; + + return insertTerms(v, *piRowid, pValues); +} + +/* Delete a row from the %_content table; add empty doclists for terms +** to pendingTerms. +*/ +static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){ + int rc = initPendingTerms(v, iRow); + if( rc!=SQLITE_OK ) return rc; + + rc = deleteTerms(v, iRow); + if( rc!=SQLITE_OK ) return rc; + + return content_delete(v, iRow); /* execute an SQL DELETE */ +} + +/* Update a row in the %_content table; add delete doclists to +** pendingTerms for old terms not in the new data, add insert doclists +** to pendingTerms for terms in the new data. +*/ +static int index_update(fulltext_vtab *v, sqlite_int64 iRow, + sqlite3_value **pValues){ + int rc = initPendingTerms(v, iRow); + if( rc!=SQLITE_OK ) return rc; + + /* Generate an empty doclist for each term that previously appeared in this + * row. */ + rc = deleteTerms(v, iRow); + if( rc!=SQLITE_OK ) return rc; + + rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */ + if( rc!=SQLITE_OK ) return rc; + + /* Now add positions for terms which appear in the updated row. */ + return insertTerms(v, iRow, pValues); +} + +/*******************************************************************/ +/* InteriorWriter is used to collect terms and block references into +** interior nodes in %_segments. See commentary at top of file for +** format. +*/ + +/* How large interior nodes can grow. */ +#define INTERIOR_MAX 2048 + +/* Minimum number of terms per interior node (except the root). This +** prevents large terms from making the tree too skinny - must be >0 +** so that the tree always makes progress. Note that the min tree +** fanout will be INTERIOR_MIN_TERMS+1. +*/ +#define INTERIOR_MIN_TERMS 7 +#if INTERIOR_MIN_TERMS<1 +# error INTERIOR_MIN_TERMS must be greater than 0. +#endif + +/* ROOT_MAX controls how much data is stored inline in the segment +** directory. +*/ +/* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's +** only here so that interiorWriterRootInfo() and leafWriterRootInfo() +** can both see it, but if the caller passed it in, we wouldn't even +** need a define. +*/ +#define ROOT_MAX 1024 +#if ROOT_MAX<VARINT_MAX*2 +# error ROOT_MAX must have enough space for a header. +#endif + +/* InteriorBlock stores a linked-list of interior blocks while a lower +** layer is being constructed. +*/ +typedef struct InteriorBlock { + DataBuffer term; /* Leftmost term in block's subtree. */ + DataBuffer data; /* Accumulated data for the block. */ + struct InteriorBlock *next; +} InteriorBlock; + +static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock, + const char *pTerm, int nTerm){ + InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock)); + char c[VARINT_MAX+VARINT_MAX]; + int n; + + if( block ){ + memset(block, 0, sizeof(*block)); + dataBufferInit(&block->term, 0); + dataBufferReplace(&block->term, pTerm, nTerm); + + n = putVarint(c, iHeight); + n += putVarint(c+n, iChildBlock); + dataBufferInit(&block->data, INTERIOR_MAX); + dataBufferReplace(&block->data, c, n); + } + return block; +} + +#ifndef NDEBUG +/* Verify that the data is readable as an interior node. */ +static void interiorBlockValidate(InteriorBlock *pBlock){ + const char *pData = pBlock->data.pData; + int nData = pBlock->data.nData; + int n, iDummy; + sqlite_int64 iBlockid; + + assert( nData>0 ); + assert( pData!=0 ); + assert( pData+nData>pData ); + + /* Must lead with height of node as a varint(n), n>0 */ + n = getVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>0 ); + assert( n<nData ); + pData += n; + nData -= n; + + /* Must contain iBlockid. */ + n = getVarint(pData, &iBlockid); + assert( n>0 ); + assert( n<=nData ); + pData += n; + nData -= n; + + /* Zero or more terms of positive length */ + if( nData!=0 ){ + /* First term is not delta-encoded. */ + n = getVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>0 ); + assert( n+iDummy>0); + assert( n+iDummy<=nData ); + pData += n+iDummy; + nData -= n+iDummy; + + /* Following terms delta-encoded. */ + while( nData!=0 ){ + /* Length of shared prefix. */ + n = getVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>=0 ); + assert( n<nData ); + pData += n; + nData -= n; + + /* Length and data of distinct suffix. */ + n = getVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>0 ); + assert( n+iDummy>0); + assert( n+iDummy<=nData ); + pData += n+iDummy; + nData -= n+iDummy; + } + } +} +#define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x) +#else +#define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 ) +#endif + +typedef struct InteriorWriter { + int iHeight; /* from 0 at leaves. */ + InteriorBlock *first, *last; + struct InteriorWriter *parentWriter; + + DataBuffer term; /* Last term written to block "last". */ + sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */ +#ifndef NDEBUG + sqlite_int64 iLastChildBlock; /* for consistency checks. */ +#endif +} InteriorWriter; + +/* Initialize an interior node where pTerm[nTerm] marks the leftmost +** term in the tree. iChildBlock is the leftmost child block at the +** next level down the tree. +*/ +static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm, + sqlite_int64 iChildBlock, + InteriorWriter *pWriter){ + InteriorBlock *block; + assert( iHeight>0 ); + CLEAR(pWriter); + + pWriter->iHeight = iHeight; + pWriter->iOpeningChildBlock = iChildBlock; +#ifndef NDEBUG + pWriter->iLastChildBlock = iChildBlock; +#endif + block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm); + pWriter->last = pWriter->first = block; + ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); + dataBufferInit(&pWriter->term, 0); +} + +/* Append the child node rooted at iChildBlock to the interior node, +** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree. +*/ +static void interiorWriterAppend(InteriorWriter *pWriter, + const char *pTerm, int nTerm, + sqlite_int64 iChildBlock){ + char c[VARINT_MAX+VARINT_MAX]; + int n, nPrefix = 0; + + ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); + + /* The first term written into an interior node is actually + ** associated with the second child added (the first child was added + ** in interiorWriterInit, or in the if clause at the bottom of this + ** function). That term gets encoded straight up, with nPrefix left + ** at 0. + */ + if( pWriter->term.nData==0 ){ + n = putVarint(c, nTerm); + }else{ + while( nPrefix<pWriter->term.nData && + pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ + nPrefix++; + } + + n = putVarint(c, nPrefix); + n += putVarint(c+n, nTerm-nPrefix); + } + +#ifndef NDEBUG + pWriter->iLastChildBlock++; +#endif + assert( pWriter->iLastChildBlock==iChildBlock ); + + /* Overflow to a new block if the new term makes the current block + ** too big, and the current block already has enough terms. + */ + if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX && + iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){ + pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock, + pTerm, nTerm); + pWriter->last = pWriter->last->next; + pWriter->iOpeningChildBlock = iChildBlock; + dataBufferReset(&pWriter->term); + }else{ + dataBufferAppend2(&pWriter->last->data, c, n, + pTerm+nPrefix, nTerm-nPrefix); + dataBufferReplace(&pWriter->term, pTerm, nTerm); + } + ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); +} + +/* Free the space used by pWriter, including the linked-list of +** InteriorBlocks, and parentWriter, if present. +*/ +static int interiorWriterDestroy(InteriorWriter *pWriter){ + InteriorBlock *block = pWriter->first; + + while( block!=NULL ){ + InteriorBlock *b = block; + block = block->next; + dataBufferDestroy(&b->term); + dataBufferDestroy(&b->data); + sqlite3_free(b); + } + if( pWriter->parentWriter!=NULL ){ + interiorWriterDestroy(pWriter->parentWriter); + sqlite3_free(pWriter->parentWriter); + } + dataBufferDestroy(&pWriter->term); + SCRAMBLE(pWriter); + return SQLITE_OK; +} + +/* If pWriter can fit entirely in ROOT_MAX, return it as the root info +** directly, leaving *piEndBlockid unchanged. Otherwise, flush +** pWriter to %_segments, building a new layer of interior nodes, and +** recursively ask for their root into. +*/ +static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter, + char **ppRootInfo, int *pnRootInfo, + sqlite_int64 *piEndBlockid){ + InteriorBlock *block = pWriter->first; + sqlite_int64 iBlockid = 0; + int rc; + + /* If we can fit the segment inline */ + if( block==pWriter->last && block->data.nData<ROOT_MAX ){ + *ppRootInfo = block->data.pData; + *pnRootInfo = block->data.nData; + return SQLITE_OK; + } + + /* Flush the first block to %_segments, and create a new level of + ** interior node. + */ + ASSERT_VALID_INTERIOR_BLOCK(block); + rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); + if( rc!=SQLITE_OK ) return rc; + *piEndBlockid = iBlockid; + + pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter)); + interiorWriterInit(pWriter->iHeight+1, + block->term.pData, block->term.nData, + iBlockid, pWriter->parentWriter); + + /* Flush additional blocks and append to the higher interior + ** node. + */ + for(block=block->next; block!=NULL; block=block->next){ + ASSERT_VALID_INTERIOR_BLOCK(block); + rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); + if( rc!=SQLITE_OK ) return rc; + *piEndBlockid = iBlockid; + + interiorWriterAppend(pWriter->parentWriter, + block->term.pData, block->term.nData, iBlockid); + } + + /* Parent node gets the chance to be the root. */ + return interiorWriterRootInfo(v, pWriter->parentWriter, + ppRootInfo, pnRootInfo, piEndBlockid); +} + +/****************************************************************/ +/* InteriorReader is used to read off the data from an interior node +** (see comment at top of file for the format). +*/ +typedef struct InteriorReader { + const char *pData; + int nData; + + DataBuffer term; /* previous term, for decoding term delta. */ + + sqlite_int64 iBlockid; +} InteriorReader; + +static void interiorReaderDestroy(InteriorReader *pReader){ + dataBufferDestroy(&pReader->term); + SCRAMBLE(pReader); +} + +/* TODO(shess) The assertions are great, but what if we're in NDEBUG +** and the blob is empty or otherwise contains suspect data? +*/ +static void interiorReaderInit(const char *pData, int nData, + InteriorReader *pReader){ + int n, nTerm; + + /* Require at least the leading flag byte */ + assert( nData>0 ); + assert( pData[0]!