summaryrefslogtreecommitdiffstats
path: root/ext/lsm1/lsm_file.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 17:28:19 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 17:28:19 +0000
commit18657a960e125336f704ea058e25c27bd3900dcb (patch)
tree17b438b680ed45a996d7b59951e6aa34023783f2 /ext/lsm1/lsm_file.c
parentInitial commit. (diff)
downloadsqlite3-upstream.tar.xz
sqlite3-upstream.zip
Adding upstream version 3.40.1.upstream/3.40.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ext/lsm1/lsm_file.c')
-rw-r--r--ext/lsm1/lsm_file.c3312
1 files changed, 3312 insertions, 0 deletions
diff --git a/ext/lsm1/lsm_file.c b/ext/lsm1/lsm_file.c
new file mode 100644
index 0000000..1dcdd05
--- /dev/null
+++ b/ext/lsm1/lsm_file.c
@@ -0,0 +1,3312 @@
+/*
+** 2011-08-26
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** NORMAL DATABASE FILE FORMAT
+**
+** The following database file format concepts are used by the code in
+** this file to read and write the database file.
+**
+** Pages:
+**
+** A database file is divided into pages. The first 8KB of the file consists
+** of two 4KB meta-pages. The meta-page size is not configurable. The
+** remainder of the file is made up of database pages. The default database
+** page size is 4KB. Database pages are aligned to page-size boundaries,
+** so if the database page size is larger than 8KB there is a gap between
+** the end of the meta pages and the start of the database pages.
+**
+** Database pages are numbered based on their position in the file. Page N
+** begins at byte offset ((N-1)*pgsz). This means that page 1 does not
+** exist - since it would always overlap with the meta pages. If the
+** page-size is (say) 512 bytes, then the first usable page in the database
+** is page 33.
+**
+** It is assumed that the first two meta pages and the data that follows
+** them are located on different disk sectors. So that if a power failure
+** while writing to a meta page there is no risk of damage to the other
+** meta page or any other part of the database file. TODO: This may need
+** to be revisited.
+**
+** Blocks:
+**
+** The database file is also divided into blocks. The default block size is
+** 1MB. When writing to the database file, an attempt is made to write data
+** in contiguous block-sized chunks.
+**
+** The first and last page on each block are special in that they are 4
+** bytes smaller than all other pages. This is because the last four bytes
+** of space on the first and last pages of each block are reserved for
+** pointers to other blocks (i.e. a 32-bit block number).
+**
+** Runs:
+**
+** A run is a sequence of pages that the upper layer uses to store a
+** sorted array of database keys (and accompanying data - values, FC
+** pointers and so on). Given a page within a run, it is possible to
+** navigate to the next page in the run as follows:
+**
+** a) if the current page is not the last in a block, the next page
+** in the run is located immediately after the current page, OR
+**
+** b) if the current page is the last page in a block, the next page
+** in the run is the first page on the block identified by the
+** block pointer stored in the last 4 bytes of the current block.
+**
+** It is possible to navigate to the previous page in a similar fashion,
+** using the block pointer embedded in the last 4 bytes of the first page
+** of each block as required.
+**
+** The upper layer is responsible for identifying by page number the
+** first and last page of any run that it needs to navigate - there are
+** no "end-of-run" markers stored or identified by this layer. This is
+** necessary as clients reading different database snapshots may access
+** different subsets of a run.
+**
+** THE LOG FILE
+**
+** This file opens and closes the log file. But it does not contain any
+** logic related to the log file format. Instead, it exports the following
+** functions that are used by the code in lsm_log.c to read and write the
+** log file:
+**
+** lsmFsOpenLog
+** lsmFsWriteLog
+** lsmFsSyncLog
+** lsmFsReadLog
+** lsmFsTruncateLog
+** lsmFsCloseAndDeleteLog
+**
+** COMPRESSED DATABASE FILE FORMAT
+**
+** The compressed database file format is very similar to the normal format.
+** The file still begins with two 4KB meta-pages (which are never compressed).
+** It is still divided into blocks.
+**
+** The first and last four bytes of each block are reserved for 32-bit
+** pointer values. Similar to the way four bytes are carved from the end of
+** the first and last page of each block in uncompressed databases. From
+** the point of view of the upper layer, all pages are the same size - this
+** is different from the uncompressed format where the first and last pages
+** on each block are 4 bytes smaller than the others.
+**
+** Pages are stored in variable length compressed form, as follows:
+**
+** * 3-byte size field containing the size of the compressed page image
+** in bytes. The most significant bit of each byte of the size field
+** is always set. The remaining 7 bits are used to store a 21-bit
+** integer value (in big-endian order - the first byte in the field
+** contains the most significant 7 bits). Since the maximum allowed
+** size of a compressed page image is (2^17 - 1) bytes, there are
+** actually 4 unused bits in the size field.
+**
+** In other words, if the size of the compressed page image is nSz,
+** the header can be serialized as follows:
+**
+** u8 aHdr[3]
+** aHdr[0] = 0x80 | (u8)(nSz >> 14);
+** aHdr[1] = 0x80 | (u8)(nSz >> 7);
+** aHdr[2] = 0x80 | (u8)(nSz >> 0);
+**
+** * Compressed page image.
+**
+** * A second copy of the 3-byte record header.
+**
+** A page number is a byte offset into the database file. So the smallest
+** possible page number is 8192 (immediately after the two meta-pages).
+** The first and root page of a segment are identified by a page number
+** corresponding to the byte offset of the first byte in the corresponding
+** page record. The last page of a segment is identified by the byte offset
+** of the last byte in its record.
+**
+** Unlike uncompressed pages, compressed page records may span blocks.
+**
+** Sometimes, in order to avoid touching sectors that contain synced data
+** when writing, it is necessary to insert unused space between compressed
+** page records. This can be done as follows:
+**
+** * For less than 6 bytes of empty space, the first and last byte
+** of the free space contain the total number of free bytes. For
+** example:
+**
+** Block of 4 free bytes: 0x04 0x?? 0x?? 0x04
+** Block of 2 free bytes: 0x02 0x02
+** A single free byte: 0x01
+**
+** * For 6 or more bytes of empty space, a record similar to a
+** compressed page record is added to the segment. A padding record
+** is distinguished from a compressed page record by the most
+** significant bit of the second byte of the size field, which is
+** cleared instead of set.
+*/
+#include "lsmInt.h"
+
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <fcntl.h>
+
+/*
+** File-system object. Each database connection allocates a single instance
+** of the following structure. It is used for all access to the database and
+** log files.
+**
+** The database file may be accessed via two methods - using mmap() or using
+** read() and write() calls. In the general case both methods are used - a
+** prefix of the file is mapped into memory and the remainder accessed using
+** read() and write(). This is helpful when accessing very large files (or
+** files that may grow very large during the lifetime of a database
+** connection) on systems with 32-bit address spaces. However, it also requires
+** that this object manage two distinct types of Page objects simultaneously -
+** those that carry pointers to the mapped file and those that carry arrays
+** populated by read() calls.
+**
+** pFree:
+** The head of a singly-linked list that containing currently unused Page
+** structures suitable for use as mmap-page handles. Connected by the
+** Page.pFreeNext pointers.
+**
+** pMapped:
+** The head of a singly-linked list that contains all pages that currently
+** carry pointers to the mapped region. This is used if the region is
+** every remapped - the pointers carried by existing pages can be adjusted
+** to account for the remapping. Connected by the Page.pMappedNext pointers.
+**
+** pWaiting:
+** When the upper layer wishes to append a new b-tree page to a segment,
+** it allocates a Page object that carries a malloc'd block of memory -
+** regardless of the mmap-related configuration. The page is not assigned
+** a page number at first. When the upper layer has finished constructing
+** the page contents, it calls lsmFsPagePersist() to assign a page number
+** to it. At this point it is likely that N pages have been written to the
+** segment, the (N+1)th page is still outstanding and the b-tree page is
+** assigned page number (N+2). To avoid writing page (N+2) before page
+** (N+1), the recently completed b-tree page is held in the singly linked
+** list headed by pWaiting until page (N+1) has been written.
+**
+** Function lsmFsFlushWaiting() is responsible for eventually writing
+** waiting pages to disk.
+**
+** apHash/nHash:
+** Hash table used to store all Page objects that carry malloc'd arrays,
+** except those b-tree pages that have not yet been assigned page numbers.
+** Once they have been assigned page numbers - they are added to this
+** hash table.
+**
+** Hash table overflow chains are connected using the Page.pHashNext
+** pointers.
+**
+** pLruFirst, pLruLast:
+** The first and last entries in a doubly-linked list of pages. This
+** list contains all pages with malloc'd data that are present in the
+** hash table and have a ref-count of zero.
+*/
+struct FileSystem {
+ lsm_db *pDb; /* Database handle that owns this object */
+ lsm_env *pEnv; /* Environment pointer */
+ char *zDb; /* Database file name */
+ char *zLog; /* Database file name */
+ int nMetasize; /* Size of meta pages in bytes */
+ int nMetaRwSize; /* Read/written size of meta pages in bytes */
+ int nPagesize; /* Database page-size in bytes */
+ int nBlocksize; /* Database block-size in bytes */
+
+ /* r/w file descriptors for both files. */
+ LsmFile *pLsmFile; /* Used after lsm_close() to link into list */
+ lsm_file *fdDb; /* Database file */
+ lsm_file *fdLog; /* Log file */
+ int szSector; /* Database file sector size */
+
+ /* If this is a compressed database, a pointer to the compression methods.
+ ** For an uncompressed database, a NULL pointer. */
+ lsm_compress *pCompress;
+ u8 *aIBuffer; /* Buffer to compress to */
+ u8 *aOBuffer; /* Buffer to uncompress from */
+ int nBuffer; /* Allocated size of above buffers in bytes */
+
+ /* mmap() page related things */
+ i64 nMapLimit; /* Maximum bytes of file to map */
+ void *pMap; /* Current mapping of database file */
+ i64 nMap; /* Bytes mapped at pMap */
+ Page *pFree; /* Unused Page structures */
+ Page *pMapped; /* List of Page structs that point to pMap */
+
+ /* Page cache parameters for non-mmap() pages */
+ int nCacheMax; /* Configured cache size (in pages) */
+ int nCacheAlloc; /* Current cache size (in pages) */
+ Page *pLruFirst; /* Head of the LRU list */
+ Page *pLruLast; /* Tail of the LRU list */
+ int nHash; /* Number of hash slots in hash table */
+ Page **apHash; /* nHash Hash slots */
+ Page *pWaiting; /* b-tree pages waiting to be written */
+
+ /* Statistics */
+ int nOut; /* Number of outstanding pages */
+ int nWrite; /* Total number of pages written */
+ int nRead; /* Total number of pages read */
+};
+
+/*
+** Database page handle.
+**
+** pSeg:
+** When lsmFsSortedAppend() is called on a compressed database, the new
+** page is not assigned a page number or location in the database file
+** immediately. Instead, these are assigned by the lsmFsPagePersist() call
+** right before it writes the compressed page image to disk.
+**
+** The lsmFsSortedAppend() function sets the pSeg pointer to point to the
+** segment that the new page will be a part of. It is unset by
+** lsmFsPagePersist() after the page is written to disk.
+*/
+struct Page {
+ u8 *aData; /* Buffer containing page data */
+ int nData; /* Bytes of usable data at aData[] */
+ LsmPgno iPg; /* Page number */
+ int nRef; /* Number of outstanding references */
+ int flags; /* Combination of PAGE_XXX flags */
+ Page *pHashNext; /* Next page in hash table slot */
+ Page *pLruNext; /* Next page in LRU list */
+ Page *pLruPrev; /* Previous page in LRU list */
+ FileSystem *pFS; /* File system that owns this page */
+
+ /* Only used in compressed database mode: */
+ int nCompress; /* Compressed size (or 0 for uncomp. db) */
+ int nCompressPrev; /* Compressed size of prev page */
+ Segment *pSeg; /* Segment this page will be written to */
+
+ /* Pointers for singly linked lists */
+ Page *pWaitingNext; /* Next page in FileSystem.pWaiting list */
+ Page *pFreeNext; /* Next page in FileSystem.pFree list */
+ Page *pMappedNext; /* Next page in FileSystem.pMapped list */
+};
+
+/*
+** Meta-data page handle. There are two meta-data pages at the start of
+** the database file, each FileSystem.nMetasize bytes in size.
+*/
+struct MetaPage {
+ int iPg; /* Either 1 or 2 */
+ int bWrite; /* Write back to db file on release */
+ u8 *aData; /* Pointer to buffer */
+ FileSystem *pFS; /* FileSystem that owns this page */
+};
+
+/*
+** Values for LsmPage.flags
+*/
+#define PAGE_DIRTY 0x00000001 /* Set if page is dirty */
+#define PAGE_FREE 0x00000002 /* Set if Page.aData requires lsmFree() */
+#define PAGE_HASPREV 0x00000004 /* Set if page is first on uncomp. block */
+
+/*
+** Number of pgsz byte pages omitted from the start of block 1. The start
+** of block 1 contains two 4096 byte meta pages (8192 bytes in total).
+*/
+#define BLOCK1_HDR_SIZE(pgsz) LSM_MAX(1, 8192/(pgsz))
+
+/*
+** If NDEBUG is not defined, set a breakpoint in function lsmIoerrBkpt()
+** to catch IO errors (any error returned by a VFS method).