='\0' ); + + CLEAR(pReader); + + /* Decode the base blockid, and set the cursor to the first term. */ + n = getVarint(pData+1, &pReader->iBlockid); + assert( 1+n<=nData ); + pReader->pData = pData+1+n; + pReader->nData = nData-(1+n); + + /* A single-child interior node (such as when a leaf node was too + ** large for the segment directory) won't have any terms. + ** Otherwise, decode the first term. + */ + if( pReader->nData==0 ){ + dataBufferInit(&pReader->term, 0); + }else{ + n = getVarint32(pReader->pData, &nTerm); + dataBufferInit(&pReader->term, nTerm); + dataBufferReplace(&pReader->term, pReader->pData+n, nTerm); + assert( n+nTerm<=pReader->nData ); + pReader->pData += n+nTerm; + pReader->nData -= n+nTerm; + } +} + +static int interiorReaderAtEnd(InteriorReader *pReader){ + return pReader->term.nData==0; +} + +static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){ + return pReader->iBlockid; +} + +static int interiorReaderTermBytes(InteriorReader *pReader){ + assert( !interiorReaderAtEnd(pReader) ); + return pReader->term.nData; +} +static const char *interiorReaderTerm(InteriorReader *pReader){ + assert( !interiorReaderAtEnd(pReader) ); + return pReader->term.pData; +} + +/* Step forward to the next term in the node. */ +static void interiorReaderStep(InteriorReader *pReader){ + assert( !interiorReaderAtEnd(pReader) ); + + /* If the last term has been read, signal eof, else construct the + ** next term. + */ + if( pReader->nData==0 ){ + dataBufferReset(&pReader->term); + }else{ + int n, nPrefix, nSuffix; + + n = getVarint32(pReader->pData, &nPrefix); + n += getVarint32(pReader->pData+n, &nSuffix); + + /* Truncate the current term and append suffix data. */ + pReader->term.nData = nPrefix; + dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); + + assert( n+nSuffix<=pReader->nData ); + pReader->pData += n+nSuffix; + pReader->nData -= n+nSuffix; + } + pReader->iBlockid++; +} + +/* Compare the current term to pTerm[nTerm], returning strcmp-style +** results. If isPrefix, equality means equal through nTerm bytes. +*/ +static int interiorReaderTermCmp(InteriorReader *pReader, + const char *pTerm, int nTerm, int isPrefix){ + const char *pReaderTerm = interiorReaderTerm(pReader); + int nReaderTerm = interiorReaderTermBytes(pReader); + int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm; + + if( n==0 ){ + if( nReaderTerm>0 ) return -1; + if( nTerm>0 ) return 1; + return 0; + } + + c = memcmp(pReaderTerm, pTerm, n); + if( c!=0 ) return c; + if( isPrefix && n==nTerm ) return 0; + return nReaderTerm - nTerm; +} + +/****************************************************************/ +/* LeafWriter is used to collect terms and associated doclist data +** into leaf blocks in %_segments (see top of file for format info). +** Expected usage is: +** +** LeafWriter writer; +** leafWriterInit(0, 0, &writer); +** while( sorted_terms_left_to_process ){ +** // data is doclist data for that term. +** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData); +** if( rc!=SQLITE_OK ) goto err; +** } +** rc = leafWriterFinalize(v, &writer); +**err: +** leafWriterDestroy(&writer); +** return rc; +** +** leafWriterStep() may write a collected leaf out to %_segments. +** leafWriterFinalize() finishes writing any buffered data and stores +** a root node in %_segdir. leafWriterDestroy() frees all buffers and +** InteriorWriters allocated as part of writing this segment. +** +** TODO(shess) Document leafWriterStepMerge(). +*/ + +/* Put terms with data this big in their own block. */ +#define STANDALONE_MIN 1024 + +/* Keep leaf blocks below this size. */ +#define LEAF_MAX 2048 + +typedef struct LeafWriter { + int iLevel; + int idx; + sqlite_int64 iStartBlockid; /* needed to create the root info */ + sqlite_int64 iEndBlockid; /* when we're done writing. */ + + DataBuffer term; /* previous encoded term */ + DataBuffer data; /* encoding buffer */ + + /* bytes of first term in the current node which distinguishes that + ** term from the last term of the previous node. + */ + int nTermDistinct; + + InteriorWriter parentWriter; /* if we overflow */ + int has_parent; +} LeafWriter; + +static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){ + CLEAR(pWriter); + pWriter->iLevel = iLevel; + pWriter->idx = idx; + + dataBufferInit(&pWriter->term, 32); + + /* Start out with a reasonably sized block, though it can grow. */ + dataBufferInit(&pWriter->data, LEAF_MAX); +} + +#ifndef NDEBUG +/* Verify that the data is readable as a leaf node. */ +static void leafNodeValidate(const char *pData, int nData){ + int n, iDummy; + + if( nData==0 ) return; + assert( nData>0 ); + assert( pData!=0 ); + assert( pData+nData>pData ); + + /* Must lead with a varint(0) */ + n = getVarint32(pData, &iDummy); + assert( iDummy==0 ); + assert( n>0 ); + assert( n<nData ); + pData += n; + nData -= n; + + /* Leading term length and data must fit in buffer. */ + n = getVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>0 ); + assert( n+iDummy>0 ); + assert( n+iDummy<nData ); + pData += n+iDummy; + nData -= n+iDummy; + + /* Leading term's doclist length and data must fit. */ + n = getVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>0 ); + assert( n+iDummy>0 ); + assert( n+iDummy<=nData ); + ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); + pData += n+iDummy; + nData -= n+iDummy; + + /* Verify that trailing terms and doclists also are readable. */ + while( nData!=0 ){ + n = getVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>=0 ); + assert( n<nData ); + pData += n; + nData -= n; + n = getVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>0 ); + assert( n+iDummy>0 ); + assert( n+iDummy<nData ); + pData += n+iDummy; + nData -= n+iDummy; + + n = getVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>0 ); + assert( n+iDummy>0 ); + assert( n+iDummy<=nData ); + ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); + pData += n+iDummy; + nData -= n+iDummy; + } +} +#define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n) +#else +#define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 ) +#endif + +/* Flush the current leaf node to %_segments, and adding the resulting +** blockid and the starting term to the interior node which will +** contain it. +*/ +static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter, + int iData, int nData){ + sqlite_int64 iBlockid = 0; + const char *pStartingTerm; + int nStartingTerm, rc, n; + + /* Must have the leading varint(0) flag, plus at least some + ** valid-looking data. + */ + assert( nData>2 ); + assert( iData>=0 ); + assert( iData+nData<=pWriter->data.nData ); + ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData); + + rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid); + if( rc!=SQLITE_OK ) return rc; + assert( iBlockid!=0 ); + + /* Reconstruct the first term in the leaf for purposes of building + ** the interior node. + */ + n = getVarint32(pWriter->data.pData+iData+1, &nStartingTerm); + pStartingTerm = pWriter->data.pData+iData+1+n; + assert( pWriter->data.nData>iData+1+n+nStartingTerm ); + assert( pWriter->nTermDistinct>0 ); + assert( pWriter->nTermDistinct<=nStartingTerm ); + nStartingTerm = pWriter->nTermDistinct; + + if( pWriter->has_parent ){ + interiorWriterAppend(&pWriter->parentWriter, + pStartingTerm, nStartingTerm, iBlockid); + }else{ + interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid, + &pWriter->parentWriter); + pWriter->has_parent = 1; + } + + /* Track the span of this segment's leaf nodes. */ + if( pWriter->iEndBlockid==0 ){ + pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid; + }else{ + pWriter->iEndBlockid++; + assert( iBlockid==pWriter->iEndBlockid ); + } + + return SQLITE_OK; +} +static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){ + int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData); + if( rc!=SQLITE_OK ) return rc; + + /* Re-initialize the output buffer. */ + dataBufferReset(&pWriter->data); + + return SQLITE_OK; +} + +/* Fetch the root info for the segment. If the entire leaf fits +** within ROOT_MAX, then it will be returned directly, otherwise it +** will be flushed and the root info will be returned from the +** interior node. *piEndBlockid is set to the blockid of the last +** interior or leaf node written to disk (0 if none are written at +** all). +*/ +static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter, + char **ppRootInfo, int *pnRootInfo, + sqlite_int64 *piEndBlockid){ + /* we can fit the segment entirely inline */ + if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){ + *ppRootInfo = pWriter->data.pData; + *pnRootInfo = pWriter->data.nData; + *piEndBlockid = 0; + return SQLITE_OK; + } + + /* Flush remaining leaf data. */ + if( pWriter->data.nData>0 ){ + int rc = leafWriterFlush(v, pWriter); + if( rc!=SQLITE_OK ) return rc; + } + + /* We must have flushed a leaf at some point. */ + assert( pWriter->has_parent ); + + /* Tenatively set the end leaf blockid as the end blockid. If the + ** interior node can be returned inline, this will be the final + ** blockid, otherwise it will be overwritten by + ** interiorWriterRootInfo(). + */ + *piEndBlockid = pWriter->iEndBlockid; + + return interiorWriterRootInfo(v, &pWriter->parentWriter, + ppRootInfo, pnRootInfo, piEndBlockid); +} + +/* Collect the rootInfo data and store it into the segment directory. +** This has the effect of flushing the segment's leaf data to +** %_segments, and also flushing any interior nodes to %_segments. +*/ +static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){ + sqlite_int64 iEndBlockid; + char *pRootInfo; + int rc, nRootInfo; + + rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid); + if( rc!=SQLITE_OK ) return rc; + + /* Don't bother storing an entirely empty segment. */ + if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK; + + return segdir_set(v, pWriter->iLevel, pWriter->idx, + pWriter->iStartBlockid, pWriter->iEndBlockid, + iEndBlockid, pRootInfo, nRootInfo); +} + +static void leafWriterDestroy(LeafWriter *pWriter){ + if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter); + dataBufferDestroy(&pWriter->term); + dataBufferDestroy(&pWriter->data); +} + +/* Encode a term into the leafWriter, delta-encoding as appropriate. +** Returns the length of the new term which distinguishes it from the +** previous term, which can be used to set nTermDistinct when a node +** boundary is crossed. +*/ +static int leafWriterEncodeTerm(LeafWriter *pWriter, + const char *pTerm, int nTerm){ + char c[VARINT_MAX+VARINT_MAX]; + int n, nPrefix = 0; + + assert( nTerm>0 ); + while( nPrefix<pWriter->term.nData && + pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ + nPrefix++; + /* Failing this implies that the terms weren't in order. */ + assert( nPrefix<nTerm ); + } + + if( pWriter->data.nData==0 ){ + /* Encode the node header and leading term as: + ** varint(0) + ** varint(nTerm) + ** char pTerm[nTerm] + */ + n = putVarint(c, '\0'); + n += putVarint(c+n, nTerm); + dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm); + }else{ + /* Delta-encode the term as: + ** varint(nPrefix) + ** varint(nSuffix) + ** char pTermSuffix[nSuffix] + */ + n = putVarint(c, nPrefix); + n += putVarint(c+n, nTerm-nPrefix); + dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix); + } + dataBufferReplace(&pWriter->term, pTerm, nTerm); + + return nPrefix+1; +} + +/* Used to avoid a memmove when a large amount of doclist data is in +** the buffer. This constructs a node and term header before +** iDoclistData and flushes the resulting complete node using +** leafWriterInternalFlush(). +*/ +static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter, + const char *pTerm, int nTerm, + int iDoclistData){ + char c[VARINT_MAX+VARINT_MAX]; + int iData, n = putVarint(c, 0); + n += putVarint(c+n, nTerm); + + /* There should always be room for the header. Even if pTerm shared + ** a substantial prefix with the previous term, the entire prefix + ** could be constructed from earlier data in the doclist, so there + ** should be room. + */ + assert( iDoclistData>=n+nTerm ); + + iData = iDoclistData-(n+nTerm); + memcpy(pWriter->data.pData+iData, c, n); + memcpy(pWriter->data.pData+iData+n, pTerm, nTerm); + + return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData); +} + +/* Push pTerm[nTerm] along with the doclist data to the leaf layer of +** %_segments. +*/ +static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter, + const char *pTerm, int nTerm, + DLReader *pReaders, int nReaders){ + char c[VARINT_MAX+VARINT_MAX]; + int iTermData = pWriter->data.nData, iDoclistData; + int i, nData, n, nActualData, nActual, rc, nTermDistinct; + + ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); + nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm); + + /* Remember nTermDistinct if opening a new node. */ + if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct; + + iDoclistData = pWriter->data.nData; + + /* Estimate the length of the merged doclist so we can leave space + ** to encode it. + */ + for(i=0, nData=0; i<nReaders; i++){ + nData += dlrAllDataBytes(&pReaders[i]); + } + n = putVarint(c, nData); + dataBufferAppend(&pWriter->data, c, n); + + docListMerge(&pWriter->data, pReaders, nReaders); + ASSERT_VALID_DOCLIST(DL_DEFAULT, + pWriter->data.pData+iDoclistData+n, + pWriter->data.nData-iDoclistData-n, NULL); + + /* The actual amount of doclist data at this point could be smaller + ** than the length we encoded. Additionally, the space required to + ** encode this length could be smaller. For small doclists, this is + ** not a big deal, we can just use memmove() to adjust things. + */ + nActualData = pWriter->data.nData-(iDoclistData+n); + nActual = putVarint(c, nActualData); + assert( nActualData<=nData ); + assert( nActual<=n ); + + /* If the new doclist is big enough for force a standalone leaf + ** node, we can immediately flush it inline without doing the + ** memmove(). + */ + /* TODO(shess) This test matches leafWriterStep(), which does this + ** test before it knows the cost to varint-encode the term and + ** doclist lengths. At some point, change to + ** pWriter->data.nData-iTermData>STANDALONE_MIN. + */ + if( nTerm+nActualData>STANDALONE_MIN ){ + /* Push leaf node from before this term. */ + if( iTermData>0 ){ + rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); + if( rc!=SQLITE_OK ) return rc; + + pWriter->nTermDistinct = nTermDistinct; + } + + /* Fix the encoded doclist length. */ + iDoclistData += n - nActual; + memcpy(pWriter->data.pData+iDoclistData, c, nActual); + + /* Push the standalone leaf node. */ + rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData); + if( rc!=SQLITE_OK ) return rc; + + /* Leave the node empty. */ + dataBufferReset(&pWriter->data); + + return rc; + } + + /* At this point, we know that the doclist was small, so do the + ** memmove if indicated. + */ + if( nActual<n ){ + memmove(pWriter->data.pData+iDoclistData+nActual, + pWriter->data.pData+iDoclistData+n, + pWriter->data.nData-(iDoclistData+n)); + pWriter->data.nData -= n-nActual; + } + + /* Replace written length with actual length. */ + memcpy(pWriter->data.pData+iDoclistData, c, nActual); + + /* If the node is too large, break things up. */ + /* TODO(shess) This test matches leafWriterStep(), which does this + ** test before it knows the cost to varint-encode the term and + ** doclist lengths. At some point, change to + ** pWriter->data.nData>LEAF_MAX. + */ + if( iTermData+nTerm+nActualData>LEAF_MAX ){ + /* Flush out the leading data as a node */ + rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); + if( rc!=SQLITE_OK ) return rc; + + pWriter->nTermDistinct = nTermDistinct; + + /* Rebuild header using the current term */ + n = putVarint(pWriter->data.pData, 0); + n += putVarint(pWriter->data.pData+n, nTerm); + memcpy(pWriter->data.pData+n, pTerm, nTerm); + n += nTerm; + + /* There should always be room, because the previous encoding + ** included all data necessary to construct the term. + */ + assert( n<iDoclistData ); + /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the + ** following memcpy() is safe (as opposed to needing a memmove). + */ + assert( 2*STANDALONE_MIN<=LEAF_MAX ); + assert( n+pWriter->data.nData-iDoclistData<iDoclistData ); + memcpy(pWriter->data.pData+n, + pWriter->data.pData+iDoclistData, + pWriter->data.nData-iDoclistData); + pWriter->data.nData -= iDoclistData-n; + } + ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); + + return SQLITE_OK; +} + +/* Push pTerm[nTerm] along with the doclist data to the leaf layer of +** %_segments. +*/ +/* TODO(shess) Revise writeZeroSegment() so that doclists are +** constructed directly in pWriter->data. +*/ +static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter, + const char *pTerm, int nTerm, + const char *pData, int nData){ + int rc; + DLReader reader; + + dlrInit(&reader, DL_DEFAULT, pData, nData); + rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1); + dlrDestroy(&reader); + + return rc; +} + + +/****************************************************************/ +/* LeafReader is used to iterate over an individual leaf node. */ +typedef struct LeafReader { + DataBuffer term; /* copy of current term. */ + + const char *pData; /* data for current term. */ + int nData; +} LeafReader; + +static void leafReaderDestroy(LeafReader *pReader){ + dataBufferDestroy(&pReader->term); + SCRAMBLE(pReader); +} + +static int leafReaderAtEnd(LeafReader *pReader){ + return pReader->nData<=0; +} + +/* Access the current term. */ +static int leafReaderTermBytes(LeafReader *pReader){ + return pReader->term.nData; +} +static const char *leafReaderTerm(LeafReader *pReader){ + assert( pReader->term.nData>0 ); + return pReader->term.pData; +} + +/* Access the doclist data for the current term. */ +static int leafReaderDataBytes(LeafReader *pReader){ + int nData; + assert( pReader->term.nData>0 ); + getVarint32(pReader->pData, &nData); + return nData; +} +static const char *leafReaderData(LeafReader *pReader){ + int n, nData; + assert( pReader->term.nData>0 ); + n = getVarint32(pReader->pData, &nData); + return pReader->pData+n; +} + +static void leafReaderInit(const char *pData, int nData, + LeafReader *pReader){ + int nTerm, n; + + assert( nData>0 ); + assert( pData[0]=='\0' ); + + CLEAR(pReader); + + /* Read the first term, skipping the header byte. */ + n = getVarint32(pData+1, &nTerm); + dataBufferInit(&pReader->term, nTerm); + dataBufferReplace(&pReader->term, pData+1+n, nTerm); + + /* Position after the first term. */ + assert( 1+n+nTerm<nData ); + pReader->pData = pData+1+n+nTerm; + pReader->nData = nData-1-n-nTerm; +} + +/* Step the reader forward to the next term. */ +static void leafReaderStep(LeafReader *pReader){ + int n, nData, nPrefix, nSuffix; + assert( !leafReaderAtEnd(pReader) ); + + /* Skip previous entry's data block. */ + n = getVarint32(pReader->pData, &nData); + assert( n+nData<=pReader->nData ); + pReader->pData += n+nData; + pReader->nData -= n+nData; + + if( !leafReaderAtEnd(pReader) ){ + /* Construct the new term using a prefix from the old term plus a + ** suffix from the leaf data. + */ + n = getVarint32(pReader->pData, &nPrefix); + n += getVarint32(pReader->pData+n, &nSuffix); + assert( n+nSuffix<pReader->nData ); + pReader->term.nData = nPrefix; + dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); + + pReader->pData += n+nSuffix; + pReader->nData -= n+nSuffix; + } +} + +/* strcmp-style comparison of pReader's current term against pTerm. +** If isPrefix, equality means equal through nTerm bytes. +*/ +static int leafReaderTermCmp(LeafReader *pReader, + const char *pTerm, int nTerm, int isPrefix){ + int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm; + if( n==0 ){ + if( pReader->term.nData>0 ) return -1; + if(nTerm>0 ) return 1; + return 0; + } + + c = memcmp(pReader->term.pData, pTerm, n); + if( c!=0 ) return c; + if( isPrefix && n==nTerm ) return 0; + return pReader->term.nData - nTerm; +} + + +/****************************************************************/ +/* LeavesReader wraps LeafReader to allow iterating over the entire +** leaf layer of the tree. +*/ +typedef struct LeavesReader { + int idx; /* Index within the segment. */ + + sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */ + int eof; /* we've seen SQLITE_DONE from pStmt. */ + + LeafReader leafReader; /* reader for the current leaf. */ + DataBuffer rootData; /* root data for inline. */ +} LeavesReader; + +/* Access the current term. */ +static int leavesReaderTermBytes(LeavesReader *pReader){ + assert( !pReader->eof ); + return leafReaderTermBytes(&pReader->leafReader); +} +static const char *leavesReaderTerm(LeavesReader *pReader){ + assert( !pReader->eof ); + return leafReaderTerm(&pReader->leafReader); +} + +/* Access the doclist data for the current term. */ +static int leavesReaderDataBytes(LeavesReader *pReader){ + assert( !pReader->eof ); + return leafReaderDataBytes(&pReader->leafReader); +} +static const char *leavesReaderData(LeavesReader *pReader){ + assert( !pReader->eof ); + return leafReaderData(&pReader->leafReader); +} + +static int leavesReaderAtEnd(LeavesReader *pReader){ + return pReader->eof; +} + +/* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus +** leaving the statement handle open, which locks the table. +*/ +/* TODO(shess) This "solution" is not satisfactory. Really, there +** should be check-in function for all statement handles which +** arranges to call sqlite3_reset(). This most likely will require +** modification to control flow all over the place, though, so for now +** just punt. +** +** Note the current system assumes that segment merges will run to +** completion, which is why this particular probably hasn't arisen in +** this case. Probably a brittle assumption. +*/ +static int leavesReaderReset(LeavesReader *pReader){ + return sqlite3_reset(pReader->pStmt); +} + +static void leavesReaderDestroy(LeavesReader *pReader){ + /* If idx is -1, that means we're using a non-cached statement + ** handle in the optimize() case, so we need to release it. + */ + if( pReader->pStmt!