+*/
+#ifndef NDEBUG
+static void lsmIoerrBkpt(void){
+ static int nErr = 0;
+ nErr++;
+}
+static int IOERR_WRAPPER(int rc){
+ if( rc!=LSM_OK ) lsmIoerrBkpt();
+ return rc;
+}
+#else
+# define IOERR_WRAPPER(rc) (rc)
+#endif
+
+#ifdef NDEBUG
+# define assert_lists_are_ok(x)
+#else
+static Page *fsPageFindInHash(FileSystem *pFS, LsmPgno iPg, int *piHash);
+
+static void assert_lists_are_ok(FileSystem *pFS){
+#if 0
+ Page *p;
+
+ assert( pFS->nMapLimit>=0 );
+
+ /* Check that all pages in the LRU list have nRef==0, pointers to buffers
+ ** in heap memory, and corresponding entries in the hash table. */
+ for(p=pFS->pLruFirst; p; p=p->pLruNext){
+ assert( p==pFS->pLruFirst || p->pLruPrev!=0 );
+ assert( p==pFS->pLruLast || p->pLruNext!=0 );
+ assert( p->pLruPrev==0 || p->pLruPrev->pLruNext==p );
+ assert( p->pLruNext==0 || p->pLruNext->pLruPrev==p );
+ assert( p->nRef==0 );
+ assert( p->flags & PAGE_FREE );
+ assert( p==fsPageFindInHash(pFS, p->iPg, 0) );
+ }
+#endif
+}
+#endif
+
+/*
+** Wrappers around the VFS methods of the lsm_env object:
+**
+** lsmEnvOpen()
+** lsmEnvRead()
+** lsmEnvWrite()
+** lsmEnvSync()
+** lsmEnvSectorSize()
+** lsmEnvClose()
+** lsmEnvTruncate()
+** lsmEnvUnlink()
+** lsmEnvRemap()
+*/
+int lsmEnvOpen(lsm_env *pEnv, const char *zFile, int flags, lsm_file **ppNew){
+ return pEnv->xOpen(pEnv, zFile, flags, ppNew);
+}
+
+static int lsmEnvRead(
+ lsm_env *pEnv,
+ lsm_file *pFile,
+ lsm_i64 iOff,
+ void *pRead,
+ int nRead
+){
+ return IOERR_WRAPPER( pEnv->xRead(pFile, iOff, pRead, nRead) );
+}
+
+static int lsmEnvWrite(
+ lsm_env *pEnv,
+ lsm_file *pFile,
+ lsm_i64 iOff,
+ const void *pWrite,
+ int nWrite
+){
+ return IOERR_WRAPPER( pEnv->xWrite(pFile, iOff, (void *)pWrite, nWrite) );
+}
+
+static int lsmEnvSync(lsm_env *pEnv, lsm_file *pFile){
+ return IOERR_WRAPPER( pEnv->xSync(pFile) );
+}
+
+static int lsmEnvSectorSize(lsm_env *pEnv, lsm_file *pFile){
+ return pEnv->xSectorSize(pFile);
+}
+
+int lsmEnvClose(lsm_env *pEnv, lsm_file *pFile){
+ return IOERR_WRAPPER( pEnv->xClose(pFile) );
+}
+
+static int lsmEnvTruncate(lsm_env *pEnv, lsm_file *pFile, lsm_i64 nByte){
+ return IOERR_WRAPPER( pEnv->xTruncate(pFile, nByte) );
+}
+
+static int lsmEnvUnlink(lsm_env *pEnv, const char *zDel){
+ return IOERR_WRAPPER( pEnv->xUnlink(pEnv, zDel) );
+}
+
+static int lsmEnvRemap(
+ lsm_env *pEnv,
+ lsm_file *pFile,
+ i64 szMin,
+ void **ppMap,
+ i64 *pszMap
+){
+ return pEnv->xRemap(pFile, szMin, ppMap, pszMap);
+}
+
+int lsmEnvLock(lsm_env *pEnv, lsm_file *pFile, int iLock, int eLock){
+ if( pFile==0 ) return LSM_OK;
+ return pEnv->xLock(pFile, iLock, eLock);
+}
+
+int lsmEnvTestLock(
+ lsm_env *pEnv,
+ lsm_file *pFile,
+ int iLock,
+ int nLock,
+ int eLock
+){
+ return pEnv->xTestLock(pFile, iLock, nLock, eLock);
+}
+
+int lsmEnvShmMap(
+ lsm_env *pEnv,
+ lsm_file *pFile,
+ int iChunk,
+ int sz,
+ void **ppOut
+){
+ return pEnv->xShmMap(pFile, iChunk, sz, ppOut);
+}
+
+void lsmEnvShmBarrier(lsm_env *pEnv){
+ pEnv->xShmBarrier();
+}
+
+void lsmEnvShmUnmap(lsm_env *pEnv, lsm_file *pFile, int bDel){
+ pEnv->xShmUnmap(pFile, bDel);
+}
+
+void lsmEnvSleep(lsm_env *pEnv, int nUs){
+ pEnv->xSleep(pEnv, nUs);
+}
+
+
+/*
+** Write the contents of string buffer pStr into the log file, starting at
+** offset iOff.
+*/
+int lsmFsWriteLog(FileSystem *pFS, i64 iOff, LsmString *pStr){
+ assert( pFS->fdLog );
+ return lsmEnvWrite(pFS->pEnv, pFS->fdLog, iOff, pStr->z, pStr->n);
+}
+
+/*
+** fsync() the log file.
+*/
+int lsmFsSyncLog(FileSystem *pFS){
+ assert( pFS->fdLog );
+ return lsmEnvSync(pFS->pEnv, pFS->fdLog);
+}
+
+/*
+** Read nRead bytes of data starting at offset iOff of the log file. Append
+** the results to string buffer pStr.
+*/
+int lsmFsReadLog(FileSystem *pFS, i64 iOff, int nRead, LsmString *pStr){
+ int rc; /* Return code */
+ assert( pFS->fdLog );
+ rc = lsmStringExtend(pStr, nRead);
+ if( rc==LSM_OK ){
+ rc = lsmEnvRead(pFS->pEnv, pFS->fdLog, iOff, &pStr->z[pStr->n], nRead);
+ pStr->n += nRead;
+ }
+ return rc;
+}
+
+/*
+** Truncate the log file to nByte bytes in size.
+*/
+int lsmFsTruncateLog(FileSystem *pFS, i64 nByte){
+ if( pFS->fdLog==0 ) return LSM_OK;
+ return lsmEnvTruncate(pFS->pEnv, pFS->fdLog, nByte);
+}
+
+/*
+** Truncate the db file to nByte bytes in size.
+*/
+int lsmFsTruncateDb(FileSystem *pFS, i64 nByte){
+ if( pFS->fdDb==0 ) return LSM_OK;
+ return lsmEnvTruncate(pFS->pEnv, pFS->fdDb, nByte);
+}
+
+/*
+** Close the log file. Then delete it from the file-system. This function
+** is called during database shutdown only.
+*/
+int lsmFsCloseAndDeleteLog(FileSystem *pFS){
+ char *zDel;
+
+ if( pFS->fdLog ){
+ lsmEnvClose(pFS->pEnv, pFS->fdLog );
+ pFS->fdLog = 0;
+ }
+
+ zDel = lsmMallocPrintf(pFS->pEnv, "%s-log", pFS->zDb);
+ if( zDel ){
+ lsmEnvUnlink(pFS->pEnv, zDel);
+ lsmFree(pFS->pEnv, zDel);
+ }
+ return LSM_OK;
+}
+
+/*
+** Return true if page iReal of the database should be accessed using mmap.
+** False otherwise.
+*/
+static int fsMmapPage(FileSystem *pFS, LsmPgno iReal){
+ return ((i64)iReal*pFS->nPagesize <= pFS->nMapLimit);
+}
+
+/*
+** Given that there are currently nHash slots in the hash table, return
+** the hash key for file iFile, page iPg.
+*/
+static int fsHashKey(int nHash, LsmPgno iPg){
+ return (iPg % nHash);
+}
+
+/*
+** This is a helper function for lsmFsOpen(). It opens a single file on
+** disk (either the database or log file).
+*/
+static lsm_file *fsOpenFile(
+ FileSystem *pFS, /* File system object */
+ int bReadonly, /* True to open this file read-only */
+ int bLog, /* True for log, false for db */
+ int *pRc /* IN/OUT: Error code */
+){
+ lsm_file *pFile = 0;
+ if( *pRc==LSM_OK ){
+ int flags = (bReadonly ? LSM_OPEN_READONLY : 0);
+ const char *zPath = (bLog ? pFS->zLog : pFS->zDb);
+
+ *pRc = lsmEnvOpen(pFS->pEnv, zPath, flags, &pFile);
+ }
+ return pFile;
+}
+
+/*
+** If it is not already open, this function opens the log file. It returns
+** LSM_OK if successful (or if the log file was already open) or an LSM
+** error code otherwise.
+**
+** The log file must be opened before any of the following may be called:
+**
+** lsmFsWriteLog
+** lsmFsSyncLog
+** lsmFsReadLog
+*/
+int lsmFsOpenLog(lsm_db *db, int *pbOpen){
+ int rc = LSM_OK;
+ FileSystem *pFS = db->pFS;
+
+ if( 0==pFS->fdLog ){
+ pFS->fdLog = fsOpenFile(pFS, db->bReadonly, 1, &rc);
+
+ if( rc==LSM_IOERR_NOENT && db->bReadonly ){
+ rc = LSM_OK;
+ }
+ }
+
+ if( pbOpen ) *pbOpen = (pFS->fdLog!=0);
+ return rc;
+}
+
+/*
+** Close the log file, if it is open.
+*/
+void lsmFsCloseLog(lsm_db *db){
+ FileSystem *pFS = db->pFS;
+ if( pFS->fdLog ){
+ lsmEnvClose(pFS->pEnv, pFS->fdLog);
+ pFS->fdLog = 0;
+ }
+}
+
+/*
+** Open a connection to a database stored within the file-system.
+**
+** If parameter bReadonly is true, then open a read-only file-descriptor
+** on the database file. It is possible that bReadonly will be false even
+** if the user requested that pDb be opened read-only. This is because the
+** file-descriptor may later on be recycled by a read-write connection.
+** If the db file can be opened for read-write access, it always is. Parameter
+** bReadonly is only ever true if it has already been determined that the
+** db can only be opened for read-only access.
+**
+** Return LSM_OK if successful or an lsm error code otherwise.
+*/
+int lsmFsOpen(
+ lsm_db *pDb, /* Database connection to open fd for */
+ const char *zDb, /* Full path to database file */
+ int bReadonly /* True to open db file read-only */
+){
+ FileSystem *pFS;
+ int rc = LSM_OK;
+ int nDb = strlen(zDb);
+ int nByte;
+
+ assert( pDb->pFS==0 );
+ assert( pDb->pWorker==0 && pDb->pClient==0 );
+
+ nByte = sizeof(FileSystem) + nDb+1 + nDb+4+1;
+ pFS = (FileSystem *)lsmMallocZeroRc(pDb->pEnv, nByte, &rc);
+ if( pFS ){
+ LsmFile *pLsmFile;
+ pFS->zDb = (char *)&pFS[1];
+ pFS->zLog = &pFS->zDb[nDb+1];
+ pFS->nPagesize = LSM_DFLT_PAGE_SIZE;
+ pFS->nBlocksize = LSM_DFLT_BLOCK_SIZE;
+ pFS->nMetasize = LSM_META_PAGE_SIZE;
+ pFS->nMetaRwSize = LSM_META_RW_PAGE_SIZE;
+ pFS->pDb = pDb;
+ pFS->pEnv = pDb->pEnv;
+
+ /* Make a copy of the database and log file names. */
+ memcpy(pFS->zDb, zDb, nDb+1);
+ memcpy(pFS->zLog, zDb, nDb);
+ memcpy(&pFS->zLog[nDb], "-log", 5);
+
+ /* Allocate the hash-table here. At some point, it should be changed
+ ** so that it can grow dynamicly. */
+ pFS->nCacheMax = 2048*1024 / pFS->nPagesize;
+ pFS->nHash = 4096;
+ pFS->apHash = lsmMallocZeroRc(pDb->pEnv, sizeof(Page *) * pFS->nHash, &rc);
+
+ /* Open the database file */
+ pLsmFile = lsmDbRecycleFd(pDb);
+ if( pLsmFile ){
+ pFS->pLsmFile = pLsmFile;
+ pFS->fdDb = pLsmFile->pFile;
+ memset(pLsmFile, 0, sizeof(LsmFile));
+ }else{
+ pFS->pLsmFile = lsmMallocZeroRc(pDb->pEnv, sizeof(LsmFile), &rc);
+ if( rc==LSM_OK ){
+ pFS->fdDb = fsOpenFile(pFS, bReadonly, 0, &rc);
+ }
+ }
+
+ if( rc!=LSM_OK ){
+ lsmFsClose(pFS);
+ pFS = 0;
+ }else{
+ pFS->szSector = lsmEnvSectorSize(pFS->pEnv, pFS->fdDb);
+ }
+ }
+
+ pDb->pFS = pFS;
+ return rc;
+}
+
+/*
+** Configure the file-system object according to the current values of
+** the LSM_CONFIG_MMAP and LSM_CONFIG_SET_COMPRESSION options.
+*/
+int lsmFsConfigure(lsm_db *db){
+ FileSystem *pFS = db->pFS;
+ if( pFS ){
+ lsm_env *pEnv = pFS->pEnv;
+ Page *pPg;
+
+ assert( pFS->nOut==0 );
+ assert( pFS->pWaiting==0 );
+ assert( pFS->pMapped==0 );
+
+ /* Reset any compression/decompression buffers already allocated */
+ lsmFree(pEnv, pFS->aIBuffer);
+ lsmFree(pEnv, pFS->aOBuffer);
+ pFS->nBuffer = 0;
+
+ /* Unmap the file, if it is currently mapped */
+ if( pFS->pMap ){
+ lsmEnvRemap(pEnv, pFS->fdDb, -1, &pFS->pMap, &pFS->nMap);
+ pFS->nMapLimit = 0;
+ }
+
+ /* Free all allocated page structures */
+ pPg = pFS->pLruFirst;
+ while( pPg ){
+ Page *pNext = pPg->pLruNext;
+ assert( pPg->flags & PAGE_FREE );
+ lsmFree(pEnv, pPg->aData);
+ lsmFree(pEnv, pPg);
+ pPg = pNext;
+ }
+
+ pPg = pFS->pFree;
+ while( pPg ){
+ Page *pNext = pPg->pFreeNext;
+ lsmFree(pEnv, pPg);
+ pPg = pNext;
+ }
+
+ /* Zero pointers that point to deleted page objects */
+ pFS->nCacheAlloc = 0;
+ pFS->pLruFirst = 0;
+ pFS->pLruLast = 0;
+ pFS->pFree = 0;
+ if( pFS->apHash ){
+ memset(pFS->apHash, 0, pFS->nHash*sizeof(pFS->apHash[0]));
+ }
+
+ /* Configure the FileSystem object */
+ if( db->compress.xCompress ){
+ pFS->pCompress = &db->compress;
+ pFS->nMapLimit = 0;
+ }else{
+ pFS->pCompress = 0;
+ if( db->iMmap==1 ){
+ /* Unlimited */
+ pFS->nMapLimit = (i64)1 << 60;
+ }else{
+ /* iMmap is a limit in KB. Set nMapLimit to the same value in bytes. */
+ pFS->nMapLimit = (i64)db->iMmap * 1024;
+ }
+ }
+ }
+
+ return LSM_OK;
+}
+
+/*
+** Close and destroy a FileSystem object.
+*/
+void lsmFsClose(FileSystem *pFS){
+ if( pFS ){
+ Page *pPg;
+ lsm_env *pEnv = pFS->pEnv;
+
+ assert( pFS->nOut==0 );
+ pPg = pFS->pLruFirst;
+ while( pPg ){
+ Page *pNext = pPg->pLruNext;
+ if( pPg->flags & PAGE_FREE ) lsmFree(pEnv, pPg->aData);
+ lsmFree(pEnv, pPg);
+ pPg = pNext;
+ }
+
+ pPg = pFS->pFree;
+ while( pPg ){
+ Page *pNext = pPg->pFreeNext;
+ if( pPg->flags & PAGE_FREE ) lsmFree(pEnv, pPg->aData);
+ lsmFree(pEnv, pPg);
+ pPg = pNext;
+ }
+
+ if( pFS->fdDb ) lsmEnvClose(pFS->pEnv, pFS->fdDb );
+ if( pFS->fdLog ) lsmEnvClose(pFS->pEnv, pFS->fdLog );
+ lsmFree(pEnv, pFS->pLsmFile);
+ lsmFree(pEnv, pFS->apHash);
+ lsmFree(pEnv, pFS->aIBuffer);
+ lsmFree(pEnv, pFS->aOBuffer);
+ lsmFree(pEnv, pFS);
+ }
+}
+
+/*
+** This function is called when closing a database handle (i.e. lsm_close())
+** if there exist other connections to the same database within this process.
+** In that case the file-descriptor open on the database file is not closed
+** when the FileSystem object is destroyed, as this would cause any POSIX
+** locks held by the other connections to be silently dropped (see "man close"
+** for details). Instead, the file-descriptor is stored in a list by the
+** lsm_shared.c module until it is either closed or reused.
+**
+** This function returns a pointer to an object that can be linked into
+** the list described above. The returned object now 'owns' the database
+** file descriptr, so that when the FileSystem object is destroyed, it
+** will not be closed.
+**
+** This function may be called at most once in the life-time of a
+** FileSystem object. The results of any operations involving the database
+** file descriptor are undefined once this function has been called.
+**
+** None of this is necessary on non-POSIX systems. But we do it anyway in
+** the name of using as similar code as possible on all platforms.
+*/
+LsmFile *lsmFsDeferClose(FileSystem *pFS){
+ LsmFile *p = pFS->pLsmFile;
+ assert( p->pNext==0 );
+ p->pFile = pFS->fdDb;
+ pFS->fdDb = 0;
+ pFS->pLsmFile = 0;
+ return p;
+}
+
+/*
+** Allocate a buffer and populate it with the output of the xFileid()
+** method of the database file handle. If successful, set *ppId to point
+** to the buffer and *pnId to the number of bytes in the buffer and return
+** LSM_OK. Otherwise, set *ppId and *pnId to zero and return an LSM
+** error code.
+*/
+int lsmFsFileid(lsm_db *pDb, void **ppId, int *pnId){
+ lsm_env *pEnv = pDb->pEnv;
+ FileSystem *pFS = pDb->pFS;
+ int rc;
+ int nId = 0;
+ void *pId;
+
+ rc = pEnv->xFileid(pFS->fdDb, 0, &nId);
+ pId = lsmMallocZeroRc(pEnv, nId, &rc);
+ if( rc==LSM_OK ) rc = pEnv->xFileid(pFS->fdDb, pId, &nId);
+
+ if( rc!=LSM_OK ){
+ lsmFree(pEnv, pId);
+ pId = 0;
+ nId = 0;
+ }
+
+ *ppId = pId;
+ *pnId = nId;
+ return rc;
+}
+
+/*
+** Return the nominal page-size used by this file-system. Actual pages
+** may be smaller or larger than this value.
+*/
+int lsmFsPageSize(FileSystem *pFS){
+ return pFS->nPagesize;
+}
+
+/*
+** Return the block-size used by this file-system.
+*/
+int lsmFsBlockSize(FileSystem *pFS){
+ return pFS->nBlocksize;
+}
+
+/*
+** Configure the nominal page-size used by this file-system. Actual
+** pages may be smaller or larger than this value.
+*/
+void lsmFsSetPageSize(FileSystem *pFS, int nPgsz){
+ pFS->nPagesize = nPgsz;
+ pFS->nCacheMax = 2048*1024 / pFS->nPagesize;
+}
+
+/*
+** Configure the block-size used by this file-system.
+*/
+void lsmFsSetBlockSize(FileSystem *pFS, int nBlocksize){
+ pFS->nBlocksize = nBlocksize;
+}
+
+/*
+** Return the page number of the first page on block iBlock. Blocks are
+** numbered starting from 1.
+**
+** For a compressed database, page numbers are byte offsets. The first
+** page on each block is the byte offset immediately following the 4-byte
+** "previous block" pointer at the start of each block.
+*/
+static LsmPgno fsFirstPageOnBlock(FileSystem *pFS, int iBlock){
+ LsmPgno iPg;
+ if( pFS->pCompress ){
+ if( iBlock==1 ){
+ iPg = pFS->nMetasize * 2 + 4;
+ }else{
+ iPg = pFS->nBlocksize * (LsmPgno)(iBlock-1) + 4;
+ }
+ }else{
+ const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
+ if( iBlock==1 ){
+ iPg = 1 + ((pFS->nMetasize*2 + pFS->nPagesize - 1) / pFS->nPagesize);
+ }else{
+ iPg = 1 + (iBlock-1) * nPagePerBlock;
+ }
+ }
+ return iPg;
+}
+
+/*
+** Return the page number of the last page on block iBlock. Blocks are
+** numbered starting from 1.
+**
+** For a compressed database, page numbers are byte offsets. The first
+** page on each block is the byte offset of the byte immediately before
+** the 4-byte "next block" pointer at the end of each block.
+*/
+static LsmPgno fsLastPageOnBlock(FileSystem *pFS, int iBlock){
+ if( pFS->pCompress ){
+ return pFS->nBlocksize * (LsmPgno)iBlock - 1 - 4;
+ }else{
+ const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
+ return iBlock * nPagePerBlock;
+ }
+}
+
+/*
+** Return the block number of the block that page iPg is located on.
+** Blocks are numbered starting from 1.
+*/
+static int fsPageToBlock(FileSystem *pFS, LsmPgno iPg){
+ if( pFS->pCompress ){
+ return (int)((iPg / pFS->nBlocksize) + 1);
+ }else{
+ return (int)(1 + ((iPg-1) / (pFS->nBlocksize / pFS->nPagesize)));
+ }
+}
+
+/*
+** Return true if page iPg is the last page on its block.
+**
+** This function is only called in non-compressed database mode.
+*/
+static int fsIsLast(FileSystem *pFS, LsmPgno iPg){
+ const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
+ assert( !pFS->pCompress );
+ return ( iPg && (iPg % nPagePerBlock)==0 );
+}
+
+/*
+** Return true if page iPg is the first page on its block.
+**
+** This function is only called in non-compressed database mode.
+*/
+static int fsIsFirst(FileSystem *pFS, LsmPgno iPg){
+ const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
+ assert( !pFS->pCompress );
+ return ( (iPg % nPagePerBlock)==1
+ || (iPg<nPagePerBlock && iPg==fsFirstPageOnBlock(pFS, 1))
+ );
+}
+
+/*
+** Given a page reference, return a pointer to the buffer containing the
+** pages contents. If parameter pnData is not NULL, set *pnData to the size
+** of the buffer in bytes before returning.
+*/
+u8 *lsmFsPageData(Page *pPage, int *pnData){
+ if( pnData ){
+ *pnData = pPage->nData;
+ }
+ return pPage->aData;
+}
+
+/*
+** Return the page number of a page.
+*/
+LsmPgno lsmFsPageNumber(Page *pPage){
+ /* assert( (pPage->flags & PAGE_DIRTY)==0 ); */
+ return pPage ? pPage->iPg : 0;
+}
+
+/*
+** Page pPg is currently part of the LRU list belonging to pFS. Remove
+** it from the list. pPg->pLruNext and pPg->pLruPrev are cleared by this
+** operation.
+*/
+static void fsPageRemoveFromLru(FileSystem *pFS, Page *pPg){
+ assert( pPg->pLruNext || pPg==pFS->pLruLast );
+ assert( pPg->pLruPrev || pPg==pFS->pLruFirst );
+ if( pPg->pLruNext ){
+ pPg->pLruNext->pLruPrev = pPg->pLruPrev;
+ }else{
+ pFS->pLruLast = pPg->pLruPrev;
+ }
+ if( pPg->pLruPrev ){
+ pPg->pLruPrev->pLruNext = pPg->pLruNext;
+ }else{
+ pFS->pLruFirst = pPg->pLruNext;
+ }
+ pPg->pLruPrev = 0;
+ pPg->pLruNext = 0;
+}
+
+/*
+** Page pPg is not currently part of the LRU list belonging to pFS. Add it.
+*/
+static void fsPageAddToLru(FileSystem *pFS, Page *pPg){
+ assert( pPg->pLruNext==0 && pPg->pLruPrev==0 );
+ pPg->pLruPrev = pFS->pLruLast;
+ if( pPg->pLruPrev ){
+ pPg->pLruPrev->pLruNext = pPg;
+ }else{
+ pFS->pLruFirst = pPg;
+ }
+ pFS->pLruLast = pPg;
+}
+
+/*
+** Page pPg is currently stored in the apHash/nHash hash table. Remove it.
+*/
+static void fsPageRemoveFromHash(FileSystem *pFS, Page *pPg){
+ int iHash;
+ Page **pp;
+
+ iHash = fsHashKey(pFS->nHash, pPg->iPg);
+ for(pp=&pFS->apHash[iHash]; *pp!=pPg; pp=&(*pp)->pHashNext);
+ *pp = pPg->pHashNext;
+ pPg->pHashNext = 0;
+}
+
+/*
+** Free a Page object allocated by fsPageBuffer().
+*/
+static void fsPageBufferFree(Page *pPg){
+ pPg->pFS->nCacheAlloc--;
+ lsmFree(pPg->pFS->pEnv, pPg->aData);
+ lsmFree(pPg->pFS->pEnv, pPg);
+}
+
+
+/*
+** Purge the cache of all non-mmap pages with nRef==0.
+*/
+void lsmFsPurgeCache(FileSystem *pFS){
+ Page *pPg;
+
+ pPg = pFS->pLruFirst;
+ while( pPg ){
+ Page *pNext = pPg->pLruNext;
+ assert( pPg->flags & PAGE_FREE );
+ fsPageRemoveFromHash(pFS, pPg);
+ fsPageBufferFree(pPg);
+ pPg = pNext;
+ }
+ pFS->pLruFirst = 0;
+ pFS->pLruLast = 0;
+
+ assert( pFS->nCacheAlloc<=pFS->nOut && pFS->nCacheAlloc>=0 );
+}
+
+/*
+** Search the hash-table for page iPg. If an entry is round, return a pointer
+** to it. Otherwise, return NULL.
+**
+** Either way, if argument piHash is not NULL set *piHash to the hash slot
+** number that page iPg would be stored in before returning.
+*/
+static Page *fsPageFindInHash(FileSystem *pFS, LsmPgno iPg, int *piHash){
+ Page *p; /* Return value */
+ int iHash = fsHashKey(pFS->nHash, iPg);
+
+ if( piHash ) *piHash = iHash;
+ for(p=pFS->apHash[iHash]; p; p=p->pHashNext){
+ if( p->iPg==iPg) break;
+ }
+ return p;
+}
+
+/*
+** Allocate and return a non-mmap Page object. If there are already
+** nCacheMax such Page objects outstanding, try to recycle an existing
+** Page instead.
+*/
+static int fsPageBuffer(
+ FileSystem *pFS,
+ Page **ppOut
+){
+ int rc = LSM_OK;
+ Page *pPage = 0;
+ if( pFS->pLruFirst==0 || pFS->nCacheAlloc<pFS->nCacheMax ){
+ /* Allocate a new Page object */
+ pPage = lsmMallocZero(pFS->pEnv, sizeof(Page));
+ if( !pPage ){
+ rc = LSM_NOMEM_BKPT;
+ }else{
+ pPage->aData = (u8 *)lsmMalloc(pFS->pEnv, pFS->nPagesize);
+ if( !pPage->aData ){
+ lsmFree(pFS->pEnv, pPage);
+ rc = LSM_NOMEM_BKPT;
+ pPage = 0;
+ }else{
+ pFS->nCacheAlloc++;
+ }
+ }
+ }else{
+ /* Reuse an existing Page object */
+ u8 *aData;
+ pPage = pFS->pLruFirst;
+ aData = pPage->aData;
+ fsPageRemoveFromLru(pFS, pPage);
+ fsPageRemoveFromHash(pFS, pPage);
+
+ memset(pPage, 0, sizeof(Page));
+ pPage->aData = aData;
+ }
+
+ if( pPage ){
+ pPage->flags = PAGE_FREE;
+ }
+ *ppOut = pPage;
+ return rc;
+}
+
+/*
+** Assuming *pRc is initially LSM_OK, attempt to ensure that the
+** memory-mapped region is at least iSz bytes in size. If it is not already,
+** iSz bytes in size, extend it and update the pointers associated with any
+** outstanding Page objects.
+**
+** If *pRc is not LSM_OK when this function is called, it is a no-op.
+** Otherwise, *pRc is set to an lsm error code if an error occurs, or
+** left unmodified otherwise.
+**
+** This function is never called in compressed database mode.
+*/
+static void fsGrowMapping(
+ FileSystem *pFS, /* File system object */
+ i64 iSz, /* Minimum size to extend mapping to */
+ int *pRc /* IN/OUT: Error code */
+){
+ assert( pFS->pCompress==0 );
+ assert( PAGE_HASPREV==4 );
+
+ if( *pRc==LSM_OK && iSz>pFS->nMap ){
+ int rc;
+ u8 *aOld = pFS->pMap;
+ rc = lsmEnvRemap(pFS->pEnv, pFS->fdDb, iSz, &pFS->pMap, &pFS->nMap);
+ if( rc==LSM_OK && pFS->pMap!=aOld ){
+ Page *pFix;
+ i64 iOff = (u8 *)pFS->pMap - aOld;
+ for(pFix=pFS->pMapped; pFix; pFix=pFix->pMappedNext){
+ pFix->aData += iOff;
+ }
+ lsmSortedRemap(pFS->pDb);
+ }
+ *pRc = rc;
+ }
+}
+
+/*
+** If it is mapped, unmap the database file.
+*/
+int lsmFsUnmap(FileSystem *pFS){
+ int rc = LSM_OK;
+ if( pFS ){
+ rc = lsmEnvRemap(pFS->pEnv, pFS->fdDb, -1, &pFS->pMap, &pFS->nMap);
+ }
+ return rc;
+}
+
+/*
+** fsync() the database file.
+*/
+int lsmFsSyncDb(FileSystem *pFS, int nBlock){
+ return lsmEnvSync(pFS->pEnv, pFS->fdDb);
+}
+
+/*
+** If block iBlk has been redirected according to the redirections in the
+** object passed as the first argument, return the destination block to
+** which it is redirected. Otherwise, return a copy of iBlk.
+*/
+static int fsRedirectBlock(Redirect *p, int iBlk){
+ if( p ){
+ int i;
+ for(i=0; i<p->n; i++){
+ if( iBlk==p->a[i].iFrom ) return p->a[i].iTo;
+ }
+ }
+ assert( iBlk!=0 );
+ return iBlk;
+}
+
+/*
+** If page iPg has been redirected according to the redirections in the
+** object passed as the second argument, return the destination page to
+** which it is redirected. Otherwise, return a copy of iPg.
+*/
+LsmPgno lsmFsRedirectPage(FileSystem *pFS, Redirect *pRedir, LsmPgno iPg){
+ LsmPgno iReal = iPg;
+
+ if( pRedir ){
+ const int nPagePerBlock = (
+ pFS->pCompress ? pFS->nBlocksize : (pFS->nBlocksize / pFS->nPagesize)
+ );
+ int iBlk = fsPageToBlock(pFS, iPg);
+ int i;
+ for(i=0; i<pRedir->n; i++){
+ int iFrom = pRedir->a[i].iFrom;
+ if( iFrom>iBlk ) break;
+ if( iFrom==iBlk ){
+ int iTo = pRedir->a[i].iTo;
+ iReal = iPg - (LsmPgno)(iFrom - iTo) * nPagePerBlock;
+ if( iTo==1 ){
+ iReal += (fsFirstPageOnBlock(pFS, 1)-1);
+ }
+ break;
+ }
+ }
+ }
+
+ assert( iReal!=0 );
+ return iReal;
+}
+
+/* Required by the circular fsBlockNext<->fsPageGet dependency. */
+static int fsPageGet(FileSystem *, Segment *, LsmPgno, int, Page **, int *);
+
+/*
+** Parameter iBlock is a database file block. This function reads the value
+** stored in the blocks "next block" pointer and stores it in *piNext.
+** LSM_OK is returned if everything is successful, or an LSM error code
+** otherwise.