=NULL && pReader->idx==-1 ){ + sqlite3_finalize(pReader->pStmt); + } + leafReaderDestroy(&pReader->leafReader); + dataBufferDestroy(&pReader->rootData); + SCRAMBLE(pReader); +} + +/* Initialize pReader with the given root data (if iStartBlockid==0 +** the leaf data was entirely contained in the root), or from the +** stream of blocks between iStartBlockid and iEndBlockid, inclusive. +*/ +static int leavesReaderInit(fulltext_vtab *v, + int idx, + sqlite_int64 iStartBlockid, + sqlite_int64 iEndBlockid, + const char *pRootData, int nRootData, + LeavesReader *pReader){ + CLEAR(pReader); + pReader->idx = idx; + + dataBufferInit(&pReader->rootData, 0); + if( iStartBlockid==0 ){ + /* Entire leaf level fit in root data. */ + dataBufferReplace(&pReader->rootData, pRootData, nRootData); + leafReaderInit(pReader->rootData.pData, pReader->rootData.nData, + &pReader->leafReader); + }else{ + sqlite3_stmt *s; + int rc = sql_get_leaf_statement(v, idx, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iStartBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 2, iEndBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + if( rc==SQLITE_DONE ){ + pReader->eof = 1; + return SQLITE_OK; + } + if( rc!=SQLITE_ROW ) return rc; + + pReader->pStmt = s; + leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), + sqlite3_column_bytes(pReader->pStmt, 0), + &pReader->leafReader); + } + return SQLITE_OK; +} + +/* Step the current leaf forward to the next term. If we reach the +** end of the current leaf, step forward to the next leaf block. +*/ +static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){ + assert( !leavesReaderAtEnd(pReader) ); + leafReaderStep(&pReader->leafReader); + + if( leafReaderAtEnd(&pReader->leafReader) ){ + int rc; + if( pReader->rootData.pData ){ + pReader->eof = 1; + return SQLITE_OK; + } + rc = sqlite3_step(pReader->pStmt); + if( rc!=SQLITE_ROW ){ + pReader->eof = 1; + return rc==SQLITE_DONE ? SQLITE_OK : rc; + } + leafReaderDestroy(&pReader->leafReader); + leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), + sqlite3_column_bytes(pReader->pStmt, 0), + &pReader->leafReader); + } + return SQLITE_OK; +} + +/* Order LeavesReaders by their term, ignoring idx. Readers at eof +** always sort to the end. +*/ +static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){ + if( leavesReaderAtEnd(lr1) ){ + if( leavesReaderAtEnd(lr2) ) return 0; + return 1; + } + if( leavesReaderAtEnd(lr2) ) return -1; + + return leafReaderTermCmp(&lr1->leafReader, + leavesReaderTerm(lr2), leavesReaderTermBytes(lr2), + 0); +} + +/* Similar to leavesReaderTermCmp(), with additional ordering by idx +** so that older segments sort before newer segments. +*/ +static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){ + int c = leavesReaderTermCmp(lr1, lr2); + if( c!=0 ) return c; + return lr1->idx-lr2->idx; +} + +/* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its +** sorted position. +*/ +static void leavesReaderReorder(LeavesReader *pLr, int nLr){ + while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){ + LeavesReader tmp = pLr[0]; + pLr[0] = pLr[1]; + pLr[1] = tmp; + nLr--; + pLr++; + } +} + +/* Initializes pReaders with the segments from level iLevel, returning +** the number of segments in *piReaders. Leaves pReaders in sorted +** order. +*/ +static int leavesReadersInit(fulltext_vtab *v, int iLevel, + LeavesReader *pReaders, int *piReaders){ + sqlite3_stmt *s; + int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int(s, 1, iLevel); + if( rc!=SQLITE_OK ) return rc; + + i = 0; + while( (rc = sqlite3_step(s))==SQLITE_ROW ){ + sqlite_int64 iStart = sqlite3_column_int64(s, 0); + sqlite_int64 iEnd = sqlite3_column_int64(s, 1); + const char *pRootData = sqlite3_column_blob(s, 2); + int nRootData = sqlite3_column_bytes(s, 2); + + assert( i<MERGE_COUNT ); + rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData, + &pReaders[i]); + if( rc!=SQLITE_OK ) break; + + i++; + } + if( rc!=SQLITE_DONE ){ + while( i-->0 ){ + leavesReaderDestroy(&pReaders[i]); + } + return rc; + } + + *piReaders = i; + + /* Leave our results sorted by term, then age. */ + while( i-- ){ + leavesReaderReorder(pReaders+i, *piReaders-i); + } + return SQLITE_OK; +} + +/* Merge doclists from pReaders[nReaders] into a single doclist, which +** is written to pWriter. Assumes pReaders is ordered oldest to +** newest. +*/ +/* TODO(shess) Consider putting this inline in segmentMerge(). */ +static int leavesReadersMerge(fulltext_vtab *v, + LeavesReader *pReaders, int nReaders, + LeafWriter *pWriter){ + DLReader dlReaders[MERGE_COUNT]; + const char *pTerm = leavesReaderTerm(pReaders); + int i, nTerm = leavesReaderTermBytes(pReaders); + + assert( nReaders<=MERGE_COUNT ); + + for(i=0; i<nReaders; i++){ + dlrInit(&dlReaders[i], DL_DEFAULT, + leavesReaderData(pReaders+i), + leavesReaderDataBytes(pReaders+i)); + } + + return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders); +} + +/* Forward ref due to mutual recursion with segdirNextIndex(). */ +static int segmentMerge(fulltext_vtab *v, int iLevel); + +/* Put the next available index at iLevel into *pidx. If iLevel +** already has MERGE_COUNT segments, they are merged to a higher +** level to make room. +*/ +static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){ + int rc = segdir_max_index(v, iLevel, pidx); + if( rc==SQLITE_DONE ){ /* No segments at iLevel. */ + *pidx = 0; + }else if( rc==SQLITE_ROW ){ + if( *pidx==(MERGE_COUNT-1) ){ + rc = segmentMerge(v, iLevel); + if( rc!=SQLITE_OK ) return rc; + *pidx = 0; + }else{ + (*pidx)++; + } + }else{ + return rc; + } + return SQLITE_OK; +} + +/* Merge MERGE_COUNT segments at iLevel into a new segment at +** iLevel+1. If iLevel+1 is already full of segments, those will be +** merged to make room. +*/ +static int segmentMerge(fulltext_vtab *v, int iLevel){ + LeafWriter writer; + LeavesReader lrs[MERGE_COUNT]; + int i, rc, idx = 0; + + /* Determine the next available segment index at the next level, + ** merging as necessary. + */ + rc = segdirNextIndex(v, iLevel+1, &idx); + if( rc!=SQLITE_OK ) return rc; + + /* TODO(shess) This assumes that we'll always see exactly + ** MERGE_COUNT segments to merge at a given level. That will be + ** broken if we allow the developer to request preemptive or + ** deferred merging. + */ + memset(&lrs, '\0', sizeof(lrs)); + rc = leavesReadersInit(v, iLevel, lrs, &i); + if( rc!=SQLITE_OK ) return rc; + assert( i==MERGE_COUNT ); + + leafWriterInit(iLevel+1, idx, &writer); + + /* Since leavesReaderReorder() pushes readers at eof to the end, + ** when the first reader is empty, all will be empty. + */ + while( !leavesReaderAtEnd(lrs) ){ + /* Figure out how many readers share their next term. */ + for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){ + if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break; + } + + rc = leavesReadersMerge(v, lrs, i, &writer); + if( rc!=SQLITE_OK ) goto err; + + /* Step forward those that were merged. */ + while( i-->0 ){ + rc = leavesReaderStep(v, lrs+i); + if( rc!=SQLITE_OK ) goto err; + + /* Reorder by term, then by age. */ + leavesReaderReorder(lrs+i, MERGE_COUNT-i); + } + } + + for(i=0; i<MERGE_COUNT; i++){ + leavesReaderDestroy(&lrs[i]); + } + + rc = leafWriterFinalize(v, &writer); + leafWriterDestroy(&writer); + if( rc!=SQLITE_OK ) return rc; + + /* Delete the merged segment data. */ + return segdir_delete(v, iLevel); + + err: + for(i=0; i<MERGE_COUNT; i++){ + leavesReaderDestroy(&lrs[i]); + } + leafWriterDestroy(&writer); + return rc; +} + +/* Accumulate the union of *acc and *pData into *acc. */ +static void docListAccumulateUnion(DataBuffer *acc, + const char *pData, int nData) { + DataBuffer tmp = *acc; + dataBufferInit(acc, tmp.nData+nData); + docListUnion(tmp.pData, tmp.nData, pData, nData, acc); + dataBufferDestroy(&tmp); +} + +/* TODO(shess) It might be interesting to explore different merge +** strategies, here. For instance, since this is a sorted merge, we +** could easily merge many doclists in parallel. With some +** comprehension of the storage format, we could merge all of the +** doclists within a leaf node directly from the leaf node's storage. +** It may be worthwhile to merge smaller doclists before larger +** doclists, since they can be traversed more quickly - but the +** results may have less overlap, making them more expensive in a +** different way. +*/ + +/* Scan pReader for pTerm/nTerm, and merge the term's doclist over +** *out (any doclists with duplicate docids overwrite those in *out). +** Internal function for loadSegmentLeaf(). +*/ +static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader, + const char *pTerm, int nTerm, int isPrefix, + DataBuffer *out){ + /* doclist data is accumulated into pBuffers similar to how one does + ** increment in binary arithmetic. If index 0 is empty, the data is + ** stored there. If there is data there, it is merged and the + ** results carried into position 1, with further merge-and-carry + ** until an empty position is found. + */ + DataBuffer *pBuffers = NULL; + int nBuffers = 0, nMaxBuffers = 0, rc; + + assert( nTerm>0 ); + + for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader); + rc=leavesReaderStep(v, pReader)){ + /* TODO(shess) Really want leavesReaderTermCmp(), but that name is + ** already taken to compare the terms of two LeavesReaders. Think + ** on a better name. [Meanwhile, break encapsulation rather than + ** use a confusing name.] + */ + int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix); + if( c>0 ) break; /* Past any possible matches. */ + if( c==0 ){ + const char *pData = leavesReaderData(pReader); + int iBuffer, nData = leavesReaderDataBytes(pReader); + + /* Find the first empty buffer. */ + for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){ + if( 0==pBuffers[iBuffer].nData ) break; + } + + /* Out of buffers, add an empty one. */ + if( iBuffer==nBuffers ){ + if( nBuffers==nMaxBuffers ){ + DataBuffer *p; + nMaxBuffers += 20; + + /* Manual realloc so we can handle NULL appropriately. */ + p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers)); + if( p==NULL ){ + rc = SQLITE_NOMEM; + break; + } + + if( nBuffers>0 ){ + assert(pBuffers!