+*/
+static int fsBlockNext(
+ FileSystem *pFS, /* File-system object handle */
+ Segment *pSeg, /* Use this segment for block redirects */
+ int iBlock, /* Read field from this block */
+ int *piNext /* OUT: Next block in linked list */
+){
+ int rc;
+ int iRead; /* Read block from here */
+
+ if( pSeg ){
+ iRead = fsRedirectBlock(pSeg->pRedirect, iBlock);
+ }else{
+ iRead = iBlock;
+ }
+
+ assert( pFS->nMapLimit==0 || pFS->pCompress==0 );
+ if( pFS->pCompress ){
+ i64 iOff; /* File offset to read data from */
+ u8 aNext[4]; /* 4-byte pointer read from db file */
+
+ iOff = (i64)iRead * pFS->nBlocksize - sizeof(aNext);
+ rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aNext, sizeof(aNext));
+ if( rc==LSM_OK ){
+ *piNext = (int)lsmGetU32(aNext);
+ }
+ }else{
+ const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
+ Page *pLast;
+ rc = fsPageGet(pFS, 0, iRead*nPagePerBlock, 0, &pLast, 0);
+ if( rc==LSM_OK ){
+ *piNext = lsmGetU32(&pLast->aData[pFS->nPagesize-4]);
+ lsmFsPageRelease(pLast);
+ }
+ }
+
+ if( pSeg ){
+ *piNext = fsRedirectBlock(pSeg->pRedirect, *piNext);
+ }
+ return rc;
+}
+
+/*
+** Return the page number of the last page on the same block as page iPg.
+*/
+LsmPgno fsLastPageOnPagesBlock(FileSystem *pFS, LsmPgno iPg){
+ return fsLastPageOnBlock(pFS, fsPageToBlock(pFS, iPg));
+}
+
+/*
+** Read nData bytes of data from offset iOff of the database file into
+** buffer aData. If this means reading past the end of a block, follow
+** the block pointer to the next block and continue reading.
+**
+** Offset iOff is an absolute offset - not subject to any block redirection.
+** However any block pointer followed is. Use pSeg->pRedirect in this case.
+**
+** This function is only called in compressed database mode.
+*/
+static int fsReadData(
+ FileSystem *pFS, /* File-system handle */
+ Segment *pSeg, /* Block redirection */
+ i64 iOff, /* Read data from this offset */
+ u8 *aData, /* Buffer to read data into */
+ int nData /* Number of bytes to read */
+){
+ i64 iEob; /* End of block */
+ int nRead;
+ int rc;
+
+ assert( pFS->pCompress );
+
+ iEob = fsLastPageOnPagesBlock(pFS, iOff) + 1;
+ nRead = (int)LSM_MIN(iEob - iOff, nData);
+
+ rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aData, nRead);
+ if( rc==LSM_OK && nRead!=nData ){
+ int iBlk;
+
+ rc = fsBlockNext(pFS, pSeg, fsPageToBlock(pFS, iOff), &iBlk);
+ if( rc==LSM_OK ){
+ i64 iOff2 = fsFirstPageOnBlock(pFS, iBlk);
+ rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff2, &aData[nRead], nData-nRead);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Parameter iBlock is a database file block. This function reads the value
+** stored in the blocks "previous block" pointer and stores it in *piPrev.
+** LSM_OK is returned if everything is successful, or an LSM error code
+** otherwise.
+*/
+static int fsBlockPrev(
+ FileSystem *pFS, /* File-system object handle */
+ Segment *pSeg, /* Use this segment for block redirects */
+ int iBlock, /* Read field from this block */
+ int *piPrev /* OUT: Previous block in linked list */
+){
+ int rc = LSM_OK; /* Return code */
+
+ assert( pFS->nMapLimit==0 || pFS->pCompress==0 );
+ assert( iBlock>0 );
+
+ if( pFS->pCompress ){
+ i64 iOff = fsFirstPageOnBlock(pFS, iBlock) - 4;
+ u8 aPrev[4]; /* 4-byte pointer read from db file */
+ rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aPrev, sizeof(aPrev));
+ if( rc==LSM_OK ){
+ Redirect *pRedir = (pSeg ? pSeg->pRedirect : 0);
+ *piPrev = fsRedirectBlock(pRedir, (int)lsmGetU32(aPrev));
+ }
+ }else{
+ assert( 0 );
+ }
+ return rc;
+}
+
+/*
+** Encode and decode routines for record size fields.
+*/
+static void putRecordSize(u8 *aBuf, int nByte, int bFree){
+ aBuf[0] = (u8)(nByte >> 14) | 0x80;
+ aBuf[1] = ((u8)(nByte >> 7) & 0x7F) | (bFree ? 0x00 : 0x80);
+ aBuf[2] = (u8)nByte | 0x80;
+}
+static int getRecordSize(u8 *aBuf, int *pbFree){
+ int nByte;
+ nByte = (aBuf[0] & 0x7F) << 14;
+ nByte += (aBuf[1] & 0x7F) << 7;
+ nByte += (aBuf[2] & 0x7F);
+ *pbFree = !(aBuf[1] & 0x80);
+ return nByte;
+}
+
+/*
+** Subtract iSub from database file offset iOff and set *piRes to the
+** result. If doing so means passing the start of a block, follow the
+** block pointer stored in the first 4 bytes of the block.
+**
+** Offset iOff is an absolute offset - not subject to any block redirection.
+** However any block pointer followed is. Use pSeg->pRedirect in this case.
+**
+** Return LSM_OK if successful or an lsm error code if an error occurs.
+*/
+static int fsSubtractOffset(
+ FileSystem *pFS,
+ Segment *pSeg,
+ i64 iOff,
+ int iSub,
+ i64 *piRes
+){
+ i64 iStart;
+ int iBlk = 0;
+ int rc;
+
+ assert( pFS->pCompress );
+
+ iStart = fsFirstPageOnBlock(pFS, fsPageToBlock(pFS, iOff));
+ if( (iOff-iSub)>=iStart ){
+ *piRes = (iOff-iSub);
+ return LSM_OK;
+ }
+
+ rc = fsBlockPrev(pFS, pSeg, fsPageToBlock(pFS, iOff), &iBlk);
+ *piRes = fsLastPageOnBlock(pFS, iBlk) - iSub + (iOff - iStart + 1);
+ return rc;
+}
+
+/*
+** Add iAdd to database file offset iOff and set *piRes to the
+** result. If doing so means passing the end of a block, follow the
+** block pointer stored in the last 4 bytes of the block.
+**
+** Offset iOff is an absolute offset - not subject to any block redirection.
+** However any block pointer followed is. Use pSeg->pRedirect in this case.
+**
+** Return LSM_OK if successful or an lsm error code if an error occurs.
+*/
+static int fsAddOffset(
+ FileSystem *pFS,
+ Segment *pSeg,
+ i64 iOff,
+ int iAdd,
+ i64 *piRes
+){
+ i64 iEob;
+ int iBlk;
+ int rc;
+
+ assert( pFS->pCompress );
+
+ iEob = fsLastPageOnPagesBlock(pFS, iOff);
+ if( (iOff+iAdd)<=iEob ){
+ *piRes = (iOff+iAdd);
+ return LSM_OK;
+ }
+
+ rc = fsBlockNext(pFS, pSeg, fsPageToBlock(pFS, iOff), &iBlk);
+ *piRes = fsFirstPageOnBlock(pFS, iBlk) + iAdd - (iEob - iOff + 1);
+ return rc;
+}
+
+/*
+** If it is not already allocated, allocate either the FileSystem.aOBuffer (if
+** bWrite is true) or the FileSystem.aIBuffer (if bWrite is false). Return
+** LSM_OK if successful if the attempt to allocate memory fails.
+*/
+static int fsAllocateBuffer(FileSystem *pFS, int bWrite){
+ u8 **pp; /* Pointer to either aIBuffer or aOBuffer */
+
+ assert( pFS->pCompress );
+
+ /* If neither buffer has been allocated, figure out how large they
+ ** should be. Store this value in FileSystem.nBuffer. */
+ if( pFS->nBuffer==0 ){
+ assert( pFS->aIBuffer==0 && pFS->aOBuffer==0 );
+ pFS->nBuffer = pFS->pCompress->xBound(pFS->pCompress->pCtx, pFS->nPagesize);
+ if( pFS->nBuffer<(pFS->szSector+6) ){
+ pFS->nBuffer = pFS->szSector+6;
+ }
+ }
+
+ pp = (bWrite ? &pFS->aOBuffer : &pFS->aIBuffer);
+ if( *pp==0 ){
+ *pp = lsmMalloc(pFS->pEnv, LSM_MAX(pFS->nBuffer, pFS->nPagesize));
+ if( *pp==0 ) return LSM_NOMEM_BKPT;
+ }
+
+ return LSM_OK;
+}
+
+/*
+** This function is only called in compressed database mode. It reads and
+** uncompresses the compressed data for page pPg from the database and
+** populates the pPg->aData[] buffer and pPg->nCompress field.
+**
+** It is possible that instead of a page record, there is free space
+** at offset pPg->iPgno. In this case no data is read from the file, but
+** output variable *pnSpace is set to the total number of free bytes.
+**
+** LSM_OK is returned if successful, or an LSM error code otherwise.
+*/
+static int fsReadPagedata(
+ FileSystem *pFS, /* File-system handle */
+ Segment *pSeg, /* pPg is part of this segment */
+ Page *pPg, /* Page to read and uncompress data for */
+ int *pnSpace /* OUT: Total bytes of free space */
+){
+ lsm_compress *p = pFS->pCompress;
+ i64 iOff = pPg->iPg;
+ u8 aSz[3];
+ int rc;
+
+ assert( p && pPg->nCompress==0 );
+
+ if( fsAllocateBuffer(pFS, 0) ) return LSM_NOMEM;
+
+ rc = fsReadData(pFS, pSeg, iOff, aSz, sizeof(aSz));
+
+ if( rc==LSM_OK ){
+ int bFree;
+ if( aSz[0] & 0x80 ){
+ pPg->nCompress = (int)getRecordSize(aSz, &bFree);
+ }else{
+ pPg->nCompress = (int)aSz[0] - sizeof(aSz)*2;
+ bFree = 1;
+ }
+ if( bFree ){
+ if( pnSpace ){
+ *pnSpace = pPg->nCompress + sizeof(aSz)*2;
+ }else{
+ rc = LSM_CORRUPT_BKPT;
+ }
+ }else{
+ rc = fsAddOffset(pFS, pSeg, iOff, 3, &iOff);
+ if( rc==LSM_OK ){
+ if( pPg->nCompress>pFS->nBuffer ){
+ rc = LSM_CORRUPT_BKPT;
+ }else{
+ rc = fsReadData(pFS, pSeg, iOff, pFS->aIBuffer, pPg->nCompress);
+ }
+ if( rc==LSM_OK ){
+ int n = pFS->nPagesize;
+ rc = p->xUncompress(p->pCtx,
+ (char *)pPg->aData, &n,
+ (const char *)pFS->aIBuffer, pPg->nCompress
+ );
+ if( rc==LSM_OK && n!=pPg->pFS->nPagesize ){
+ rc = LSM_CORRUPT_BKPT;
+ }
+ }
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Return a handle for a database page.
+**
+** If this file-system object is accessing a compressed database it may be
+** that there is no page record at database file offset iPg. Instead, there
+** may be a free space record. In this case, set *ppPg to NULL and *pnSpace
+** to the total number of free bytes before returning.
+**
+** If no error occurs, LSM_OK is returned. Otherwise, an lsm error code.
+*/
+static int fsPageGet(
+ FileSystem *pFS, /* File-system handle */
+ Segment *pSeg, /* Block redirection to use (or NULL) */
+ LsmPgno iPg, /* Page id */
+ int noContent, /* True to not load content from disk */
+ Page **ppPg, /* OUT: New page handle */
+ int *pnSpace /* OUT: Bytes of free space */
+){
+ Page *p;
+ int iHash;
+ int rc = LSM_OK;
+
+ /* In most cases iReal is the same as iPg. Except, if pSeg->pRedirect is
+ ** not NULL, and the block containing iPg has been redirected, then iReal
+ ** is the page number after redirection. */
+ LsmPgno iReal = lsmFsRedirectPage(pFS, (pSeg ? pSeg->pRedirect : 0), iPg);
+
+ assert_lists_are_ok(pFS);
+ assert( iPg>=fsFirstPageOnBlock(pFS, 1) );
+ assert( iReal>=fsFirstPageOnBlock(pFS, 1) );
+ *ppPg = 0;
+
+ /* Search the hash-table for the page */
+ p = fsPageFindInHash(pFS, iReal, &iHash);
+
+ if( p ){
+ assert( p->flags & PAGE_FREE );
+ if( p->nRef==0 ) fsPageRemoveFromLru(pFS, p);
+ }else{
+
+ if( fsMmapPage(pFS, iReal) ){
+ i64 iEnd = (i64)iReal * pFS->nPagesize;
+ fsGrowMapping(pFS, iEnd, &rc);
+ if( rc!=LSM_OK ) return rc;
+
+ if( pFS->pFree ){
+ p = pFS->pFree;
+ pFS->pFree = p->pFreeNext;
+ assert( p->nRef==0 );
+ }else{
+ p = lsmMallocZeroRc(pFS->pEnv, sizeof(Page), &rc);
+ if( rc ) return rc;
+ p->pFS = pFS;
+ }
+ p->aData = &((u8 *)pFS->pMap)[pFS->nPagesize * (iReal-1)];
+ p->iPg = iReal;
+
+ /* This page now carries a pointer to the mapping. Link it in to
+ ** the FileSystem.pMapped list. */
+ assert( p->pMappedNext==0 );
+ p->pMappedNext = pFS->pMapped;
+ pFS->pMapped = p;
+
+ assert( pFS->pCompress==0 );
+ assert( (p->flags & PAGE_FREE)==0 );
+ }else{
+ rc = fsPageBuffer(pFS, &p);
+ if( rc==LSM_OK ){
+ int nSpace = 0;
+ p->iPg = iReal;
+ p->nRef = 0;
+ p->pFS = pFS;
+ assert( p->flags==0 || p->flags==PAGE_FREE );
+
+#ifdef LSM_DEBUG
+ memset(p->aData, 0x56, pFS->nPagesize);
+#endif
+ assert( p->pLruNext==0 && p->pLruPrev==0 );
+ if( noContent==0 ){
+ if( pFS->pCompress ){
+ rc = fsReadPagedata(pFS, pSeg, p, &nSpace);
+ }else{
+ int nByte = pFS->nPagesize;
+ i64 iOff = (i64)(iReal-1) * pFS->nPagesize;
+ rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, p->aData, nByte);
+ }
+ pFS->nRead++;
+ }
+
+ /* If the xRead() call was successful (or not attempted), link the
+ ** page into the page-cache hash-table. Otherwise, if it failed,
+ ** free the buffer. */
+ if( rc==LSM_OK && nSpace==0 ){
+ p->pHashNext = pFS->apHash[iHash];
+ pFS->apHash[iHash] = p;
+ }else{
+ fsPageBufferFree(p);
+ p = 0;
+ if( pnSpace ) *pnSpace = nSpace;
+ }
+ }
+ }
+
+ assert( (rc==LSM_OK && (p || (pnSpace && *pnSpace)))
+ || (rc!=LSM_OK && p==0)
+ );
+ }
+
+ if( rc==LSM_OK && p ){
+ if( pFS->pCompress==0 && (fsIsLast(pFS, iReal) || fsIsFirst(pFS, iReal)) ){
+ p->nData = pFS->nPagesize - 4;
+ if( fsIsFirst(pFS, iReal) && p->nRef==0 ){
+ p->aData += 4;
+ p->flags |= PAGE_HASPREV;
+ }
+ }else{
+ p->nData = pFS->nPagesize;
+ }
+ pFS->nOut += (p->nRef==0);
+ p->nRef++;
+ }
+ *ppPg = p;
+ return rc;
+}
+
+/*
+** Read the 64-bit checkpoint id of the checkpoint currently stored on meta
+** page iMeta of the database file. If no error occurs, store the id value
+** in *piVal and return LSM_OK. Otherwise, return an LSM error code and leave
+** *piVal unmodified.
+**
+** If a checkpointer connection is currently updating meta-page iMeta, or an
+** earlier checkpointer crashed while doing so, the value read into *piVal
+** may be garbage. It is the callers responsibility to deal with this.
+*/
+int lsmFsReadSyncedId(lsm_db *db, int iMeta, i64 *piVal){
+ FileSystem *pFS = db->pFS;
+ int rc = LSM_OK;
+
+ assert( iMeta==1 || iMeta==2 );
+ if( pFS->nMapLimit>0 ){
+ fsGrowMapping(pFS, iMeta*LSM_META_PAGE_SIZE, &rc);
+ if( rc==LSM_OK ){
+ *piVal = (i64)lsmGetU64(&((u8 *)pFS->pMap)[(iMeta-1)*LSM_META_PAGE_SIZE]);
+ }
+ }else{
+ MetaPage *pMeta = 0;
+ rc = lsmFsMetaPageGet(pFS, 0, iMeta, &pMeta);
+ if( rc==LSM_OK ){
+ *piVal = (i64)lsmGetU64(pMeta->aData);
+ lsmFsMetaPageRelease(pMeta);
+ }
+ }
+
+ return rc;
+}
+
+
+/*
+** Return true if the first or last page of segment pRun falls between iFirst
+** and iLast, inclusive, and pRun is not equal to pIgnore.
+*/
+static int fsRunEndsBetween(
+ Segment *pRun,
+ Segment *pIgnore,
+ LsmPgno iFirst,
+ LsmPgno iLast
+){
+ return (pRun!=pIgnore && (
+ (pRun->iFirst>=iFirst && pRun->iFirst<=iLast)
+ || (pRun->iLastPg>=iFirst && pRun->iLastPg<=iLast)
+ ));
+}
+
+/*
+** Return true if level pLevel contains a segment other than pIgnore for
+** which the first or last page is between iFirst and iLast, inclusive.
+*/
+static int fsLevelEndsBetween(
+ Level *pLevel,
+ Segment *pIgnore,
+ LsmPgno iFirst,
+ LsmPgno iLast
+){
+ int i;
+
+ if( fsRunEndsBetween(&pLevel->lhs, pIgnore, iFirst, iLast) ){
+ return 1;
+ }
+ for(i=0; i<pLevel->nRight; i++){
+ if( fsRunEndsBetween(&pLevel->aRhs[i], pIgnore, iFirst, iLast) ){
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+/*
+** Block iBlk is no longer in use by segment pIgnore. If it is not in use
+** by any other segment, move it to the free block list.
+*/
+static int fsFreeBlock(
+ FileSystem *pFS, /* File system object */
+ Snapshot *pSnapshot, /* Worker snapshot */
+ Segment *pIgnore, /* Ignore this run when searching */
+ int iBlk /* Block number of block to free */
+){
+ int rc = LSM_OK; /* Return code */
+ LsmPgno iFirst; /* First page on block iBlk */
+ LsmPgno iLast; /* Last page on block iBlk */
+ Level *pLevel; /* Used to iterate through levels */
+
+ int iIn; /* Used to iterate through append points */
+ int iOut = 0; /* Used to output append points */
+ LsmPgno *aApp = pSnapshot->aiAppend;
+
+ iFirst = fsFirstPageOnBlock(pFS, iBlk);
+ iLast = fsLastPageOnBlock(pFS, iBlk);
+
+ /* Check if any other run in the snapshot has a start or end page
+ ** within this block. If there is such a run, return early. */
+ for(pLevel=lsmDbSnapshotLevel(pSnapshot); pLevel; pLevel=pLevel->pNext){
+ if( fsLevelEndsBetween(pLevel, pIgnore, iFirst, iLast) ){
+ return LSM_OK;
+ }
+ }
+
+ /* Remove any entries that lie on this block from the append-list. */
+ for(iIn=0; iIn<LSM_APPLIST_SZ; iIn++){
+ if( aApp[iIn]<iFirst || aApp[iIn]>iLast ){
+ aApp[iOut++] = aApp[iIn];
+ }
+ }
+ while( iOut<LSM_APPLIST_SZ ) aApp[iOut++] = 0;
+
+ if( rc==LSM_OK ){
+ rc = lsmBlockFree(pFS->pDb, iBlk);
+ }
+ return rc;
+}
+
+/*
+** Delete or otherwise recycle the blocks currently occupied by run pDel.
+*/
+int lsmFsSortedDelete(
+ FileSystem *pFS,
+ Snapshot *pSnapshot,
+ int bZero, /* True to zero the Segment structure */
+ Segment *pDel
+){
+ if( pDel->iFirst ){
+ int rc = LSM_OK;
+
+ int iBlk;
+ int iLastBlk;
+
+ iBlk = fsPageToBlock(pFS, pDel->iFirst);
+ iLastBlk = fsPageToBlock(pFS, pDel->iLastPg);
+
+ /* Mark all blocks currently used by this sorted run as free */
+ while( iBlk && rc==LSM_OK ){
+ int iNext = 0;
+ if( iBlk!=iLastBlk ){
+ rc = fsBlockNext(pFS, pDel, iBlk, &iNext);
+ }else if( bZero==0 && pDel->iLastPg!=fsLastPageOnBlock(pFS, iLastBlk) ){
+ break;
+ }
+ rc = fsFreeBlock(pFS, pSnapshot, pDel, iBlk);
+ iBlk = iNext;
+ }
+
+ if( pDel->pRedirect ){
+ assert( pDel->pRedirect==&pSnapshot->redirect );
+ pSnapshot->redirect.n = 0;
+ }
+
+ if( bZero ) memset(pDel, 0, sizeof(Segment));
+ }
+ return LSM_OK;
+}
+
+/*
+** aPgno is an array containing nPgno page numbers. Return the smallest page
+** number from the array that falls on block iBlk. Or, if none of the pages
+** in aPgno[] fall on block iBlk, return 0.
+*/
+static LsmPgno firstOnBlock(
+ FileSystem *pFS,
+ int iBlk,
+ LsmPgno *aPgno,
+ int nPgno
+){
+ LsmPgno iRet = 0;
+ int i;
+ for(i=0; i<nPgno; i++){
+ LsmPgno iPg = aPgno[i];
+ if( fsPageToBlock(pFS, iPg)==iBlk && (iRet==0 || iPg<iRet) ){
+ iRet = iPg;
+ }
+ }
+ return iRet;
+}
+
+#ifndef NDEBUG
+/*
+** Return true if page iPg, which is a part of segment p, lies on
+** a redirected block.
+*/
+static int fsPageRedirects(FileSystem *pFS, Segment *p, LsmPgno iPg){
+ return (iPg!=0 && iPg!=lsmFsRedirectPage(pFS, p->pRedirect, iPg));
+}
+
+/*
+** Return true if the second argument is not NULL and any of the first
+** last or root pages lie on a redirected block.
+*/
+static int fsSegmentRedirects(FileSystem *pFS, Segment *p){
+ return (p && (
+ fsPageRedirects(pFS, p, p->iFirst)
+ || fsPageRedirects(pFS, p, p->iRoot)
+ || fsPageRedirects(pFS, p, p->iLastPg)
+ ));
+}
+#endif
+
+/*
+** Argument aPgno is an array of nPgno page numbers. All pages belong to
+** the segment pRun. This function gobbles from the start of the run to the
+** first page that appears in aPgno[] (i.e. so that the aPgno[] entry is
+** the new first page of the run).
+*/
+void lsmFsGobble(
+ lsm_db *pDb,
+ Segment *pRun,
+ LsmPgno *aPgno,
+ int nPgno
+){
+ int rc = LSM_OK;
+ FileSystem *pFS = pDb->pFS;
+ Snapshot *pSnapshot = pDb->pWorker;
+ int iBlk;
+
+ assert( pRun->nSize>0 );
+ assert( 0==fsSegmentRedirects(pFS, pRun) );
+ assert( nPgno>0 && 0==fsPageRedirects(pFS, pRun, aPgno[0]) );
+
+ iBlk = fsPageToBlock(pFS, pRun->iFirst);
+ pRun->nSize += (int)(pRun->iFirst - fsFirstPageOnBlock(pFS, iBlk));
+
+ while( rc==LSM_OK ){
+ int iNext = 0;
+ LsmPgno iFirst = firstOnBlock(pFS, iBlk, aPgno, nPgno);
+ if( iFirst ){
+ pRun->iFirst = iFirst;
+ break;
+ }
+ rc = fsBlockNext(pFS, pRun, iBlk, &iNext);
+ if( rc==LSM_OK ) rc = fsFreeBlock(pFS, pSnapshot, pRun, iBlk);
+ pRun->nSize -= (int)(
+ 1 + fsLastPageOnBlock(pFS, iBlk) - fsFirstPageOnBlock(pFS, iBlk)
+ );
+ iBlk = iNext;
+ }
+
+ pRun->nSize -= (int)(pRun->iFirst - fsFirstPageOnBlock(pFS, iBlk));
+ assert( pRun->nSize>0 );
+}
+
+/*
+** This function is only used in compressed database mode.
+**
+** Argument iPg is the page number (byte offset) of a page within segment
+** pSeg. The page record, including all headers, is nByte bytes in size.
+** Before returning, set *piNext to the page number of the next page in
+** the segment, or to zero if iPg is the last.
+**
+** In other words, do:
+**
+** *piNext = iPg + nByte;
+**
+** But take block overflow and redirection into account.
+*/
+static int fsNextPageOffset(
+ FileSystem *pFS, /* File system object */
+ Segment *pSeg, /* Segment to move within */
+ LsmPgno iPg, /* Offset of current page */
+ int nByte, /* Size of current page including headers */
+ LsmPgno *piNext /* OUT: Offset of next page. Or zero (EOF) */
+){
+ LsmPgno iNext;
+ int rc;
+
+ assert( pFS->pCompress );
+
+ rc = fsAddOffset(pFS, pSeg, iPg, nByte-1, &iNext);
+ if( pSeg && iNext==pSeg->iLastPg ){
+ iNext = 0;
+ }else if( rc==LSM_OK ){
+ rc = fsAddOffset(pFS, pSeg, iNext, 1, &iNext);
+ }
+
+ *piNext = iNext;
+ return rc;
+}
+
+/*
+** This function is only used in compressed database mode.
+**
+** Argument iPg is the page number of a pagethat appears in segment pSeg.
+** This function determines the page number of the previous page in the
+** same run. *piPrev is set to the previous page number before returning.
+**
+** LSM_OK is returned if no error occurs. Otherwise, an lsm error code.
+** If any value other than LSM_OK is returned, then the final value of
+** *piPrev is undefined.
+*/
+static int fsGetPageBefore(
+ FileSystem *pFS,
+ Segment *pSeg,
+ LsmPgno iPg,
+ LsmPgno *piPrev
+){
+ u8 aSz[3];
+ int rc;
+ i64 iRead;
+
+ assert( pFS->pCompress );
+
+ rc = fsSubtractOffset(pFS, pSeg, iPg, sizeof(aSz), &iRead);
+ if( rc==LSM_OK ) rc = fsReadData(pFS, pSeg, iRead, aSz, sizeof(aSz));
+
+ if( rc==LSM_OK ){
+ int bFree;
+ int nSz;
+ if( aSz[2] & 0x80 ){
+ nSz = getRecordSize(aSz, &bFree) + sizeof(aSz)*2;
+ }else{
+ nSz = (int)(aSz[2] & 0x7F);
+ bFree = 1;
+ }
+ rc = fsSubtractOffset(pFS, pSeg, iPg, nSz, piPrev);
+ }
+
+ return rc;
+}
+
+/*
+** The first argument to this function is a valid reference to a database
+** file page that is part of a sorted run. If parameter eDir is -1, this
+** function attempts to locate and load the previous page in the same run.
+** Or, if eDir is +1, it attempts to find the next page in the same run.
+** The results of passing an eDir value other than positive or negative one
+** are undefined.
+**
+** If parameter pRun is not NULL then it must point to the run that page
+** pPg belongs to. In this case, if pPg is the first or last page of the
+** run, and the request is for the previous or next page, respectively,
+** *ppNext is set to NULL before returning LSM_OK. If pRun is NULL, then it
+** is assumed that the next or previous page, as requested, exists.
+**
+** If the previous/next page does exist and is successfully loaded, *ppNext
+** is set to point to it and LSM_OK is returned. Otherwise, if an error
+** occurs, *ppNext is set to NULL and and lsm error code returned.
+**
+** Page references returned by this function should be released by the
+** caller using lsmFsPageRelease().
+*/
+int lsmFsDbPageNext(Segment *pRun, Page *pPg, int eDir, Page **ppNext){
+ int rc = LSM_OK;
+ FileSystem *pFS = pPg->pFS;
+ LsmPgno iPg = pPg->iPg;
+
+ assert( 0==fsSegmentRedirects(pFS, pRun) );
+ if( pFS->pCompress ){
+ int nSpace = pPg->nCompress + 2*3;
+
+ do {
+ if( eDir>0 ){
+ rc = fsNextPageOffset(pFS, pRun, iPg, nSpace, &iPg);
+ }else{
+ if( iPg==pRun->iFirst ){
+ iPg = 0;
+ }else{
+ rc = fsGetPageBefore(pFS, pRun, iPg, &iPg);
+ }
+ }
+
+ nSpace = 0;
+ if( iPg!=0 ){
+ rc = fsPageGet(pFS, pRun, iPg, 0, ppNext, &nSpace);
+ assert( (*ppNext==0)==(rc!=LSM_OK || nSpace>0) );
+ }else{
+ *ppNext = 0;
+ }
+ }while( nSpace>0 && rc==LSM_OK );
+
+ }else{
+ Redirect *pRedir = pRun ? pRun->pRedirect : 0;
+ assert( eDir==1 || eDir==-1 );
+ if( eDir<0 ){
+ if( pRun && iPg==pRun->iFirst ){
+ *ppNext = 0;
+ return LSM_OK;
+ }else if( fsIsFirst(pFS, iPg) ){
+ assert( pPg->flags & PAGE_HASPREV );
+ iPg = fsLastPageOnBlock(pFS, lsmGetU32(&pPg->aData[-4]));
+ }else{
+ iPg--;
+ }
+ }else{
+ if( pRun ){
+ if( iPg==pRun->iLastPg ){
+ *ppNext = 0;
+ return LSM_OK;
+ }
+ }
+
+ if( fsIsLast(pFS, iPg) ){
+ int iBlk = fsRedirectBlock(
+ pRedir, lsmGetU32(&pPg->aData[pFS->nPagesize-4])
+ );
+ iPg = fsFirstPageOnBlock(pFS, iBlk);
+ }else{
+ iPg++;
+ }
+ }
+ rc = fsPageGet(pFS, pRun, iPg, 0, ppNext, 0);
+ }
+
+ return rc;
+}
+
+/*
+** This function is called when creating a new segment to determine if the
+** first part of it can be written following an existing segment on an
+** already allocated block. If it is possible, the page number of the first
+** page to use for the new segment is returned. Otherwise zero.
+**
+** If argument pLvl is not NULL, then this function will not attempt to
+** start the new segment immediately following any segment that is part
+** of the right-hand-side of pLvl.
+*/
+static LsmPgno findAppendPoint(FileSystem *pFS, Level *pLvl){
+ int i;
+ LsmPgno *aiAppend = pFS->pDb->pWorker->aiAppend;
+ LsmPgno iRet = 0;
+
+ for(i=LSM_APPLIST_SZ-1; iRet==0 && i>=0; i--){
+ if( (iRet = aiAppend[i]) ){
+ if( pLvl ){
+ int iBlk = fsPageToBlock(pFS, iRet);
+ int j;
+ for(j=0; iRet && j<pLvl->nRight; j++){
+ if( fsPageToBlock(pFS, pLvl->aRhs[j].iLastPg)==iBlk ){
+ iRet = 0;
+ }
+ }
+ }
+ if( iRet ) aiAppend[i] = 0;
+ }
+ }
+ return iRet;
+}
+
+/*
+** Append a page to the left-hand-side of pLvl. Set the ref-count to 1 and
+** return a pointer to it. The page is writable until either
+** lsmFsPagePersist() is called on it or the ref-count drops to zero.
+*/
+int lsmFsSortedAppend(
+ FileSystem *pFS,
+ Snapshot *pSnapshot,
+ Level *pLvl,
+ int bDefer,
+ Page **ppOut
+){
+ int rc = LSM_OK;
+ Page *pPg = 0;
+ LsmPgno iApp = 0;
+ LsmPgno iNext = 0;
+ Segment *p = &pLvl->lhs;
+ LsmPgno iPrev = p->iLastPg;
+
+ *ppOut = 0;
+ assert( p->pRedirect==0 );
+
+ if( pFS->pCompress || bDefer ){
+ /* In compressed database mode the page is not assigned a page number
+ ** or location in the database file at this point. This will be done
+ ** by the lsmFsPagePersist() call. */
+ rc = fsPageBuffer(pFS, &pPg);
+ if( rc==LSM_OK ){
+ pPg->pFS = pFS;
+ pPg->pSeg = p;
+ pPg->iPg = 0;
+ pPg->flags |= PAGE_DIRTY;
+ pPg->nData = pFS->nPagesize;
+ assert( pPg->aData );
+ if( pFS->pCompress==0 ) pPg->nData -= 4;
+
+ pPg->nRef = 1;
+ pFS->nOut++;
+ }
+ }else{
+ if( iPrev==0 ){
+ iApp = findAppendPoint(pFS, pLvl);
+ }else if( fsIsLast(pFS, iPrev) ){
+ int iNext2;
+ rc = fsBlockNext(pFS, 0, fsPageToBlock(pFS, iPrev), &iNext2);
+ if( rc!=LSM_OK ) return rc;
+ iApp = fsFirstPageOnBlock(pFS, iNext2);
+ }else{
+ iApp = iPrev + 1;
+ }
+
+ /* If this is the first page allocated, or if the page allocated is the
+ ** last in the block, also allocate the next block here. */
+ if( iApp==0 || fsIsLast(pFS, iApp) ){
+ int iNew; /* New block number */
+
+ rc = lsmBlockAllocate(pFS->pDb, 0, &iNew);
+ if( rc!=LSM_OK ) return rc;
+ if( iApp==0 ){
+ iApp = fsFirstPageOnBlock(pFS, iNew);
+ }else{
+ iNext = fsFirstPageOnBlock(pFS, iNew);
+ }
+ }
+
+ /* Grab the new page. */
+ pPg = 0;
+ rc = fsPageGet(pFS, 0, iApp, 1, &pPg, 0);
+ assert( rc==LSM_OK || pPg==0 );
+
+ /* If this is the first or last page of a block, fill in the pointer
+ ** value at the end of the new page. */
+ if( rc==LSM_OK ){
+ p->nSize++;
+ p->iLastPg = iApp;
+ if( p->iFirst==0 ) p->iFirst = iApp;
+ pPg->flags |= PAGE_DIRTY;
+
+ if( fsIsLast(pFS, iApp) ){
+ lsmPutU32(&pPg->aData[pFS->nPagesize-4], fsPageToBlock(pFS, iNext));
+ }else if( fsIsFirst(pFS, iApp) ){
+ lsmPutU32(&pPg->aData[-4], fsPageToBlock(pFS, iPrev));
+ }
+ }
+ }
+
+ *ppOut = pPg;
+ return rc;
+}
+
+/*
+** Mark the segment passed as the second argument as finished. Once a segment
+** is marked as finished it is not possible to append any further pages to
+** it.
+**
+** Return LSM_OK if successful or an lsm error code if an error occurs.
+*/
+int lsmFsSortedFinish(FileSystem *pFS, Segment *p){
+ int rc = LSM_OK;
+ if( p && p->iLastPg ){
+ assert( p->pRedirect==0 );
+
+ /* Check if the last page of this run happens to be the last of a block.
+ ** If it is, then an extra block has already been allocated for this run.
+ ** Shift this extra block back to the free-block list.
+ **
+ ** Otherwise, add the first free page in the last block used by the run
+ ** to the lAppend list.
+ */
+ if( fsLastPageOnPagesBlock(pFS, p->iLastPg)!=p->iLastPg ){
+ int i;
+ LsmPgno *aiAppend = pFS->pDb->pWorker->aiAppend;
+ for(i=0; i<LSM_APPLIST_SZ; i++){
+ if( aiAppend[i]==0 ){
+ aiAppend[i] = p->iLastPg+1;
+ break;
+ }
+ }
+ }else if( pFS->pCompress==0 ){
+ Page *pLast;
+ rc = fsPageGet(pFS, 0, p->iLastPg, 0, &pLast, 0);
+ if( rc==LSM_OK ){
+ int iBlk = (int)lsmGetU32(&pLast->aData[pFS->nPagesize-4]);
+ lsmBlockRefree(pFS->pDb, iBlk);
+ lsmFsPageRelease(pLast);
+ }
+ }else{
+ int iBlk = 0;
+ rc = fsBlockNext(pFS, p, fsPageToBlock(pFS, p->iLastPg), &iBlk);
+ if( rc==LSM_OK ){
+ lsmBlockRefree(pFS->pDb, iBlk);
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Obtain a reference to page number iPg.
+**
+** Return LSM_OK if successful, or an lsm error code if an error occurs.
+*/
+int lsmFsDbPageGet(FileSystem *pFS, Segment *pSeg, LsmPgno iPg, Page **ppPg){
+ return fsPageGet(pFS, pSeg, iPg, 0, ppPg, 0);
+}
+
+/*
+** Obtain a reference to the last page in the segment passed as the
+** second argument.
+**
+** Return LSM_OK if successful, or an lsm error code if an error occurs.
+*/
+int lsmFsDbPageLast(FileSystem *pFS, Segment *pSeg, Page **ppPg){
+ int rc;
+ LsmPgno iPg = pSeg->iLastPg;
+ if( pFS->pCompress ){
+ int nSpace;
+ iPg++;
+ do {
+ nSpace = 0;
+ rc = fsGetPageBefore(pFS, pSeg, iPg, &iPg);
+ if( rc==LSM_OK ){
+ rc = fsPageGet(pFS, pSeg, iPg, 0, ppPg, &nSpace);
+ }
+ }while( rc==LSM_OK && nSpace>0 );
+
+ }else{
+ rc = fsPageGet(pFS, pSeg, iPg, 0, ppPg, 0);
+ }
+ return rc;
+}
+
+/*
+** Return a reference to meta-page iPg. If successful, LSM_OK is returned
+** and *ppPg populated with the new page reference. The reference should
+** be released by the caller using lsmFsPageRelease().
+**
+** Otherwise, if an error occurs, *ppPg is set to NULL and an LSM error
+** code is returned.
+*/
+int lsmFsMetaPageGet(
+ FileSystem *pFS, /* File-system connection */
+ int bWrite, /* True for write access, false for read */
+ int iPg, /* Either 1 or 2 */
+ MetaPage **ppPg /* OUT: Pointer to MetaPage object */
+){
+ int rc = LSM_OK;
+ MetaPage *pPg;
+ assert( iPg==1 || iPg==2 );
+
+ pPg = lsmMallocZeroRc(pFS->pEnv, sizeof(Page), &rc);
+
+ if( pPg ){
+ i64 iOff = (iPg-1) * pFS->nMetasize;
+ if( pFS->nMapLimit>0 ){
+ fsGrowMapping(pFS, 2*pFS->nMetasize, &rc);
+ pPg->aData = (u8 *)(pFS->pMap) + iOff;
+ }else{
+ pPg->aData = lsmMallocRc(pFS->pEnv, pFS->nMetasize, &rc);
+ if( rc==LSM_OK && bWrite==0 ){
+ rc = lsmEnvRead(
+ pFS->pEnv, pFS->fdDb, iOff, pPg->aData, pFS->nMetaRwSize
+ );
+ }
+#ifndef NDEBUG
+ /* pPg->aData causes an uninitialized access via a downstreadm write().
+ After discussion on this list, this memory should not, for performance
+ reasons, be memset. However, tracking down "real" misuse is more
+ difficult with this "false" positive, so it is set when NDEBUG.
+ */
+ else if( rc==LSM_OK ){
+ memset( pPg->aData, 0x77, pFS->nMetasize );
+ }
+#endif
+ }
+
+ if( rc!=LSM_OK ){
+ if( pFS->nMapLimit==0 ) lsmFree(pFS->pEnv, pPg->aData);
+ lsmFree(pFS->pEnv, pPg);
+ pPg = 0;
+ }else{
+ pPg->iPg = iPg;
+ pPg->bWrite = bWrite;
+ pPg->pFS = pFS;
+ }
+ }
+
+ *ppPg = pPg;
+ return rc;
+}
+
+/*
+** Release a meta-page reference obtained via a call to lsmFsMetaPageGet().
+*/
+int lsmFsMetaPageRelease(MetaPage *pPg){
+ int rc = LSM_OK;
+ if( pPg ){
+ FileSystem *pFS = pPg->pFS;
+
+ if( pFS->nMapLimit==0 ){
+ if( pPg->bWrite ){
+ i64 iOff = (pPg->iPg==2 ? pFS->nMetasize : 0);
+ int nWrite = pFS->nMetaRwSize;
+ rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iOff, pPg->aData, nWrite);
+ }
+ lsmFree(pFS->pEnv, pPg->aData);
+ }
+
+ lsmFree(pFS->pEnv, pPg);
+ }
+ return rc;
+}
+
+/*
+** Return a pointer to a buffer containing the data associated with the
+** meta-page passed as the first argument. If parameter pnData is not NULL,
+** set *pnData to the size of the meta-page in bytes before returning.
+*/
+u8 *lsmFsMetaPageData(MetaPage *pPg, int *pnData){
+ if( pnData ) *pnData = pPg->pFS->nMetaRwSize;
+ return pPg->aData;
+}
+
+/*
+** Return true if page is currently writable. This is used in assert()
+** statements only.
+*/
+#ifndef NDEBUG
+int lsmFsPageWritable(Page *pPg){
+ return (pPg->flags & PAGE_DIRTY) ? 1 : 0;
+}
+#endif
+
+/*
+** This is called when block iFrom is being redirected to iTo. If page
+** number (*piPg) lies on block iFrom, then calculate the equivalent
+** page on block iTo and set *piPg to this value before returning.
+*/
+static void fsMovePage(
+ FileSystem *pFS, /* File system object */
+ int iTo, /* Destination block */
+ int iFrom, /* Source block */
+ LsmPgno *piPg /* IN/OUT: Page number */
+){
+ LsmPgno iPg = *piPg;
+ if( iFrom==fsPageToBlock(pFS, iPg) ){
+ const int nPagePerBlock = (
+ pFS->pCompress ? pFS ->nBlocksize : (pFS->nBlocksize / pFS->nPagesize)
+ );
+ *piPg = iPg - (LsmPgno)(iFrom - iTo) * nPagePerBlock;
+ }
+}
+
+/*
+** Copy the contents of block iFrom to block iTo.
+**
+** It is safe to assume that there are no outstanding references to pages
+** on block iTo. And that block iFrom is not currently being written. In
+** other words, the data can be read and written directly.
+*/
+int lsmFsMoveBlock(FileSystem *pFS, Segment *pSeg, int iTo, int iFrom){
+ Snapshot *p = pFS->pDb->pWorker;
+ int rc = LSM_OK;
+ int i;
+ i64 nMap;
+
+ i64 iFromOff = (i64)(iFrom-1) * pFS->nBlocksize;
+ i64 iToOff = (i64)(iTo-1) * pFS->nBlocksize;
+
+ assert( iTo!=1 );
+ assert( iFrom>iTo );
+
+ /* Grow the mapping as required. */
+ nMap = LSM_MIN(pFS->nMapLimit, (i64)iFrom * pFS->nBlocksize);
+ fsGrowMapping(pFS, nMap, &rc);
+
+ if( rc==LSM_OK ){
+ const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
+ int nSz = pFS->nPagesize;
+ u8 *aBuf = 0;
+ u8 *aData = 0;
+
+ for(i=0; rc==LSM_OK && i<nPagePerBlock; i++){
+ i64 iOff = iFromOff + i*nSz;
+
+ /* Set aData to point to a buffer containing the from page */
+ if( (iOff+nSz)<=pFS->nMapLimit ){
+ u8 *aMap = (u8 *)(pFS->pMap);
+ aData = &aMap[iOff];
+ }else{
+ if( aBuf==0 ){
+ aBuf = (u8 *)lsmMallocRc(pFS->pEnv, nSz, &rc);
+ if( aBuf==0 ) break;
+ }
+ aData = aBuf;
+ rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aData, nSz);
+ }
+
+ /* Copy aData to the to page */
+ if( rc==LSM_OK ){
+ iOff = iToOff + i*nSz;
+ if( (iOff+nSz)<=pFS->nMapLimit ){
+ u8 *aMap = (u8 *)(pFS->pMap);
+ memcpy(&aMap[iOff], aData, nSz);
+ }else{
+ rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iOff, aData, nSz);
+ }
+ }
+ }
+ lsmFree(pFS->pEnv, aBuf);
+ lsmFsPurgeCache(pFS);
+ }
+
+ /* Update append-point list if necessary */
+ for(i=0; i<LSM_APPLIST_SZ; i++){
+ fsMovePage(pFS, iTo, iFrom, &p->aiAppend[i]);
+ }
+
+ /* Update the Segment structure itself */
+ fsMovePage(pFS, iTo, iFrom, &pSeg->iFirst);
+ fsMovePage(pFS, iTo, iFrom, &pSeg->iLastPg);
+ fsMovePage(pFS, iTo, iFrom, &pSeg->iRoot);
+
+ return rc;
+}
+
+/*
+** Append raw data to a segment. Return the database file offset that the
+** data is written to (this may be used as the page number if the data
+** being appended is a new page record).
+**
+** This function is only used in compressed database mode.
+*/
+static LsmPgno fsAppendData(
+ FileSystem *pFS, /* File-system handle */
+ Segment *pSeg, /* Segment to append to */
+ const u8 *aData, /* Buffer containing data to write */
+ int nData, /* Size of buffer aData[] in bytes */
+ int *pRc /* IN/OUT: Error code */
+){
+ LsmPgno iRet = 0;
+ int rc = *pRc;
+ assert( pFS->pCompress );
+ if( rc==LSM_OK ){
+ int nRem = 0;
+ int nWrite = 0;
+ LsmPgno iLastOnBlock;
+ LsmPgno iApp = pSeg->iLastPg+1;
+
+ /* If this is the first data written into the segment, find an append-point
+ ** or allocate a new block. */
+ if( iApp==1 ){
+ pSeg->iFirst = iApp = findAppendPoint(pFS, 0);
+ if( iApp==0 ){
+ int iBlk;
+ rc = lsmBlockAllocate(pFS->pDb, 0, &iBlk);
+ pSeg->iFirst = iApp = fsFirstPageOnBlock(pFS, iBlk);
+ }
+ }
+ iRet = iApp;
+
+ /* Write as much data as is possible at iApp (usually all of it). */
+ iLastOnBlock = fsLastPageOnPagesBlock(pFS, iApp);
+ if( rc==LSM_OK ){
+ int nSpace = (int)(iLastOnBlock - iApp + 1);
+ nWrite = LSM_MIN(nData, nSpace);
+ nRem = nData - nWrite;
+ assert( nWrite>=0 );
+ if( nWrite!=0 ){
+ rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iApp, aData, nWrite);
+ }
+ iApp += nWrite;
+ }
+
+ /* If required, allocate a new block and write the rest of the data
+ ** into it. Set the next and previous block pointers to link the new
+ ** block to the old. */
+ assert( nRem<=0 || (iApp-1)==iLastOnBlock );
+ if( rc==LSM_OK && (iApp-1)==iLastOnBlock ){
+ u8 aPtr[4]; /* Space to serialize a u32 */
+ int iBlk; /* New block number */
+
+ if( nWrite>0 ){
+ /* Allocate a new block. */
+ rc = lsmBlockAllocate(pFS->pDb, 0, &iBlk);
+
+ /* Set the "next" pointer on the old block */
+ if( rc==LSM_OK ){
+ assert( iApp==(fsPageToBlock(pFS, iApp)*pFS->nBlocksize)-4 );
+ lsmPutU32(aPtr, iBlk);
+ rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iApp, aPtr, sizeof(aPtr));
+ }
+
+ /* Set the "prev" pointer on the new block */
+ if( rc==LSM_OK ){
+ LsmPgno iWrite;
+ lsmPutU32(aPtr, fsPageToBlock(pFS, iApp));
+ iWrite = fsFirstPageOnBlock(pFS, iBlk);
+ rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iWrite-4, aPtr, sizeof(aPtr));
+ if( nRem>0 ) iApp = iWrite;
+ }
+ }else{
+ /* The next block is already allocated. */
+ assert( nRem>0 );
+ assert( pSeg->pRedirect==0 );
+ rc = fsBlockNext(pFS, 0, fsPageToBlock(pFS, iApp), &iBlk);
+ iRet = iApp = fsFirstPageOnBlock(pFS, iBlk);
+ }
+
+ /* Write the remaining data into the new block */
+ if( rc==LSM_OK && nRem>0 ){
+ rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iApp, &aData[nWrite], nRem);
+ iApp += nRem;
+ }
+ }
+
+ pSeg->iLastPg = iApp-1;
+ *pRc = rc;
+ }
+
+ return iRet;
+}
+
+/*
+** This function is only called in compressed database mode. It
+** compresses the contents of page pPg and writes the result to the
+** buffer at pFS->aOBuffer. The size of the compressed data is stored in
+** pPg->nCompress.
+**
+** If buffer pFS->aOBuffer[] has not been allocated then this function
+** allocates it. If this fails, LSM_NOMEM is returned. Otherwise, LSM_OK.
+*/
+static int fsCompressIntoBuffer(FileSystem *pFS, Page *pPg){
+ lsm_compress *p = pFS->pCompress;
+
+ if( fsAllocateBuffer(pFS, 1) ) return LSM_NOMEM;
+ assert( pPg->nData==pFS->nPagesize );
+
+ pPg->nCompress = pFS->nBuffer;
+ return p->xCompress(p->pCtx,
+ (char *)pFS->aOBuffer, &pPg->nCompress,
+ (const char *)pPg->aData, pPg->nData
+ );
+}
+
+/*
+** Append a new page to segment pSeg. Set output variable *piNew to the
+** page number of the new page before returning.
+**
+** If the new page is the last on its block, then the 'next' block that
+** will be used by the segment is allocated here too. In this case output
+** variable *piNext is set to the block number of the next block.
+**
+** If the new page is the first on its block but not the first in the
+** entire segment, set output variable *piPrev to the block number of
+** the previous block in the segment.
+**
+** LSM_OK is returned if successful, or an lsm error code otherwise. If
+** any value other than LSM_OK is returned, then the final value of all
+** output variables is undefined.
+*/
+static int fsAppendPage(
+ FileSystem *pFS,
+ Segment *pSeg,
+ LsmPgno *piNew,
+ int *piPrev,
+ int *piNext
+){
+ LsmPgno iPrev = pSeg->iLastPg;
+ int rc;
+ assert( iPrev!=0 );
+
+ *piPrev = 0;
+ *piNext = 0;
+
+ if( fsIsLast(pFS, iPrev) ){
+ /* Grab the first page on the next block (which has already be
+ ** allocated). In this case set *piPrev to tell the caller to set
+ ** the "previous block" pointer in the first 4 bytes of the page.
+ */
+ int iNext;
+ int iBlk = fsPageToBlock(pFS, iPrev);
+ assert( pSeg->pRedirect==0 );
+ rc = fsBlockNext(pFS, 0, iBlk, &iNext);
+ if( rc!=LSM_OK ) return rc;
+ *piNew = fsFirstPageOnBlock(pFS, iNext);
+ *piPrev = iBlk;
+ }else{
+ *piNew = iPrev+1;
+ if( fsIsLast(pFS, *piNew) ){
+ /* Allocate the next block here. */
+ int iBlk;
+ rc = lsmBlockAllocate(pFS->pDb, 0, &iBlk);
+ if( rc!=LSM_OK ) return rc;
+ *piNext = iBlk;
+ }
+ }
+
+ pSeg->nSize++;
+ pSeg->iLastPg = *piNew;
+ return LSM_OK;
+}
+
+/*
+** Flush all pages in the FileSystem.pWaiting list to disk.
+*/
+void lsmFsFlushWaiting(FileSystem *pFS, int *pRc){
+ int rc = *pRc;
+ Page *pPg;
+
+ pPg = pFS->pWaiting;
+ pFS->pWaiting = 0;
+
+ while( pPg ){
+ Page *pNext = pPg->pWaitingNext;
+ if( rc==LSM_OK ) rc = lsmFsPagePersist(pPg);
+ assert( pPg->nRef==1 );
+ lsmFsPageRelease(pPg);
+ pPg = pNext;
+ }
+ *pRc = rc;
+}
+
+/*
+** If there exists a hash-table entry associated with page iPg, remove it.
+*/
+static void fsRemoveHashEntry(FileSystem *pFS, LsmPgno iPg){
+ Page *p;
+ int iHash = fsHashKey(pFS->nHash, iPg);
+
+ for(p=pFS->apHash[iHash]; p && p->iPg!=iPg; p=p->pHashNext);
+
+ if( p ){
+ assert( p->nRef==0 || (p->flags & PAGE_FREE)==0 );
+ fsPageRemoveFromHash(pFS, p);
+ p->iPg = 0;
+ iHash = fsHashKey(pFS->nHash, 0);
+ p->pHashNext = pFS->apHash[iHash];
+ pFS->apHash[iHash] = p;
+ }
+}
+
+/*
+** If the page passed as an argument is dirty, update the database file
+** (or mapping of the database file) with its current contents and mark
+** the page as clean.
+**
+** Return LSM_OK if the operation is a success, or an LSM error code
+** otherwise.
+*/
+int lsmFsPagePersist(Page *pPg){
+ int rc = LSM_OK;
+ if( pPg && (pPg->flags & PAGE_DIRTY) ){
+ FileSystem *pFS = pPg->pFS;
+
+ if( pFS->pCompress ){
+ int iHash; /* Hash key of assigned page number */
+ u8 aSz[3]; /* pPg->nCompress as a 24-bit big-endian */
+ assert( pPg->pSeg && pPg->iPg==0 && pPg->nCompress==0 );
+
+ /* Compress the page image. */
+ rc = fsCompressIntoBuffer(pFS, pPg);
+
+ /* Serialize the compressed size into buffer aSz[] */
+ putRecordSize(aSz, pPg->nCompress, 0);
+
+ /* Write the serialized page record into the database file. */
+ pPg->iPg = fsAppendData(pFS, pPg->pSeg, aSz, sizeof(aSz), &rc);
+ fsAppendData(pFS, pPg->pSeg, pFS->aOBuffer, pPg->nCompress, &rc);
+ fsAppendData(pFS, pPg->pSeg, aSz, sizeof(aSz), &rc);
+
+ /* Now that it has a page number, insert the page into the hash table */
+ iHash = fsHashKey(pFS->nHash, pPg->iPg);
+ pPg->pHashNext = pFS->apHash[iHash];
+ pFS->apHash[iHash] = pPg;
+
+ pPg->pSeg->nSize += (sizeof(aSz) * 2) + pPg->nCompress;
+
+ pPg->flags &= ~PAGE_DIRTY;
+ pFS->nWrite++;
+ }else{
+
+ if( pPg->iPg==0 ){
+ /* No page number has been assigned yet. This occurs with pages used
+ ** in the b-tree hierarchy. They were not assigned page numbers when
+ ** they were created as doing so would cause this call to
+ ** lsmFsPagePersist() to write an out-of-order page. Instead a page
+ ** number is assigned here so that the page data will be appended
+ ** to the current segment.
+ */
+ Page **pp;
+ int iPrev = 0;
+ int iNext = 0;
+ int iHash;
+
+ assert( pPg->pSeg->iFirst );
+ assert( pPg->flags & PAGE_FREE );
+ assert( (pPg->flags & PAGE_HASPREV)==0 );
+ assert( pPg->nData==pFS->nPagesize-4 );
+
+ rc = fsAppendPage(pFS, pPg->pSeg, &pPg->iPg, &iPrev, &iNext);
+ if( rc!=LSM_OK ) return rc;
+
+ assert( pPg->flags & PAGE_FREE );
+ iHash = fsHashKey(pFS->nHash, pPg->iPg);
+ fsRemoveHashEntry(pFS, pPg->iPg);
+ pPg->pHashNext = pFS->apHash[iHash];
+ pFS->apHash[iHash] = pPg;
+ assert( pPg->pHashNext==0 || pPg->pHashNext->iPg!=pPg->iPg );
+
+ if( iPrev ){
+ assert( iNext==0 );
+ memmove(&pPg->aData[4], pPg->aData, pPg->nData);
+ lsmPutU32(pPg->aData, iPrev);
+ pPg->flags |= PAGE_HASPREV;
+ pPg->aData += 4;
+ }else if( iNext ){
+ assert( iPrev==0 );
+ lsmPutU32(&pPg->aData[pPg->nData], iNext);
+ }else{
+ int nData = pPg->nData;
+ pPg->nData += 4;
+ lsmSortedExpandBtreePage(pPg, nData);
+ }
+
+ pPg->nRef++;
+ for(pp=&pFS->pWaiting; *pp; pp=&(*pp)->pWaitingNext);
+ *pp = pPg;
+ assert( pPg->pWaitingNext==0 );
+
+ }else{
+ i64 iOff; /* Offset to write within database file */
+
+ iOff = (i64)pFS->nPagesize * (i64)(pPg->iPg-1);
+ if( fsMmapPage(pFS, pPg->iPg)==0 ){
+ u8 *aData = pPg->aData - (pPg->flags & PAGE_HASPREV);
+ rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iOff, aData, pFS->nPagesize);
+ }else if( pPg->flags & PAGE_FREE ){
+ fsGrowMapping(pFS, iOff + pFS->nPagesize, &rc);
+ if( rc==LSM_OK ){
+ u8 *aTo = &((u8 *)(pFS->pMap))[iOff];
+ u8 *aFrom = pPg->aData - (pPg->flags & PAGE_HASPREV);
+ memcpy(aTo, aFrom, pFS->nPagesize);
+ lsmFree(pFS->pEnv, aFrom);
+ pFS->nCacheAlloc--;
+ pPg->aData = aTo + (pPg->flags & PAGE_HASPREV);
+ pPg->flags &= ~PAGE_FREE;
+ fsPageRemoveFromHash(pFS, pPg);
+ pPg->pMappedNext = pFS->pMapped;
+ pFS->pMapped = pPg;
+ }
+ }
+
+ lsmFsFlushWaiting(pFS, &rc);
+ pPg->flags &= ~PAGE_DIRTY;
+ pFS->nWrite++;
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** For non-compressed databases, this function is a no-op. For compressed
+** databases, it adds a padding record to the segment passed as the third
+** argument.
+**
+** The size of the padding records is selected so that the last byte
+** written is the last byte of a disk sector. This means that if a
+** snapshot is taken and checkpointed, subsequent worker processes will
+** not write to any sector that contains checkpointed data.
+*/
+int lsmFsSortedPadding(
+ FileSystem *pFS,
+ Snapshot *pSnapshot,
+ Segment *pSeg
+){
+ int rc = LSM_OK;
+ if( pFS->pCompress && pSeg->iFirst ){
+ LsmPgno iLast2;
+ LsmPgno iLast = pSeg->iLastPg; /* Current last page of segment */
+ int nPad; /* Bytes of padding required */
+ u8 aSz[3];
+
+ iLast2 = (1 + iLast/pFS->szSector) * pFS->szSector - 1;
+ assert( fsPageToBlock(pFS, iLast)==fsPageToBlock(pFS, iLast2) );
+ nPad = (int)(iLast2 - iLast);
+
+ if( iLast2>fsLastPageOnPagesBlock(pFS, iLast) ){
+ nPad -= 4;
+ }
+ assert( nPad>=0 );
+
+ if( nPad>=6 ){
+ pSeg->nSize += nPad;
+ nPad -= 6;
+ putRecordSize(aSz, nPad, 1);
+ fsAppendData(pFS, pSeg, aSz, sizeof(aSz), &rc);
+ memset(pFS->aOBuffer, 0, nPad);
+ fsAppendData(pFS, pSeg, pFS->aOBuffer, nPad, &rc);
+ fsAppendData(pFS, pSeg, aSz, sizeof(aSz), &rc);
+ }else if( nPad>0 ){
+ u8 aBuf[5] = {0,0,0,0,0};
+ aBuf[0] = (u8)nPad;
+ aBuf[nPad-1] = (u8)nPad;
+ fsAppendData(pFS, pSeg, aBuf, nPad, &rc);
+ }
+
+ assert( rc!=LSM_OK
+ || pSeg->iLastPg==fsLastPageOnPagesBlock(pFS, pSeg->iLastPg)
+ || ((pSeg->iLastPg + 1) % pFS->szSector)==0
+ );
+ }
+
+ return rc;
+}
+
+
+/*
+** Increment the reference count on the page object passed as the first
+** argument.
+*/
+void lsmFsPageRef(Page *pPg){
+ if( pPg ){
+ pPg->nRef++;
+ }
+}
+
+/*
+** Release a page-reference obtained using fsPageGet().
+*/
+int lsmFsPageRelease(Page *pPg){
+ int rc = LSM_OK;
+ if( pPg ){
+ assert( pPg->nRef>0 );
+ pPg->nRef--;
+ if( pPg->nRef==0 ){
+ FileSystem *pFS = pPg->pFS;
+ rc = lsmFsPagePersist(pPg);
+ pFS->nOut--;
+
+ assert( pPg->pFS->pCompress
+ || fsIsFirst(pPg->pFS, pPg->iPg)==0
+ || (pPg->flags & PAGE_HASPREV)
+ );
+ pPg->aData -= (pPg->flags & PAGE_HASPREV);
+ pPg->flags &= ~PAGE_HASPREV;
+
+ if( (pPg->flags & PAGE_FREE)==0 ){
+ /* Removed from mapped list */
+ Page **pp;
+ for(pp=&pFS->pMapped; (*pp)!=pPg; pp=&(*pp)->pMappedNext);
+ *pp = pPg->pMappedNext;
+ pPg->pMappedNext = 0;
+
+ /* Add to free list */
+ pPg->pFreeNext = pFS->pFree;
+ pFS->pFree = pPg;
+ }else{
+ fsPageAddToLru(pFS, pPg);
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Return the total number of pages read from the database file.
+*/
+int lsmFsNRead(FileSystem *pFS){ return pFS->nRead; }
+
+/*
+** Return the total number of pages written to the database file.
+*/
+int lsmFsNWrite(FileSystem *pFS){ return pFS->nWrite; }
+
+/*
+** Return a copy of the environment pointer used by the file-system object.
+*/
+lsm_env *lsmFsEnv(FileSystem *pFS){
+ return pFS->pEnv;
+}
+
+/*
+** Return a copy of the environment pointer used by the file-system object
+** to which this page belongs.
+*/
+lsm_env *lsmPageEnv(Page *pPg) {
+ return pPg->pFS->pEnv;
+}
+
+/*
+** Return a pointer to the file-system object associated with the Page
+** passed as the only argument.
+*/
+FileSystem *lsmPageFS(Page *pPg){
+ return pPg->pFS;
+}
+
+/*
+** Return the sector-size as reported by the log file handle.
+*/
+int lsmFsSectorSize(FileSystem *pFS){
+ return pFS->szSector;
+}
+
+/*
+** Helper function for lsmInfoArrayStructure().
+*/
+static Segment *startsWith(Segment *pRun, LsmPgno iFirst){
+ return (iFirst==pRun->iFirst) ? pRun : 0;
+}
+
+/*
+** Return the segment that starts with page iFirst, if any. If no such segment
+** can be found, return NULL.
+*/
+static Segment *findSegment(Snapshot *pWorker, LsmPgno iFirst){
+ Level *pLvl; /* Used to iterate through db levels */
+ Segment *pSeg = 0; /* Pointer to segment to return */
+
+ for(pLvl=lsmDbSnapshotLevel(pWorker); pLvl && pSeg==0; pLvl=pLvl->pNext){
+ if( 0==(pSeg = startsWith(&pLvl->lhs, iFirst)) ){
+ int i;
+ for(i=0; i<pLvl->nRight; i++){
+ if( (pSeg = startsWith(&pLvl->aRhs[i], iFirst)) ) break;
+ }
+ }
+ }
+
+ return pSeg;
+}
+
+/*
+** This function implements the lsm_info(LSM_INFO_ARRAY_STRUCTURE) request.
+** If successful, *pzOut is set to point to a nul-terminated string
+** containing the array structure and LSM_OK is returned. The caller should
+** eventually free the string using lsmFree().
+**
+** If an error occurs, *pzOut is set to NULL and an LSM error code returned.
+*/
+int lsmInfoArrayStructure(
+ lsm_db *pDb,
+ int bBlock, /* True for block numbers only */
+ LsmPgno iFirst,
+ char **pzOut
+){
+ int rc = LSM_OK;
+ Snapshot *pWorker; /* Worker snapshot */
+ Segment *pArray = 0; /* Array to report on */
+ int bUnlock = 0;
+
+ *pzOut = 0;
+ if( iFirst==0 ) return LSM_ERROR;
+
+ /* Obtain the worker snapshot */
+ pWorker = pDb->pWorker;
+ if( !pWorker ){
+ rc = lsmBeginWork(pDb);
+ if( rc!=LSM_OK ) return rc;
+ pWorker = pDb->pWorker;
+ bUnlock = 1;
+ }
+
+ /* Search for the array that starts on page iFirst */
+ pArray = findSegment(pWorker, iFirst);
+
+ if( pArray==0 ){
+ /* Could not find the requested array. This is an error. */
+ rc = LSM_ERROR;
+ }else{
+ FileSystem *pFS = pDb->pFS;
+ LsmString str;
+ int iBlk;
+ int iLastBlk;
+
+ iBlk = fsPageToBlock(pFS, pArray->iFirst);
+ iLastBlk = fsPageToBlock(pFS, pArray->iLastPg);
+
+ lsmStringInit(&str, pDb->pEnv);
+ if( bBlock ){
+ lsmStringAppendf(&str, "%d", iBlk);
+ while( iBlk!=iLastBlk ){
+ fsBlockNext(pFS, pArray, iBlk, &iBlk);
+ lsmStringAppendf(&str, " %d", iBlk);
+ }
+ }else{
+ lsmStringAppendf(&str, "%d", pArray->iFirst);
+ while( iBlk!=iLastBlk ){
+ lsmStringAppendf(&str, " %d", fsLastPageOnBlock(pFS, iBlk));
+ fsBlockNext(pFS, pArray, iBlk, &iBlk);
+ lsmStringAppendf(&str, " %d", fsFirstPageOnBlock(pFS, iBlk));
+ }
+ lsmStringAppendf(&str, " %d", pArray->iLastPg);
+ }
+
+ *pzOut = str.z;
+ }
+
+ if( bUnlock ){
+ int rcwork = LSM_BUSY;
+ lsmFinishWork(pDb, 0, &rcwork);
+ }
+ return rc;
+}
+
+int lsmFsSegmentContainsPg(
+ FileSystem *pFS,
+ Segment *pSeg,
+ LsmPgno iPg,
+ int *pbRes
+){
+ Redirect *pRedir = pSeg->pRedirect;
+ int rc = LSM_OK;
+ int iBlk;
+ int iLastBlk;
+ int iPgBlock; /* Block containing page iPg */
+
+ iPgBlock = fsPageToBlock(pFS, pSeg->iFirst);
+ iBlk = fsRedirectBlock(pRedir, fsPageToBlock(pFS, pSeg->iFirst));
+ iLastBlk = fsRedirectBlock(pRedir, fsPageToBlock(pFS, pSeg->iLastPg));
+
+ while( iBlk!=iLastBlk && iBlk!=iPgBlock && rc==LSM_OK ){
+ rc = fsBlockNext(pFS, pSeg, iBlk, &iBlk);
+ }
+
+ *pbRes = (iBlk==iPgBlock);
+ return rc;
+}
+
+/*
+** This function implements the lsm_info(LSM_INFO_ARRAY_PAGES) request.
+** If successful, *pzOut is set to point to a nul-terminated string
+** containing the array structure and LSM_OK is returned. The caller should
+** eventually free the string using lsmFree().
+**
+** If an error occurs, *pzOut is set to NULL and an LSM error code returned.
+*/
+int lsmInfoArrayPages(lsm_db *pDb, LsmPgno iFirst, char **pzOut){
+ int rc = LSM_OK;
+ Snapshot *pWorker; /* Worker snapshot */
+ Segment *pSeg = 0; /* Array to report on */
+ int bUnlock = 0;
+
+ *pzOut = 0;
+ if( iFirst==0 ) return LSM_ERROR;
+
+ /* Obtain the worker snapshot */
+ pWorker = pDb->pWorker;
+ if( !pWorker ){
+ rc = lsmBeginWork(pDb);
+ if( rc!=LSM_OK ) return rc;
+ pWorker = pDb->pWorker;
+ bUnlock = 1;
+ }
+
+ /* Search for the array that starts on page iFirst */
+ pSeg = findSegment(pWorker, iFirst);
+
+ if( pSeg==0 ){
+ /* Could not find the requested array. This is an error. */
+ rc = LSM_ERROR;
+ }else{
+ Page *pPg = 0;
+ FileSystem *pFS = pDb->pFS;
+ LsmString str;
+
+ lsmStringInit(&str, pDb->pEnv);
+ rc = lsmFsDbPageGet(pFS, pSeg, iFirst, &pPg);
+ while( rc==LSM_OK && pPg ){
+ Page *pNext = 0;
+ lsmStringAppendf(&str, " %lld", lsmFsPageNumber(pPg));
+ rc = lsmFsDbPageNext(pSeg, pPg, 1, &pNext);
+ lsmFsPageRelease(pPg);
+ pPg = pNext;
+ }
+
+ if( rc!=LSM_OK ){
+ lsmFree(pDb->pEnv, str.z);
+ }else{
+ *pzOut = str.z;
+ }
+ }
+
+ if( bUnlock ){
+ int rcwork = LSM_BUSY;
+ lsmFinishWork(pDb, 0, &rcwork);
+ }
+ return rc;
+}
+
+/*
+** The following macros are used by the integrity-check code. Associated with
+** each block in the database is an 8-bit bit mask (the entry in the aUsed[]
+** array). As the integrity-check meanders through the database, it sets the
+** following bits to indicate how each block is used.
+**
+** INTEGRITY_CHECK_FIRST_PG:
+** First page of block is in use by sorted run.
+**
+** INTEGRITY_CHECK_LAST_PG:
+** Last page of block is in use by sorted run.
+**
+** INTEGRITY_CHECK_USED:
+** At least one page of the block is in use by a sorted run.
+**
+** INTEGRITY_CHECK_FREE:
+** The free block list contains an entry corresponding to this block.
+*/
+#define INTEGRITY_CHECK_FIRST_PG 0x01
+#define INTEGRITY_CHECK_LAST_PG 0x02
+#define INTEGRITY_CHECK_USED 0x04
+#define INTEGRITY_CHECK_FREE 0x08
+
+/*
+** Helper function for lsmFsIntegrityCheck()
+*/
+static void checkBlocks(
+ FileSystem *pFS,
+ Segment *pSeg,
+ int bExtra, /* If true, count the "next" block if any */
+ int nUsed,
+ u8 *aUsed
+){
+ if( pSeg ){
+ if( pSeg && pSeg->nSize>0 ){
+ int rc;
+ int iBlk; /* Current block (during iteration) */
+ int iLastBlk; /* Last block of segment */
+ int iFirstBlk; /* First block of segment */
+ int bLastIsLastOnBlock; /* True iLast is the last on its block */
+
+ assert( 0==fsSegmentRedirects(pFS, pSeg) );
+ iBlk = iFirstBlk = fsPageToBlock(pFS, pSeg->iFirst);
+ iLastBlk = fsPageToBlock(pFS, pSeg->iLastPg);
+
+ bLastIsLastOnBlock = (fsLastPageOnBlock(pFS, iLastBlk)==pSeg->iLastPg);
+ assert( iBlk>0 );
+
+ do {
+ /* iBlk is a part of this sorted run. */
+ aUsed[iBlk-1] |= INTEGRITY_CHECK_USED;
+
+ /* If the first page of this block is also part of the segment,
+ ** set the flag to indicate that the first page of iBlk is in use.
+ */
+ if( fsFirstPageOnBlock(pFS, iBlk)==pSeg->iFirst || iBlk!=iFirstBlk ){
+ assert( (aUsed[iBlk-1] & INTEGRITY_CHECK_FIRST_PG)==0 );
+ aUsed[iBlk-1] |= INTEGRITY_CHECK_FIRST_PG;
+ }
+
+ /* Unless the sorted run finishes before the last page on this block,
+ ** the last page of this block is also in use. */
+ if( iBlk!=iLastBlk || bLastIsLastOnBlock ){
+ assert( (aUsed[iBlk-1] & INTEGRITY_CHECK_LAST_PG)==0 );
+ aUsed[iBlk-1] |= INTEGRITY_CHECK_LAST_PG;
+ }
+
+ /* Special case. The sorted run being scanned is the output run of
+ ** a level currently undergoing an incremental merge. The sorted
+ ** run ends on the last page of iBlk, but the next block has already
+ ** been allocated. So mark it as in use as well. */
+ if( iBlk==iLastBlk && bLastIsLastOnBlock && bExtra ){
+ int iExtra = 0;
+ rc = fsBlockNext(pFS, pSeg, iBlk, &iExtra);
+ assert( rc==LSM_OK );
+
+ assert( aUsed[iExtra-1]==0 );
+ aUsed[iExtra-1] |= INTEGRITY_CHECK_USED;
+ aUsed[iExtra-1] |= INTEGRITY_CHECK_FIRST_PG;
+ aUsed[iExtra-1] |= INTEGRITY_CHECK_LAST_PG;
+ }
+
+ /* Move on to the next block in the sorted run. Or set iBlk to zero
+ ** in order to break out of the loop if this was the last block in
+ ** the run. */
+ if( iBlk==iLastBlk ){
+ iBlk = 0;
+ }else{
+ rc = fsBlockNext(pFS, pSeg, iBlk, &iBlk);
+ assert( rc==LSM_OK );
+ }
+ }while( iBlk );
+ }
+ }
+}
+
+typedef struct CheckFreelistCtx CheckFreelistCtx;
+struct CheckFreelistCtx {
+ u8 *aUsed;
+ int nBlock;
+};
+static int checkFreelistCb(void *pCtx, int iBlk, i64 iSnapshot){
+ CheckFreelistCtx *p = (CheckFreelistCtx *)pCtx;
+
+ assert( iBlk>=1 );
+ assert( iBlk<=p->nBlock );
+ assert( p->aUsed[iBlk-1]==0 );
+ p->aUsed[iBlk-1] = INTEGRITY_CHECK_FREE;
+ return 0;
+}
+
+/*
+** This function checks that all blocks in the database file are accounted
+** for. For each block, exactly one of the following must be true:
+**
+** + the block is part of a sorted run, or
+** + the block is on the free-block list
+**
+** This function also checks that there are no references to blocks with
+** out-of-range block numbers.
+**
+** If no errors are found, non-zero is returned. If an error is found, an
+** assert() fails.
+*/
+int lsmFsIntegrityCheck(lsm_db *pDb){
+ CheckFreelistCtx ctx;
+ FileSystem *pFS = pDb->pFS;
+ int i;
+ int rc;
+ Freelist freelist = {0, 0, 0};
+ u8 *aUsed;
+ Level *pLevel;
+ Snapshot *pWorker = pDb->pWorker;
+ int nBlock = pWorker->nBlock;
+
+#if 0
+ static int nCall = 0;
+ nCall++;
+ printf("%d calls\n", nCall);
+#endif
+
+ aUsed = lsmMallocZero(pDb->pEnv, nBlock);
+ if( aUsed==0 ){
+ /* Malloc has failed. Since this function is only called within debug
+ ** builds, this probably means the user is running an OOM injection test.
+ ** Regardless, it will not be possible to run the integrity-check at this
+ ** time, so assume the database is Ok and return non-zero. */
+ return 1;
+ }
+
+ for(pLevel=pWorker->pLevel; pLevel; pLevel=pLevel->pNext){
+ int j;
+ checkBlocks(pFS, &pLevel->lhs, (pLevel->nRight!=0), nBlock, aUsed);
+ for(j=0; j<pLevel->nRight; j++){
+ checkBlocks(pFS, &pLevel->aRhs[j], 0, nBlock, aUsed);
+ }
+ }
+
+ /* Mark all blocks in the free-list as used */
+ ctx.aUsed = aUsed;
+ ctx.nBlock = nBlock;
+ rc = lsmWalkFreelist(pDb, 0, checkFreelistCb, (void *)&ctx);
+
+ if( rc==LSM_OK ){
+ for(i=0; i<nBlock; i++) assert( aUsed[i]!=0 );
+ }
+
+ lsmFree(pDb->pEnv, aUsed);
+ lsmFree(pDb->pEnv, freelist.aEntry);
+
+ return 1;
+}
+
+#ifndef NDEBUG
+/*
+** Return true if pPg happens to be the last page in segment pSeg. Or false
+** otherwise. This function is only invoked as part of assert() conditions.
+*/
+int lsmFsDbPageIsLast(Segment *pSeg, Page *pPg){
+ if( pPg->pFS->pCompress ){
+ LsmPgno iNext = 0;
+ int rc;
+ rc = fsNextPageOffset(pPg->pFS, pSeg, pPg->iPg, pPg->nCompress+6, &iNext);
+ return (rc!=LSM_OK || iNext==0);
+ }
+ return (pPg->iPg==pSeg->iLastPg);
+}
+#endif