=NULL); + memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers)); + sqlite3_free(pBuffers); + } + pBuffers = p; + } + dataBufferInit(&(pBuffers[nBuffers]), 0); + nBuffers++; + } + + /* At this point, must have an empty at iBuffer. */ + assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0); + + /* If empty was first buffer, no need for merge logic. */ + if( iBuffer==0 ){ + dataBufferReplace(&(pBuffers[0]), pData, nData); + }else{ + /* pAcc is the empty buffer the merged data will end up in. */ + DataBuffer *pAcc = &(pBuffers[iBuffer]); + DataBuffer *p = &(pBuffers[0]); + + /* Handle position 0 specially to avoid need to prime pAcc + ** with pData/nData. + */ + dataBufferSwap(p, pAcc); + docListAccumulateUnion(pAcc, pData, nData); + + /* Accumulate remaining doclists into pAcc. */ + for(++p; p<pAcc; ++p){ + docListAccumulateUnion(pAcc, p->pData, p->nData); + + /* dataBufferReset() could allow a large doclist to blow up + ** our memory requirements. + */ + if( p->nCapacity<1024 ){ + dataBufferReset(p); + }else{ + dataBufferDestroy(p); + dataBufferInit(p, 0); + } + } + } + } + } + + /* Union all the doclists together into *out. */ + /* TODO(shess) What if *out is big? Sigh. */ + if( rc==SQLITE_OK && nBuffers>0 ){ + int iBuffer; + for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){ + if( pBuffers[iBuffer].nData>0 ){ + if( out->nData==0 ){ + dataBufferSwap(out, &(pBuffers[iBuffer])); + }else{ + docListAccumulateUnion(out, pBuffers[iBuffer].pData, + pBuffers[iBuffer].nData); + } + } + } + } + + while( nBuffers-- ){ + dataBufferDestroy(&(pBuffers[nBuffers])); + } + if( pBuffers!=NULL ) sqlite3_free(pBuffers); + + return rc; +} + +/* Call loadSegmentLeavesInt() with pData/nData as input. */ +static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData, + const char *pTerm, int nTerm, int isPrefix, + DataBuffer *out){ + LeavesReader reader; + int rc; + + assert( nData>1 ); + assert( *pData=='\0' ); + rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader); + if( rc!=SQLITE_OK ) return rc; + + rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); + leavesReaderReset(&reader); + leavesReaderDestroy(&reader); + return rc; +} + +/* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to +** iEndLeaf (inclusive) as input, and merge the resulting doclist into +** out. +*/ +static int loadSegmentLeaves(fulltext_vtab *v, + sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf, + const char *pTerm, int nTerm, int isPrefix, + DataBuffer *out){ + int rc; + LeavesReader reader; + + assert( iStartLeaf<=iEndLeaf ); + rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader); + if( rc!=SQLITE_OK ) return rc; + + rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); + leavesReaderReset(&reader); + leavesReaderDestroy(&reader); + return rc; +} + +/* Taking pData/nData as an interior node, find the sequence of child +** nodes which could include pTerm/nTerm/isPrefix. Note that the +** interior node terms logically come between the blocks, so there is +** one more blockid than there are terms (that block contains terms >= +** the last interior-node term). +*/ +/* TODO(shess) The calling code may already know that the end child is +** not worth calculating, because the end may be in a later sibling +** node. Consider whether breaking symmetry is worthwhile. I suspect +** it is not worthwhile. +*/ +static void getChildrenContaining(const char *pData, int nData, + const char *pTerm, int nTerm, int isPrefix, + sqlite_int64 *piStartChild, + sqlite_int64 *piEndChild){ + InteriorReader reader; + + assert( nData>1 ); + assert( *pData!='\0' ); + interiorReaderInit(pData, nData, &reader); + + /* Scan for the first child which could contain pTerm/nTerm. */ + while( !interiorReaderAtEnd(&reader) ){ + if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break; + interiorReaderStep(&reader); + } + *piStartChild = interiorReaderCurrentBlockid(&reader); + + /* Keep scanning to find a term greater than our term, using prefix + ** comparison if indicated. If isPrefix is false, this will be the + ** same blockid as the starting block. + */ + while( !interiorReaderAtEnd(&reader) ){ + if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break; + interiorReaderStep(&reader); + } + *piEndChild = interiorReaderCurrentBlockid(&reader); + + interiorReaderDestroy(&reader); + + /* Children must ascend, and if !prefix, both must be the same. */ + assert( *piEndChild>=*piStartChild ); + assert( isPrefix || *piStartChild==*piEndChild ); +} + +/* Read block at iBlockid and pass it with other params to +** getChildrenContaining(). +*/ +static int loadAndGetChildrenContaining( + fulltext_vtab *v, + sqlite_int64 iBlockid, + const char *pTerm, int nTerm, int isPrefix, + sqlite_int64 *piStartChild, sqlite_int64 *piEndChild +){ + sqlite3_stmt *s = NULL; + int rc; + + assert( iBlockid!=0 ); + assert( pTerm!=NULL ); + assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */ + assert( piStartChild!=NULL ); + assert( piEndChild!=NULL ); + + rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + if( rc==SQLITE_DONE ) return SQLITE_ERROR; + if( rc!=SQLITE_ROW ) return rc; + + getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0), + pTerm, nTerm, isPrefix, piStartChild, piEndChild); + + /* We expect only one row. We must execute another sqlite3_step() + * to complete the iteration; otherwise the table will remain + * locked. */ + rc = sqlite3_step(s); + if( rc==SQLITE_ROW ) return SQLITE_ERROR; + if( rc!=SQLITE_DONE ) return rc; + + return SQLITE_OK; +} + +/* Traverse the tree represented by pData[nData] looking for +** pTerm[nTerm], placing its doclist into *out. This is internal to +** loadSegment() to make error-handling cleaner. +*/ +static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData, + sqlite_int64 iLeavesEnd, + const char *pTerm, int nTerm, int isPrefix, + DataBuffer *out){ + /* Special case where root is a leaf. */ + if( *pData=='\0' ){ + return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out); + }else{ + int rc; + sqlite_int64 iStartChild, iEndChild; + + /* Process pData as an interior node, then loop down the tree + ** until we find the set of leaf nodes to scan for the term. + */ + getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix, + &iStartChild, &iEndChild); + while( iStartChild>iLeavesEnd ){ + sqlite_int64 iNextStart, iNextEnd; + rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix, + &iNextStart, &iNextEnd); + if( rc!=SQLITE_OK ) return rc; + + /* If we've branched, follow the end branch, too. */ + if( iStartChild!=iEndChild ){ + sqlite_int64 iDummy; + rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix, + &iDummy, &iNextEnd); + if( rc!=SQLITE_OK ) return rc; + } + + assert( iNextStart<=iNextEnd ); + iStartChild = iNextStart; + iEndChild = iNextEnd; + } + assert( iStartChild<=iLeavesEnd ); + assert( iEndChild<=iLeavesEnd ); + + /* Scan through the leaf segments for doclists. */ + return loadSegmentLeaves(v, iStartChild, iEndChild, + pTerm, nTerm, isPrefix, out); + } +} + +/* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then +** merge its doclist over *out (any duplicate doclists read from the +** segment rooted at pData will overwrite those in *out). +*/ +/* TODO(shess) Consider changing this to determine the depth of the +** leaves using either the first characters of interior nodes (when +** ==1, we're one level above the leaves), or the first character of +** the root (which will describe the height of the tree directly). +** Either feels somewhat tricky to me. +*/ +/* TODO(shess) The current merge is likely to be slow for large +** doclists (though it should process from newest/smallest to +** oldest/largest, so it may not be that bad). It might be useful to +** modify things to allow for N-way merging. This could either be +** within a segment, with pairwise merges across segments, or across +** all segments at once. +*/ +static int loadSegment(fulltext_vtab *v, const char *pData, int nData, + sqlite_int64 iLeavesEnd, + const char *pTerm, int nTerm, int isPrefix, + DataBuffer *out){ + DataBuffer result; + int rc; + + assert( nData>1 ); + + /* This code should never be called with buffered updates. */ + assert( v->nPendingData<0 ); + + dataBufferInit(&result, 0); + rc = loadSegmentInt(v, pData, nData, iLeavesEnd, + pTerm, nTerm, isPrefix, &result); + if( rc==SQLITE_OK && result.nData>0 ){ + if( out->nData==0 ){ + DataBuffer tmp = *out; + *out = result; + result = tmp; + }else{ + DataBuffer merged; + DLReader readers[2]; + + dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData); + dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData); + dataBufferInit(&merged, out->nData+result.nData); + docListMerge(&merged, readers, 2); + dataBufferDestroy(out); + *out = merged; + dlrDestroy(&readers[0]); + dlrDestroy(&readers[1]); + } + } + dataBufferDestroy(&result); + return rc; +} + +/* Scan the database and merge together the posting lists for the term +** into *out. +*/ +static int termSelect(fulltext_vtab *v, int iColumn, + const char *pTerm, int nTerm, int isPrefix, + DocListType iType, DataBuffer *out){ + DataBuffer doclist; + sqlite3_stmt *s; + int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + /* This code should never be called with buffered updates. */ + assert( v->nPendingData<0 ); + + dataBufferInit(&doclist, 0); + + /* Traverse the segments from oldest to newest so that newer doclist + ** elements for given docids overwrite older elements. + */ + while( (rc = sqlite3_step(s))==SQLITE_ROW ){ + const char *pData = sqlite3_column_blob(s, 2); + const int nData = sqlite3_column_bytes(s, 2); + const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); + rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix, + &doclist); + if( rc!=SQLITE_OK ) goto err; + } + if( rc==SQLITE_DONE ){ + if( doclist.nData!=0 ){ + /* TODO(shess) The old term_select_all() code applied the column + ** restrict as we merged segments, leading to smaller buffers. + ** This is probably worthwhile to bring back, once the new storage + ** system is checked in. + */ + if( iColumn==v->nColumn) iColumn = -1; + docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, + iColumn, iType, out); + } + rc = SQLITE_OK; + } + + err: + dataBufferDestroy(&doclist); + return rc; +} + +/****************************************************************/ +/* Used to hold hashtable data for sorting. */ +typedef struct TermData { + const char *pTerm; + int nTerm; + DLCollector *pCollector; +} TermData; + +/* Orders TermData elements in strcmp fashion ( <0 for less-than, 0 +** for equal, >0 for greater-than). +*/ +static int termDataCmp(const void *av, const void *bv){ + const TermData *a = (const TermData *)av; + const TermData *b = (const TermData *)bv; + int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm; + int c = memcmp(a->pTerm, b->pTerm, n); + if( c!=0 ) return c; + return a->nTerm-b->nTerm; +} + +/* Order pTerms data by term, then write a new level 0 segment using +** LeafWriter. +*/ +static int writeZeroSegment(fulltext_vtab *v, fts2Hash *pTerms){ + fts2HashElem *e; + int idx, rc, i, n; + TermData *pData; + LeafWriter writer; + DataBuffer dl; + + /* Determine the next index at level 0, merging as necessary. */ + rc = segdirNextIndex(v, 0, &idx); + if( rc!=SQLITE_OK ) return rc; + + n = fts2HashCount(pTerms); + pData = sqlite3_malloc(n*sizeof(TermData)); + + for(i = 0, e = fts2HashFirst(pTerms); e; i++, e = fts2HashNext(e)){ + assert( i<n ); + pData[i].pTerm = fts2HashKey(e); + pData[i].nTerm = fts2HashKeysize(e); + pData[i].pCollector = fts2HashData(e); + } + assert( i==n ); + + /* TODO(shess) Should we allow user-defined collation sequences, + ** here? I think we only need that once we support prefix searches. + */ + if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp); + + /* TODO(shess) Refactor so that we can write directly to the segment + ** DataBuffer, as happens for segment merges. + */ + leafWriterInit(0, idx, &writer); + dataBufferInit(&dl, 0); + for(i=0; i<n; i++){ + dataBufferReset(&dl); + dlcAddDoclist(pData[i].pCollector, &dl); + rc = leafWriterStep(v, &writer, + pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData); + if( rc!=SQLITE_OK ) goto err; + } + rc = leafWriterFinalize(v, &writer); + + err: + dataBufferDestroy(&dl); + sqlite3_free(pData); + leafWriterDestroy(&writer); + return rc; +} + +/* If pendingTerms has data, free it. */ +static int clearPendingTerms(fulltext_vtab *v){ + if( v->nPendingData>=0 ){ + fts2HashElem *e; + for(e=fts2HashFirst(&v->pendingTerms); e; e=fts2HashNext(e)){ + dlcDelete(fts2HashData(e)); + } + fts2HashClear(&v->pendingTerms); + v->nPendingData = -1; + } + return SQLITE_OK; +} + +/* If pendingTerms has data, flush it to a level-zero segment, and +** free it. +*/ +static int flushPendingTerms(fulltext_vtab *v){ + if( v->nPendingData>=0 ){ + int rc = writeZeroSegment(v, &v->pendingTerms); + if( rc==SQLITE_OK ) clearPendingTerms(v); + return rc; + } + return SQLITE_OK; +} + +/* If pendingTerms is "too big", or docid is out of order, flush it. +** Regardless, be certain that pendingTerms is initialized for use. +*/ +static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){ + /* TODO(shess) Explore whether partially flushing the buffer on + ** forced-flush would provide better performance. I suspect that if + ** we ordered the doclists by size and flushed the largest until the + ** buffer was half empty, that would let the less frequent terms + ** generate longer doclists. + */ + if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){ + int rc = flushPendingTerms(v); + if( rc!=SQLITE_OK ) return rc; + } + if( v->nPendingData<0 ){ + fts2HashInit(&v->pendingTerms, FTS2_HASH_STRING, 1); + v->nPendingData = 0; + } + v->iPrevDocid = iDocid; + return SQLITE_OK; +} + +/* This function implements the xUpdate callback; it is the top-level entry + * point for inserting, deleting or updating a row in a full-text table. */ +static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg, + sqlite_int64 *pRowid){ + fulltext_vtab *v = (fulltext_vtab *) pVtab; + int rc; + + TRACE(("FTS2 Update %p\n", pVtab)); + + if( nArg<2 ){ + rc = index_delete(v, sqlite3_value_int64(ppArg[0])); + if( rc==SQLITE_OK ){ + /* If we just deleted the last row in the table, clear out the + ** index data. + */ + rc = content_exists(v); + if( rc==SQLITE_ROW ){ + rc = SQLITE_OK; + }else if( rc==SQLITE_DONE ){ + /* Clear the pending terms so we don't flush a useless level-0 + ** segment when the transaction closes. + */ + rc = clearPendingTerms(v); + if( rc==SQLITE_OK ){ + rc = segdir_delete_all(v); + } + } + } + } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){ + /* An update: + * ppArg[0] = old rowid + * ppArg[1] = new rowid + * ppArg[2..2+v->nColumn-1] = values + * ppArg[2+v->nColumn] = value for magic column (we ignore this) + */ + sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]); + if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER || + sqlite3_value_int64(ppArg[1]) != rowid ){ + rc = SQLITE_ERROR; /* we don't allow changing the rowid */ + } else { + assert( nArg==2+v->nColumn+1); + rc = index_update(v, rowid, &ppArg[2]); + } + } else { + /* An insert: + * ppArg[1] = requested rowid + * ppArg[2..2+v->nColumn-1] = values + * ppArg[2+v->nColumn] = value for magic column (we ignore this) + */ + assert( nArg==2+v->nColumn+1); + rc = index_insert(v, ppArg[1], &ppArg[2], pRowid); + } + + return rc; +} + +static int fulltextSync(sqlite3_vtab *pVtab){ + TRACE(("FTS2 xSync()\n")); + return flushPendingTerms((fulltext_vtab *)pVtab); +} + +static int fulltextBegin(sqlite3_vtab *pVtab){ + fulltext_vtab *v = (fulltext_vtab *) pVtab; + TRACE(("FTS2 xBegin()\n")); + + /* Any buffered updates should have been cleared by the previous + ** transaction. + */ + assert( v->nPendingData<0 ); + return clearPendingTerms(v); +} + +static int fulltextCommit(sqlite3_vtab *pVtab){ + fulltext_vtab *v = (fulltext_vtab *) pVtab; + TRACE(("FTS2 xCommit()\n")); + + /* Buffered updates should have been cleared by fulltextSync(). */ + assert( v->nPendingData<0 ); + return clearPendingTerms(v); +} + +static int fulltextRollback(sqlite3_vtab *pVtab){ + TRACE(("FTS2 xRollback()\n")); + return clearPendingTerms((fulltext_vtab *)pVtab); +} + +/* +** Implementation of the snippet() function for FTS2 +*/ +static void snippetFunc( + sqlite3_context *pContext, + int argc, + sqlite3_value **argv +){ + fulltext_cursor *pCursor; + if( argc<1 ) return; + if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || + sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ + sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1); + }else{ + const char *zStart = "<b>"; + const char *zEnd = "</b>"; + const char *zEllipsis = "<b>...</b>"; + memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); + if( argc>=2 ){ + zStart = (const char*)sqlite3_value_text(argv[1]); + if( argc>=3 ){ + zEnd = (const char*)sqlite3_value_text(argv[2]); + if( argc>=4 ){ + zEllipsis = (const char*)sqlite3_value_text(argv[3]); + } + } + } + snippetAllOffsets(pCursor); + snippetText(pCursor, zStart, zEnd, zEllipsis); + sqlite3_result_text(pContext, pCursor->snippet.zSnippet, + pCursor->snippet.nSnippet, SQLITE_STATIC); + } +} + +/* +** Implementation of the offsets() function for FTS2 +*/ +static void snippetOffsetsFunc( + sqlite3_context *pContext, + int argc, + sqlite3_value **argv +){ + fulltext_cursor *pCursor; + if( argc<1 ) return; + if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || + sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ + sqlite3_result_error(pContext, "illegal first argument to offsets",-1); + }else{ + memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); + snippetAllOffsets(pCursor); + snippetOffsetText(&pCursor->snippet); + sqlite3_result_text(pContext, + pCursor->snippet.zOffset, pCursor->snippet.nOffset, + SQLITE_STATIC); + } +} + +/* OptLeavesReader is nearly identical to LeavesReader, except that +** where LeavesReader is geared towards the merging of complete +** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader +** is geared towards implementation of the optimize() function, and +** can merge all segments simultaneously. This version may be +** somewhat less efficient than LeavesReader because it merges into an +** accumulator rather than doing an N-way merge, but since segment +** size grows exponentially (so segment count logrithmically) this is +** probably not an immediate problem. +*/ +/* TODO(shess): Prove that assertion, or extend the merge code to +** merge tree fashion (like the prefix-searching code does). +*/ +/* TODO(shess): OptLeavesReader and LeavesReader could probably be +** merged with little or no loss of performance for LeavesReader. The +** merged code would need to handle >MERGE_COUNT segments, and would +** also need to be able to optionally optimize away deletes. +*/ +typedef struct OptLeavesReader { + /* Segment number, to order readers by age. */ + int segment; + LeavesReader reader; +} OptLeavesReader; + +static int optLeavesReaderAtEnd(OptLeavesReader *pReader){ + return leavesReaderAtEnd(&pReader->reader); +} +static int optLeavesReaderTermBytes(OptLeavesReader *pReader){ + return leavesReaderTermBytes(&pReader->reader); +} +static const char *optLeavesReaderData(OptLeavesReader *pReader){ + return leavesReaderData(&pReader->reader); +} +static int optLeavesReaderDataBytes(OptLeavesReader *pReader){ + return leavesReaderDataBytes(&pReader->reader); +} +static const char *optLeavesReaderTerm(OptLeavesReader *pReader){ + return leavesReaderTerm(&pReader->reader); +} +static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){ + return leavesReaderStep(v, &pReader->reader); +} +static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){ + return leavesReaderTermCmp(&lr1->reader, &lr2->reader); +} +/* Order by term ascending, segment ascending (oldest to newest), with +** exhausted readers to the end. +*/ +static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){ + int c = optLeavesReaderTermCmp(lr1, lr2); + if( c!=0 ) return c; + return lr1->segment-lr2->segment; +} +/* Bubble pLr[0] to appropriate place in pLr[1..nLr-1]. Assumes that +** pLr[1..nLr-1] is already sorted. +*/ +static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){ + while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){ + OptLeavesReader tmp = pLr[0]; + pLr[0] = pLr[1]; + pLr[1] = tmp; + nLr--; + pLr++; + } +} + +/* optimize() helper function. Put the readers in order and iterate +** through them, merging doclists for matching terms into pWriter. +** Returns SQLITE_OK on success, or the SQLite error code which +** prevented success. +*/ +static int optimizeInternal(fulltext_vtab *v, + OptLeavesReader *readers, int nReaders, + LeafWriter *pWriter){ + int i, rc = SQLITE_OK; + DataBuffer doclist, merged, tmp; + + /* Order the readers. */ + i = nReaders; + while( i-- > 0 ){ + optLeavesReaderReorder(&readers[i], nReaders-i); + } + + dataBufferInit(&doclist, LEAF_MAX); + dataBufferInit(&merged, LEAF_MAX); + + /* Exhausted readers bubble to the end, so when the first reader is + ** at eof, all are at eof. + */ + while( !optLeavesReaderAtEnd(&readers[0]) ){ + + /* Figure out how many readers share the next term. */ + for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){ + if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break; + } + + /* Special-case for no merge. */ + if( i==1 ){ + /* Trim deletions from the doclist. */ + dataBufferReset(&merged); + docListTrim(DL_DEFAULT, + optLeavesReaderData(&readers[0]), + optLeavesReaderDataBytes(&readers[0]), + -1, DL_DEFAULT, &merged); + }else{ + DLReader dlReaders[MERGE_COUNT]; + int iReader, nReaders; + + /* Prime the pipeline with the first reader's doclist. After + ** one pass index 0 will reference the accumulated doclist. + */ + dlrInit(&dlReaders[0], DL_DEFAULT, + optLeavesReaderData(&readers[0]), + optLeavesReaderDataBytes(&readers[0])); + iReader = 1; + + assert( iReader<i ); /* Must execute the loop at least once. */ + while( iReader<i ){ + /* Merge 16 inputs per pass. */ + for( nReaders=1; iReader<i && nReaders<MERGE_COUNT; + iReader++, nReaders++ ){ + dlrInit(&dlReaders[nReaders], DL_DEFAULT, + optLeavesReaderData(&readers[iReader]), + optLeavesReaderDataBytes(&readers[iReader])); + } + + /* Merge doclists and swap result into accumulator. */ + dataBufferReset(&merged); + docListMerge(&merged, dlReaders, nReaders); + tmp = merged; + merged = doclist; + doclist = tmp; + + while( nReaders-- > 0 ){ + dlrDestroy(&dlReaders[nReaders]); + } + + /* Accumulated doclist to reader 0 for next pass. */ + dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData); + } + + /* Destroy reader that was left in the pipeline. */ + dlrDestroy(&dlReaders[0]); + + /* Trim deletions from the doclist. */ + dataBufferReset(&merged); + docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, + -1, DL_DEFAULT, &merged); + } + + /* Only pass doclists with hits (skip if all hits deleted). */ + if( merged.nData>0 ){ + rc = leafWriterStep(v, pWriter, + optLeavesReaderTerm(&readers[0]), + optLeavesReaderTermBytes(&readers[0]), + merged.pData, merged.nData); + if( rc!=SQLITE_OK ) goto err; + } + + /* Step merged readers to next term and reorder. */ + while( i-- > 0 ){ + rc = optLeavesReaderStep(v, &readers[i]); + if( rc!=SQLITE_OK ) goto err; + + optLeavesReaderReorder(&readers[i], nReaders-i); + } + } + + err: + dataBufferDestroy(&doclist); + dataBufferDestroy(&merged); + return rc; +} + +/* Implement optimize() function for FTS3. optimize(t) merges all +** segments in the fts index into a single segment. 't' is the magic +** table-named column. +*/ +static void optimizeFunc(sqlite3_context *pContext, + int argc, sqlite3_value **argv){ + fulltext_cursor *pCursor; + if( argc>1 ){ + sqlite3_result_error(pContext, "excess arguments to optimize()",-1); + }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || + sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ + sqlite3_result_error(pContext, "illegal first argument to optimize",-1); + }else{ + fulltext_vtab *v; + int i, rc, iMaxLevel; + OptLeavesReader *readers; + int nReaders; + LeafWriter writer; + sqlite3_stmt *s; + + memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); + v = cursor_vtab(pCursor); + + /* Flush any buffered updates before optimizing. */ + rc = flushPendingTerms(v); + if( rc!=SQLITE_OK ) goto err; + + rc = segdir_count(v, &nReaders, &iMaxLevel); + if( rc!=SQLITE_OK ) goto err; + if( nReaders==0 || nReaders==1 ){ + sqlite3_result_text(pContext, "Index already optimal", -1, + SQLITE_STATIC); + return; + } + + rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); + if( rc!=SQLITE_OK ) goto err; + + readers = sqlite3_malloc(nReaders*sizeof(readers[0])); + if( readers==NULL ) goto err; + + /* Note that there will already be a segment at this position + ** until we call segdir_delete() on iMaxLevel. + */ + leafWriterInit(iMaxLevel, 0, &writer); + + i = 0; + while( (rc = sqlite3_step(s))==SQLITE_ROW ){ + sqlite_int64 iStart = sqlite3_column_int64(s, 0); + sqlite_int64 iEnd = sqlite3_column_int64(s, 1); + const char *pRootData = sqlite3_column_blob(s, 2); + int nRootData = sqlite3_column_bytes(s, 2); + + assert( i<nReaders ); + rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData, + &readers[i].reader); + if( rc!=SQLITE_OK ) break; + + readers[i].segment = i; + i++; + } + + /* If we managed to successfully read them all, optimize them. */ + if( rc==SQLITE_DONE ){ + assert( i==nReaders ); + rc = optimizeInternal(v, readers, nReaders, &writer); + } + + while( i-- > 0 ){ + leavesReaderDestroy(&readers[i].reader); + } + sqlite3_free(readers); + + /* If we've successfully gotten to here, delete the old segments + ** and flush the interior structure of the new segment. + */ + if( rc==SQLITE_OK ){ + for( i=0; i<=iMaxLevel; i++ ){ + rc = segdir_delete(v, i); + if( rc!=SQLITE_OK ) break; + } + + if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer); + } + + leafWriterDestroy(&writer); + + if( rc!=SQLITE_OK ) goto err; + + sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC); + return; + + /* TODO(shess): Error-handling needs to be improved along the + ** lines of the dump_ functions. + */ + err: + { + char buf[512]; + sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s", + sqlite3_errmsg(sqlite3_context_db_handle(pContext))); + sqlite3_result_error(pContext, buf, -1); + } + } +} + +#ifdef SQLITE_TEST +/* Generate an error of the form "<prefix>: <msg>". If msg is NULL, +** pull the error from the context's db handle. +*/ +static void generateError(sqlite3_context *pContext, + const char *prefix, const char *msg){ + char buf[512]; + if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext)); + sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg); + sqlite3_result_error(pContext, buf, -1); +} + +/* Helper function to collect the set of terms in the segment into +** pTerms. The segment is defined by the leaf nodes between +** iStartBlockid and iEndBlockid, inclusive, or by the contents of +** pRootData if iStartBlockid is 0 (in which case the entire segment +** fit in a leaf). +*/ +static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s, + fts2Hash *pTerms){ + const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0); + const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1); + const char *pRootData = sqlite3_column_blob(s, 2); + const int nRootData = sqlite3_column_bytes(s, 2); + LeavesReader reader; + int rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid, + pRootData, nRootData, &reader); + if( rc!=SQLITE_OK ) return rc; + + while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){ + const char *pTerm = leavesReaderTerm(&reader); + const int nTerm = leavesReaderTermBytes(&reader); + void *oldValue = sqlite3Fts2HashFind(pTerms, pTerm, nTerm); + void *newValue = (void *)((char *)oldValue+1); + + /* From the comment before sqlite3Fts2HashInsert in fts2_hash.c, + ** the data value passed is returned in case of malloc failure. + */ + if( newValue==sqlite3Fts2HashInsert(pTerms, pTerm, nTerm, newValue) ){ + rc = SQLITE_NOMEM; + }else{ + rc = leavesReaderStep(v, &reader); + } + } + + leavesReaderDestroy(&reader); + return rc; +} + +/* Helper function to build the result string for dump_terms(). */ +static int generateTermsResult(sqlite3_context *pContext, fts2Hash *pTerms){ + int iTerm, nTerms, nResultBytes, iByte; + char *result; + TermData *pData; + fts2HashElem *e; + + /* Iterate pTerms to generate an array of terms in pData for + ** sorting. + */ + nTerms = fts2HashCount(pTerms); + assert( nTerms>0 ); + pData = sqlite3_malloc(nTerms*sizeof(TermData)); + if( pData==NULL ) return SQLITE_NOMEM; + + nResultBytes = 0; + for(iTerm = 0, e = fts2HashFirst(pTerms); e; iTerm++, e = fts2HashNext(e)){ + nResultBytes += fts2HashKeysize(e)+1; /* Term plus trailing space */ + assert( iTerm<nTerms ); + pData[iTerm].pTerm = fts2HashKey(e); + pData[iTerm].nTerm = fts2HashKeysize(e); + pData[iTerm].pCollector = fts2HashData(e); /* unused */ + } + assert( iTerm==nTerms ); + + assert( nResultBytes>0 ); /* nTerms>0, nResultsBytes must be, too. */ + result = sqlite3_malloc(nResultBytes); + if( result==NULL ){ + sqlite3_free(pData); + return SQLITE_NOMEM; + } + + if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp); + + /* Read the terms in order to build the result. */ + iByte = 0; + for(iTerm=0; iTerm<nTerms; ++iTerm){ + memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm); + iByte += pData[iTerm].nTerm; + result[iByte++] = ' '; + } + assert( iByte==nResultBytes ); + assert( result[nResultBytes-1]==' ' ); + result[nResultBytes-1] = '\0'; + + /* Passes away ownership of result. */ + sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free); + sqlite3_free(pData); + return SQLITE_OK; +} + +/* Implements dump_terms() for use in inspecting the fts2 index from +** tests. TEXT result containing the ordered list of terms joined by +** spaces. dump_terms(t, level, idx) dumps the terms for the segment +** specified by level, idx (in %_segdir), while dump_terms(t) dumps +** all terms in the index. In both cases t is the fts table's magic +** table-named column. +*/ +static void dumpTermsFunc( + sqlite3_context *pContext, + int argc, sqlite3_value **argv +){ + fulltext_cursor *pCursor; + if( argc!=3 && argc!=1 ){ + generateError(pContext, "dump_terms", "incorrect arguments"); + }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || + sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ + generateError(pContext, "dump_terms", "illegal first argument"); + }else{ + fulltext_vtab *v; + fts2Hash terms; + sqlite3_stmt *s = NULL; + int rc; + + memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); + v = cursor_vtab(pCursor); + + /* If passed only the cursor column, get all segments. Otherwise + ** get the segment described by the following two arguments. + */ + if( argc==1 ){ + rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); + }else{ + rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s); + if( rc==SQLITE_OK ){ + rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1])); + if( rc==SQLITE_OK ){ + rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2])); + } + } + } + + if( rc!=SQLITE_OK ){ + generateError(pContext, "dump_terms", NULL); + return; + } + + /* Collect the terms for each segment. */ + sqlite3Fts2HashInit(&terms, FTS2_HASH_STRING, 1); + while( (rc = sqlite3_step(s))==SQLITE_ROW ){ + rc = collectSegmentTerms(v, s, &terms); + if( rc!=SQLITE_OK ) break; + } + + if( rc!=SQLITE_DONE ){ + sqlite3_reset(s); + generateError(pContext, "dump_terms", NULL); + }else{ + const int nTerms = fts2HashCount(&terms); + if( nTerms>0 ){ + rc = generateTermsResult(pContext, &terms); + if( rc==SQLITE_NOMEM ){ + generateError(pContext, "dump_terms", "out of memory"); + }else{ + assert( rc==SQLITE_OK ); + } + }else if( argc==3 ){ + /* The specific segment asked for could not be found. */ + generateError(pContext, "dump_terms", "segment not found"); + }else{ + /* No segments found. */ + /* TODO(shess): It should be impossible to reach this. This + ** case can only happen for an empty table, in which case + ** SQLite has no rows to call this function on. + */ + sqlite3_result_null(pContext); + } + } + sqlite3Fts2HashClear(&terms); + } +} + +/* Expand the DL_DEFAULT doclist in pData into a text result in +** pContext. +*/ +static void createDoclistResult(sqlite3_context *pContext, + const char *pData, int nData){ + DataBuffer dump; + DLReader dlReader; + + assert( pData!=NULL && nData>0 ); + + dataBufferInit(&dump, 0); + dlrInit(&dlReader, DL_DEFAULT, pData, nData); + for( ; !dlrAtEnd(&dlReader); dlrStep(&dlReader) ){ + char buf[256]; + PLReader plReader; + + plrInit(&plReader, &dlReader); + if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){ + sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader)); + dataBufferAppend(&dump, buf, strlen(buf)); + }else{ + int iColumn = plrColumn(&plReader); + + sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[", + dlrDocid(&dlReader), iColumn); + dataBufferAppend(&dump, buf, strlen(buf)); + + for( ; !plrAtEnd(&plReader); plrStep(&plReader) ){ + if( plrColumn(&plReader)!=iColumn ){ + iColumn = plrColumn(&plReader); + sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn); + assert( dump.nData>0 ); + dump.nData--; /* Overwrite trailing space. */ + assert( dump.pData[dump.nData]==' '); + dataBufferAppend(&dump, buf, strlen(buf)); + } + if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){ + sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ", + plrPosition(&plReader), + plrStartOffset(&plReader), plrEndOffset(&plReader)); + }else if( DL_DEFAULT==DL_POSITIONS ){ + sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader)); + }else{ + assert( NULL=="Unhandled DL_DEFAULT value"); + } + dataBufferAppend(&dump, buf, strlen(buf)); + } + plrDestroy(&plReader); + + assert( dump.nData>0 ); + dump.nData--; /* Overwrite trailing space. */ + assert( dump.pData[dump.nData]==' '); + dataBufferAppend(&dump, "]] ", 3); + } + } + dlrDestroy(&dlReader); + + assert( dump.nData>0 ); + dump.nData--; /* Overwrite trailing space. */ + assert( dump.pData[dump.nData]==' '); + dump.pData[dump.nData] = '\0'; + assert( dump.nData>0 ); + + /* Passes ownership of dump's buffer to pContext. */ + sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free); + dump.pData = NULL; + dump.nData = dump.nCapacity = 0; +} + +/* Implements dump_doclist() for use in inspecting the fts2 index from +** tests. TEXT result containing a string representation of the +** doclist for the indicated term. dump_doclist(t, term, level, idx) +** dumps the doclist for term from the segment specified by level, idx +** (in %_segdir), while dump_doclist(t, term) dumps the logical +** doclist for the term across all segments. The per-segment doclist +** can contain deletions, while the full-index doclist will not +** (deletions are omitted). +** +** Result formats differ with the setting of DL_DEFAULTS. Examples: +** +** DL_DOCIDS: [1] [3] [7] +** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]] +** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]] +** +** In each case the number after the outer '[' is the docid. In the +** latter two cases, the number before the inner '[' is the column +** associated with the values within. For DL_POSITIONS the numbers +** within are the positions, for DL_POSITIONS_OFFSETS they are the +** position, the start offset, and the end offset. +*/ +static void dumpDoclistFunc( + sqlite3_context *pContext, + int argc, sqlite3_value **argv +){ + fulltext_cursor *pCursor; + if( argc!=2 && argc!=4 ){ + generateError(pContext, "dump_doclist", "incorrect arguments"); + }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || + sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ + generateError(pContext, "dump_doclist", "illegal first argument"); + }else if( sqlite3_value_text(argv[1])==NULL || + sqlite3_value_text(argv[1])[0]=='\0' ){ + generateError(pContext, "dump_doclist", "empty second argument"); + }else{ + const char *pTerm = (const char *)sqlite3_value_text(argv[1]); + const int nTerm = strlen(pTerm); + fulltext_vtab *v; + int rc; + DataBuffer doclist; + + memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); + v = cursor_vtab(pCursor); + + dataBufferInit(&doclist, 0); + + /* termSelect() yields the same logical doclist that queries are + ** run against. + */ + if( argc==2 ){ + rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist); + }else{ + sqlite3_stmt *s = NULL; + + /* Get our specific segment's information. */ + rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s); + if( rc==SQLITE_OK ){ + rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2])); + if( rc==SQLITE_OK ){ + rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3])); + } + } + + if( rc==SQLITE_OK ){ + rc = sqlite3_step(s); + + if( rc==SQLITE_DONE ){ + dataBufferDestroy(&doclist); + generateError(pContext, "dump_doclist", "segment not found"); + return; + } + + /* Found a segment, load it into doclist. */ + if( rc==SQLITE_ROW ){ + const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); + const char *pData = sqlite3_column_blob(s, 2); + const int nData = sqlite3_column_bytes(s, 2); + + /* loadSegment() is used by termSelect() to load each + ** segment's data. + */ + rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0, + &doclist); + if( rc==SQLITE_OK ){ + rc = sqlite3_step(s); + + /* Should not have more than one matching segment. */ + if( rc!=SQLITE_DONE ){ + sqlite3_reset(s); + dataBufferDestroy(&doclist); + generateError(pContext, "dump_doclist", "invalid segdir"); + return; + } + rc = SQLITE_OK; + } + } + } + + sqlite3_reset(s); + } + + if( rc==SQLITE_OK ){ + if( doclist.nData>0 ){ + createDoclistResult(pContext, doclist.pData, doclist.nData); + }else{ + /* TODO(shess): This can happen if the term is not present, or + ** if all instances of the term have been deleted and this is + ** an all-index dump. It may be interesting to distinguish + ** these cases. + */ + sqlite3_result_text(pContext, "", 0, SQLITE_STATIC); + } + }else if( rc==SQLITE_NOMEM ){ + /* Handle out-of-memory cases specially because if they are + ** generated in fts2 code they may not be reflected in the db + ** handle. + */ + /* TODO(shess): Handle this more comprehensively. + ** sqlite3ErrStr() has what I need, but is internal. + */ + generateError(pContext, "dump_doclist", "out of memory"); + }else{ + generateError(pContext, "dump_doclist", NULL); + } + + dataBufferDestroy(&doclist); + } +} +#endif + +/* +** This routine implements the xFindFunction method for the FTS2 +** virtual table. +*/ +static int fulltextFindFunction( + sqlite3_vtab *pVtab, + int nArg, + const char *zName, + void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), + void **ppArg +){ + if( strcmp(zName,"snippet")==0 ){ + *pxFunc = snippetFunc; + return 1; + }else if( strcmp(zName,"offsets")==0 ){ + *pxFunc = snippetOffsetsFunc; + return 1; + }else if( strcmp(zName,"optimize")==0 ){ + *pxFunc = optimizeFunc; + return 1; +#ifdef SQLITE_TEST + /* NOTE(shess): These functions are present only for testing + ** purposes. No particular effort is made to optimize their + ** execution or how they build their results. + */ + }else if( strcmp(zName,"dump_terms")==0 ){ + /* fprintf(stderr, "Found dump_terms\n"); */ + *pxFunc = dumpTermsFunc; + return 1; + }else if( strcmp(zName,"dump_doclist")==0 ){ + /* fprintf(stderr, "Found dump_doclist\n"); */ + *pxFunc = dumpDoclistFunc; + return 1; +#endif + } + return 0; +} + +/* +** Rename an fts2 table. +*/ +static int fulltextRename( + sqlite3_vtab *pVtab, + const char *zName +){ + fulltext_vtab *p = (fulltext_vtab *)pVtab; + int rc = SQLITE_NOMEM; + char *zSql = sqlite3_mprintf( + "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';" + "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';" + "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';" + , p->zDb, p->zName, zName + , p->zDb, p->zName, zName + , p->zDb, p->zName, zName + ); + if( zSql ){ + rc = sqlite3_exec(p->db, zSql, 0, 0, 0); + sqlite3_free(zSql); + } + return rc; +} + +static const sqlite3_module fts2Module = { + /* iVersion */ 0, + /* xCreate */ fulltextCreate, + /* xConnect */ fulltextConnect, + /* xBestIndex */ fulltextBestIndex, + /* xDisconnect */ fulltextDisconnect, + /* xDestroy */ fulltextDestroy, + /* xOpen */ fulltextOpen, + /* xClose */ fulltextClose, + /* xFilter */ fulltextFilter, + /* xNext */ fulltextNext, + /* xEof */ fulltextEof, + /* xColumn */ fulltextColumn, + /* xRowid */ fulltextRowid, + /* xUpdate */ fulltextUpdate, + /* xBegin */ fulltextBegin, + /* xSync */ fulltextSync, + /* xCommit */ fulltextCommit, + /* xRollback */ fulltextRollback, + /* xFindFunction */ fulltextFindFunction, + /* xRename */ fulltextRename, +}; + +static void hashDestroy(void *p){ + fts2Hash *pHash = (fts2Hash *)p; + sqlite3Fts2HashClear(pHash); + sqlite3_free(pHash); +} + +/* +** The fts2 built-in tokenizers - "simple" and "porter" - are implemented +** in files fts2_tokenizer1.c and fts2_porter.c respectively. The following +** two forward declarations are for functions declared in these files +** used to retrieve the respective implementations. +** +** Calling sqlite3Fts2SimpleTokenizerModule() sets the value pointed +** to by the argument to point a the "simple" tokenizer implementation. +** Function ...PorterTokenizerModule() sets *pModule to point to the +** porter tokenizer/stemmer implementation. +*/ +void sqlite3Fts2SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); +void sqlite3Fts2PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); +void sqlite3Fts2IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); + +int sqlite3Fts2InitHashTable(sqlite3 *, fts2Hash *, const char *); + +/* +** Initialize the fts2 extension. If this extension is built as part +** of the sqlite library, then this function is called directly by +** SQLite. If fts2 is built as a dynamically loadable extension, this +** function is called by the sqlite3_extension_init() entry point. +*/ +int sqlite3Fts2Init(sqlite3 *db){ + int rc = SQLITE_OK; + fts2Hash *pHash = 0; + const sqlite3_tokenizer_module *pSimple = 0; + const sqlite3_tokenizer_module *pPorter = 0; + const sqlite3_tokenizer_module *pIcu = 0; + + sqlite3Fts2SimpleTokenizerModule(&pSimple); + sqlite3Fts2PorterTokenizerModule(&pPorter); +#ifdef SQLITE_ENABLE_ICU + sqlite3Fts2IcuTokenizerModule(&pIcu); +#endif + + /* Allocate and initialize the hash-table used to store tokenizers. */ + pHash = sqlite3_malloc(sizeof(fts2Hash)); + if( !pHash ){ + rc = SQLITE_NOMEM; + }else{ + sqlite3Fts2HashInit(pHash, FTS2_HASH_STRING, 1); + } + + /* Load the built-in tokenizers into the hash table */ + if( rc==SQLITE_OK ){ + if( sqlite3Fts2HashInsert(pHash, "simple", 7, (void *)pSimple) + || sqlite3Fts2HashInsert(pHash, "porter", 7, (void *)pPorter) + || (pIcu && sqlite3Fts2HashInsert(pHash, "icu", 4, (void *)pIcu)) + ){ + rc = SQLITE_NOMEM; + } + } + + /* Create the virtual table wrapper around the hash-table and overload + ** the two scalar functions. If this is successful, register the + ** module with sqlite. + */ + if( SQLITE_OK==rc + && SQLITE_OK==(rc = sqlite3Fts2InitHashTable(db, pHash, "fts2_tokenizer")) + && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) + && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1)) + && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1)) +#ifdef SQLITE_TEST + && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1)) + && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1)) +#endif + ){ + return sqlite3_create_module_v2( + db, "fts2", &fts2Module, (void *)pHash, hashDestroy + ); + } + + /* An error has occurred. Delete the hash table and return the error code. */ + assert( rc!=SQLITE_OK ); + if( pHash ){ + sqlite3Fts2HashClear(pHash); + sqlite3_free(pHash); + } + return rc; +} + +#if !SQLITE_CORE +#ifdef _WIN32 +__declspec(dllexport) +#endif +int sqlite3_fts2_init( + sqlite3 *db, + char **pzErrMsg, + const sqlite3_api_routines *pApi +){ + SQLITE_EXTENSION_INIT2(pApi) + return sqlite3Fts2Init(db); +} +#endif + +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */ |