summaryrefslogtreecommitdiffstats
path: root/ext/lsm1/lsm_sorted.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 17:28:19 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 17:28:19 +0000
commit18657a960e125336f704ea058e25c27bd3900dcb (patch)
tree17b438b680ed45a996d7b59951e6aa34023783f2 /ext/lsm1/lsm_sorted.c
parentInitial commit. (diff)
downloadsqlite3-18657a960e125336f704ea058e25c27bd3900dcb.tar.xz
sqlite3-18657a960e125336f704ea058e25c27bd3900dcb.zip
Adding upstream version 3.40.1.upstream/3.40.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ext/lsm1/lsm_sorted.c')
-rw-r--r--ext/lsm1/lsm_sorted.c6192
1 files changed, 6192 insertions, 0 deletions
diff --git a/ext/lsm1/lsm_sorted.c b/ext/lsm1/lsm_sorted.c
new file mode 100644
index 0000000..4a24e4b
--- /dev/null
+++ b/ext/lsm1/lsm_sorted.c
@@ -0,0 +1,6192 @@
+/*
+** 2011-08-14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** PAGE FORMAT:
+**
+** The maximum page size is 65536 bytes.
+**
+** Since all records are equal to or larger than 2 bytes in size, and
+** some space within the page is consumed by the page footer, there must
+** be less than 2^15 records on each page.
+**
+** Each page ends with a footer that describes the pages contents. This
+** footer serves as similar purpose to the page header in an SQLite database.
+** A footer is used instead of a header because it makes it easier to
+** populate a new page based on a sorted list of key/value pairs.
+**
+** The footer consists of the following values (starting at the end of
+** the page and continuing backwards towards the start). All values are
+** stored as unsigned big-endian integers.
+**
+** * Number of records on page (2 bytes).
+** * Flags field (2 bytes).
+** * Left-hand pointer value (8 bytes).
+** * The starting offset of each record (2 bytes per record).
+**
+** Records may span pages. Unless it happens to be an exact fit, the part
+** of the final record that starts on page X that does not fit on page X
+** is stored at the start of page (X+1). This means there may be pages where
+** (N==0). And on most pages the first record that starts on the page will
+** not start at byte offset 0. For example:
+**
+** aaaaa bbbbb ccc <footer> cc eeeee fffff g <footer> gggg....
+**
+** RECORD FORMAT:
+**
+** The first byte of the record is a flags byte. It is a combination
+** of the following flags (defined in lsmInt.h):
+**
+** LSM_START_DELETE
+** LSM_END_DELETE
+** LSM_POINT_DELETE
+** LSM_INSERT
+** LSM_SEPARATOR
+** LSM_SYSTEMKEY
+**
+** Immediately following the type byte is a pointer to the smallest key
+** in the next file that is larger than the key in the current record. The
+** pointer is encoded as a varint. When added to the 32-bit page number
+** stored in the footer, it is the page number of the page that contains the
+** smallest key in the next sorted file that is larger than this key.
+**
+** Next is the number of bytes in the key, encoded as a varint.
+**
+** If the LSM_INSERT flag is set, the number of bytes in the value, as
+** a varint, is next.
+**
+** Finally, the blob of data containing the key, and for LSM_INSERT
+** records, the value as well.
+*/
+
+#ifndef _LSM_INT_H
+# include "lsmInt.h"
+#endif
+
+#define LSM_LOG_STRUCTURE 0
+#define LSM_LOG_DATA 0
+
+/*
+** Macros to help decode record types.
+*/
+#define rtTopic(eType) ((eType) & LSM_SYSTEMKEY)
+#define rtIsDelete(eType) (((eType) & 0x0F)==LSM_POINT_DELETE)
+
+#define rtIsSeparator(eType) (((eType) & LSM_SEPARATOR)!=0)
+#define rtIsWrite(eType) (((eType) & LSM_INSERT)!=0)
+#define rtIsSystem(eType) (((eType) & LSM_SYSTEMKEY)!=0)
+
+/*
+** The following macros are used to access a page footer.
+*/
+#define SEGMENT_NRECORD_OFFSET(pgsz) ((pgsz) - 2)
+#define SEGMENT_FLAGS_OFFSET(pgsz) ((pgsz) - 2 - 2)
+#define SEGMENT_POINTER_OFFSET(pgsz) ((pgsz) - 2 - 2 - 8)
+#define SEGMENT_CELLPTR_OFFSET(pgsz, iCell) ((pgsz) - 2 - 2 - 8 - 2 - (iCell)*2)
+
+#define SEGMENT_EOF(pgsz, nEntry) SEGMENT_CELLPTR_OFFSET(pgsz, nEntry-1)
+
+#define SEGMENT_BTREE_FLAG 0x0001
+#define PGFTR_SKIP_NEXT_FLAG 0x0002
+#define PGFTR_SKIP_THIS_FLAG 0x0004
+
+
+#ifndef LSM_SEGMENTPTR_FREE_THRESHOLD
+# define LSM_SEGMENTPTR_FREE_THRESHOLD 1024
+#endif
+
+typedef struct SegmentPtr SegmentPtr;
+typedef struct LsmBlob LsmBlob;
+
+struct LsmBlob {
+ lsm_env *pEnv;
+ void *pData;
+ int nData;
+ int nAlloc;
+};
+
+/*
+** A SegmentPtr object may be used for one of two purposes:
+**
+** * To iterate and/or seek within a single Segment (the combination of a
+** main run and an optional sorted run).
+**
+** * To iterate through the separators array of a segment.
+*/
+struct SegmentPtr {
+ Level *pLevel; /* Level object segment is part of */
+ Segment *pSeg; /* Segment to access */
+
+ /* Current page. See segmentPtrLoadPage(). */
+ Page *pPg; /* Current page */
+ u16 flags; /* Copy of page flags field */
+ int nCell; /* Number of cells on pPg */
+ LsmPgno iPtr; /* Base cascade pointer */
+
+ /* Current cell. See segmentPtrLoadCell() */
+ int iCell; /* Current record within page pPg */
+ int eType; /* Type of current record */
+ LsmPgno iPgPtr; /* Cascade pointer offset */
+ void *pKey; int nKey; /* Key associated with current record */
+ void *pVal; int nVal; /* Current record value (eType==WRITE only) */
+
+ /* Blobs used to allocate buffers for pKey and pVal as required */
+ LsmBlob blob1;
+ LsmBlob blob2;
+};
+
+/*
+** Used to iterate through the keys stored in a b-tree hierarchy from start
+** to finish. Only First() and Next() operations are required.
+**
+** btreeCursorNew()
+** btreeCursorFirst()
+** btreeCursorNext()
+** btreeCursorFree()
+** btreeCursorPosition()
+** btreeCursorRestore()
+*/
+typedef struct BtreePg BtreePg;
+typedef struct BtreeCursor BtreeCursor;
+struct BtreePg {
+ Page *pPage;
+ int iCell;
+};
+struct BtreeCursor {
+ Segment *pSeg; /* Iterate through this segments btree */
+ FileSystem *pFS; /* File system to read pages from */
+ int nDepth; /* Allocated size of aPg[] */
+ int iPg; /* Current entry in aPg[]. -1 -> EOF. */
+ BtreePg *aPg; /* Pages from root to current location */
+
+ /* Cache of current entry. pKey==0 for EOF. */
+ void *pKey;
+ int nKey;
+ int eType;
+ LsmPgno iPtr;
+
+ /* Storage for key, if not local */
+ LsmBlob blob;
+};
+
+
+/*
+** A cursor used for merged searches or iterations through up to one
+** Tree structure and any number of sorted files.
+**
+** lsmMCursorNew()
+** lsmMCursorSeek()
+** lsmMCursorNext()
+** lsmMCursorPrev()
+** lsmMCursorFirst()
+** lsmMCursorLast()
+** lsmMCursorKey()
+** lsmMCursorValue()
+** lsmMCursorValid()
+**
+** iFree:
+** This variable is only used by cursors providing input data for a
+** new top-level segment. Such cursors only ever iterate forwards, not
+** backwards.
+*/
+struct MultiCursor {
+ lsm_db *pDb; /* Connection that owns this cursor */
+ MultiCursor *pNext; /* Next cursor owned by connection pDb */
+ int flags; /* Mask of CURSOR_XXX flags */
+
+ int eType; /* Cache of current key type */
+ LsmBlob key; /* Cache of current key (or NULL) */
+ LsmBlob val; /* Cache of current value */
+
+ /* All the component cursors: */
+ TreeCursor *apTreeCsr[2]; /* Up to two tree cursors */
+ int iFree; /* Next element of free-list (-ve for eof) */
+ SegmentPtr *aPtr; /* Array of segment pointers */
+ int nPtr; /* Size of array aPtr[] */
+ BtreeCursor *pBtCsr; /* b-tree cursor (db writes only) */
+
+ /* Comparison results */
+ int nTree; /* Size of aTree[] array */
+ int *aTree; /* Array of comparison results */
+
+ /* Used by cursors flushing the in-memory tree only */
+ void *pSystemVal; /* Pointer to buffer to free */
+
+ /* Used by worker cursors only */
+ LsmPgno *pPrevMergePtr;
+};
+
+/*
+** The following constants are used to assign integers to each component
+** cursor of a multi-cursor.
+*/
+#define CURSOR_DATA_TREE0 0 /* Current tree cursor (apTreeCsr[0]) */
+#define CURSOR_DATA_TREE1 1 /* The "old" tree, if any (apTreeCsr[1]) */
+#define CURSOR_DATA_SYSTEM 2 /* Free-list entries (new-toplevel only) */
+#define CURSOR_DATA_SEGMENT 3 /* First segment pointer (aPtr[0]) */
+
+/*
+** CURSOR_IGNORE_DELETE
+** If set, this cursor will not visit SORTED_DELETE keys.
+**
+** CURSOR_FLUSH_FREELIST
+** This cursor is being used to create a new toplevel. It should also
+** iterate through the contents of the in-memory free block list.
+**
+** CURSOR_IGNORE_SYSTEM
+** If set, this cursor ignores system keys.
+**
+** CURSOR_NEXT_OK
+** Set if it is Ok to call lsm_csr_next().
+**
+** CURSOR_PREV_OK
+** Set if it is Ok to call lsm_csr_prev().
+**
+** CURSOR_READ_SEPARATORS
+** Set if this cursor should visit the separator keys in segment
+** aPtr[nPtr-1].
+**
+** CURSOR_SEEK_EQ
+** Cursor has undergone a successful lsm_csr_seek(LSM_SEEK_EQ) operation.
+** The key and value are stored in MultiCursor.key and MultiCursor.val
+** respectively.
+*/
+#define CURSOR_IGNORE_DELETE 0x00000001
+#define CURSOR_FLUSH_FREELIST 0x00000002
+#define CURSOR_IGNORE_SYSTEM 0x00000010
+#define CURSOR_NEXT_OK 0x00000020
+#define CURSOR_PREV_OK 0x00000040
+#define CURSOR_READ_SEPARATORS 0x00000080
+#define CURSOR_SEEK_EQ 0x00000100
+
+typedef struct MergeWorker MergeWorker;
+typedef struct Hierarchy Hierarchy;
+
+struct Hierarchy {
+ Page **apHier;
+ int nHier;
+};
+
+/*
+** aSave:
+** When mergeWorkerNextPage() is called to advance to the next page in
+** the output segment, if the bStore flag for an element of aSave[] is
+** true, it is cleared and the corresponding iPgno value is set to the
+** page number of the page just completed.
+**
+** aSave[0] is used to record the pointer value to be pushed into the
+** b-tree hierarchy. aSave[1] is used to save the page number of the
+** page containing the indirect key most recently written to the b-tree.
+** see mergeWorkerPushHierarchy() for details.
+*/
+struct MergeWorker {
+ lsm_db *pDb; /* Database handle */
+ Level *pLevel; /* Worker snapshot Level being merged */
+ MultiCursor *pCsr; /* Cursor to read new segment contents from */
+ int bFlush; /* True if this is an in-memory tree flush */
+ Hierarchy hier; /* B-tree hierarchy under construction */
+ Page *pPage; /* Current output page */
+ int nWork; /* Number of calls to mergeWorkerNextPage() */
+ LsmPgno *aGobble; /* Gobble point for each input segment */
+
+ LsmPgno iIndirect;
+ struct SavedPgno {
+ LsmPgno iPgno;
+ int bStore;
+ } aSave[2];
+};
+
+#ifdef LSM_DEBUG_EXPENSIVE
+static int assertPointersOk(lsm_db *, Segment *, Segment *, int);
+static int assertBtreeOk(lsm_db *, Segment *);
+static void assertRunInOrder(lsm_db *pDb, Segment *pSeg);
+#else
+#define assertRunInOrder(x,y)
+#define assertBtreeOk(x,y)
+#endif
+
+
+struct FilePage { u8 *aData; int nData; };
+static u8 *fsPageData(Page *pPg, int *pnData){
+ *pnData = ((struct FilePage *)(pPg))->nData;
+ return ((struct FilePage *)(pPg))->aData;
+}
+/*UNUSED static u8 *fsPageDataPtr(Page *pPg){
+ return ((struct FilePage *)(pPg))->aData;
+}*/
+
+/*
+** Write nVal as a 16-bit unsigned big-endian integer into buffer aOut.
+*/
+void lsmPutU16(u8 *aOut, u16 nVal){
+ aOut[0] = (u8)((nVal>>8) & 0xFF);
+ aOut[1] = (u8)(nVal & 0xFF);
+}
+
+void lsmPutU32(u8 *aOut, u32 nVal){
+ aOut[0] = (u8)((nVal>>24) & 0xFF);
+ aOut[1] = (u8)((nVal>>16) & 0xFF);
+ aOut[2] = (u8)((nVal>> 8) & 0xFF);
+ aOut[3] = (u8)((nVal ) & 0xFF);
+}
+
+int lsmGetU16(u8 *aOut){
+ return (aOut[0] << 8) + aOut[1];
+}
+
+u32 lsmGetU32(u8 *aOut){
+ return ((u32)aOut[0] << 24)
+ + ((u32)aOut[1] << 16)
+ + ((u32)aOut[2] << 8)
+ + ((u32)aOut[3]);
+}
+
+u64 lsmGetU64(u8 *aOut){
+ return ((u64)aOut[0] << 56)
+ + ((u64)aOut[1] << 48)
+ + ((u64)aOut[2] << 40)
+ + ((u64)aOut[3] << 32)
+ + ((u64)aOut[4] << 24)
+ + ((u32)aOut[5] << 16)
+ + ((u32)aOut[6] << 8)
+ + ((u32)aOut[7]);
+}
+
+void lsmPutU64(u8 *aOut, u64 nVal){
+ aOut[0] = (u8)((nVal>>56) & 0xFF);
+ aOut[1] = (u8)((nVal>>48) & 0xFF);
+ aOut[2] = (u8)((nVal>>40) & 0xFF);
+ aOut[3] = (u8)((nVal>>32) & 0xFF);
+ aOut[4] = (u8)((nVal>>24) & 0xFF);
+ aOut[5] = (u8)((nVal>>16) & 0xFF);
+ aOut[6] = (u8)((nVal>> 8) & 0xFF);
+ aOut[7] = (u8)((nVal ) & 0xFF);
+}
+
+static int sortedBlobGrow(lsm_env *pEnv, LsmBlob *pBlob, int nData){
+ assert( pBlob->pEnv==pEnv || (pBlob->pEnv==0 && pBlob->pData==0) );
+ if( pBlob->nAlloc<nData ){
+ pBlob->pData = lsmReallocOrFree(pEnv, pBlob->pData, nData);
+ if( !pBlob->pData ) return LSM_NOMEM_BKPT;
+ pBlob->nAlloc = nData;
+ pBlob->pEnv = pEnv;
+ }
+ return LSM_OK;
+}
+
+static int sortedBlobSet(lsm_env *pEnv, LsmBlob *pBlob, void *pData, int nData){
+ if( sortedBlobGrow(pEnv, pBlob, nData) ) return LSM_NOMEM;
+ memcpy(pBlob->pData, pData, nData);
+ pBlob->nData = nData;
+ return LSM_OK;
+}
+
+#if 0
+static int sortedBlobCopy(LsmBlob *pDest, LsmBlob *pSrc){
+ return sortedBlobSet(pDest, pSrc->pData, pSrc->nData);
+}
+#endif
+
+static void sortedBlobFree(LsmBlob *pBlob){
+ assert( pBlob->pEnv || pBlob->pData==0 );
+ if( pBlob->pData ) lsmFree(pBlob->pEnv, pBlob->pData);
+ memset(pBlob, 0, sizeof(LsmBlob));
+}
+
+static int sortedReadData(
+ Segment *pSeg,
+ Page *pPg,
+ int iOff,
+ int nByte,
+ void **ppData,
+ LsmBlob *pBlob
+){
+ int rc = LSM_OK;
+ int iEnd;
+ int nData;
+ int nCell;
+ u8 *aData;
+
+ aData = fsPageData(pPg, &nData);
+ nCell = lsmGetU16(&aData[SEGMENT_NRECORD_OFFSET(nData)]);
+ iEnd = SEGMENT_EOF(nData, nCell);
+ assert( iEnd>0 && iEnd<nData );
+
+ if( iOff+nByte<=iEnd ){
+ *ppData = (void *)&aData[iOff];
+ }else{
+ int nRem = nByte;
+ int i = iOff;
+ u8 *aDest;
+
+ /* Make sure the blob is big enough to store the value being loaded. */
+ rc = sortedBlobGrow(lsmPageEnv(pPg), pBlob, nByte);
+ if( rc!=LSM_OK ) return rc;
+ pBlob->nData = nByte;
+ aDest = (u8 *)pBlob->pData;
+ *ppData = pBlob->pData;
+
+ /* Increment the pointer pages ref-count. */
+ lsmFsPageRef(pPg);
+
+ while( rc==LSM_OK ){
+ Page *pNext;
+ int flags;
+
+ /* Copy data from pPg into the output buffer. */
+ int nCopy = LSM_MIN(nRem, iEnd-i);
+ if( nCopy>0 ){
+ memcpy(&aDest[nByte-nRem], &aData[i], nCopy);
+ nRem -= nCopy;
+ i += nCopy;
+ assert( nRem==0 || i==iEnd );
+ }
+ assert( nRem>=0 );
+ if( nRem==0 ) break;
+ i -= iEnd;
+
+ /* Grab the next page in the segment */
+
+ do {
+ rc = lsmFsDbPageNext(pSeg, pPg, 1, &pNext);
+ if( rc==LSM_OK && pNext==0 ){
+ rc = LSM_CORRUPT_BKPT;
+ }
+ if( rc ) break;
+ lsmFsPageRelease(pPg);
+ pPg = pNext;
+ aData = fsPageData(pPg, &nData);
+ flags = lsmGetU16(&aData[SEGMENT_FLAGS_OFFSET(nData)]);
+ }while( flags&SEGMENT_BTREE_FLAG );
+
+ iEnd = SEGMENT_EOF(nData, lsmGetU16(&aData[nData-2]));
+ assert( iEnd>0 && iEnd<nData );
+ }
+
+ lsmFsPageRelease(pPg);
+ }
+
+ return rc;
+}
+
+static int pageGetNRec(u8 *aData, int nData){
+ return (int)lsmGetU16(&aData[SEGMENT_NRECORD_OFFSET(nData)]);
+}
+
+static LsmPgno pageGetPtr(u8 *aData, int nData){
+ return (LsmPgno)lsmGetU64(&aData[SEGMENT_POINTER_OFFSET(nData)]);
+}
+
+static int pageGetFlags(u8 *aData, int nData){
+ return (int)lsmGetU16(&aData[SEGMENT_FLAGS_OFFSET(nData)]);
+}
+
+static u8 *pageGetCell(u8 *aData, int nData, int iCell){
+ return &aData[lsmGetU16(&aData[SEGMENT_CELLPTR_OFFSET(nData, iCell)])];
+}
+
+/*
+** Return the number of cells on page pPg.
+*/
+static int pageObjGetNRec(Page *pPg){
+ int nData;
+ u8 *aData = lsmFsPageData(pPg, &nData);
+ return pageGetNRec(aData, nData);
+}
+
+/*
+** Return the decoded (possibly relative) pointer value stored in cell
+** iCell from page aData/nData.
+*/
+static LsmPgno pageGetRecordPtr(u8 *aData, int nData, int iCell){
+ LsmPgno iRet; /* Return value */
+ u8 *aCell; /* Pointer to cell iCell */
+
+ assert( iCell<pageGetNRec(aData, nData) && iCell>=0 );
+ aCell = pageGetCell(aData, nData, iCell);
+ lsmVarintGet64(&aCell[1], &iRet);
+ return iRet;
+}
+
+static u8 *pageGetKey(
+ Segment *pSeg, /* Segment pPg belongs to */
+ Page *pPg, /* Page to read from */
+ int iCell, /* Index of cell on page to read */
+ int *piTopic, /* OUT: Topic associated with this key */
+ int *pnKey, /* OUT: Size of key in bytes */
+ LsmBlob *pBlob /* If required, use this for dynamic memory */
+){
+ u8 *pKey;
+ int nDummy;
+ int eType;
+ u8 *aData;
+ int nData;
+
+ aData = fsPageData(pPg, &nData);
+
+ assert( !(pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG) );
+ assert( iCell<pageGetNRec(aData, nData) );
+
+ pKey = pageGetCell(aData, nData, iCell);
+ eType = *pKey++;
+ pKey += lsmVarintGet32(pKey, &nDummy);
+ pKey += lsmVarintGet32(pKey, pnKey);
+ if( rtIsWrite(eType) ){
+ pKey += lsmVarintGet32(pKey, &nDummy);
+ }
+ *piTopic = rtTopic(eType);
+
+ sortedReadData(pSeg, pPg, pKey-aData, *pnKey, (void **)&pKey, pBlob);
+ return pKey;
+}
+
+static int pageGetKeyCopy(
+ lsm_env *pEnv, /* Environment handle */
+ Segment *pSeg, /* Segment pPg belongs to */
+ Page *pPg, /* Page to read from */
+ int iCell, /* Index of cell on page to read */
+ int *piTopic, /* OUT: Topic associated with this key */
+ LsmBlob *pBlob /* If required, use this for dynamic memory */
+){
+ int rc = LSM_OK;
+ int nKey;
+ u8 *aKey;
+
+ aKey = pageGetKey(pSeg, pPg, iCell, piTopic, &nKey, pBlob);
+ assert( (void *)aKey!=pBlob->pData || nKey==pBlob->nData );
+ if( (void *)aKey!=pBlob->pData ){
+ rc = sortedBlobSet(pEnv, pBlob, aKey, nKey);
+ }
+
+ return rc;
+}
+
+static LsmPgno pageGetBtreeRef(Page *pPg, int iKey){
+ LsmPgno iRef;
+ u8 *aData;
+ int nData;
+ u8 *aCell;
+
+ aData = fsPageData(pPg, &nData);
+ aCell = pageGetCell(aData, nData, iKey);
+ assert( aCell[0]==0 );
+ aCell++;
+ aCell += lsmVarintGet64(aCell, &iRef);
+ lsmVarintGet64(aCell, &iRef);
+ assert( iRef>0 );
+ return iRef;
+}
+
+#define GETVARINT64(a, i) (((i)=((u8*)(a))[0])<=240?1:lsmVarintGet64((a), &(i)))
+#define GETVARINT32(a, i) (((i)=((u8*)(a))[0])<=240?1:lsmVarintGet32((a), &(i)))
+
+static int pageGetBtreeKey(
+ Segment *pSeg, /* Segment page pPg belongs to */
+ Page *pPg,
+ int iKey,
+ LsmPgno *piPtr,
+ int *piTopic,
+ void **ppKey,
+ int *pnKey,
+ LsmBlob *pBlob
+){
+ u8 *aData;
+ int nData;
+ u8 *aCell;
+ int eType;
+
+ aData = fsPageData(pPg, &nData);
+ assert( SEGMENT_BTREE_FLAG & pageGetFlags(aData, nData) );
+ assert( iKey>=0 && iKey<pageGetNRec(aData, nData) );
+
+ aCell = pageGetCell(aData, nData, iKey);
+ eType = *aCell++;
+ aCell += GETVARINT64(aCell, *piPtr);
+
+ if( eType==0 ){
+ int rc;
+ LsmPgno iRef; /* Page number of referenced page */
+ Page *pRef;
+ aCell += GETVARINT64(aCell, iRef);
+ rc = lsmFsDbPageGet(lsmPageFS(pPg), pSeg, iRef, &pRef);
+ if( rc!=LSM_OK ) return rc;
+ pageGetKeyCopy(lsmPageEnv(pPg), pSeg, pRef, 0, &eType, pBlob);
+ lsmFsPageRelease(pRef);
+ *ppKey = pBlob->pData;
+ *pnKey = pBlob->nData;
+ }else{
+ aCell += GETVARINT32(aCell, *pnKey);
+ *ppKey = aCell;
+ }
+ if( piTopic ) *piTopic = rtTopic(eType);
+
+ return LSM_OK;
+}
+
+static int btreeCursorLoadKey(BtreeCursor *pCsr){
+ int rc = LSM_OK;
+ if( pCsr->iPg<0 ){
+ pCsr->pKey = 0;
+ pCsr->nKey = 0;
+ pCsr->eType = 0;
+ }else{
+ LsmPgno dummy;
+ int iPg = pCsr->iPg;
+ int iCell = pCsr->aPg[iPg].iCell;
+ while( iCell<0 && (--iPg)>=0 ){
+ iCell = pCsr->aPg[iPg].iCell-1;
+ }
+ if( iPg<0 || iCell<0 ) return LSM_CORRUPT_BKPT;
+
+ rc = pageGetBtreeKey(
+ pCsr->pSeg,
+ pCsr->aPg[iPg].pPage, iCell,
+ &dummy, &pCsr->eType, &pCsr->pKey, &pCsr->nKey, &pCsr->blob
+ );
+ pCsr->eType |= LSM_SEPARATOR;
+ }
+
+ return rc;
+}
+
+static int btreeCursorPtr(u8 *aData, int nData, int iCell){
+ int nCell;
+
+ nCell = pageGetNRec(aData, nData);
+ if( iCell>=nCell ){
+ return (int)pageGetPtr(aData, nData);
+ }
+ return (int)pageGetRecordPtr(aData, nData, iCell);
+}
+
+static int btreeCursorNext(BtreeCursor *pCsr){
+ int rc = LSM_OK;
+
+ BtreePg *pPg = &pCsr->aPg[pCsr->iPg];
+ int nCell;
+ u8 *aData;
+ int nData;
+
+ assert( pCsr->iPg>=0 );
+ assert( pCsr->iPg==pCsr->nDepth-1 );
+
+ aData = fsPageData(pPg->pPage, &nData);
+ nCell = pageGetNRec(aData, nData);
+ assert( pPg->iCell<=nCell );
+ pPg->iCell++;
+ if( pPg->iCell==nCell ){
+ LsmPgno iLoad;
+
+ /* Up to parent. */
+ lsmFsPageRelease(pPg->pPage);
+ pPg->pPage = 0;
+ pCsr->iPg--;
+ while( pCsr->iPg>=0 ){
+ pPg = &pCsr->aPg[pCsr->iPg];
+ aData = fsPageData(pPg->pPage, &nData);
+ if( pPg->iCell<pageGetNRec(aData, nData) ) break;
+ lsmFsPageRelease(pPg->pPage);
+ pCsr->iPg--;
+ }
+
+ /* Read the key */
+ rc = btreeCursorLoadKey(pCsr);
+
+ /* Unless the cursor is at EOF, descend to cell -1 (yes, negative one) of
+ ** the left-most most descendent. */
+ if( pCsr->iPg>=0 ){
+ pCsr->aPg[pCsr->iPg].iCell++;
+
+ iLoad = btreeCursorPtr(aData, nData, pPg->iCell);
+ do {
+ Page *pLoad;
+ pCsr->iPg++;
+ rc = lsmFsDbPageGet(pCsr->pFS, pCsr->pSeg, iLoad, &pLoad);
+ pCsr->aPg[pCsr->iPg].pPage = pLoad;
+ pCsr->aPg[pCsr->iPg].iCell = 0;
+ if( rc==LSM_OK ){
+ if( pCsr->iPg==(pCsr->nDepth-1) ) break;
+ aData = fsPageData(pLoad, &nData);
+ iLoad = btreeCursorPtr(aData, nData, 0);
+ }
+ }while( rc==LSM_OK && pCsr->iPg<(pCsr->nDepth-1) );
+ pCsr->aPg[pCsr->iPg].iCell = -1;
+ }
+
+ }else{
+ rc = btreeCursorLoadKey(pCsr);
+ }
+
+ if( rc==LSM_OK && pCsr->iPg>=0 ){
+ aData = fsPageData(pCsr->aPg[pCsr->iPg].pPage, &nData);
+ pCsr->iPtr = btreeCursorPtr(aData, nData, pCsr->aPg[pCsr->iPg].iCell+1);
+ }
+
+ return rc;
+}
+
+static void btreeCursorFree(BtreeCursor *pCsr){
+ if( pCsr ){
+ int i;
+ lsm_env *pEnv = lsmFsEnv(pCsr->pFS);
+ for(i=0; i<=pCsr->iPg; i++){
+ lsmFsPageRelease(pCsr->aPg[i].pPage);
+ }
+ sortedBlobFree(&pCsr->blob);
+ lsmFree(pEnv, pCsr->aPg);
+ lsmFree(pEnv, pCsr);
+ }
+}
+
+static int btreeCursorFirst(BtreeCursor *pCsr){
+ int rc;
+
+ Page *pPg = 0;
+ FileSystem *pFS = pCsr->pFS;
+ int iPg = (int)pCsr->pSeg->iRoot;
+
+ do {
+ rc = lsmFsDbPageGet(pFS, pCsr->pSeg, iPg, &pPg);
+ assert( (rc==LSM_OK)==(pPg!=0) );
+ if( rc==LSM_OK ){
+ u8 *aData;
+ int nData;
+ int flags;
+
+ aData = fsPageData(pPg, &nData);
+ flags = pageGetFlags(aData, nData);
+ if( (flags & SEGMENT_BTREE_FLAG)==0 ) break;
+
+ if( (pCsr->nDepth % 8)==0 ){
+ int nNew = pCsr->nDepth + 8;
+ pCsr->aPg = (BtreePg *)lsmReallocOrFreeRc(
+ lsmFsEnv(pFS), pCsr->aPg, sizeof(BtreePg) * nNew, &rc
+ );
+ if( rc==LSM_OK ){
+ memset(&pCsr->aPg[pCsr->nDepth], 0, sizeof(BtreePg) * 8);
+ }
+ }
+
+ if( rc==LSM_OK ){
+ assert( pCsr->aPg[pCsr->nDepth].iCell==0 );
+ pCsr->aPg[pCsr->nDepth].pPage = pPg;
+ pCsr->nDepth++;
+ iPg = (int)pageGetRecordPtr(aData, nData, 0);
+ }
+ }
+ }while( rc==LSM_OK );
+ lsmFsPageRelease(pPg);
+ pCsr->iPg = pCsr->nDepth-1;
+
+ if( rc==LSM_OK && pCsr->nDepth ){
+ pCsr->aPg[pCsr->iPg].iCell = -1;
+ rc = btreeCursorNext(pCsr);
+ }
+
+ return rc;
+}
+
+static void btreeCursorPosition(BtreeCursor *pCsr, MergeInput *p){
+ if( pCsr->iPg>=0 ){
+ p->iPg = lsmFsPageNumber(pCsr->aPg[pCsr->iPg].pPage);
+ p->iCell = ((pCsr->aPg[pCsr->iPg].iCell + 1) << 8) + pCsr->nDepth;
+ }else{
+ p->iPg = 0;
+ p->iCell = 0;
+ }
+}
+
+static void btreeCursorSplitkey(BtreeCursor *pCsr, MergeInput *p){
+ int iCell = pCsr->aPg[pCsr->iPg].iCell;
+ if( iCell>=0 ){
+ p->iCell = iCell;
+ p->iPg = lsmFsPageNumber(pCsr->aPg[pCsr->iPg].pPage);
+ }else{
+ int i;
+ for(i=pCsr->iPg-1; i>=0; i--){
+ if( pCsr->aPg[i].iCell>0 ) break;
+ }
+ assert( i>=0 );
+ p->iCell = pCsr->aPg[i].iCell-1;
+ p->iPg = lsmFsPageNumber(pCsr->aPg[i].pPage);
+ }
+}
+
+static int sortedKeyCompare(
+ int (*xCmp)(void *, int, void *, int),
+ int iLhsTopic, void *pLhsKey, int nLhsKey,
+ int iRhsTopic, void *pRhsKey, int nRhsKey
+){
+ int res = iLhsTopic - iRhsTopic;
+ if( res==0 ){
+ res = xCmp(pLhsKey, nLhsKey, pRhsKey, nRhsKey);
+ }
+ return res;
+}
+
+static int btreeCursorRestore(
+ BtreeCursor *pCsr,
+ int (*xCmp)(void *, int, void *, int),
+ MergeInput *p
+){
+ int rc = LSM_OK;
+
+ if( p->iPg ){
+ lsm_env *pEnv = lsmFsEnv(pCsr->pFS);
+ int iCell; /* Current cell number on leaf page */
+ LsmPgno iLeaf; /* Page number of current leaf page */
+ int nDepth; /* Depth of b-tree structure */
+ Segment *pSeg = pCsr->pSeg;
+
+ /* Decode the MergeInput structure */
+ iLeaf = p->iPg;
+ nDepth = (p->iCell & 0x00FF);
+ iCell = (p->iCell >> 8) - 1;
+
+ /* Allocate the BtreeCursor.aPg[] array */
+ assert( pCsr->aPg==0 );
+ pCsr->aPg = (BtreePg *)lsmMallocZeroRc(pEnv, sizeof(BtreePg) * nDepth, &rc);
+
+ /* Populate the last entry of the aPg[] array */
+ if( rc==LSM_OK ){
+ Page **pp = &pCsr->aPg[nDepth-1].pPage;
+ pCsr->iPg = nDepth-1;
+ pCsr->nDepth = nDepth;
+ pCsr->aPg[pCsr->iPg].iCell = iCell;
+ rc = lsmFsDbPageGet(pCsr->pFS, pSeg, iLeaf, pp);
+ }
+
+ /* Populate any other aPg[] array entries */
+ if( rc==LSM_OK && nDepth>1 ){
+ LsmBlob blob = {0,0,0};
+ void *pSeek;
+ int nSeek;
+ int iTopicSeek;
+ int iPg = 0;
+ int iLoad = (int)pSeg->iRoot;
+ Page *pPg = pCsr->aPg[nDepth-1].pPage;
+
+ if( pageObjGetNRec(pPg)==0 ){
+ /* This can happen when pPg is the right-most leaf in the b-tree.
+ ** In this case, set the iTopicSeek/pSeek/nSeek key to a value
+ ** greater than any real key. */
+ assert( iCell==-1 );
+ iTopicSeek = 1000;
+ pSeek = 0;
+ nSeek = 0;
+ }else{
+ LsmPgno dummy;
+ rc = pageGetBtreeKey(pSeg, pPg,
+ 0, &dummy, &iTopicSeek, &pSeek, &nSeek, &pCsr->blob
+ );
+ }
+
+ do {
+ Page *pPg2;
+ rc = lsmFsDbPageGet(pCsr->pFS, pSeg, iLoad, &pPg2);
+ assert( rc==LSM_OK || pPg2==0 );
+ if( rc==LSM_OK ){
+ u8 *aData; /* Buffer containing page data */
+ int nData; /* Size of aData[] in bytes */
+ int iMin;
+ int iMax;
+ int iCell2;
+
+ aData = fsPageData(pPg2, &nData);
+ assert( (pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG) );
+
+ iLoad = (int)pageGetPtr(aData, nData);
+ iCell2 = pageGetNRec(aData, nData);
+ iMax = iCell2-1;
+ iMin = 0;
+
+ while( iMax>=iMin ){
+ int iTry = (iMin+iMax)/2;
+ void *pKey; int nKey; /* Key for cell iTry */
+ int iTopic; /* Topic for key pKeyT/nKeyT */
+ LsmPgno iPtr; /* Pointer for cell iTry */
+ int res; /* (pSeek - pKeyT) */
+
+ rc = pageGetBtreeKey(
+ pSeg, pPg2, iTry, &iPtr, &iTopic, &pKey, &nKey, &blob
+ );
+ if( rc!=LSM_OK ) break;
+
+ res = sortedKeyCompare(
+ xCmp, iTopicSeek, pSeek, nSeek, iTopic, pKey, nKey
+ );
+ assert( res!=0 );
+
+ if( res<0 ){
+ iLoad = (int)iPtr;
+ iCell2 = iTry;
+ iMax = iTry-1;
+ }else{
+ iMin = iTry+1;
+ }
+ }
+
+ pCsr->aPg[iPg].pPage = pPg2;
+ pCsr->aPg[iPg].iCell = iCell2;
+ iPg++;
+ assert( iPg!=nDepth-1
+ || lsmFsRedirectPage(pCsr->pFS, pSeg->pRedirect, iLoad)==iLeaf
+ );
+ }
+ }while( rc==LSM_OK && iPg<(nDepth-1) );
+ sortedBlobFree(&blob);
+ }
+
+ /* Load the current key and pointer */
+ if( rc==LSM_OK ){
+ BtreePg *pBtreePg;
+ u8 *aData;
+ int nData;
+
+ pBtreePg = &pCsr->aPg[pCsr->iPg];
+ aData = fsPageData(pBtreePg->pPage, &nData);
+ pCsr->iPtr = btreeCursorPtr(aData, nData, pBtreePg->iCell+1);
+ if( pBtreePg->iCell<0 ){
+ LsmPgno dummy;
+ int i;
+ for(i=pCsr->iPg-1; i>=0; i--){
+ if( pCsr->aPg[i].iCell>0 ) break;
+ }
+ assert( i>=0 );
+ rc = pageGetBtreeKey(pSeg,
+ pCsr->aPg[i].pPage, pCsr->aPg[i].iCell-1,
+ &dummy, &pCsr->eType, &pCsr->pKey, &pCsr->nKey, &pCsr->blob
+ );
+ pCsr->eType |= LSM_SEPARATOR;
+
+ }else{
+ rc = btreeCursorLoadKey(pCsr);
+ }
+ }
+ }
+ return rc;
+}
+
+static int btreeCursorNew(
+ lsm_db *pDb,
+ Segment *pSeg,
+ BtreeCursor **ppCsr
+){
+ int rc = LSM_OK;
+ BtreeCursor *pCsr;
+
+ assert( pSeg->iRoot );
+ pCsr = lsmMallocZeroRc(pDb->pEnv, sizeof(BtreeCursor), &rc);
+ if( pCsr ){
+ pCsr->pFS = pDb->pFS;
+ pCsr->pSeg = pSeg;
+ pCsr->iPg = -1;
+ }
+
+ *ppCsr = pCsr;
+ return rc;
+}
+
+static void segmentPtrSetPage(SegmentPtr *pPtr, Page *pNext){
+ lsmFsPageRelease(pPtr->pPg);
+ if( pNext ){
+ int nData;
+ u8 *aData = fsPageData(pNext, &nData);
+ pPtr->nCell = pageGetNRec(aData, nData);
+ pPtr->flags = (u16)pageGetFlags(aData, nData);
+ pPtr->iPtr = pageGetPtr(aData, nData);
+ }
+ pPtr->pPg = pNext;
+}
+
+/*
+** Load a new page into the SegmentPtr object pPtr.
+*/
+static int segmentPtrLoadPage(
+ FileSystem *pFS,
+ SegmentPtr *pPtr, /* Load page into this SegmentPtr object */
+ int iNew /* Page number of new page */
+){
+ Page *pPg = 0; /* The new page */
+ int rc; /* Return Code */
+
+ rc = lsmFsDbPageGet(pFS, pPtr->pSeg, iNew, &pPg);
+ assert( rc==LSM_OK || pPg==0 );
+ segmentPtrSetPage(pPtr, pPg);
+
+ return rc;
+}
+
+static int segmentPtrReadData(
+ SegmentPtr *pPtr,
+ int iOff,
+ int nByte,
+ void **ppData,
+ LsmBlob *pBlob
+){
+ return sortedReadData(pPtr->pSeg, pPtr->pPg, iOff, nByte, ppData, pBlob);
+}
+
+static int segmentPtrNextPage(
+ SegmentPtr *pPtr, /* Load page into this SegmentPtr object */
+ int eDir /* +1 for next(), -1 for prev() */
+){
+ Page *pNext; /* New page to load */
+ int rc; /* Return code */
+
+ assert( eDir==1 || eDir==-1 );
+ assert( pPtr->pPg );
+ assert( pPtr->pSeg || eDir>0 );
+
+ rc = lsmFsDbPageNext(pPtr->pSeg, pPtr->pPg, eDir, &pNext);
+ assert( rc==LSM_OK || pNext==0 );
+ segmentPtrSetPage(pPtr, pNext);
+ return rc;
+}
+
+static int segmentPtrLoadCell(
+ SegmentPtr *pPtr, /* Load page into this SegmentPtr object */
+ int iNew /* Cell number of new cell */
+){
+ int rc = LSM_OK;
+ if( pPtr->pPg ){
+ u8 *aData; /* Pointer to page data buffer */
+ int iOff; /* Offset in aData[] to read from */
+ int nPgsz; /* Size of page (aData[]) in bytes */
+
+ assert( iNew<pPtr->nCell );
+ pPtr->iCell = iNew;
+ aData = fsPageData(pPtr->pPg, &nPgsz);
+ iOff = lsmGetU16(&aData[SEGMENT_CELLPTR_OFFSET(nPgsz, pPtr->iCell)]);
+ pPtr->eType = aData[iOff];
+ iOff++;
+ iOff += GETVARINT64(&aData[iOff], pPtr->iPgPtr);
+ iOff += GETVARINT32(&aData[iOff], pPtr->nKey);
+ if( rtIsWrite(pPtr->eType) ){
+ iOff += GETVARINT32(&aData[iOff], pPtr->nVal);
+ }
+ assert( pPtr->nKey>=0 );
+
+ rc = segmentPtrReadData(
+ pPtr, iOff, pPtr->nKey, &pPtr->pKey, &pPtr->blob1
+ );
+ if( rc==LSM_OK && rtIsWrite(pPtr->eType) ){
+ rc = segmentPtrReadData(
+ pPtr, iOff+pPtr->nKey, pPtr->nVal, &pPtr->pVal, &pPtr->blob2
+ );
+ }else{
+ pPtr->nVal = 0;
+ pPtr->pVal = 0;
+ }
+ }
+
+ return rc;
+}
+
+
+static Segment *sortedSplitkeySegment(Level *pLevel){
+ Merge *pMerge = pLevel->pMerge;
+ MergeInput *p = &pMerge->splitkey;
+ Segment *pSeg;
+ int i;
+
+ for(i=0; i<pMerge->nInput; i++){
+ if( p->iPg==pMerge->aInput[i].iPg ) break;
+ }
+ if( pMerge->nInput==(pLevel->nRight+1) && i>=(pMerge->nInput-1) ){
+ pSeg = &pLevel->pNext->lhs;
+ }else{
+ pSeg = &pLevel->aRhs[i];
+ }
+
+ return pSeg;
+}
+
+static void sortedSplitkey(lsm_db *pDb, Level *pLevel, int *pRc){
+ Segment *pSeg;
+ Page *pPg = 0;
+ lsm_env *pEnv = pDb->pEnv; /* Environment handle */
+ int rc = *pRc;
+ Merge *pMerge = pLevel->pMerge;
+
+ pSeg = sortedSplitkeySegment(pLevel);
+ if( rc==LSM_OK ){
+ rc = lsmFsDbPageGet(pDb->pFS, pSeg, pMerge->splitkey.iPg, &pPg);
+ }
+ if( rc==LSM_OK ){
+ int iTopic;
+ LsmBlob blob = {0, 0, 0, 0};
+ u8 *aData;
+ int nData;
+
+ aData = lsmFsPageData(pPg, &nData);
+ if( pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG ){
+ void *pKey;
+ int nKey;
+ LsmPgno dummy;
+ rc = pageGetBtreeKey(pSeg,
+ pPg, pMerge->splitkey.iCell, &dummy, &iTopic, &pKey, &nKey, &blob
+ );
+ if( rc==LSM_OK && blob.pData!=pKey ){
+ rc = sortedBlobSet(pEnv, &blob, pKey, nKey);
+ }
+ }else{
+ rc = pageGetKeyCopy(
+ pEnv, pSeg, pPg, pMerge->splitkey.iCell, &iTopic, &blob
+ );
+ }
+
+ pLevel->iSplitTopic = iTopic;
+ pLevel->pSplitKey = blob.pData;
+ pLevel->nSplitKey = blob.nData;
+ lsmFsPageRelease(pPg);
+ }
+
+ *pRc = rc;
+}
+
+/*
+** Reset a segment cursor. Also free its buffers if they are nThreshold
+** bytes or larger in size.
+*/
+static void segmentPtrReset(SegmentPtr *pPtr, int nThreshold){
+ lsmFsPageRelease(pPtr->pPg);
+ pPtr->pPg = 0;
+ pPtr->nCell = 0;
+ pPtr->pKey = 0;
+ pPtr->nKey = 0;
+ pPtr->pVal = 0;
+ pPtr->nVal = 0;
+ pPtr->eType = 0;
+ pPtr->iCell = 0;
+ if( pPtr->blob1.nAlloc>=nThreshold ) sortedBlobFree(&pPtr->blob1);
+ if( pPtr->blob2.nAlloc>=nThreshold ) sortedBlobFree(&pPtr->blob2);
+}
+
+static int segmentPtrIgnoreSeparators(MultiCursor *pCsr, SegmentPtr *pPtr){
+ return (pCsr->flags & CURSOR_READ_SEPARATORS)==0
+ || (pPtr!=&pCsr->aPtr[pCsr->nPtr-1]);
+}
+
+static int segmentPtrAdvance(
+ MultiCursor *pCsr,
+ SegmentPtr *pPtr,
+ int bReverse
+){
+ int eDir = (bReverse ? -1 : 1);
+ Level *pLvl = pPtr->pLevel;
+ do {
+ int rc;
+ int iCell; /* Number of new cell in page */
+ int svFlags = 0; /* SegmentPtr.eType before advance */
+
+ iCell = pPtr->iCell + eDir;
+ assert( pPtr->pPg );
+ assert( iCell<=pPtr->nCell && iCell>=-1 );
+
+ if( bReverse && pPtr->pSeg!=&pPtr->pLevel->lhs ){
+ svFlags = pPtr->eType;
+ assert( svFlags );
+ }
+
+ if( iCell>=pPtr->nCell || iCell<0 ){
+ do {
+ rc = segmentPtrNextPage(pPtr, eDir);
+ }while( rc==LSM_OK
+ && pPtr->pPg
+ && (pPtr->nCell==0 || (pPtr->flags & SEGMENT_BTREE_FLAG) )
+ );
+ if( rc!=LSM_OK ) return rc;
+ iCell = bReverse ? (pPtr->nCell-1) : 0;
+ }
+ rc = segmentPtrLoadCell(pPtr, iCell);
+ if( rc!=LSM_OK ) return rc;
+
+ if( svFlags && pPtr->pPg ){
+ int res = sortedKeyCompare(pCsr->pDb->xCmp,
+ rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey,
+ pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey
+ );
+ if( res<0 ) segmentPtrReset(pPtr, LSM_SEGMENTPTR_FREE_THRESHOLD);
+ }
+
+ if( pPtr->pPg==0 && (svFlags & LSM_END_DELETE) ){
+ Segment *pSeg = pPtr->pSeg;
+ rc = lsmFsDbPageGet(pCsr->pDb->pFS, pSeg, pSeg->iFirst, &pPtr->pPg);
+ if( rc!=LSM_OK ) return rc;
+ pPtr->eType = LSM_START_DELETE | LSM_POINT_DELETE;
+ pPtr->eType |= (pLvl->iSplitTopic ? LSM_SYSTEMKEY : 0);
+ pPtr->pKey = pLvl->pSplitKey;
+ pPtr->nKey = pLvl->nSplitKey;
+ }
+
+ }while( pCsr
+ && pPtr->pPg
+ && segmentPtrIgnoreSeparators(pCsr, pPtr)
+ && rtIsSeparator(pPtr->eType)
+ );
+
+ return LSM_OK;
+}
+
+static void segmentPtrEndPage(
+ FileSystem *pFS,
+ SegmentPtr *pPtr,
+ int bLast,
+ int *pRc
+){
+ if( *pRc==LSM_OK ){
+ Segment *pSeg = pPtr->pSeg;
+ Page *pNew = 0;
+ if( bLast ){
+ *pRc = lsmFsDbPageLast(pFS, pSeg, &pNew);
+ }else{
+ *pRc = lsmFsDbPageGet(pFS, pSeg, pSeg->iFirst, &pNew);
+ }
+ segmentPtrSetPage(pPtr, pNew);
+ }
+}
+
+
+/*
+** Try to move the segment pointer passed as the second argument so that it
+** points at either the first (bLast==0) or last (bLast==1) cell in the valid
+** region of the segment defined by pPtr->iFirst and pPtr->iLast.
+**
+** Return LSM_OK if successful or an lsm error code if something goes
+** wrong (IO error, OOM etc.).
+*/
+static int segmentPtrEnd(MultiCursor *pCsr, SegmentPtr *pPtr, int bLast){
+ Level *pLvl = pPtr->pLevel;
+ int rc = LSM_OK;
+ FileSystem *pFS = pCsr->pDb->pFS;
+ int bIgnore;
+
+ segmentPtrEndPage(pFS, pPtr, bLast, &rc);
+ while( rc==LSM_OK && pPtr->pPg
+ && (pPtr->nCell==0 || (pPtr->flags & SEGMENT_BTREE_FLAG))
+ ){
+ rc = segmentPtrNextPage(pPtr, (bLast ? -1 : 1));
+ }
+
+ if( rc==LSM_OK && pPtr->pPg ){
+ rc = segmentPtrLoadCell(pPtr, bLast ? (pPtr->nCell-1) : 0);
+ if( rc==LSM_OK && bLast && pPtr->pSeg!=&pLvl->lhs ){
+ int res = sortedKeyCompare(pCsr->pDb->xCmp,
+ rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey,
+ pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey
+ );
+ if( res<0 ) segmentPtrReset(pPtr, LSM_SEGMENTPTR_FREE_THRESHOLD);
+ }
+ }
+
+ bIgnore = segmentPtrIgnoreSeparators(pCsr, pPtr);
+ if( rc==LSM_OK && pPtr->pPg && bIgnore && rtIsSeparator(pPtr->eType) ){
+ rc = segmentPtrAdvance(pCsr, pPtr, bLast);
+ }
+
+#if 0
+ if( bLast && rc==LSM_OK && pPtr->pPg
+ && pPtr->pSeg==&pLvl->lhs
+ && pLvl->nRight && (pPtr->eType & LSM_START_DELETE)
+ ){
+ pPtr->iCell++;
+ pPtr->eType = LSM_END_DELETE | (pLvl->iSplitTopic);
+ pPtr->pKey = pLvl->pSplitKey;
+ pPtr->nKey = pLvl->nSplitKey;
+ pPtr->pVal = 0;
+ pPtr->nVal = 0;
+ }
+#endif
+
+ return rc;
+}
+
+static void segmentPtrKey(SegmentPtr *pPtr, void **ppKey, int *pnKey){
+ assert( pPtr->pPg );
+ *ppKey = pPtr->pKey;
+ *pnKey = pPtr->nKey;
+}
+
+#if 0 /* NOT USED */
+static char *keyToString(lsm_env *pEnv, void *pKey, int nKey){
+ int i;
+ u8 *aKey = (u8 *)pKey;
+ char *zRet = (char *)lsmMalloc(pEnv, nKey+1);
+
+ for(i=0; i<nKey; i++){
+ zRet[i] = (char)(isalnum(aKey[i]) ? aKey[i] : '.');
+ }
+ zRet[nKey] = '\0';
+ return zRet;
+}
+#endif
+
+#if 0 /* NOT USED */
+/*
+** Check that the page that pPtr currently has loaded is the correct page
+** to search for key (pKey/nKey). If it is, return 1. Otherwise, an assert
+** fails and this function does not return.
+*/
+static int assertKeyLocation(
+ MultiCursor *pCsr,
+ SegmentPtr *pPtr,
+ void *pKey, int nKey
+){
+ lsm_env *pEnv = lsmFsEnv(pCsr->pDb->pFS);
+ LsmBlob blob = {0, 0, 0};
+ int eDir;
+ int iTopic = 0; /* TODO: Fix me */
+
+ for(eDir=-1; eDir<=1; eDir+=2){
+ Page *pTest = pPtr->pPg;
+
+ lsmFsPageRef(pTest);
+ while( pTest ){
+ Segment *pSeg = pPtr->pSeg;
+ Page *pNext;
+
+ int rc = lsmFsDbPageNext(pSeg, pTest, eDir, &pNext);
+ lsmFsPageRelease(pTest);
+ if( rc ) return 1;
+ pTest = pNext;
+
+ if( pTest ){
+ int nData;
+ u8 *aData = fsPageData(pTest, &nData);
+ int nCell = pageGetNRec(aData, nData);
+ int flags = pageGetFlags(aData, nData);
+ if( nCell && 0==(flags&SEGMENT_BTREE_FLAG) ){
+ int nPgKey;
+ int iPgTopic;
+ u8 *pPgKey;
+ int res;
+ int iCell;
+
+ iCell = ((eDir < 0) ? (nCell-1) : 0);
+ pPgKey = pageGetKey(pSeg, pTest, iCell, &iPgTopic, &nPgKey, &blob);
+ res = iTopic - iPgTopic;
+ if( res==0 ) res = pCsr->pDb->xCmp(pKey, nKey, pPgKey, nPgKey);
+ if( (eDir==1 && res>0) || (eDir==-1 && res<0) ){
+ /* Taking this branch means something has gone wrong. */
+ char *zMsg = lsmMallocPrintf(pEnv, "Key \"%s\" is not on page %d",
+ keyToString(pEnv, pKey, nKey), lsmFsPageNumber(pPtr->pPg)
+ );
+ fprintf(stderr, "%s\n", zMsg);
+ assert( !"assertKeyLocation() failed" );
+ }
+ lsmFsPageRelease(pTest);
+ pTest = 0;
+ }
+ }
+ }
+ }
+
+ sortedBlobFree(&blob);
+ return 1;
+}
+#endif
+
+#ifndef NDEBUG
+static int assertSeekResult(
+ MultiCursor *pCsr,
+ SegmentPtr *pPtr,
+ int iTopic,
+ void *pKey,
+ int nKey,
+ int eSeek
+){
+ if( pPtr->pPg ){
+ int res;
+ res = sortedKeyCompare(pCsr->pDb->xCmp, iTopic, pKey, nKey,
+ rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey
+ );
+
+ if( eSeek==LSM_SEEK_EQ ) return (res==0);
+ if( eSeek==LSM_SEEK_LE ) return (res>=0);
+ if( eSeek==LSM_SEEK_GE ) return (res<=0);
+ }
+
+ return 1;
+}
+#endif
+
+static int segmentPtrSearchOversized(
+ MultiCursor *pCsr, /* Cursor context */
+ SegmentPtr *pPtr, /* Pointer to seek */
+ int iTopic, /* Topic of key to search for */
+ void *pKey, int nKey /* Key to seek to */
+){
+ int (*xCmp)(void *, int, void *, int) = pCsr->pDb->xCmp;
+ int rc = LSM_OK;
+
+ /* If the OVERSIZED flag is set, then there is no pointer in the
+ ** upper level to the next page in the segment that contains at least
+ ** one key. So compare the largest key on the current page with the
+ ** key being sought (pKey/nKey). If (pKey/nKey) is larger, advance
+ ** to the next page in the segment that contains at least one key.
+ */
+ while( rc==LSM_OK && (pPtr->flags & PGFTR_SKIP_NEXT_FLAG) ){
+ u8 *pLastKey;
+ int nLastKey;
+ int iLastTopic;
+ int res; /* Result of comparison */
+ Page *pNext;
+
+ /* Load the last key on the current page. */
+ pLastKey = pageGetKey(pPtr->pSeg,
+ pPtr->pPg, pPtr->nCell-1, &iLastTopic, &nLastKey, &pPtr->blob1
+ );
+
+ /* If the loaded key is >= than (pKey/nKey), break out of the loop.
+ ** If (pKey/nKey) is present in this array, it must be on the current
+ ** page. */
+ res = sortedKeyCompare(
+ xCmp, iLastTopic, pLastKey, nLastKey, iTopic, pKey, nKey
+ );
+ if( res>=0 ) break;
+
+ /* Advance to the next page that contains at least one key. */
+ pNext = pPtr->pPg;
+ lsmFsPageRef(pNext);
+ while( 1 ){
+ Page *pLoad;
+ u8 *aData; int nData;
+
+ rc = lsmFsDbPageNext(pPtr->pSeg, pNext, 1, &pLoad);
+ lsmFsPageRelease(pNext);
+ pNext = pLoad;
+ if( pNext==0 ) break;
+
+ assert( rc==LSM_OK );
+ aData = lsmFsPageData(pNext, &nData);
+ if( (pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG)==0
+ && pageGetNRec(aData, nData)>0
+ ){
+ break;
+ }
+ }
+ if( pNext==0 ) break;
+ segmentPtrSetPage(pPtr, pNext);
+
+ /* This should probably be an LSM_CORRUPT error. */
+ assert( rc!=LSM_OK || (pPtr->flags & PGFTR_SKIP_THIS_FLAG) );
+ }
+
+ return rc;
+}
+
+static int ptrFwdPointer(
+ Page *pPage,
+ int iCell,
+ Segment *pSeg,
+ LsmPgno *piPtr,
+ int *pbFound
+){
+ Page *pPg = pPage;
+ int iFirst = iCell;
+ int rc = LSM_OK;
+
+ do {
+ Page *pNext = 0;
+ u8 *aData;
+ int nData;
+
+ aData = lsmFsPageData(pPg, &nData);
+ if( (pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG)==0 ){
+ int i;
+ int nCell = pageGetNRec(aData, nData);
+ for(i=iFirst; i<nCell; i++){
+ u8 eType = *pageGetCell(aData, nData, i);
+ if( (eType & LSM_START_DELETE)==0 ){
+ *pbFound = 1;
+ *piPtr = pageGetRecordPtr(aData, nData, i) + pageGetPtr(aData, nData);
+ lsmFsPageRelease(pPg);
+ return LSM_OK;
+ }
+ }
+ }
+
+ rc = lsmFsDbPageNext(pSeg, pPg, 1, &pNext);
+ lsmFsPageRelease(pPg);
+ pPg = pNext;
+ iFirst = 0;
+ }while( pPg && rc==LSM_OK );
+ lsmFsPageRelease(pPg);
+
+ *pbFound = 0;
+ return rc;
+}
+
+static int sortedRhsFirst(MultiCursor *pCsr, Level *pLvl, SegmentPtr *pPtr){
+ int rc;
+ rc = segmentPtrEnd(pCsr, pPtr, 0);
+ while( pPtr->pPg && rc==LSM_OK ){
+ int res = sortedKeyCompare(pCsr->pDb->xCmp,
+ pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey,
+ rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey
+ );
+ if( res<=0 ) break;
+ rc = segmentPtrAdvance(pCsr, pPtr, 0);
+ }
+ return rc;
+}
+
+
+/*
+** This function is called as part of a SEEK_GE op on a multi-cursor if the
+** FC pointer read from segment *pPtr comes from an entry with the
+** LSM_START_DELETE flag set. In this case the pointer value cannot be
+** trusted. Instead, the pointer that should be followed is that associated
+** with the next entry in *pPtr that does not have LSM_START_DELETE set.
+**
+** Why the pointers can't be trusted:
+**
+**
+**
+** TODO: This is a stop-gap solution:
+**
+** At the moment, this function is called from within segmentPtrSeek(),
+** as part of the initial lsmMCursorSeek() call. However, consider a
+** database where the following has occurred:
+**
+** 1. A range delete removes keys 1..9999 using a range delete.
+** 2. Keys 1 through 9999 are reinserted.
+** 3. The levels containing the ops in 1. and 2. above are merged. Call
+** this level N. Level N contains FC pointers to level N+1.
+**
+** Then, if the user attempts to query for (key>=2 LIMIT 10), the
+** lsmMCursorSeek() call will iterate through 9998 entries searching for a
+** pointer down to the level N+1 that is never actually used. It would be
+** much better if the multi-cursor could do this lazily - only seek to the
+** level (N+1) page after the user has moved the cursor on level N passed
+** the big range-delete.
+*/
+static int segmentPtrFwdPointer(
+ MultiCursor *pCsr, /* Multi-cursor pPtr belongs to */
+ SegmentPtr *pPtr, /* Segment-pointer to extract FC ptr from */
+ LsmPgno *piPtr /* OUT: FC pointer value */
+){
+ Level *pLvl = pPtr->pLevel;
+ Level *pNext = pLvl->pNext;
+ Page *pPg = pPtr->pPg;
+ int rc;
+ int bFound;
+ LsmPgno iOut = 0;
+
+ if( pPtr->pSeg==&pLvl->lhs || pPtr->pSeg==&pLvl->aRhs[pLvl->nRight-1] ){
+ if( pNext==0
+ || (pNext->nRight==0 && pNext->lhs.iRoot)
+ || (pNext->nRight!=0 && pNext->aRhs[0].iRoot)
+ ){
+ /* Do nothing. The pointer will not be used anyway. */
+ return LSM_OK;
+ }
+ }else{
+ if( pPtr[1].pSeg->iRoot ){
+ return LSM_OK;
+ }
+ }
+
+ /* Search for a pointer within the current segment. */
+ lsmFsPageRef(pPg);
+ rc = ptrFwdPointer(pPg, pPtr->iCell, pPtr->pSeg, &iOut, &bFound);
+
+ if( rc==LSM_OK && bFound==0 ){
+ /* This case happens when pPtr points to the left-hand-side of a segment
+ ** currently undergoing an incremental merge. In this case, jump to the
+ ** oldest segment in the right-hand-side of the same level and continue
+ ** searching. But - do not consider any keys smaller than the levels
+ ** split-key. */
+ SegmentPtr ptr;
+
+ if( pPtr->pLevel->nRight==0 || pPtr->pSeg!=&pPtr->pLevel->lhs ){
+ return LSM_CORRUPT_BKPT;
+ }
+
+ memset(&ptr, 0, sizeof(SegmentPtr));
+ ptr.pLevel = pPtr->pLevel;
+ ptr.pSeg = &ptr.pLevel->aRhs[ptr.pLevel->nRight-1];
+ rc = sortedRhsFirst(pCsr, ptr.pLevel, &ptr);
+ if( rc==LSM_OK ){
+ rc = ptrFwdPointer(ptr.pPg, ptr.iCell, ptr.pSeg, &iOut, &bFound);
+ ptr.pPg = 0;
+ }
+ segmentPtrReset(&ptr, 0);
+ }
+
+ *piPtr = iOut;
+ return rc;
+}
+
+static int segmentPtrSeek(
+ MultiCursor *pCsr, /* Cursor context */
+ SegmentPtr *pPtr, /* Pointer to seek */
+ int iTopic, /* Key topic to seek to */
+ void *pKey, int nKey, /* Key to seek to */
+ int eSeek, /* Search bias - see above */
+ int *piPtr, /* OUT: FC pointer */
+ int *pbStop
+){
+ int (*xCmp)(void *, int, void *, int) = pCsr->pDb->xCmp;
+ int res = 0; /* Result of comparison operation */
+ int rc = LSM_OK;
+ int iMin;
+ int iMax;
+ LsmPgno iPtrOut = 0;
+
+ /* If the current page contains an oversized entry, then there are no
+ ** pointers to one or more of the subsequent pages in the sorted run.
+ ** The following call ensures that the segment-ptr points to the correct
+ ** page in this case. */
+ rc = segmentPtrSearchOversized(pCsr, pPtr, iTopic, pKey, nKey);
+ iPtrOut = pPtr->iPtr;
+
+ /* Assert that this page is the right page of this segment for the key
+ ** that we are searching for. Do this by loading page (iPg-1) and testing
+ ** that pKey/nKey is greater than all keys on that page, and then by
+ ** loading (iPg+1) and testing that pKey/nKey is smaller than all
+ ** the keys it houses.
+ **
+ ** TODO: With range-deletes in the tree, the test described above may fail.
+ */
+#if 0
+ assert( assertKeyLocation(pCsr, pPtr, pKey, nKey) );
+#endif
+
+ assert( pPtr->nCell>0
+ || pPtr->pSeg->nSize==1
+ || lsmFsDbPageIsLast(pPtr->pSeg, pPtr->pPg)
+ );
+ if( pPtr->nCell==0 ){
+ segmentPtrReset(pPtr, LSM_SEGMENTPTR_FREE_THRESHOLD);
+ }else{
+ iMin = 0;
+ iMax = pPtr->nCell-1;
+
+ while( 1 ){
+ int iTry = (iMin+iMax)/2;
+ void *pKeyT; int nKeyT; /* Key for cell iTry */
+ int iTopicT;
+
+ assert( iTry<iMax || iMin==iMax );
+
+ rc = segmentPtrLoadCell(pPtr, iTry);
+ if( rc!=LSM_OK ) break;
+
+ segmentPtrKey(pPtr, &pKeyT, &nKeyT);
+ iTopicT = rtTopic(pPtr->eType);
+
+ res = sortedKeyCompare(xCmp, iTopicT, pKeyT, nKeyT, iTopic, pKey, nKey);
+ if( res<=0 ){
+ iPtrOut = pPtr->iPtr + pPtr->iPgPtr;
+ }
+
+ if( res==0 || iMin==iMax ){
+ break;
+ }else if( res>0 ){
+ iMax = LSM_MAX(iTry-1, iMin);
+ }else{
+ iMin = iTry+1;
+ }
+ }
+
+ if( rc==LSM_OK ){
+ assert( res==0 || (iMin==iMax && iMin>=0 && iMin<pPtr->nCell) );
+ if( res ){
+ rc = segmentPtrLoadCell(pPtr, iMin);
+ }
+ assert( rc!=LSM_OK || res>0 || iPtrOut==(pPtr->iPtr + pPtr->iPgPtr) );
+
+ if( rc==LSM_OK ){
+ switch( eSeek ){
+ case LSM_SEEK_EQ: {
+ int eType = pPtr->eType;
+ if( (res<0 && (eType & LSM_START_DELETE))
+ || (res>0 && (eType & LSM_END_DELETE))
+ || (res==0 && (eType & LSM_POINT_DELETE))
+ ){
+ *pbStop = 1;
+ }else if( res==0 && (eType & LSM_INSERT) ){
+ lsm_env *pEnv = pCsr->pDb->pEnv;
+ *pbStop = 1;
+ pCsr->eType = pPtr->eType;
+ rc = sortedBlobSet(pEnv, &pCsr->key, pPtr->pKey, pPtr->nKey);
+ if( rc==LSM_OK ){
+ rc = sortedBlobSet(pEnv, &pCsr->val, pPtr->pVal, pPtr->nVal);
+ }
+ pCsr->flags |= CURSOR_SEEK_EQ;
+ }
+ segmentPtrReset(pPtr, LSM_SEGMENTPTR_FREE_THRESHOLD);
+ break;
+ }
+ case LSM_SEEK_LE:
+ if( res>0 ) rc = segmentPtrAdvance(pCsr, pPtr, 1);
+ break;
+ case LSM_SEEK_GE: {
+ /* Figure out if we need to 'skip' the pointer forward or not */
+ if( (res<=0 && (pPtr->eType & LSM_START_DELETE))
+ || (res>0 && (pPtr->eType & LSM_END_DELETE))
+ ){
+ rc = segmentPtrFwdPointer(pCsr, pPtr, &iPtrOut);
+ }
+ if( res<0 && rc==LSM_OK ){
+ rc = segmentPtrAdvance(pCsr, pPtr, 0);
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ /* If the cursor seek has found a separator key, and this cursor is
+ ** supposed to ignore separators keys, advance to the next entry. */
+ if( rc==LSM_OK && pPtr->pPg
+ && segmentPtrIgnoreSeparators(pCsr, pPtr)
+ && rtIsSeparator(pPtr->eType)
+ ){
+ assert( eSeek!=LSM_SEEK_EQ );
+ rc = segmentPtrAdvance(pCsr, pPtr, eSeek==LSM_SEEK_LE);
+ }
+ }
+
+ assert( rc!=LSM_OK || assertSeekResult(pCsr,pPtr,iTopic,pKey,nKey,eSeek) );
+ *piPtr = (int)iPtrOut;
+ return rc;
+}
+
+static int seekInBtree(
+ MultiCursor *pCsr, /* Multi-cursor object */
+ Segment *pSeg, /* Seek within this segment */
+ int iTopic,
+ void *pKey, int nKey, /* Key to seek to */
+ LsmPgno *aPg, /* OUT: Page numbers */
+ Page **ppPg /* OUT: Leaf (sorted-run) page reference */
+){
+ int i = 0;
+ int rc;
+ int iPg;
+ Page *pPg = 0;
+ LsmBlob blob = {0, 0, 0};
+
+ iPg = (int)pSeg->iRoot;
+ do {
+ LsmPgno *piFirst = 0;
+ if( aPg ){
+ aPg[i++] = iPg;
+ piFirst = &aPg[i];
+ }
+
+ rc = lsmFsDbPageGet(pCsr->pDb->pFS, pSeg, iPg, &pPg);
+ assert( rc==LSM_OK || pPg==0 );
+ if( rc==LSM_OK ){
+ u8 *aData; /* Buffer containing page data */
+ int nData; /* Size of aData[] in bytes */
+ int iMin;
+ int iMax;
+ int nRec;
+ int flags;
+
+ aData = fsPageData(pPg, &nData);
+ flags = pageGetFlags(aData, nData);
+ if( (flags & SEGMENT_BTREE_FLAG)==0 ) break;
+
+ iPg = (int)pageGetPtr(aData, nData);
+ nRec = pageGetNRec(aData, nData);
+
+ iMin = 0;
+ iMax = nRec-1;
+ while( iMax>=iMin ){
+ int iTry = (iMin+iMax)/2;
+ void *pKeyT; int nKeyT; /* Key for cell iTry */
+ int iTopicT; /* Topic for key pKeyT/nKeyT */
+ LsmPgno iPtr; /* Pointer associated with cell iTry */
+ int res; /* (pKey - pKeyT) */
+
+ rc = pageGetBtreeKey(
+ pSeg, pPg, iTry, &iPtr, &iTopicT, &pKeyT, &nKeyT, &blob
+ );
+ if( rc!=LSM_OK ) break;
+ if( piFirst && pKeyT==blob.pData ){
+ *piFirst = pageGetBtreeRef(pPg, iTry);
+ piFirst = 0;
+ i++;
+ }
+
+ res = sortedKeyCompare(
+ pCsr->pDb->xCmp, iTopic, pKey, nKey, iTopicT, pKeyT, nKeyT
+ );
+ if( res<0 ){
+ iPg = (int)iPtr;
+ iMax = iTry-1;
+ }else{
+ iMin = iTry+1;
+ }
+ }
+ lsmFsPageRelease(pPg);
+ pPg = 0;
+ }
+ }while( rc==LSM_OK );
+
+ sortedBlobFree(&blob);
+ assert( (rc==LSM_OK)==(pPg!=0) );
+ if( ppPg ){
+ *ppPg = pPg;
+ }else{
+ lsmFsPageRelease(pPg);
+ }
+ return rc;
+}
+
+static int seekInSegment(
+ MultiCursor *pCsr,
+ SegmentPtr *pPtr,
+ int iTopic,
+ void *pKey, int nKey,
+ int iPg, /* Page to search */
+ int eSeek, /* Search bias - see above */
+ int *piPtr, /* OUT: FC pointer */
+ int *pbStop /* OUT: Stop search flag */
+){
+ int iPtr = iPg;
+ int rc = LSM_OK;
+
+ if( pPtr->pSeg->iRoot ){
+ Page *pPg;
+ assert( pPtr->pSeg->iRoot!=0 );
+ rc = seekInBtree(pCsr, pPtr->pSeg, iTopic, pKey, nKey, 0, &pPg);
+ if( rc==LSM_OK ) segmentPtrSetPage(pPtr, pPg);
+ }else{
+ if( iPtr==0 ){
+ iPtr = (int)pPtr->pSeg->iFirst;
+ }
+ if( rc==LSM_OK ){
+ rc = segmentPtrLoadPage(pCsr->pDb->pFS, pPtr, iPtr);
+ }
+ }
+
+ if( rc==LSM_OK ){
+ rc = segmentPtrSeek(pCsr, pPtr, iTopic, pKey, nKey, eSeek, piPtr, pbStop);
+ }
+ return rc;
+}
+
+/*
+** Seek each segment pointer in the array of (pLvl->nRight+1) at aPtr[].
+**
+** pbStop:
+** This parameter is only significant if parameter eSeek is set to
+** LSM_SEEK_EQ. In this case, it is set to true before returning if
+** the seek operation is finished. This can happen in two ways:
+**
+** a) A key matching (pKey/nKey) is found, or
+** b) A point-delete or range-delete deleting the key is found.
+**
+** In case (a), the multi-cursor CURSOR_SEEK_EQ flag is set and the pCsr->key
+** and pCsr->val blobs populated before returning.
+*/
+static int seekInLevel(
+ MultiCursor *pCsr, /* Sorted cursor object to seek */
+ SegmentPtr *aPtr, /* Pointer to array of (nRhs+1) SPs */
+ int eSeek, /* Search bias - see above */
+ int iTopic, /* Key topic to search for */
+ void *pKey, int nKey, /* Key to search for */
+ LsmPgno *piPgno, /* IN/OUT: fraction cascade pointer (or 0) */
+ int *pbStop /* OUT: See above */
+){
+ Level *pLvl = aPtr[0].pLevel; /* Level to seek within */
+ int rc = LSM_OK; /* Return code */
+ int iOut = 0; /* Pointer to return to caller */
+ int res = -1; /* Result of xCmp(pKey, split) */
+ int nRhs = pLvl->nRight; /* Number of right-hand-side segments */
+ int bStop = 0;
+
+ /* If this is a composite level (one currently undergoing an incremental
+ ** merge), figure out if the search key is larger or smaller than the
+ ** levels split-key. */
+ if( nRhs ){
+ res = sortedKeyCompare(pCsr->pDb->xCmp, iTopic, pKey, nKey,
+ pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey
+ );
+ }
+
+ /* If (res<0), then key pKey/nKey is smaller than the split-key (or this
+ ** is not a composite level and there is no split-key). Search the
+ ** left-hand-side of the level in this case. */
+ if( res<0 ){
+ int i;
+ int iPtr = 0;
+ if( nRhs==0 ) iPtr = (int)*piPgno;
+
+ rc = seekInSegment(
+ pCsr, &aPtr[0], iTopic, pKey, nKey, iPtr, eSeek, &iOut, &bStop
+ );
+ if( rc==LSM_OK && nRhs>0 && eSeek==LSM_SEEK_GE && aPtr[0].pPg==0 ){
+ res = 0;
+ }
+ for(i=1; i<=nRhs; i++){
+ segmentPtrReset(&aPtr[i], LSM_SEGMENTPTR_FREE_THRESHOLD);
+ }
+ }
+
+ if( res>=0 ){
+ int bHit = 0; /* True if at least one rhs is not EOF */
+ int iPtr = (int)*piPgno;
+ int i;
+ segmentPtrReset(&aPtr[0], LSM_SEGMENTPTR_FREE_THRESHOLD);
+ for(i=1; rc==LSM_OK && i<=nRhs && bStop==0; i++){
+ SegmentPtr *pPtr = &aPtr[i];
+ iOut = 0;
+ rc = seekInSegment(
+ pCsr, pPtr, iTopic, pKey, nKey, iPtr, eSeek, &iOut, &bStop
+ );
+ iPtr = iOut;
+
+ /* If the segment-pointer has settled on a key that is smaller than
+ ** the splitkey, invalidate the segment-pointer. */
+ if( pPtr->pPg ){
+ res = sortedKeyCompare(pCsr->pDb->xCmp,
+ rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey,
+ pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey
+ );
+ if( res<0 ){
+ if( pPtr->eType & LSM_START_DELETE ){
+ pPtr->eType &= ~LSM_INSERT;
+ pPtr->pKey = pLvl->pSplitKey;
+ pPtr->nKey = pLvl->nSplitKey;
+ pPtr->pVal = 0;
+ pPtr->nVal = 0;
+ }else{
+ segmentPtrReset(pPtr, LSM_SEGMENTPTR_FREE_THRESHOLD);
+ }
+ }
+ }
+
+ if( aPtr[i].pKey ) bHit = 1;
+ }
+
+ if( rc==LSM_OK && eSeek==LSM_SEEK_LE && bHit==0 ){
+ rc = segmentPtrEnd(pCsr, &aPtr[0], 1);
+ }
+ }
+
+ assert( eSeek==LSM_SEEK_EQ || bStop==0 );
+ *piPgno = iOut;
+ *pbStop = bStop;
+ return rc;
+}
+
+static void multiCursorGetKey(
+ MultiCursor *pCsr,
+ int iKey,
+ int *peType, /* OUT: Key type (SORTED_WRITE etc.) */
+ void **ppKey, /* OUT: Pointer to buffer containing key */
+ int *pnKey /* OUT: Size of *ppKey in bytes */
+){
+ int nKey = 0;
+ void *pKey = 0;
+ int eType = 0;
+
+ switch( iKey ){
+ case CURSOR_DATA_TREE0:
+ case CURSOR_DATA_TREE1: {
+ TreeCursor *pTreeCsr = pCsr->apTreeCsr[iKey-CURSOR_DATA_TREE0];
+ if( lsmTreeCursorValid(pTreeCsr) ){
+ lsmTreeCursorKey(pTreeCsr, &eType, &pKey, &nKey);
+ }
+ break;
+ }
+
+ case CURSOR_DATA_SYSTEM: {
+ Snapshot *pWorker = pCsr->pDb->pWorker;
+ if( pWorker && (pCsr->flags & CURSOR_FLUSH_FREELIST) ){
+ int nEntry = pWorker->freelist.nEntry;
+ if( pCsr->iFree < (nEntry*2) ){
+ FreelistEntry *aEntry = pWorker->freelist.aEntry;
+ int i = nEntry - 1 - (pCsr->iFree / 2);
+ u32 iKey2 = 0;
+
+ if( (pCsr->iFree % 2) ){
+ eType = LSM_END_DELETE|LSM_SYSTEMKEY;
+ iKey2 = aEntry[i].iBlk-1;
+ }else if( aEntry[i].iId>=0 ){
+ eType = LSM_INSERT|LSM_SYSTEMKEY;
+ iKey2 = aEntry[i].iBlk;
+
+ /* If the in-memory entry immediately before this one was a
+ ** DELETE, and the block number is one greater than the current
+ ** block number, mark this entry as an "end-delete-range". */
+ if( i<(nEntry-1) && aEntry[i+1].iBlk==iKey2+1 && aEntry[i+1].iId<0 ){
+ eType |= LSM_END_DELETE;
+ }
+
+ }else{
+ eType = LSM_START_DELETE|LSM_SYSTEMKEY;
+ iKey2 = aEntry[i].iBlk + 1;
+ }
+
+ /* If the in-memory entry immediately after this one is a
+ ** DELETE, and the block number is one less than the current
+ ** key, mark this entry as an "start-delete-range". */
+ if( i>0 && aEntry[i-1].iBlk==iKey2-1 && aEntry[i-1].iId<0 ){
+ eType |= LSM_START_DELETE;
+ }
+
+ pKey = pCsr->pSystemVal;
+ nKey = 4;
+ lsmPutU32(pKey, ~iKey2);
+ }
+ }
+ break;
+ }
+
+ default: {
+ int iPtr = iKey - CURSOR_DATA_SEGMENT;
+ assert( iPtr>=0 );
+ if( iPtr==pCsr->nPtr ){
+ if( pCsr->pBtCsr ){
+ pKey = pCsr->pBtCsr->pKey;
+ nKey = pCsr->pBtCsr->nKey;
+ eType = pCsr->pBtCsr->eType;
+ }
+ }else if( iPtr<pCsr->nPtr ){
+ SegmentPtr *pPtr = &pCsr->aPtr[iPtr];
+ if( pPtr->pPg ){
+ pKey = pPtr->pKey;
+ nKey = pPtr->nKey;
+ eType = pPtr->eType;
+ }
+ }
+ break;
+ }
+ }
+
+ if( peType ) *peType = eType;
+ if( pnKey ) *pnKey = nKey;
+ if( ppKey ) *ppKey = pKey;
+}
+
+static int sortedDbKeyCompare(
+ MultiCursor *pCsr,
+ int iLhsFlags, void *pLhsKey, int nLhsKey,
+ int iRhsFlags, void *pRhsKey, int nRhsKey
+){
+ int (*xCmp)(void *, int, void *, int) = pCsr->pDb->xCmp;
+ int res;
+
+ /* Compare the keys, including the system flag. */
+ res = sortedKeyCompare(xCmp,
+ rtTopic(iLhsFlags), pLhsKey, nLhsKey,
+ rtTopic(iRhsFlags), pRhsKey, nRhsKey
+ );
+
+ /* If a key has the LSM_START_DELETE flag set, but not the LSM_INSERT or
+ ** LSM_POINT_DELETE flags, it is considered a delta larger. This prevents
+ ** the beginning of an open-ended set from masking a database entry or
+ ** delete at a lower level. */
+ if( res==0 && (pCsr->flags & CURSOR_IGNORE_DELETE) ){
+ const int m = LSM_POINT_DELETE|LSM_INSERT|LSM_END_DELETE |LSM_START_DELETE;
+ int iDel1 = 0;
+ int iDel2 = 0;
+
+ if( LSM_START_DELETE==(iLhsFlags & m) ) iDel1 = +1;
+ if( LSM_END_DELETE ==(iLhsFlags & m) ) iDel1 = -1;
+ if( LSM_START_DELETE==(iRhsFlags & m) ) iDel2 = +1;
+ if( LSM_END_DELETE ==(iRhsFlags & m) ) iDel2 = -1;
+
+ res = (iDel1 - iDel2);
+ }
+
+ return res;
+}
+
+static void multiCursorDoCompare(MultiCursor *pCsr, int iOut, int bReverse){
+ int i1;
+ int i2;
+ int iRes;
+ void *pKey1; int nKey1; int eType1;
+ void *pKey2; int nKey2; int eType2;
+ const int mul = (bReverse ? -1 : 1);
+
+ assert( pCsr->aTree && iOut<pCsr->nTree );
+ if( iOut>=(pCsr->nTree/2) ){
+ i1 = (iOut - pCsr->nTree/2) * 2;
+ i2 = i1 + 1;
+ }else{
+ i1 = pCsr->aTree[iOut*2];
+ i2 = pCsr->aTree[iOut*2+1];
+ }
+
+ multiCursorGetKey(pCsr, i1, &eType1, &pKey1, &nKey1);
+ multiCursorGetKey(pCsr, i2, &eType2, &pKey2, &nKey2);
+
+ if( pKey1==0 ){
+ iRes = i2;
+ }else if( pKey2==0 ){
+ iRes = i1;
+ }else{
+ int res;
+
+ /* Compare the keys */
+ res = sortedDbKeyCompare(pCsr,
+ eType1, pKey1, nKey1, eType2, pKey2, nKey2
+ );
+
+ res = res * mul;
+ if( res==0 ){
+ /* The two keys are identical. Normally, this means that the key from
+ ** the newer run clobbers the old. However, if the newer key is a
+ ** separator key, or a range-delete-boundary only, do not allow it
+ ** to clobber an older entry. */
+ int nc1 = (eType1 & (LSM_INSERT|LSM_POINT_DELETE))==0;
+ int nc2 = (eType2 & (LSM_INSERT|LSM_POINT_DELETE))==0;
+ iRes = (nc1 > nc2) ? i2 : i1;
+ }else if( res<0 ){
+ iRes = i1;
+ }else{
+ iRes = i2;
+ }
+ }
+
+ pCsr->aTree[iOut] = iRes;
+}
+
+/*
+** This function advances segment pointer iPtr belonging to multi-cursor
+** pCsr forward (bReverse==0) or backward (bReverse!=0).
+**
+** If the segment pointer points to a segment that is part of a composite
+** level, then the following special case is handled.
+**
+** * If iPtr is the lhs of a composite level, and the cursor is being
+** advanced forwards, and segment iPtr is at EOF, move all pointers
+** that correspond to rhs segments of the same level to the first
+** key in their respective data.
+*/
+static int segmentCursorAdvance(
+ MultiCursor *pCsr,
+ int iPtr,
+ int bReverse
+){
+ int rc;
+ SegmentPtr *pPtr = &pCsr->aPtr[iPtr];
+ Level *pLvl = pPtr->pLevel;
+ int bComposite; /* True if pPtr is part of composite level */
+
+ /* Advance the segment-pointer object. */
+ rc = segmentPtrAdvance(pCsr, pPtr, bReverse);
+ if( rc!=LSM_OK ) return rc;
+
+ bComposite = (pLvl->nRight>0 && pCsr->nPtr>pLvl->nRight);
+ if( bComposite && pPtr->pPg==0 ){
+ int bFix = 0;
+ if( (bReverse==0)==(pPtr->pSeg==&pLvl->lhs) ){
+ int i;
+ if( bReverse ){
+ SegmentPtr *pLhs = &pCsr->aPtr[iPtr - 1 - (pPtr->pSeg - pLvl->aRhs)];
+ for(i=0; i<pLvl->nRight; i++){
+ if( pLhs[i+1].pPg ) break;
+ }
+ if( i==pLvl->nRight ){
+ bFix = 1;
+ rc = segmentPtrEnd(pCsr, pLhs, 1);
+ }
+ }else{
+ bFix = 1;
+ for(i=0; rc==LSM_OK && i<pLvl->nRight; i++){
+ rc = sortedRhsFirst(pCsr, pLvl, &pCsr->aPtr[iPtr+1+i]);
+ }
+ }
+ }
+
+ if( bFix ){
+ int i;
+ for(i=pCsr->nTree-1; i>0; i--){
+ multiCursorDoCompare(pCsr, i, bReverse);
+ }
+ }
+ }
+
+#if 0
+ if( bComposite && pPtr->pSeg==&pLvl->lhs /* lhs of composite level */
+ && bReverse==0 /* csr advanced forwards */
+ && pPtr->pPg==0 /* segment at EOF */
+ ){
+ int i;
+ for(i=0; rc==LSM_OK && i<pLvl->nRight; i++){
+ rc = sortedRhsFirst(pCsr, pLvl, &pCsr->aPtr[iPtr+1+i]);
+ }
+ for(i=pCsr->nTree-1; i>0; i--){
+ multiCursorDoCompare(pCsr, i, 0);
+ }
+ }
+#endif
+
+ return rc;
+}
+
+static void mcursorFreeComponents(MultiCursor *pCsr){
+ int i;
+ lsm_env *pEnv = pCsr->pDb->pEnv;
+
+ /* Close the tree cursor, if any. */
+ lsmTreeCursorDestroy(pCsr->apTreeCsr[0]);
+ lsmTreeCursorDestroy(pCsr->apTreeCsr[1]);
+
+ /* Reset the segment pointers */
+ for(i=0; i<pCsr->nPtr; i++){
+ segmentPtrReset(&pCsr->aPtr[i], 0);
+ }
+
+ /* And the b-tree cursor, if any */
+ btreeCursorFree(pCsr->pBtCsr);
+
+ /* Free allocations */
+ lsmFree(pEnv, pCsr->aPtr);
+ lsmFree(pEnv, pCsr->aTree);
+ lsmFree(pEnv, pCsr->pSystemVal);
+
+ /* Zero fields */
+ pCsr->nPtr = 0;
+ pCsr->aPtr = 0;
+ pCsr->nTree = 0;
+ pCsr->aTree = 0;
+ pCsr->pSystemVal = 0;
+ pCsr->apTreeCsr[0] = 0;
+ pCsr->apTreeCsr[1] = 0;
+ pCsr->pBtCsr = 0;
+}
+
+void lsmMCursorFreeCache(lsm_db *pDb){
+ MultiCursor *p;
+ MultiCursor *pNext;
+ for(p=pDb->pCsrCache; p; p=pNext){
+ pNext = p->pNext;
+ lsmMCursorClose(p, 0);
+ }
+ pDb->pCsrCache = 0;
+}
+
+/*
+** Close the cursor passed as the first argument.
+**
+** If the bCache parameter is true, then shift the cursor to the pCsrCache
+** list for possible reuse instead of actually deleting it.
+*/
+void lsmMCursorClose(MultiCursor *pCsr, int bCache){
+ if( pCsr ){
+ lsm_db *pDb = pCsr->pDb;
+ MultiCursor **pp; /* Iterator variable */
+
+ /* The cursor may or may not be currently part of the linked list
+ ** starting at lsm_db.pCsr. If it is, extract it. */
+ for(pp=&pDb->pCsr; *pp; pp=&((*pp)->pNext)){
+ if( *pp==pCsr ){
+ *pp = pCsr->pNext;
+ break;
+ }
+ }
+
+ if( bCache ){
+ int i; /* Used to iterate through segment-pointers */
+
+ /* Release any page references held by this cursor. */
+ assert( !pCsr->pBtCsr );
+ for(i=0; i<pCsr->nPtr; i++){
+ SegmentPtr *pPtr = &pCsr->aPtr[i];
+ lsmFsPageRelease(pPtr->pPg);
+ pPtr->pPg = 0;
+ }
+
+ /* Reset the tree cursors */
+ lsmTreeCursorReset(pCsr->apTreeCsr[0]);
+ lsmTreeCursorReset(pCsr->apTreeCsr[1]);
+
+ /* Add the cursor to the pCsrCache list */
+ pCsr->pNext = pDb->pCsrCache;
+ pDb->pCsrCache = pCsr;
+ }else{
+ /* Free the allocation used to cache the current key, if any. */
+ sortedBlobFree(&pCsr->key);
+ sortedBlobFree(&pCsr->val);
+
+ /* Free the component cursors */
+ mcursorFreeComponents(pCsr);
+
+ /* Free the cursor structure itself */
+ lsmFree(pDb->pEnv, pCsr);
+ }
+ }
+}
+
+#define TREE_NONE 0
+#define TREE_OLD 1
+#define TREE_BOTH 2
+
+/*
+** Parameter eTree is one of TREE_OLD or TREE_BOTH.
+*/
+static int multiCursorAddTree(MultiCursor *pCsr, Snapshot *pSnap, int eTree){
+ int rc = LSM_OK;
+ lsm_db *db = pCsr->pDb;
+
+ /* Add a tree cursor on the 'old' tree, if it exists. */
+ if( eTree!=TREE_NONE
+ && lsmTreeHasOld(db)
+ && db->treehdr.iOldLog!=pSnap->iLogOff
+ ){
+ rc = lsmTreeCursorNew(db, 1, &pCsr->apTreeCsr[1]);
+ }
+
+ /* Add a tree cursor on the 'current' tree, if required. */
+ if( rc==LSM_OK && eTree==TREE_BOTH ){
+ rc = lsmTreeCursorNew(db, 0, &pCsr->apTreeCsr[0]);
+ }
+
+ return rc;
+}
+
+static int multiCursorAddRhs(MultiCursor *pCsr, Level *pLvl){
+ int i;
+ int nRhs = pLvl->nRight;
+
+ assert( pLvl->nRight>0 );
+ assert( pCsr->aPtr==0 );
+ pCsr->aPtr = lsmMallocZero(pCsr->pDb->pEnv, sizeof(SegmentPtr) * nRhs);
+ if( !pCsr->aPtr ) return LSM_NOMEM_BKPT;
+ pCsr->nPtr = nRhs;
+
+ for(i=0; i<nRhs; i++){
+ pCsr->aPtr[i].pSeg = &pLvl->aRhs[i];
+ pCsr->aPtr[i].pLevel = pLvl;
+ }
+
+ return LSM_OK;
+}
+
+static void multiCursorAddOne(MultiCursor *pCsr, Level *pLvl, int *pRc){
+ if( *pRc==LSM_OK ){
+ int iPtr = pCsr->nPtr;
+ int i;
+ pCsr->aPtr[iPtr].pLevel = pLvl;
+ pCsr->aPtr[iPtr].pSeg = &pLvl->lhs;
+ iPtr++;
+ for(i=0; i<pLvl->nRight; i++){
+ pCsr->aPtr[iPtr].pLevel = pLvl;
+ pCsr->aPtr[iPtr].pSeg = &pLvl->aRhs[i];
+ iPtr++;
+ }
+
+ if( pLvl->nRight && pLvl->pSplitKey==0 ){
+ sortedSplitkey(pCsr->pDb, pLvl, pRc);
+ }
+ pCsr->nPtr = iPtr;
+ }
+}
+
+static int multiCursorAddAll(MultiCursor *pCsr, Snapshot *pSnap){
+ Level *pLvl;
+ int nPtr = 0;
+ int rc = LSM_OK;
+
+ for(pLvl=pSnap->pLevel; pLvl; pLvl=pLvl->pNext){
+ /* If the LEVEL_INCOMPLETE flag is set, then this function is being
+ ** called (indirectly) from within a sortedNewToplevel() call to
+ ** construct pLvl. In this case ignore pLvl - this cursor is going to
+ ** be used to retrieve a freelist entry from the LSM, and the partially
+ ** complete level may confuse it. */
+ if( pLvl->flags & LEVEL_INCOMPLETE ) continue;
+ nPtr += (1 + pLvl->nRight);
+ }
+
+ assert( pCsr->aPtr==0 );
+ pCsr->aPtr = lsmMallocZeroRc(pCsr->pDb->pEnv, sizeof(SegmentPtr) * nPtr, &rc);
+
+ for(pLvl=pSnap->pLevel; pLvl; pLvl=pLvl->pNext){
+ if( (pLvl->flags & LEVEL_INCOMPLETE)==0 ){
+ multiCursorAddOne(pCsr, pLvl, &rc);
+ }
+ }
+
+ return rc;
+}
+
+static int multiCursorInit(MultiCursor *pCsr, Snapshot *pSnap){
+ int rc;
+ rc = multiCursorAddAll(pCsr, pSnap);
+ if( rc==LSM_OK ){
+ rc = multiCursorAddTree(pCsr, pSnap, TREE_BOTH);
+ }
+ pCsr->flags |= (CURSOR_IGNORE_SYSTEM | CURSOR_IGNORE_DELETE);
+ return rc;
+}
+
+static MultiCursor *multiCursorNew(lsm_db *db, int *pRc){
+ MultiCursor *pCsr;
+ pCsr = (MultiCursor *)lsmMallocZeroRc(db->pEnv, sizeof(MultiCursor), pRc);
+ if( pCsr ){
+ pCsr->pNext = db->pCsr;
+ db->pCsr = pCsr;
+ pCsr->pDb = db;
+ }
+ return pCsr;
+}
+
+
+void lsmSortedRemap(lsm_db *pDb){
+ MultiCursor *pCsr;
+ for(pCsr=pDb->pCsr; pCsr; pCsr=pCsr->pNext){
+ int iPtr;
+ if( pCsr->pBtCsr ){
+ btreeCursorLoadKey(pCsr->pBtCsr);
+ }
+ for(iPtr=0; iPtr<pCsr->nPtr; iPtr++){
+ segmentPtrLoadCell(&pCsr->aPtr[iPtr], pCsr->aPtr[iPtr].iCell);
+ }
+ }
+}
+
+static void multiCursorReadSeparators(MultiCursor *pCsr){
+ if( pCsr->nPtr>0 ){
+ pCsr->flags |= CURSOR_READ_SEPARATORS;
+ }
+}
+
+/*
+** Have this cursor skip over SORTED_DELETE entries.
+*/
+static void multiCursorIgnoreDelete(MultiCursor *pCsr){
+ if( pCsr ) pCsr->flags |= CURSOR_IGNORE_DELETE;
+}
+
+/*
+** If the free-block list is not empty, then have this cursor visit a key
+** with (a) the system bit set, and (b) the key "FREELIST" and (c) a value
+** blob containing the serialized free-block list.
+*/
+static int multiCursorVisitFreelist(MultiCursor *pCsr){
+ int rc = LSM_OK;
+ pCsr->flags |= CURSOR_FLUSH_FREELIST;
+ pCsr->pSystemVal = lsmMallocRc(pCsr->pDb->pEnv, 4 + 8, &rc);
+ return rc;
+}
+
+/*
+** Allocate and return a new database cursor.
+**
+** This method should only be called to allocate user cursors. As it may
+** recycle a cursor from lsm_db.pCsrCache.
+*/
+int lsmMCursorNew(
+ lsm_db *pDb, /* Database handle */
+ MultiCursor **ppCsr /* OUT: Allocated cursor */
+){
+ MultiCursor *pCsr = 0;
+ int rc = LSM_OK;
+
+ if( pDb->pCsrCache ){
+ int bOld; /* True if there is an old in-memory tree */
+
+ /* Remove a cursor from the pCsrCache list and add it to the open list. */
+ pCsr = pDb->pCsrCache;
+ pDb->pCsrCache = pCsr->pNext;
+ pCsr->pNext = pDb->pCsr;
+ pDb->pCsr = pCsr;
+
+ /* The cursor can almost be used as is, except that the old in-memory
+ ** tree cursor may be present and not required, or required and not
+ ** present. Fix this if required. */
+ bOld = (lsmTreeHasOld(pDb) && pDb->treehdr.iOldLog!=pDb->pClient->iLogOff);
+ if( !bOld && pCsr->apTreeCsr[1] ){
+ lsmTreeCursorDestroy(pCsr->apTreeCsr[1]);
+ pCsr->apTreeCsr[1] = 0;
+ }else if( bOld && !pCsr->apTreeCsr[1] ){
+ rc = lsmTreeCursorNew(pDb, 1, &pCsr->apTreeCsr[1]);
+ }
+
+ pCsr->flags = (CURSOR_IGNORE_SYSTEM | CURSOR_IGNORE_DELETE);
+
+ }else{
+ pCsr = multiCursorNew(pDb, &rc);
+ if( rc==LSM_OK ) rc = multiCursorInit(pCsr, pDb->pClient);
+ }
+
+ if( rc!=LSM_OK ){
+ lsmMCursorClose(pCsr, 0);
+ pCsr = 0;
+ }
+ assert( (rc==LSM_OK)==(pCsr!=0) );
+ *ppCsr = pCsr;
+ return rc;
+}
+
+static int multiCursorGetVal(
+ MultiCursor *pCsr,
+ int iVal,
+ void **ppVal,
+ int *pnVal
+){
+ int rc = LSM_OK;
+
+ *ppVal = 0;
+ *pnVal = 0;
+
+ switch( iVal ){
+ case CURSOR_DATA_TREE0:
+ case CURSOR_DATA_TREE1: {
+ TreeCursor *pTreeCsr = pCsr->apTreeCsr[iVal-CURSOR_DATA_TREE0];
+ if( lsmTreeCursorValid(pTreeCsr) ){
+ lsmTreeCursorValue(pTreeCsr, ppVal, pnVal);
+ }else{
+ *ppVal = 0;
+ *pnVal = 0;
+ }
+ break;
+ }
+
+ case CURSOR_DATA_SYSTEM: {
+ Snapshot *pWorker = pCsr->pDb->pWorker;
+ if( pWorker
+ && (pCsr->iFree % 2)==0
+ && pCsr->iFree < (pWorker->freelist.nEntry*2)
+ ){
+ int iEntry = pWorker->freelist.nEntry - 1 - (pCsr->iFree / 2);
+ u8 *aVal = &((u8 *)(pCsr->pSystemVal))[4];
+ lsmPutU64(aVal, pWorker->freelist.aEntry[iEntry].iId);
+ *ppVal = aVal;
+ *pnVal = 8;
+ }
+ break;
+ }
+
+ default: {
+ int iPtr = iVal-CURSOR_DATA_SEGMENT;
+ if( iPtr<pCsr->nPtr ){
+ SegmentPtr *pPtr = &pCsr->aPtr[iPtr];
+ if( pPtr->pPg ){
+ *ppVal = pPtr->pVal;
+ *pnVal = pPtr->nVal;
+ }
+ }
+ }
+ }
+
+ assert( rc==LSM_OK || (*ppVal==0 && *pnVal==0) );
+ return rc;
+}
+
+static int multiCursorAdvance(MultiCursor *pCsr, int bReverse);
+
+/*
+** This function is called by worker connections to walk the part of the
+** free-list stored within the LSM data structure.
+*/
+int lsmSortedWalkFreelist(
+ lsm_db *pDb, /* Database handle */
+ int bReverse, /* True to iterate from largest to smallest */
+ int (*x)(void *, int, i64), /* Callback function */
+ void *pCtx /* First argument to pass to callback */
+){
+ MultiCursor *pCsr; /* Cursor used to read db */
+ int rc = LSM_OK; /* Return Code */
+ Snapshot *pSnap = 0;
+
+ assert( pDb->pWorker );
+ if( pDb->bIncrMerge ){
+ rc = lsmCheckpointDeserialize(pDb, 0, pDb->pShmhdr->aSnap1, &pSnap);
+ if( rc!=LSM_OK ) return rc;
+ }else{
+ pSnap = pDb->pWorker;
+ }
+
+ pCsr = multiCursorNew(pDb, &rc);
+ if( pCsr ){
+ rc = multiCursorAddAll(pCsr, pSnap);
+ pCsr->flags |= CURSOR_IGNORE_DELETE;
+ }
+
+ if( rc==LSM_OK ){
+ if( bReverse==0 ){
+ rc = lsmMCursorLast(pCsr);
+ }else{
+ rc = lsmMCursorSeek(pCsr, 1, "", 0, LSM_SEEK_GE);
+ }
+
+ while( rc==LSM_OK && lsmMCursorValid(pCsr) && rtIsSystem(pCsr->eType) ){
+ void *pKey; int nKey;
+ void *pVal = 0; int nVal = 0;
+
+ rc = lsmMCursorKey(pCsr, &pKey, &nKey);
+ if( rc==LSM_OK ) rc = lsmMCursorValue(pCsr, &pVal, &nVal);
+ if( rc==LSM_OK && (nKey!=4 || nVal!=8) ) rc = LSM_CORRUPT_BKPT;
+
+ if( rc==LSM_OK ){
+ int iBlk;
+ i64 iSnap;
+ iBlk = (int)(~(lsmGetU32((u8 *)pKey)));
+ iSnap = (i64)lsmGetU64((u8 *)pVal);
+ if( x(pCtx, iBlk, iSnap) ) break;
+ rc = multiCursorAdvance(pCsr, !bReverse);
+ }
+ }
+ }
+
+ lsmMCursorClose(pCsr, 0);
+ if( pSnap!=pDb->pWorker ){
+ lsmFreeSnapshot(pDb->pEnv, pSnap);
+ }
+
+ return rc;
+}
+
+int lsmSortedLoadFreelist(
+ lsm_db *pDb, /* Database handle (must be worker) */
+ void **ppVal, /* OUT: Blob containing LSM free-list */
+ int *pnVal /* OUT: Size of *ppVal blob in bytes */
+){
+ MultiCursor *pCsr; /* Cursor used to retreive free-list */
+ int rc = LSM_OK; /* Return Code */
+
+ assert( pDb->pWorker );
+ assert( *ppVal==0 && *pnVal==0 );
+
+ pCsr = multiCursorNew(pDb, &rc);
+ if( pCsr ){
+ rc = multiCursorAddAll(pCsr, pDb->pWorker);
+ pCsr->flags |= CURSOR_IGNORE_DELETE;
+ }
+
+ if( rc==LSM_OK ){
+ rc = lsmMCursorLast(pCsr);
+ if( rc==LSM_OK
+ && rtIsWrite(pCsr->eType) && rtIsSystem(pCsr->eType)
+ && pCsr->key.nData==8
+ && 0==memcmp(pCsr->key.pData, "FREELIST", 8)
+ ){
+ void *pVal; int nVal; /* Value read from database */
+ rc = lsmMCursorValue(pCsr, &pVal, &nVal);
+ if( rc==LSM_OK ){
+ *ppVal = lsmMallocRc(pDb->pEnv, nVal, &rc);
+ if( *ppVal ){
+ memcpy(*ppVal, pVal, nVal);
+ *pnVal = nVal;
+ }
+ }
+ }
+
+ lsmMCursorClose(pCsr, 0);
+ }
+
+ return rc;
+}
+
+static int multiCursorAllocTree(MultiCursor *pCsr){
+ int rc = LSM_OK;
+ if( pCsr->aTree==0 ){
+ int nByte; /* Bytes of space to allocate */
+ int nMin; /* Total number of cursors being merged */
+
+ nMin = CURSOR_DATA_SEGMENT + pCsr->nPtr + (pCsr->pBtCsr!=0);
+ pCsr->nTree = 2;
+ while( pCsr->nTree<nMin ){
+ pCsr->nTree = pCsr->nTree*2;
+ }
+
+ nByte = sizeof(int)*pCsr->nTree*2;
+ pCsr->aTree = (int *)lsmMallocZeroRc(pCsr->pDb->pEnv, nByte, &rc);
+ }
+ return rc;
+}
+
+static void multiCursorCacheKey(MultiCursor *pCsr, int *pRc){
+ if( *pRc==LSM_OK ){
+ void *pKey;
+ int nKey;
+ multiCursorGetKey(pCsr, pCsr->aTree[1], &pCsr->eType, &pKey, &nKey);
+ *pRc = sortedBlobSet(pCsr->pDb->pEnv, &pCsr->key, pKey, nKey);
+ }
+}
+
+#ifdef LSM_DEBUG_EXPENSIVE
+static void assertCursorTree(MultiCursor *pCsr){
+ int bRev = !!(pCsr->flags & CURSOR_PREV_OK);
+ int *aSave = pCsr->aTree;
+ int nSave = pCsr->nTree;
+ int rc;
+
+ pCsr->aTree = 0;
+ pCsr->nTree = 0;
+ rc = multiCursorAllocTree(pCsr);
+ if( rc==LSM_OK ){
+ int i;
+ for(i=pCsr->nTree-1; i>0; i--){
+ multiCursorDoCompare(pCsr, i, bRev);
+ }
+
+ assert( nSave==pCsr->nTree
+ && 0==memcmp(aSave, pCsr->aTree, sizeof(int)*nSave)
+ );
+
+ lsmFree(pCsr->pDb->pEnv, pCsr->aTree);
+ }
+
+ pCsr->aTree = aSave;
+ pCsr->nTree = nSave;
+}
+#else
+# define assertCursorTree(x)
+#endif
+
+static int mcursorLocationOk(MultiCursor *pCsr, int bDeleteOk){
+ int eType = pCsr->eType;
+ int iKey;
+ int i;
+ int rdmask;
+
+ assert( pCsr->flags & (CURSOR_NEXT_OK|CURSOR_PREV_OK) );
+ assertCursorTree(pCsr);
+
+ rdmask = (pCsr->flags & CURSOR_NEXT_OK) ? LSM_END_DELETE : LSM_START_DELETE;
+
+ /* If the cursor does not currently point to an actual database key (i.e.
+ ** it points to a delete key, or the start or end of a range-delete), and
+ ** the CURSOR_IGNORE_DELETE flag is set, skip past this entry. */
+ if( (pCsr->flags & CURSOR_IGNORE_DELETE) && bDeleteOk==0 ){
+ if( (eType & LSM_INSERT)==0 ) return 0;
+ }
+
+ /* If the cursor points to a system key (free-list entry), and the
+ ** CURSOR_IGNORE_SYSTEM flag is set, skip thie entry. */
+ if( (pCsr->flags & CURSOR_IGNORE_SYSTEM) && rtTopic(eType)!=0 ){
+ return 0;
+ }
+
+#ifndef NDEBUG
+ /* This block fires assert() statements to check one of the assumptions
+ ** in the comment below - that if the lhs sub-cursor of a level undergoing
+ ** a merge is valid, then all the rhs sub-cursors must be at EOF.
+ **
+ ** Also assert that all rhs sub-cursors are either at EOF or point to
+ ** a key that is not less than the level split-key. */
+ for(i=0; i<pCsr->nPtr; i++){
+ SegmentPtr *pPtr = &pCsr->aPtr[i];
+ Level *pLvl = pPtr->pLevel;
+ if( pLvl->nRight && pPtr->pPg ){
+ if( pPtr->pSeg==&pLvl->lhs ){
+ int j;
+ for(j=0; j<pLvl->nRight; j++) assert( pPtr[j+1].pPg==0 );
+ }else{
+ int res = sortedKeyCompare(pCsr->pDb->xCmp,
+ rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey,
+ pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey
+ );
+ assert( res>=0 );
+ }
+ }
+ }
+#endif
+
+ /* Now check if this key has already been deleted by a range-delete. If
+ ** so, skip past it.
+ **
+ ** Assume, for the moment, that the tree contains no levels currently
+ ** undergoing incremental merge, and that this cursor is iterating forwards
+ ** through the database keys. The cursor currently points to a key in
+ ** level L. This key has already been deleted if any of the sub-cursors
+ ** that point to levels newer than L (or to the in-memory tree) point to
+ ** a key greater than the current key with the LSM_END_DELETE flag set.
+ **
+ ** Or, if the cursor is iterating backwards through data keys, if any
+ ** such sub-cursor points to a key smaller than the current key with the
+ ** LSM_START_DELETE flag set.
+ **
+ ** Why it works with levels undergoing a merge too:
+ **
+ ** When a cursor iterates forwards, the sub-cursors for the rhs of a
+ ** level are only activated once the lhs reaches EOF. So when iterating
+ ** forwards, the keys visited are the same as if the level was completely
+ ** merged.
+ **
+ ** If the cursor is iterating backwards, then the lhs sub-cursor is not
+ ** initialized until the last of the rhs sub-cursors has reached EOF.
+ ** Additionally, if the START_DELETE flag is set on the last entry (in
+ ** reverse order - so the entry with the smallest key) of a rhs sub-cursor,
+ ** then a pseudo-key equal to the levels split-key with the END_DELETE
+ ** flag set is visited by the sub-cursor.
+ */
+ iKey = pCsr->aTree[1];
+ for(i=0; i<iKey; i++){
+ int csrflags;
+ multiCursorGetKey(pCsr, i, &csrflags, 0, 0);
+ if( (rdmask & csrflags) ){
+ const int SD_ED = (LSM_START_DELETE|LSM_END_DELETE);
+ if( (csrflags & SD_ED)==SD_ED
+ || (pCsr->flags & CURSOR_IGNORE_DELETE)==0
+ ){
+ void *pKey; int nKey;
+ multiCursorGetKey(pCsr, i, 0, &pKey, &nKey);
+ if( 0==sortedKeyCompare(pCsr->pDb->xCmp,
+ rtTopic(eType), pCsr->key.pData, pCsr->key.nData,
+ rtTopic(csrflags), pKey, nKey
+ )){
+ continue;
+ }
+ }
+ return 0;
+ }
+ }
+
+ /* The current cursor position is one this cursor should visit. Return 1. */
+ return 1;
+}
+
+static int multiCursorSetupTree(MultiCursor *pCsr, int bRev){
+ int rc;
+
+ rc = multiCursorAllocTree(pCsr);
+ if( rc==LSM_OK ){
+ int i;
+ for(i=pCsr->nTree-1; i>0; i--){
+ multiCursorDoCompare(pCsr, i, bRev);
+ }
+ }
+
+ assertCursorTree(pCsr);
+ multiCursorCacheKey(pCsr, &rc);
+
+ if( rc==LSM_OK && mcursorLocationOk(pCsr, 0)==0 ){
+ rc = multiCursorAdvance(pCsr, bRev);
+ }
+ return rc;
+}
+
+
+static int multiCursorEnd(MultiCursor *pCsr, int bLast){
+ int rc = LSM_OK;
+ int i;
+
+ pCsr->flags &= ~(CURSOR_NEXT_OK | CURSOR_PREV_OK | CURSOR_SEEK_EQ);
+ pCsr->flags |= (bLast ? CURSOR_PREV_OK : CURSOR_NEXT_OK);
+ pCsr->iFree = 0;
+
+ /* Position the two in-memory tree cursors */
+ for(i=0; rc==LSM_OK && i<2; i++){
+ if( pCsr->apTreeCsr[i] ){
+ rc = lsmTreeCursorEnd(pCsr->apTreeCsr[i], bLast);
+ }
+ }
+
+ for(i=0; rc==LSM_OK && i<pCsr->nPtr; i++){
+ SegmentPtr *pPtr = &pCsr->aPtr[i];
+ Level *pLvl = pPtr->pLevel;
+ int iRhs;
+ int bHit = 0;
+
+ if( bLast ){
+ for(iRhs=0; iRhs<pLvl->nRight && rc==LSM_OK; iRhs++){
+ rc = segmentPtrEnd(pCsr, &pPtr[iRhs+1], 1);
+ if( pPtr[iRhs+1].pPg ) bHit = 1;
+ }
+ if( bHit==0 && rc==LSM_OK ){
+ rc = segmentPtrEnd(pCsr, pPtr, 1);
+ }else{
+ segmentPtrReset(pPtr, LSM_SEGMENTPTR_FREE_THRESHOLD);
+ }
+ }else{
+ int bLhs = (pPtr->pSeg==&pLvl->lhs);
+ assert( pPtr->pSeg==&pLvl->lhs || pPtr->pSeg==&pLvl->aRhs[0] );
+
+ if( bLhs ){
+ rc = segmentPtrEnd(pCsr, pPtr, 0);
+ if( pPtr->pKey ) bHit = 1;
+ }
+ for(iRhs=0; iRhs<pLvl->nRight && rc==LSM_OK; iRhs++){
+ if( bHit ){
+ segmentPtrReset(&pPtr[iRhs+1], LSM_SEGMENTPTR_FREE_THRESHOLD);
+ }else{
+ rc = sortedRhsFirst(pCsr, pLvl, &pPtr[iRhs+bLhs]);
+ }
+ }
+ }
+ i += pLvl->nRight;
+ }
+
+ /* And the b-tree cursor, if applicable */
+ if( rc==LSM_OK && pCsr->pBtCsr ){
+ assert( bLast==0 );
+ rc = btreeCursorFirst(pCsr->pBtCsr);
+ }
+
+ if( rc==LSM_OK ){
+ rc = multiCursorSetupTree(pCsr, bLast);
+ }
+
+ return rc;
+}
+
+
+int mcursorSave(MultiCursor *pCsr){
+ int rc = LSM_OK;
+ if( pCsr->aTree ){
+ int iTree = pCsr->aTree[1];
+ if( iTree==CURSOR_DATA_TREE0 || iTree==CURSOR_DATA_TREE1 ){
+ multiCursorCacheKey(pCsr, &rc);
+ }
+ }
+ mcursorFreeComponents(pCsr);
+ return rc;
+}
+
+int mcursorRestore(lsm_db *pDb, MultiCursor *pCsr){
+ int rc;
+ rc = multiCursorInit(pCsr, pDb->pClient);
+ if( rc==LSM_OK && pCsr->key.pData ){
+ rc = lsmMCursorSeek(pCsr,
+ rtTopic(pCsr->eType), pCsr->key.pData, pCsr->key.nData, +1
+ );
+ }
+ return rc;
+}
+
+int lsmSaveCursors(lsm_db *pDb){
+ int rc = LSM_OK;
+ MultiCursor *pCsr;
+
+ for(pCsr=pDb->pCsr; rc==LSM_OK && pCsr; pCsr=pCsr->pNext){
+ rc = mcursorSave(pCsr);
+ }
+ return rc;
+}
+
+int lsmRestoreCursors(lsm_db *pDb){
+ int rc = LSM_OK;
+ MultiCursor *pCsr;
+
+ for(pCsr=pDb->pCsr; rc==LSM_OK && pCsr; pCsr=pCsr->pNext){
+ rc = mcursorRestore(pDb, pCsr);
+ }
+ return rc;
+}
+
+int lsmMCursorFirst(MultiCursor *pCsr){
+ return multiCursorEnd(pCsr, 0);
+}
+
+int lsmMCursorLast(MultiCursor *pCsr){
+ return multiCursorEnd(pCsr, 1);
+}
+
+lsm_db *lsmMCursorDb(MultiCursor *pCsr){
+ return pCsr->pDb;
+}
+
+void lsmMCursorReset(MultiCursor *pCsr){
+ int i;
+ lsmTreeCursorReset(pCsr->apTreeCsr[0]);
+ lsmTreeCursorReset(pCsr->apTreeCsr[1]);
+ for(i=0; i<pCsr->nPtr; i++){
+ segmentPtrReset(&pCsr->aPtr[i], LSM_SEGMENTPTR_FREE_THRESHOLD);
+ }
+ pCsr->key.nData = 0;
+}
+
+static int treeCursorSeek(
+ MultiCursor *pCsr,
+ TreeCursor *pTreeCsr,
+ void *pKey, int nKey,
+ int eSeek,
+ int *pbStop
+){
+ int rc = LSM_OK;
+ if( pTreeCsr ){
+ int res = 0;
+ lsmTreeCursorSeek(pTreeCsr, pKey, nKey, &res);
+ switch( eSeek ){
+ case LSM_SEEK_EQ: {
+ int eType = lsmTreeCursorFlags(pTreeCsr);
+ if( (res<0 && (eType & LSM_START_DELETE))
+ || (res>0 && (eType & LSM_END_DELETE))
+ || (res==0 && (eType & LSM_POINT_DELETE))
+ ){
+ *pbStop = 1;
+ }else if( res==0 && (eType & LSM_INSERT) ){
+ lsm_env *pEnv = pCsr->pDb->pEnv;
+ void *p; int n; /* Key/value from tree-cursor */
+ *pbStop = 1;
+ pCsr->flags |= CURSOR_SEEK_EQ;
+ rc = lsmTreeCursorKey(pTreeCsr, &pCsr->eType, &p, &n);
+ if( rc==LSM_OK ) rc = sortedBlobSet(pEnv, &pCsr->key, p, n);
+ if( rc==LSM_OK ) rc = lsmTreeCursorValue(pTreeCsr, &p, &n);
+ if( rc==LSM_OK ) rc = sortedBlobSet(pEnv, &pCsr->val, p, n);
+ }
+ lsmTreeCursorReset(pTreeCsr);
+ break;
+ }
+ case LSM_SEEK_GE:
+ if( res<0 && lsmTreeCursorValid(pTreeCsr) ){
+ lsmTreeCursorNext(pTreeCsr);
+ }
+ break;
+ default:
+ if( res>0 ){
+ assert( lsmTreeCursorValid(pTreeCsr) );
+ lsmTreeCursorPrev(pTreeCsr);
+ }
+ break;
+ }
+ }
+ return rc;
+}
+
+
+/*
+** Seek the cursor.
+*/
+int lsmMCursorSeek(
+ MultiCursor *pCsr,
+ int iTopic,
+ void *pKey, int nKey,
+ int eSeek
+){
+ int eESeek = eSeek; /* Effective eSeek parameter */
+ int bStop = 0; /* Set to true to halt search operation */
+ int rc = LSM_OK; /* Return code */
+ int iPtr = 0; /* Used to iterate through pCsr->aPtr[] */
+ LsmPgno iPgno = 0; /* FC pointer value */
+
+ assert( pCsr->apTreeCsr[0]==0 || iTopic==0 );
+ assert( pCsr->apTreeCsr[1]==0 || iTopic==0 );
+
+ if( eESeek==LSM_SEEK_LEFAST ) eESeek = LSM_SEEK_LE;
+
+ assert( eESeek==LSM_SEEK_EQ || eESeek==LSM_SEEK_LE || eESeek==LSM_SEEK_GE );
+ assert( (pCsr->flags & CURSOR_FLUSH_FREELIST)==0 );
+ assert( pCsr->nPtr==0 || pCsr->aPtr[0].pLevel );
+
+ pCsr->flags &= ~(CURSOR_NEXT_OK | CURSOR_PREV_OK | CURSOR_SEEK_EQ);
+ rc = treeCursorSeek(pCsr, pCsr->apTreeCsr[0], pKey, nKey, eESeek, &bStop);
+ if( rc==LSM_OK && bStop==0 ){
+ rc = treeCursorSeek(pCsr, pCsr->apTreeCsr[1], pKey, nKey, eESeek, &bStop);
+ }
+
+ /* Seek all segment pointers. */
+ for(iPtr=0; iPtr<pCsr->nPtr && rc==LSM_OK && bStop==0; iPtr++){
+ SegmentPtr *pPtr = &pCsr->aPtr[iPtr];
+ assert( pPtr->pSeg==&pPtr->pLevel->lhs );
+ rc = seekInLevel(pCsr, pPtr, eESeek, iTopic, pKey, nKey, &iPgno, &bStop);
+ iPtr += pPtr->pLevel->nRight;
+ }
+
+ if( eSeek!=LSM_SEEK_EQ ){
+ if( rc==LSM_OK ){
+ rc = multiCursorAllocTree(pCsr);
+ }
+ if( rc==LSM_OK ){
+ int i;
+ for(i=pCsr->nTree-1; i>0; i--){
+ multiCursorDoCompare(pCsr, i, eESeek==LSM_SEEK_LE);
+ }
+ if( eSeek==LSM_SEEK_GE ) pCsr->flags |= CURSOR_NEXT_OK;
+ if( eSeek==LSM_SEEK_LE ) pCsr->flags |= CURSOR_PREV_OK;
+ }
+
+ multiCursorCacheKey(pCsr, &rc);
+ if( rc==LSM_OK && eSeek!=LSM_SEEK_LEFAST && 0==mcursorLocationOk(pCsr, 0) ){
+ switch( eESeek ){
+ case LSM_SEEK_EQ:
+ lsmMCursorReset(pCsr);
+ break;
+ case LSM_SEEK_GE:
+ rc = lsmMCursorNext(pCsr);
+ break;
+ default:
+ rc = lsmMCursorPrev(pCsr);
+ break;
+ }
+ }
+ }
+
+ return rc;
+}
+
+int lsmMCursorValid(MultiCursor *pCsr){
+ int res = 0;
+ if( pCsr->flags & CURSOR_SEEK_EQ ){
+ res = 1;
+ }else if( pCsr->aTree ){
+ int iKey = pCsr->aTree[1];
+ if( iKey==CURSOR_DATA_TREE0 || iKey==CURSOR_DATA_TREE1 ){
+ res = lsmTreeCursorValid(pCsr->apTreeCsr[iKey-CURSOR_DATA_TREE0]);
+ }else{
+ void *pKey;
+ multiCursorGetKey(pCsr, iKey, 0, &pKey, 0);
+ res = pKey!=0;
+ }
+ }
+ return res;
+}
+
+static int mcursorAdvanceOk(
+ MultiCursor *pCsr,
+ int bReverse,
+ int *pRc
+){
+ void *pNew; /* Pointer to buffer containing new key */
+ int nNew; /* Size of buffer pNew in bytes */
+ int eNewType; /* Type of new record */
+
+ if( *pRc ) return 1;
+
+ /* Check the current key value. If it is not greater than (if bReverse==0)
+ ** or less than (if bReverse!=0) the key currently cached in pCsr->key,
+ ** then the cursor has not yet been successfully advanced.
+ */
+ multiCursorGetKey(pCsr, pCsr->aTree[1], &eNewType, &pNew, &nNew);
+ if( pNew ){
+ int typemask = (pCsr->flags & CURSOR_IGNORE_DELETE) ? ~(0) : LSM_SYSTEMKEY;
+ int res = sortedDbKeyCompare(pCsr,
+ eNewType & typemask, pNew, nNew,
+ pCsr->eType & typemask, pCsr->key.pData, pCsr->key.nData
+ );
+
+ if( (bReverse==0 && res<=0) || (bReverse!=0 && res>=0) ){
+ return 0;
+ }
+
+ multiCursorCacheKey(pCsr, pRc);
+ assert( pCsr->eType==eNewType );
+
+ /* If this cursor is configured to skip deleted keys, and the current
+ ** cursor points to a SORTED_DELETE entry, then the cursor has not been
+ ** successfully advanced.
+ **
+ ** Similarly, if the cursor is configured to skip system keys and the
+ ** current cursor points to a system key, it has not yet been advanced.
+ */
+ if( *pRc==LSM_OK && 0==mcursorLocationOk(pCsr, 0) ) return 0;
+ }
+ return 1;
+}
+
+static void flCsrAdvance(MultiCursor *pCsr){
+ assert( pCsr->flags & CURSOR_FLUSH_FREELIST );
+ if( pCsr->iFree % 2 ){
+ pCsr->iFree++;
+ }else{
+ int nEntry = pCsr->pDb->pWorker->freelist.nEntry;
+ FreelistEntry *aEntry = pCsr->pDb->pWorker->freelist.aEntry;
+
+ int i = nEntry - 1 - (pCsr->iFree / 2);
+
+ /* If the current entry is a delete and the "end-delete" key will not
+ ** be attached to the next entry, increment iFree by 1 only. */
+ if( aEntry[i].iId<0 ){
+ while( 1 ){
+ if( i==0 || aEntry[i-1].iBlk!=aEntry[i].iBlk-1 ){
+ pCsr->iFree--;
+ break;
+ }
+ if( aEntry[i-1].iId>=0 ) break;
+ pCsr->iFree += 2;
+ i--;
+ }
+ }
+ pCsr->iFree += 2;
+ }
+}
+
+static int multiCursorAdvance(MultiCursor *pCsr, int bReverse){
+ int rc = LSM_OK; /* Return Code */
+ if( lsmMCursorValid(pCsr) ){
+ do {
+ int iKey = pCsr->aTree[1];
+
+ assertCursorTree(pCsr);
+
+ /* If this multi-cursor is advancing forwards, and the sub-cursor
+ ** being advanced is the one that separator keys may be being read
+ ** from, record the current absolute pointer value. */
+ if( pCsr->pPrevMergePtr ){
+ if( iKey==(CURSOR_DATA_SEGMENT+pCsr->nPtr) ){
+ assert( pCsr->pBtCsr );
+ *pCsr->pPrevMergePtr = pCsr->pBtCsr->iPtr;
+ }else if( pCsr->pBtCsr==0 && pCsr->nPtr>0
+ && iKey==(CURSOR_DATA_SEGMENT+pCsr->nPtr-1)
+ ){
+ SegmentPtr *pPtr = &pCsr->aPtr[iKey-CURSOR_DATA_SEGMENT];
+ *pCsr->pPrevMergePtr = pPtr->iPtr+pPtr->iPgPtr;
+ }
+ }
+
+ if( iKey==CURSOR_DATA_TREE0 || iKey==CURSOR_DATA_TREE1 ){
+ TreeCursor *pTreeCsr = pCsr->apTreeCsr[iKey-CURSOR_DATA_TREE0];
+ if( bReverse ){
+ rc = lsmTreeCursorPrev(pTreeCsr);
+ }else{
+ rc = lsmTreeCursorNext(pTreeCsr);
+ }
+ }else if( iKey==CURSOR_DATA_SYSTEM ){
+ assert( pCsr->flags & CURSOR_FLUSH_FREELIST );
+ assert( bReverse==0 );
+ flCsrAdvance(pCsr);
+ }else if( iKey==(CURSOR_DATA_SEGMENT+pCsr->nPtr) ){
+ assert( bReverse==0 && pCsr->pBtCsr );
+ rc = btreeCursorNext(pCsr->pBtCsr);
+ }else{
+ rc = segmentCursorAdvance(pCsr, iKey-CURSOR_DATA_SEGMENT, bReverse);
+ }
+ if( rc==LSM_OK ){
+ int i;
+ for(i=(iKey+pCsr->nTree)/2; i>0; i=i/2){
+ multiCursorDoCompare(pCsr, i, bReverse);
+ }
+ assertCursorTree(pCsr);
+ }
+ }while( mcursorAdvanceOk(pCsr, bReverse, &rc)==0 );
+ }
+ return rc;
+}
+
+int lsmMCursorNext(MultiCursor *pCsr){
+ if( (pCsr->flags & CURSOR_NEXT_OK)==0 ) return LSM_MISUSE_BKPT;
+ return multiCursorAdvance(pCsr, 0);
+}
+
+int lsmMCursorPrev(MultiCursor *pCsr){
+ if( (pCsr->flags & CURSOR_PREV_OK)==0 ) return LSM_MISUSE_BKPT;
+ return multiCursorAdvance(pCsr, 1);
+}
+
+int lsmMCursorKey(MultiCursor *pCsr, void **ppKey, int *pnKey){
+ if( (pCsr->flags & CURSOR_SEEK_EQ) || pCsr->aTree==0 ){
+ *pnKey = pCsr->key.nData;
+ *ppKey = pCsr->key.pData;
+ }else{
+ int iKey = pCsr->aTree[1];
+
+ if( iKey==CURSOR_DATA_TREE0 || iKey==CURSOR_DATA_TREE1 ){
+ TreeCursor *pTreeCsr = pCsr->apTreeCsr[iKey-CURSOR_DATA_TREE0];
+ lsmTreeCursorKey(pTreeCsr, 0, ppKey, pnKey);
+ }else{
+ int nKey;
+
+#ifndef NDEBUG
+ void *pKey;
+ int eType;
+ multiCursorGetKey(pCsr, iKey, &eType, &pKey, &nKey);
+ assert( eType==pCsr->eType );
+ assert( nKey==pCsr->key.nData );
+ assert( memcmp(pKey, pCsr->key.pData, nKey)==0 );
+#endif
+
+ nKey = pCsr->key.nData;
+ if( nKey==0 ){
+ *ppKey = 0;
+ }else{
+ *ppKey = pCsr->key.pData;
+ }
+ *pnKey = nKey;
+ }
+ }
+ return LSM_OK;
+}
+
+/*
+** Compare the current key that cursor csr points to with pKey/nKey. Set
+** *piRes to the result and return LSM_OK.
+*/
+int lsm_csr_cmp(lsm_cursor *csr, const void *pKey, int nKey, int *piRes){
+ MultiCursor *pCsr = (MultiCursor *)csr;
+ void *pCsrkey; int nCsrkey;
+ int rc;
+ rc = lsmMCursorKey(pCsr, &pCsrkey, &nCsrkey);
+ if( rc==LSM_OK ){
+ int (*xCmp)(void *, int, void *, int) = pCsr->pDb->xCmp;
+ *piRes = sortedKeyCompare(xCmp, 0, pCsrkey, nCsrkey, 0, (void *)pKey, nKey);
+ }
+ return rc;
+}
+
+int lsmMCursorValue(MultiCursor *pCsr, void **ppVal, int *pnVal){
+ void *pVal;
+ int nVal;
+ int rc;
+ if( (pCsr->flags & CURSOR_SEEK_EQ) || pCsr->aTree==0 ){
+ rc = LSM_OK;
+ nVal = pCsr->val.nData;
+ pVal = pCsr->val.pData;
+ }else{
+
+ assert( pCsr->aTree );
+ assert( mcursorLocationOk(pCsr, (pCsr->flags & CURSOR_IGNORE_DELETE)) );
+
+ rc = multiCursorGetVal(pCsr, pCsr->aTree[1], &pVal, &nVal);
+ if( pVal && rc==LSM_OK ){
+ rc = sortedBlobSet(pCsr->pDb->pEnv, &pCsr->val, pVal, nVal);
+ pVal = pCsr->val.pData;
+ }
+
+ if( rc!=LSM_OK ){
+ pVal = 0;
+ nVal = 0;
+ }
+ }
+ *ppVal = pVal;
+ *pnVal = nVal;
+ return rc;
+}
+
+int lsmMCursorType(MultiCursor *pCsr, int *peType){
+ assert( pCsr->aTree );
+ multiCursorGetKey(pCsr, pCsr->aTree[1], peType, 0, 0);
+ return LSM_OK;
+}
+
+/*
+** Buffer aData[], size nData, is assumed to contain a valid b-tree
+** hierarchy page image. Return the offset in aData[] of the next free
+** byte in the data area (where a new cell may be written if there is
+** space).
+*/
+static int mergeWorkerPageOffset(u8 *aData, int nData){
+ int nRec;
+ int iOff;
+ int nKey;
+ int eType;
+
+ nRec = lsmGetU16(&aData[SEGMENT_NRECORD_OFFSET(nData)]);
+ iOff = lsmGetU16(&aData[SEGMENT_CELLPTR_OFFSET(nData, nRec-1)]);
+ eType = aData[iOff++];
+ assert( eType==0
+ || eType==(LSM_SYSTEMKEY|LSM_SEPARATOR)
+ || eType==(LSM_SEPARATOR)
+ );
+
+ iOff += lsmVarintGet32(&aData[iOff], &nKey);
+ iOff += lsmVarintGet32(&aData[iOff], &nKey);
+
+ return iOff + (eType ? nKey : 0);
+}
+
+/*
+** Following a checkpoint operation, database pages that are part of the
+** checkpointed state of the LSM are deemed read-only. This includes the
+** right-most page of the b-tree hierarchy of any separators array under
+** construction, and all pages between it and the b-tree root, inclusive.
+** This is a problem, as when further pages are appended to the separators
+** array, entries must be added to the indicated b-tree hierarchy pages.
+**
+** This function copies all such b-tree pages to new locations, so that
+** they can be modified as required.
+**
+** The complication is that not all database pages are the same size - due
+** to the way the file.c module works some (the first and last in each block)
+** are 4 bytes smaller than the others.
+*/
+static int mergeWorkerMoveHierarchy(
+ MergeWorker *pMW, /* Merge worker */
+ int bSep /* True for separators run */
+){
+ lsm_db *pDb = pMW->pDb; /* Database handle */
+ int rc = LSM_OK; /* Return code */
+ int i;
+ Page **apHier = pMW->hier.apHier;
+ int nHier = pMW->hier.nHier;
+
+ for(i=0; rc==LSM_OK && i<nHier; i++){
+ Page *pNew = 0;
+ rc = lsmFsSortedAppend(pDb->pFS, pDb->pWorker, pMW->pLevel, 1, &pNew);
+ assert( rc==LSM_OK );
+
+ if( rc==LSM_OK ){
+ u8 *a1; int n1;
+ u8 *a2; int n2;
+
+ a1 = fsPageData(pNew, &n1);
+ a2 = fsPageData(apHier[i], &n2);
+
+ assert( n1==n2 || n1+4==n2 );
+
+ if( n1==n2 ){
+ memcpy(a1, a2, n2);
+ }else{
+ int nEntry = pageGetNRec(a2, n2);
+ int iEof1 = SEGMENT_EOF(n1, nEntry);
+ int iEof2 = SEGMENT_EOF(n2, nEntry);
+
+ memcpy(a1, a2, iEof2 - 4);
+ memcpy(&a1[iEof1], &a2[iEof2], n2 - iEof2);
+ }
+
+ lsmFsPageRelease(apHier[i]);
+ apHier[i] = pNew;
+
+#if 0
+ assert( n1==n2 || n1+4==n2 || n2+4==n1 );
+ if( n1>=n2 ){
+ /* If n1 (size of the new page) is equal to or greater than n2 (the
+ ** size of the old page), then copy the data into the new page. If
+ ** n1==n2, this could be done with a single memcpy(). However,
+ ** since sometimes n1>n2, the page content and footer must be copied
+ ** separately. */
+ int nEntry = pageGetNRec(a2, n2);
+ int iEof1 = SEGMENT_EOF(n1, nEntry);
+ int iEof2 = SEGMENT_EOF(n2, nEntry);
+ memcpy(a1, a2, iEof2);
+ memcpy(&a1[iEof1], &a2[iEof2], n2 - iEof2);
+ lsmFsPageRelease(apHier[i]);
+ apHier[i] = pNew;
+ }else{
+ lsmPutU16(&a1[SEGMENT_FLAGS_OFFSET(n1)], SEGMENT_BTREE_FLAG);
+ lsmPutU16(&a1[SEGMENT_NRECORD_OFFSET(n1)], 0);
+ lsmPutU64(&a1[SEGMENT_POINTER_OFFSET(n1)], 0);
+ i = i - 1;
+ lsmFsPageRelease(pNew);
+ }
+#endif
+ }
+ }
+
+#ifdef LSM_DEBUG
+ if( rc==LSM_OK ){
+ for(i=0; i<nHier; i++) assert( lsmFsPageWritable(apHier[i]) );
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** Allocate and populate the MergeWorker.apHier[] array.
+*/
+static int mergeWorkerLoadHierarchy(MergeWorker *pMW){
+ int rc = LSM_OK;
+ Segment *pSeg;
+ Hierarchy *p;
+
+ pSeg = &pMW->pLevel->lhs;
+ p = &pMW->hier;
+
+ if( p->apHier==0 && pSeg->iRoot!=0 ){
+ FileSystem *pFS = pMW->pDb->pFS;
+ lsm_env *pEnv = pMW->pDb->pEnv;
+ Page **apHier = 0;
+ int nHier = 0;
+ int iPg = (int)pSeg->iRoot;
+
+ do {
+ Page *pPg = 0;
+ u8 *aData;
+ int nData;
+ int flags;
+
+ rc = lsmFsDbPageGet(pFS, pSeg, iPg, &pPg);
+ if( rc!=LSM_OK ) break;
+
+ aData = fsPageData(pPg, &nData);
+ flags = pageGetFlags(aData, nData);
+ if( flags&SEGMENT_BTREE_FLAG ){
+ Page **apNew = (Page **)lsmRealloc(
+ pEnv, apHier, sizeof(Page *)*(nHier+1)
+ );
+ if( apNew==0 ){
+ rc = LSM_NOMEM_BKPT;
+ break;
+ }
+ apHier = apNew;
+ memmove(&apHier[1], &apHier[0], sizeof(Page *) * nHier);
+ nHier++;
+
+ apHier[0] = pPg;
+ iPg = (int)pageGetPtr(aData, nData);
+ }else{
+ lsmFsPageRelease(pPg);
+ break;
+ }
+ }while( 1 );
+
+ if( rc==LSM_OK ){
+ u8 *aData;
+ int nData;
+ aData = fsPageData(apHier[0], &nData);
+ pMW->aSave[0].iPgno = pageGetPtr(aData, nData);
+ p->nHier = nHier;
+ p->apHier = apHier;
+ rc = mergeWorkerMoveHierarchy(pMW, 0);
+ }else{
+ int i;
+ for(i=0; i<nHier; i++){
+ lsmFsPageRelease(apHier[i]);
+ }
+ lsmFree(pEnv, apHier);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** B-tree pages use almost the same format as regular pages. The
+** differences are:
+**
+** 1. The record format is (usually, see below) as follows:
+**
+** + Type byte (always SORTED_SEPARATOR or SORTED_SYSTEM_SEPARATOR),
+** + Absolute pointer value (varint),
+** + Number of bytes in key (varint),
+** + LsmBlob containing key data.
+**
+** 2. All pointer values are stored as absolute values (not offsets
+** relative to the footer pointer value).
+**
+** 3. Each pointer that is part of a record points to a page that
+** contains keys smaller than the records key (note: not "equal to or
+** smaller than - smaller than").
+**
+** 4. The pointer in the page footer of a b-tree page points to a page
+** that contains keys equal to or larger than the largest key on the
+** b-tree page.
+**
+** The reason for having the page footer pointer point to the right-child
+** (instead of the left) is that doing things this way makes the
+** mergeWorkerMoveHierarchy() operation less complicated (since the pointers
+** that need to be updated are all stored as fixed-size integers within the
+** page footer, not varints in page records).
+**
+** Records may not span b-tree pages. If this function is called to add a
+** record larger than (page-size / 4) bytes, then a pointer to the indexed
+** array page that contains the main record is added to the b-tree instead.
+** In this case the record format is:
+**
+** + 0x00 byte (1 byte)
+** + Absolute pointer value (varint),
+** + Absolute page number of page containing key (varint).
+**
+** See function seekInBtree() for the code that traverses b-tree pages.
+*/
+
+static int mergeWorkerBtreeWrite(
+ MergeWorker *pMW,
+ u8 eType,
+ LsmPgno iPtr,
+ LsmPgno iKeyPg,
+ void *pKey,
+ int nKey
+){
+ Hierarchy *p = &pMW->hier;
+ lsm_db *pDb = pMW->pDb; /* Database handle */
+ int rc = LSM_OK; /* Return Code */
+ int iLevel; /* Level of b-tree hierachy to write to */
+ int nData; /* Size of aData[] in bytes */
+ u8 *aData; /* Page data for level iLevel */
+ int iOff; /* Offset on b-tree page to write record to */
+ int nRec; /* Initial number of records on b-tree page */
+
+ /* iKeyPg should be zero for an ordinary b-tree key, or non-zero for an
+ ** indirect key. The flags byte for an indirect key is 0x00. */
+ assert( (eType==0)==(iKeyPg!=0) );
+
+ /* The MergeWorker.apHier[] array contains the right-most leaf of the b-tree
+ ** hierarchy, the root node, and all nodes that lie on the path between.
+ ** apHier[0] is the right-most leaf and apHier[pMW->nHier-1] is the current
+ ** root page.
+ **
+ ** This loop searches for a node with enough space to store the key on,
+ ** starting with the leaf and iterating up towards the root. When the loop
+ ** exits, the key may be written to apHier[iLevel]. */
+ for(iLevel=0; iLevel<=p->nHier; iLevel++){
+ int nByte; /* Number of free bytes required */
+
+ if( iLevel==p->nHier ){
+ /* Extend the array and allocate a new root page. */
+ Page **aNew;
+ aNew = (Page **)lsmRealloc(
+ pMW->pDb->pEnv, p->apHier, sizeof(Page *)*(p->nHier+1)
+ );
+ if( !aNew ){
+ return LSM_NOMEM_BKPT;
+ }
+ p->apHier = aNew;
+ }else{
+ Page *pOld;
+ int nFree;
+
+ /* If the key will fit on this page, break out of the loop here.
+ ** The new entry will be written to page apHier[iLevel]. */
+ pOld = p->apHier[iLevel];
+ assert( lsmFsPageWritable(pOld) );
+ aData = fsPageData(pOld, &nData);
+ if( eType==0 ){
+ nByte = 2 + 1 + lsmVarintLen32((int)iPtr) + lsmVarintLen32((int)iKeyPg);
+ }else{
+ nByte = 2 + 1 + lsmVarintLen32((int)iPtr) + lsmVarintLen32(nKey) + nKey;
+ }
+ nRec = pageGetNRec(aData, nData);
+ nFree = SEGMENT_EOF(nData, nRec) - mergeWorkerPageOffset(aData, nData);
+ if( nByte<=nFree ) break;
+
+ /* Otherwise, this page is full. Set the right-hand-child pointer
+ ** to iPtr and release it. */
+ lsmPutU64(&aData[SEGMENT_POINTER_OFFSET(nData)], iPtr);
+ assert( lsmFsPageNumber(pOld)==0 );
+ rc = lsmFsPagePersist(pOld);
+ if( rc==LSM_OK ){
+ iPtr = lsmFsPageNumber(pOld);
+ lsmFsPageRelease(pOld);
+ }
+ }
+
+ /* Allocate a new page for apHier[iLevel]. */
+ p->apHier[iLevel] = 0;
+ if( rc==LSM_OK ){
+ rc = lsmFsSortedAppend(
+ pDb->pFS, pDb->pWorker, pMW->pLevel, 1, &p->apHier[iLevel]
+ );
+ }
+ if( rc!=LSM_OK ) return rc;
+
+ aData = fsPageData(p->apHier[iLevel], &nData);
+ memset(aData, 0, nData);
+ lsmPutU16(&aData[SEGMENT_FLAGS_OFFSET(nData)], SEGMENT_BTREE_FLAG);
+ lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], 0);
+
+ if( iLevel==p->nHier ){
+ p->nHier++;
+ break;
+ }
+ }
+
+ /* Write the key into page apHier[iLevel]. */
+ aData = fsPageData(p->apHier[iLevel], &nData);
+ iOff = mergeWorkerPageOffset(aData, nData);
+ nRec = pageGetNRec(aData, nData);
+ lsmPutU16(&aData[SEGMENT_CELLPTR_OFFSET(nData, nRec)], (u16)iOff);
+ lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], (u16)(nRec+1));
+ if( eType==0 ){
+ aData[iOff++] = 0x00;
+ iOff += lsmVarintPut32(&aData[iOff], (int)iPtr);
+ iOff += lsmVarintPut32(&aData[iOff], (int)iKeyPg);
+ }else{
+ aData[iOff++] = eType;
+ iOff += lsmVarintPut32(&aData[iOff], (int)iPtr);
+ iOff += lsmVarintPut32(&aData[iOff], nKey);
+ memcpy(&aData[iOff], pKey, nKey);
+ }
+
+ return rc;
+}
+
+static int mergeWorkerBtreeIndirect(MergeWorker *pMW){
+ int rc = LSM_OK;
+ if( pMW->iIndirect ){
+ LsmPgno iKeyPg = pMW->aSave[1].iPgno;
+ rc = mergeWorkerBtreeWrite(pMW, 0, pMW->iIndirect, iKeyPg, 0, 0);
+ pMW->iIndirect = 0;
+ }
+ return rc;
+}
+
+/*
+** Append the database key (iTopic/pKey/nKey) to the b-tree under
+** construction. This key has not yet been written to a segment page.
+** The pointer that will accompany the new key in the b-tree - that
+** points to the completed segment page that contains keys smaller than
+** (pKey/nKey) is currently stored in pMW->aSave[0].iPgno.
+*/
+static int mergeWorkerPushHierarchy(
+ MergeWorker *pMW, /* Merge worker object */
+ int iTopic, /* Topic value for this key */
+ void *pKey, /* Pointer to key buffer */
+ int nKey /* Size of pKey buffer in bytes */
+){
+ int rc = LSM_OK; /* Return Code */
+ LsmPgno iPtr; /* Pointer value to accompany pKey/nKey */
+
+ assert( pMW->aSave[0].bStore==0 );
+ assert( pMW->aSave[1].bStore==0 );
+ rc = mergeWorkerBtreeIndirect(pMW);
+
+ /* Obtain the absolute pointer value to store along with the key in the
+ ** page body. This pointer points to a page that contains keys that are
+ ** smaller than pKey/nKey. */
+ iPtr = pMW->aSave[0].iPgno;
+ assert( iPtr!=0 );
+
+ /* Determine if the indirect format should be used. */
+ if( (nKey*4 > lsmFsPageSize(pMW->pDb->pFS)) ){
+ pMW->iIndirect = iPtr;
+ pMW->aSave[1].bStore = 1;
+ }else{
+ rc = mergeWorkerBtreeWrite(
+ pMW, (u8)(iTopic | LSM_SEPARATOR), iPtr, 0, pKey, nKey
+ );
+ }
+
+ /* Ensure that the SortedRun.iRoot field is correct. */
+ return rc;
+}
+
+static int mergeWorkerFinishHierarchy(
+ MergeWorker *pMW /* Merge worker object */
+){
+ int i; /* Used to loop through apHier[] */
+ int rc = LSM_OK; /* Return code */
+ LsmPgno iPtr; /* New right-hand-child pointer value */
+
+ iPtr = pMW->aSave[0].iPgno;
+ for(i=0; i<pMW->hier.nHier && rc==LSM_OK; i++){
+ Page *pPg = pMW->hier.apHier[i];
+ int nData; /* Size of aData[] in bytes */
+ u8 *aData; /* Page data for pPg */
+
+ aData = fsPageData(pPg, &nData);
+ lsmPutU64(&aData[SEGMENT_POINTER_OFFSET(nData)], iPtr);
+
+ rc = lsmFsPagePersist(pPg);
+ iPtr = lsmFsPageNumber(pPg);
+ lsmFsPageRelease(pPg);
+ }
+
+ if( pMW->hier.nHier ){
+ pMW->pLevel->lhs.iRoot = iPtr;
+ lsmFree(pMW->pDb->pEnv, pMW->hier.apHier);
+ pMW->hier.apHier = 0;
+ pMW->hier.nHier = 0;
+ }
+
+ return rc;
+}
+
+static int mergeWorkerAddPadding(
+ MergeWorker *pMW /* Merge worker object */
+){
+ FileSystem *pFS = pMW->pDb->pFS;
+ return lsmFsSortedPadding(pFS, pMW->pDb->pWorker, &pMW->pLevel->lhs);
+}
+
+/*
+** Release all page references currently held by the merge-worker passed
+** as the only argument. Unless an error has occurred, all pages have
+** already been released.
+*/
+static void mergeWorkerReleaseAll(MergeWorker *pMW){
+ int i;
+ lsmFsPageRelease(pMW->pPage);
+ pMW->pPage = 0;
+
+ for(i=0; i<pMW->hier.nHier; i++){
+ lsmFsPageRelease(pMW->hier.apHier[i]);
+ pMW->hier.apHier[i] = 0;
+ }
+ lsmFree(pMW->pDb->pEnv, pMW->hier.apHier);
+ pMW->hier.apHier = 0;
+ pMW->hier.nHier = 0;
+}
+
+static int keyszToSkip(FileSystem *pFS, int nKey){
+ int nPgsz; /* Nominal database page size */
+ nPgsz = lsmFsPageSize(pFS);
+ return LSM_MIN(((nKey * 4) / nPgsz), 3);
+}
+
+/*
+** Release the reference to the current output page of merge-worker *pMW
+** (reference pMW->pPage). Set the page number values in aSave[] as
+** required (see comments above struct MergeWorker for details).
+*/
+static int mergeWorkerPersistAndRelease(MergeWorker *pMW){
+ int rc;
+ int i;
+
+ assert( pMW->pPage || (pMW->aSave[0].bStore==0 && pMW->aSave[1].bStore==0) );
+
+ /* Persist the page */
+ rc = lsmFsPagePersist(pMW->pPage);
+
+ /* If required, save the page number. */
+ for(i=0; i<2; i++){
+ if( pMW->aSave[i].bStore ){
+ pMW->aSave[i].iPgno = lsmFsPageNumber(pMW->pPage);
+ pMW->aSave[i].bStore = 0;
+ }
+ }
+
+ /* Release the completed output page. */
+ lsmFsPageRelease(pMW->pPage);
+ pMW->pPage = 0;
+ return rc;
+}
+
+/*
+** Advance to the next page of an output run being populated by merge-worker
+** pMW. The footer of the new page is initialized to indicate that it contains
+** zero records. The flags field is cleared. The page footer pointer field
+** is set to iFPtr.
+**
+** If successful, LSM_OK is returned. Otherwise, an error code.
+*/
+static int mergeWorkerNextPage(
+ MergeWorker *pMW, /* Merge worker object to append page to */
+ LsmPgno iFPtr /* Pointer value for footer of new page */
+){
+ int rc = LSM_OK; /* Return code */
+ Page *pNext = 0; /* New page appended to run */
+ lsm_db *pDb = pMW->pDb; /* Database handle */
+
+ rc = lsmFsSortedAppend(pDb->pFS, pDb->pWorker, pMW->pLevel, 0, &pNext);
+ assert( rc || pMW->pLevel->lhs.iFirst>0 || pMW->pDb->compress.xCompress );
+
+ if( rc==LSM_OK ){
+ u8 *aData; /* Data buffer belonging to page pNext */
+ int nData; /* Size of aData[] in bytes */
+
+ rc = mergeWorkerPersistAndRelease(pMW);
+
+ pMW->pPage = pNext;
+ pMW->pLevel->pMerge->iOutputOff = 0;
+ aData = fsPageData(pNext, &nData);
+ lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], 0);
+ lsmPutU16(&aData[SEGMENT_FLAGS_OFFSET(nData)], 0);
+ lsmPutU64(&aData[SEGMENT_POINTER_OFFSET(nData)], iFPtr);
+ pMW->nWork++;
+ }
+
+ return rc;
+}
+
+/*
+** Write a blob of data into an output segment being populated by a
+** merge-worker object. If argument bSep is true, write into the separators
+** array. Otherwise, the main array.
+**
+** This function is used to write the blobs of data for keys and values.
+*/
+static int mergeWorkerData(
+ MergeWorker *pMW, /* Merge worker object */
+ int bSep, /* True to write to separators run */
+ int iFPtr, /* Footer ptr for new pages */
+ u8 *aWrite, /* Write data from this buffer */
+ int nWrite /* Size of aWrite[] in bytes */
+){
+ int rc = LSM_OK; /* Return code */
+ int nRem = nWrite; /* Number of bytes still to write */
+
+ while( rc==LSM_OK && nRem>0 ){
+ Merge *pMerge = pMW->pLevel->pMerge;
+ int nCopy; /* Number of bytes to copy */
+ u8 *aData; /* Pointer to buffer of current output page */
+ int nData; /* Size of aData[] in bytes */
+ int nRec; /* Number of records on current output page */
+ int iOff; /* Offset in aData[] to write to */
+
+ assert( lsmFsPageWritable(pMW->pPage) );
+
+ aData = fsPageData(pMW->pPage, &nData);
+ nRec = pageGetNRec(aData, nData);
+ iOff = pMerge->iOutputOff;
+ nCopy = LSM_MIN(nRem, SEGMENT_EOF(nData, nRec) - iOff);
+
+ memcpy(&aData[iOff], &aWrite[nWrite-nRem], nCopy);
+ nRem -= nCopy;
+
+ if( nRem>0 ){
+ rc = mergeWorkerNextPage(pMW, iFPtr);
+ }else{
+ pMerge->iOutputOff = iOff + nCopy;
+ }
+ }
+
+ return rc;
+}
+
+
+/*
+** The MergeWorker passed as the only argument is working to merge two or
+** more existing segments together (not to flush an in-memory tree). It
+** has not yet written the first key to the first page of the output.
+*/
+static int mergeWorkerFirstPage(MergeWorker *pMW){
+ int rc = LSM_OK; /* Return code */
+ Page *pPg = 0; /* First page of run pSeg */
+ int iFPtr = 0; /* Pointer value read from footer of pPg */
+ MultiCursor *pCsr = pMW->pCsr;
+
+ assert( pMW->pPage==0 );
+
+ if( pCsr->pBtCsr ){
+ rc = LSM_OK;
+ iFPtr = (int)pMW->pLevel->pNext->lhs.iFirst;
+ }else if( pCsr->nPtr>0 ){
+ Segment *pSeg;
+ pSeg = pCsr->aPtr[pCsr->nPtr-1].pSeg;
+ rc = lsmFsDbPageGet(pMW->pDb->pFS, pSeg, pSeg->iFirst, &pPg);
+ if( rc==LSM_OK ){
+ u8 *aData; /* Buffer for page pPg */
+ int nData; /* Size of aData[] in bytes */
+ aData = fsPageData(pPg, &nData);
+ iFPtr = (int)pageGetPtr(aData, nData);
+ lsmFsPageRelease(pPg);
+ }
+ }
+
+ if( rc==LSM_OK ){
+ rc = mergeWorkerNextPage(pMW, iFPtr);
+ if( pCsr->pPrevMergePtr ) *pCsr->pPrevMergePtr = iFPtr;
+ pMW->aSave[0].bStore = 1;
+ }
+
+ return rc;
+}
+
+static int mergeWorkerWrite(
+ MergeWorker *pMW, /* Merge worker object to write into */
+ int eType, /* One of SORTED_SEPARATOR, WRITE or DELETE */
+ void *pKey, int nKey, /* Key value */
+ void *pVal, int nVal, /* Value value */
+ int iPtr /* Absolute value of page pointer, or 0 */
+){
+ int rc = LSM_OK; /* Return code */
+ Merge *pMerge; /* Persistent part of level merge state */
+ int nHdr; /* Space required for this record header */
+ Page *pPg; /* Page to write to */
+ u8 *aData; /* Data buffer for page pWriter->pPage */
+ int nData = 0; /* Size of buffer aData[] in bytes */
+ int nRec = 0; /* Number of records on page pPg */
+ int iFPtr = 0; /* Value of pointer in footer of pPg */
+ int iRPtr = 0; /* Value of pointer written into record */
+ int iOff = 0; /* Current write offset within page pPg */
+ Segment *pSeg; /* Segment being written */
+ int flags = 0; /* If != 0, flags value for page footer */
+ int bFirst = 0; /* True for first key of output run */
+
+ pMerge = pMW->pLevel->pMerge;
+ pSeg = &pMW->pLevel->lhs;
+
+ if( pSeg->iFirst==0 && pMW->pPage==0 ){
+ rc = mergeWorkerFirstPage(pMW);
+ bFirst = 1;
+ }
+ pPg = pMW->pPage;
+ if( pPg ){
+ aData = fsPageData(pPg, &nData);
+ nRec = pageGetNRec(aData, nData);
+ iFPtr = (int)pageGetPtr(aData, nData);
+ iRPtr = iPtr - iFPtr;
+ }
+
+ /* Figure out how much space is required by the new record. The space
+ ** required is divided into two sections: the header and the body. The
+ ** header consists of the intial varint fields. The body are the blobs
+ ** of data that correspond to the key and value data. The entire header
+ ** must be stored on the page. The body may overflow onto the next and
+ ** subsequent pages.
+ **
+ ** The header space is:
+ **
+ ** 1) record type - 1 byte.
+ ** 2) Page-pointer-offset - 1 varint
+ ** 3) Key size - 1 varint
+ ** 4) Value size - 1 varint (only if LSM_INSERT flag is set)
+ */
+ if( rc==LSM_OK ){
+ nHdr = 1 + lsmVarintLen32(iRPtr) + lsmVarintLen32(nKey);
+ if( rtIsWrite(eType) ) nHdr += lsmVarintLen32(nVal);
+
+ /* If the entire header will not fit on page pPg, or if page pPg is
+ ** marked read-only, advance to the next page of the output run. */
+ iOff = pMerge->iOutputOff;
+ if( iOff<0 || pPg==0 || iOff+nHdr > SEGMENT_EOF(nData, nRec+1) ){
+ if( iOff>=0 && pPg ){
+ /* Zero any free space on the page */
+ assert( aData );
+ memset(&aData[iOff], 0, SEGMENT_EOF(nData, nRec)-iOff);
+ }
+ iFPtr = (int)*pMW->pCsr->pPrevMergePtr;
+ iRPtr = iPtr - iFPtr;
+ iOff = 0;
+ nRec = 0;
+ rc = mergeWorkerNextPage(pMW, iFPtr);
+ pPg = pMW->pPage;
+ }
+ }
+
+ /* If this record header will be the first on the page, and the page is
+ ** not the very first in the entire run, add a copy of the key to the
+ ** b-tree hierarchy.
+ */
+ if( rc==LSM_OK && nRec==0 && bFirst==0 ){
+ assert( pMerge->nSkip>=0 );
+
+ if( pMerge->nSkip==0 ){
+ rc = mergeWorkerPushHierarchy(pMW, rtTopic(eType), pKey, nKey);
+ assert( pMW->aSave[0].bStore==0 );
+ pMW->aSave[0].bStore = 1;
+ pMerge->nSkip = keyszToSkip(pMW->pDb->pFS, nKey);
+ }else{
+ pMerge->nSkip--;
+ flags = PGFTR_SKIP_THIS_FLAG;
+ }
+
+ if( pMerge->nSkip ) flags |= PGFTR_SKIP_NEXT_FLAG;
+ }
+
+ /* Update the output segment */
+ if( rc==LSM_OK ){
+ aData = fsPageData(pPg, &nData);
+
+ /* Update the page footer. */
+ lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], (u16)(nRec+1));
+ lsmPutU16(&aData[SEGMENT_CELLPTR_OFFSET(nData, nRec)], (u16)iOff);
+ if( flags ) lsmPutU16(&aData[SEGMENT_FLAGS_OFFSET(nData)], (u16)flags);
+
+ /* Write the entry header into the current page. */
+ aData[iOff++] = (u8)eType; /* 1 */
+ iOff += lsmVarintPut32(&aData[iOff], iRPtr); /* 2 */
+ iOff += lsmVarintPut32(&aData[iOff], nKey); /* 3 */
+ if( rtIsWrite(eType) ) iOff += lsmVarintPut32(&aData[iOff], nVal); /* 4 */
+ pMerge->iOutputOff = iOff;
+
+ /* Write the key and data into the segment. */
+ assert( iFPtr==pageGetPtr(aData, nData) );
+ rc = mergeWorkerData(pMW, 0, iFPtr+iRPtr, pKey, nKey);
+ if( rc==LSM_OK && rtIsWrite(eType) ){
+ if( rc==LSM_OK ){
+ rc = mergeWorkerData(pMW, 0, iFPtr+iRPtr, pVal, nVal);
+ }
+ }
+ }
+
+ return rc;
+}
+
+
+/*
+** Free all resources allocated by mergeWorkerInit().
+*/
+static void mergeWorkerShutdown(MergeWorker *pMW, int *pRc){
+ int i; /* Iterator variable */
+ int rc = *pRc;
+ MultiCursor *pCsr = pMW->pCsr;
+
+ /* Unless the merge has finished, save the cursor position in the
+ ** Merge.aInput[] array. See function mergeWorkerInit() for the
+ ** code to restore a cursor position based on aInput[]. */
+ if( rc==LSM_OK && pCsr ){
+ Merge *pMerge = pMW->pLevel->pMerge;
+ if( lsmMCursorValid(pCsr) ){
+ int bBtree = (pCsr->pBtCsr!=0);
+ int iPtr;
+
+ /* pMerge->nInput==0 indicates that this is a FlushTree() operation. */
+ assert( pMerge->nInput==0 || pMW->pLevel->nRight>0 );
+ assert( pMerge->nInput==0 || pMerge->nInput==(pCsr->nPtr+bBtree) );
+
+ for(i=0; i<(pMerge->nInput-bBtree); i++){
+ SegmentPtr *pPtr = &pCsr->aPtr[i];
+ if( pPtr->pPg ){
+ pMerge->aInput[i].iPg = lsmFsPageNumber(pPtr->pPg);
+ pMerge->aInput[i].iCell = pPtr->iCell;
+ }else{
+ pMerge->aInput[i].iPg = 0;
+ pMerge->aInput[i].iCell = 0;
+ }
+ }
+ if( bBtree && pMerge->nInput ){
+ assert( i==pCsr->nPtr );
+ btreeCursorPosition(pCsr->pBtCsr, &pMerge->aInput[i]);
+ }
+
+ /* Store the location of the split-key */
+ iPtr = pCsr->aTree[1] - CURSOR_DATA_SEGMENT;
+ if( iPtr<pCsr->nPtr ){
+ pMerge->splitkey = pMerge->aInput[iPtr];
+ }else{
+ btreeCursorSplitkey(pCsr->pBtCsr, &pMerge->splitkey);
+ }
+ }
+
+ /* Zero any free space left on the final page. This helps with
+ ** compression if using a compression hook. And prevents valgrind
+ ** from complaining about uninitialized byte passed to write(). */
+ if( pMW->pPage ){
+ int nData;
+ u8 *aData = fsPageData(pMW->pPage, &nData);
+ int iOff = pMerge->iOutputOff;
+ int iEof = SEGMENT_EOF(nData, pageGetNRec(aData, nData));
+ memset(&aData[iOff], 0, iEof - iOff);
+ }
+
+ pMerge->iOutputOff = -1;
+ }
+
+ lsmMCursorClose(pCsr, 0);
+
+ /* Persist and release the output page. */
+ if( rc==LSM_OK ) rc = mergeWorkerPersistAndRelease(pMW);
+ if( rc==LSM_OK ) rc = mergeWorkerBtreeIndirect(pMW);
+ if( rc==LSM_OK ) rc = mergeWorkerFinishHierarchy(pMW);
+ if( rc==LSM_OK ) rc = mergeWorkerAddPadding(pMW);
+ lsmFsFlushWaiting(pMW->pDb->pFS, &rc);
+ mergeWorkerReleaseAll(pMW);
+
+ lsmFree(pMW->pDb->pEnv, pMW->aGobble);
+ pMW->aGobble = 0;
+ pMW->pCsr = 0;
+
+ *pRc = rc;
+}
+
+/*
+** The cursor passed as the first argument is being used as the input for
+** a merge operation. When this function is called, *piFlags contains the
+** database entry flags for the current entry. The entry about to be written
+** to the output.
+**
+** Note that this function only has to work for cursors configured to
+** iterate forwards (not backwards).
+*/
+static void mergeRangeDeletes(MultiCursor *pCsr, int *piVal, int *piFlags){
+ int f = *piFlags;
+ int iKey = pCsr->aTree[1];
+ int i;
+
+ assert( pCsr->flags & CURSOR_NEXT_OK );
+ if( pCsr->flags & CURSOR_IGNORE_DELETE ){
+ /* The ignore-delete flag is set when the output of the merge will form
+ ** the oldest level in the database. In this case there is no point in
+ ** retaining any range-delete flags. */
+ assert( (f & LSM_POINT_DELETE)==0 );
+ f &= ~(LSM_START_DELETE|LSM_END_DELETE);
+ }else{
+ for(i=0; i<(CURSOR_DATA_SEGMENT + pCsr->nPtr); i++){
+ if( i!=iKey ){
+ int eType;
+ void *pKey;
+ int nKey;
+ int res;
+ multiCursorGetKey(pCsr, i, &eType, &pKey, &nKey);
+
+ if( pKey ){
+ res = sortedKeyCompare(pCsr->pDb->xCmp,
+ rtTopic(pCsr->eType), pCsr->key.pData, pCsr->key.nData,
+ rtTopic(eType), pKey, nKey
+ );
+ assert( res<=0 );
+ if( res==0 ){
+ if( (f & (LSM_INSERT|LSM_POINT_DELETE))==0 ){
+ if( eType & LSM_INSERT ){
+ f |= LSM_INSERT;
+ *piVal = i;
+ }
+ else if( eType & LSM_POINT_DELETE ){
+ f |= LSM_POINT_DELETE;
+ }
+ }
+ f |= (eType & (LSM_END_DELETE|LSM_START_DELETE));
+ }
+
+ if( i>iKey && (eType & LSM_END_DELETE) && res<0 ){
+ if( f & (LSM_INSERT|LSM_POINT_DELETE) ){
+ f |= (LSM_END_DELETE|LSM_START_DELETE);
+ }else{
+ f = 0;
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ assert( (f & LSM_INSERT)==0 || (f & LSM_POINT_DELETE)==0 );
+ if( (f & LSM_START_DELETE)
+ && (f & LSM_END_DELETE)
+ && (f & LSM_POINT_DELETE )
+ ){
+ f = 0;
+ }
+ }
+
+ *piFlags = f;
+}
+
+static int mergeWorkerStep(MergeWorker *pMW){
+ lsm_db *pDb = pMW->pDb; /* Database handle */
+ MultiCursor *pCsr; /* Cursor to read input data from */
+ int rc = LSM_OK; /* Return code */
+ int eType; /* SORTED_SEPARATOR, WRITE or DELETE */
+ void *pKey; int nKey; /* Key */
+ LsmPgno iPtr;
+ int iVal;
+
+ pCsr = pMW->pCsr;
+
+ /* Pull the next record out of the source cursor. */
+ lsmMCursorKey(pCsr, &pKey, &nKey);
+ eType = pCsr->eType;
+
+ /* Figure out if the output record may have a different pointer value
+ ** than the previous. This is the case if the current key is identical to
+ ** a key that appears in the lowest level run being merged. If so, set
+ ** iPtr to the absolute pointer value. If not, leave iPtr set to zero,
+ ** indicating that the output pointer value should be a copy of the pointer
+ ** value written with the previous key. */
+ iPtr = (pCsr->pPrevMergePtr ? *pCsr->pPrevMergePtr : 0);
+ if( pCsr->pBtCsr ){
+ BtreeCursor *pBtCsr = pCsr->pBtCsr;
+ if( pBtCsr->pKey ){
+ int res = rtTopic(pBtCsr->eType) - rtTopic(eType);
+ if( res==0 ) res = pDb->xCmp(pBtCsr->pKey, pBtCsr->nKey, pKey, nKey);
+ if( 0==res ) iPtr = pBtCsr->iPtr;
+ assert( res>=0 );
+ }
+ }else if( pCsr->nPtr ){
+ SegmentPtr *pPtr = &pCsr->aPtr[pCsr->nPtr-1];
+ if( pPtr->pPg
+ && 0==pDb->xCmp(pPtr->pKey, pPtr->nKey, pKey, nKey)
+ ){
+ iPtr = pPtr->iPtr+pPtr->iPgPtr;
+ }
+ }
+
+ iVal = pCsr->aTree[1];
+ mergeRangeDeletes(pCsr, &iVal, &eType);
+
+ if( eType!=0 ){
+ if( pMW->aGobble ){
+ int iGobble = pCsr->aTree[1] - CURSOR_DATA_SEGMENT;
+ if( iGobble<pCsr->nPtr && iGobble>=0 ){
+ SegmentPtr *pGobble = &pCsr->aPtr[iGobble];
+ if( (pGobble->flags & PGFTR_SKIP_THIS_FLAG)==0 ){
+ pMW->aGobble[iGobble] = lsmFsPageNumber(pGobble->pPg);
+ }
+ }
+ }
+
+ /* If this is a separator key and we know that the output pointer has not
+ ** changed, there is no point in writing an output record. Otherwise,
+ ** proceed. */
+ if( rc==LSM_OK && (rtIsSeparator(eType)==0 || iPtr!=0) ){
+ /* Write the record into the main run. */
+ void *pVal; int nVal;
+ rc = multiCursorGetVal(pCsr, iVal, &pVal, &nVal);
+ if( pVal && rc==LSM_OK ){
+ assert( nVal>=0 );
+ rc = sortedBlobSet(pDb->pEnv, &pCsr->val, pVal, nVal);
+ pVal = pCsr->val.pData;
+ }
+ if( rc==LSM_OK ){
+ rc = mergeWorkerWrite(pMW, eType, pKey, nKey, pVal, nVal, (int)iPtr);
+ }
+ }
+ }
+
+ /* Advance the cursor to the next input record (assuming one exists). */
+ assert( lsmMCursorValid(pMW->pCsr) );
+ if( rc==LSM_OK ) rc = lsmMCursorNext(pMW->pCsr);
+
+ return rc;
+}
+
+static int mergeWorkerDone(MergeWorker *pMW){
+ return pMW->pCsr==0 || !lsmMCursorValid(pMW->pCsr);
+}
+
+static void sortedFreeLevel(lsm_env *pEnv, Level *p){
+ if( p ){
+ lsmFree(pEnv, p->pSplitKey);
+ lsmFree(pEnv, p->pMerge);
+ lsmFree(pEnv, p->aRhs);
+ lsmFree(pEnv, p);
+ }
+}
+
+static void sortedInvokeWorkHook(lsm_db *pDb){
+ if( pDb->xWork ){
+ pDb->xWork(pDb, pDb->pWorkCtx);
+ }
+}
+
+static int sortedNewToplevel(
+ lsm_db *pDb, /* Connection handle */
+ int eTree, /* One of the TREE_XXX constants */
+ int *pnWrite /* OUT: Number of database pages written */
+){
+ int rc = LSM_OK; /* Return Code */
+ MultiCursor *pCsr = 0;
+ Level *pNext = 0; /* The current top level */
+ Level *pNew; /* The new level itself */
+ Segment *pLinked = 0; /* Delete separators from this segment */
+ Level *pDel = 0; /* Delete this entire level */
+ int nWrite = 0; /* Number of database pages written */
+ Freelist freelist;
+
+ if( eTree!=TREE_NONE ){
+ rc = lsmShmCacheChunks(pDb, pDb->treehdr.nChunk);
+ }
+
+ assert( pDb->bUseFreelist==0 );
+ pDb->pFreelist = &freelist;
+ pDb->bUseFreelist = 1;
+ memset(&freelist, 0, sizeof(freelist));
+
+ /* Allocate the new level structure to write to. */
+ pNext = lsmDbSnapshotLevel(pDb->pWorker);
+ pNew = (Level *)lsmMallocZeroRc(pDb->pEnv, sizeof(Level), &rc);
+ if( pNew ){
+ pNew->pNext = pNext;
+ lsmDbSnapshotSetLevel(pDb->pWorker, pNew);
+ }
+
+ /* Create a cursor to gather the data required by the new segment. The new
+ ** segment contains everything in the tree and pointers to the next segment
+ ** in the database (if any). */
+ pCsr = multiCursorNew(pDb, &rc);
+ if( pCsr ){
+ pCsr->pDb = pDb;
+ rc = multiCursorVisitFreelist(pCsr);
+ if( rc==LSM_OK ){
+ rc = multiCursorAddTree(pCsr, pDb->pWorker, eTree);
+ }
+ if( rc==LSM_OK && pNext && pNext->pMerge==0 ){
+ if( (pNext->flags & LEVEL_FREELIST_ONLY) ){
+ pDel = pNext;
+ pCsr->aPtr = lsmMallocZeroRc(pDb->pEnv, sizeof(SegmentPtr), &rc);
+ multiCursorAddOne(pCsr, pNext, &rc);
+ }else if( eTree!=TREE_NONE && pNext->lhs.iRoot ){
+ pLinked = &pNext->lhs;
+ rc = btreeCursorNew(pDb, pLinked, &pCsr->pBtCsr);
+ }
+ }
+
+ /* If this will be the only segment in the database, discard any delete
+ ** markers present in the in-memory tree. */
+ if( pNext==0 ){
+ multiCursorIgnoreDelete(pCsr);
+ }
+ }
+
+ if( rc!=LSM_OK ){
+ lsmMCursorClose(pCsr, 0);
+ }else{
+ LsmPgno iLeftPtr = 0;
+ Merge merge; /* Merge object used to create new level */
+ MergeWorker mergeworker; /* MergeWorker object for the same purpose */
+
+ memset(&merge, 0, sizeof(Merge));
+ memset(&mergeworker, 0, sizeof(MergeWorker));
+
+ pNew->pMerge = &merge;
+ pNew->flags |= LEVEL_INCOMPLETE;
+ mergeworker.pDb = pDb;
+ mergeworker.pLevel = pNew;
+ mergeworker.pCsr = pCsr;
+ pCsr->pPrevMergePtr = &iLeftPtr;
+
+ /* Mark the separators array for the new level as a "phantom". */
+ mergeworker.bFlush = 1;
+
+ /* Do the work to create the new merged segment on disk */
+ if( rc==LSM_OK ) rc = lsmMCursorFirst(pCsr);
+ while( rc==LSM_OK && mergeWorkerDone(&mergeworker)==0 ){
+ rc = mergeWorkerStep(&mergeworker);
+ }
+ mergeWorkerShutdown(&mergeworker, &rc);
+ assert( rc!=LSM_OK || mergeworker.nWork==0 || pNew->lhs.iFirst );
+ if( rc==LSM_OK && pNew->lhs.iFirst ){
+ rc = lsmFsSortedFinish(pDb->pFS, &pNew->lhs);
+ }
+ nWrite = mergeworker.nWork;
+ pNew->flags &= ~LEVEL_INCOMPLETE;
+ if( eTree==TREE_NONE ){
+ pNew->flags |= LEVEL_FREELIST_ONLY;
+ }
+ pNew->pMerge = 0;
+ }
+
+ if( rc!=LSM_OK || pNew->lhs.iFirst==0 ){
+ assert( rc!=LSM_OK || pDb->pWorker->freelist.nEntry==0 );
+ lsmDbSnapshotSetLevel(pDb->pWorker, pNext);
+ sortedFreeLevel(pDb->pEnv, pNew);
+ }else{
+ if( pLinked ){
+ pLinked->iRoot = 0;
+ }else if( pDel ){
+ assert( pNew->pNext==pDel );
+ pNew->pNext = pDel->pNext;
+ lsmFsSortedDelete(pDb->pFS, pDb->pWorker, 1, &pDel->lhs);
+ sortedFreeLevel(pDb->pEnv, pDel);
+ }
+
+#if LSM_LOG_STRUCTURE
+ lsmSortedDumpStructure(pDb, pDb->pWorker, LSM_LOG_DATA, 0, "new-toplevel");
+#endif
+
+ if( freelist.nEntry ){
+ Freelist *p = &pDb->pWorker->freelist;
+ lsmFree(pDb->pEnv, p->aEntry);
+ memcpy(p, &freelist, sizeof(freelist));
+ freelist.aEntry = 0;
+ }else{
+ pDb->pWorker->freelist.nEntry = 0;
+ }
+
+ assertBtreeOk(pDb, &pNew->lhs);
+ sortedInvokeWorkHook(pDb);
+ }
+
+ if( pnWrite ) *pnWrite = nWrite;
+ pDb->pWorker->nWrite += nWrite;
+ pDb->pFreelist = 0;
+ pDb->bUseFreelist = 0;
+ lsmFree(pDb->pEnv, freelist.aEntry);
+ return rc;
+}
+
+/*
+** The nMerge levels in the LSM beginning with pLevel consist of a
+** left-hand-side segment only. Replace these levels with a single new
+** level consisting of a new empty segment on the left-hand-side and the
+** nMerge segments from the replaced levels on the right-hand-side.
+**
+** Also, allocate and populate a Merge object and set Level.pMerge to
+** point to it.
+*/
+static int sortedMergeSetup(
+ lsm_db *pDb, /* Database handle */
+ Level *pLevel, /* First level to merge */
+ int nMerge, /* Merge this many levels together */
+ Level **ppNew /* New, merged, level */
+){
+ int rc = LSM_OK; /* Return Code */
+ Level *pNew; /* New Level object */
+ int bUseNext = 0; /* True to link in next separators */
+ Merge *pMerge; /* New Merge object */
+ int nByte; /* Bytes of space allocated at pMerge */
+
+#ifdef LSM_DEBUG
+ int iLevel;
+ Level *pX = pLevel;
+ for(iLevel=0; iLevel<nMerge; iLevel++){
+ assert( pX->nRight==0 );
+ pX = pX->pNext;
+ }
+#endif
+
+ /* Allocate the new Level object */
+ pNew = (Level *)lsmMallocZeroRc(pDb->pEnv, sizeof(Level), &rc);
+ if( pNew ){
+ pNew->aRhs = (Segment *)lsmMallocZeroRc(pDb->pEnv,
+ nMerge * sizeof(Segment), &rc);
+ }
+
+ /* Populate the new Level object */
+ if( rc==LSM_OK ){
+ Level *pNext = 0; /* Level following pNew */
+ int i;
+ int bFreeOnly = 1;
+ Level *pTopLevel;
+ Level *p = pLevel;
+ Level **pp;
+ pNew->nRight = nMerge;
+ pNew->iAge = pLevel->iAge+1;
+ for(i=0; i<nMerge; i++){
+ assert( p->nRight==0 );
+ pNext = p->pNext;
+ pNew->aRhs[i] = p->lhs;
+ if( (p->flags & LEVEL_FREELIST_ONLY)==0 ) bFreeOnly = 0;
+ sortedFreeLevel(pDb->pEnv, p);
+ p = pNext;
+ }
+
+ if( bFreeOnly ) pNew->flags |= LEVEL_FREELIST_ONLY;
+
+ /* Replace the old levels with the new. */
+ pTopLevel = lsmDbSnapshotLevel(pDb->pWorker);
+ pNew->pNext = p;
+ for(pp=&pTopLevel; *pp!=pLevel; pp=&((*pp)->pNext));
+ *pp = pNew;
+ lsmDbSnapshotSetLevel(pDb->pWorker, pTopLevel);
+
+ /* Determine whether or not the next separators will be linked in */
+ if( pNext && pNext->pMerge==0 && pNext->lhs.iRoot && pNext
+ && (bFreeOnly==0 || (pNext->flags & LEVEL_FREELIST_ONLY))
+ ){
+ bUseNext = 1;
+ }
+ }
+
+ /* Allocate the merge object */
+ nByte = sizeof(Merge) + sizeof(MergeInput) * (nMerge + bUseNext);
+ pMerge = (Merge *)lsmMallocZeroRc(pDb->pEnv, nByte, &rc);
+ if( pMerge ){
+ pMerge->aInput = (MergeInput *)&pMerge[1];
+ pMerge->nInput = nMerge + bUseNext;
+ pNew->pMerge = pMerge;
+ }
+
+ *ppNew = pNew;
+ return rc;
+}
+
+static int mergeWorkerInit(
+ lsm_db *pDb, /* Db connection to do merge work */
+ Level *pLevel, /* Level to work on merging */
+ MergeWorker *pMW /* Object to initialize */
+){
+ int rc = LSM_OK; /* Return code */
+ Merge *pMerge = pLevel->pMerge; /* Persistent part of merge state */
+ MultiCursor *pCsr = 0; /* Cursor opened for pMW */
+ Level *pNext = pLevel->pNext; /* Next level in LSM */
+
+ assert( pDb->pWorker );
+ assert( pLevel->pMerge );
+ assert( pLevel->nRight>0 );
+
+ memset(pMW, 0, sizeof(MergeWorker));
+ pMW->pDb = pDb;
+ pMW->pLevel = pLevel;
+ pMW->aGobble = lsmMallocZeroRc(pDb->pEnv, sizeof(LsmPgno)*pLevel->nRight,&rc);
+
+ /* Create a multi-cursor to read the data to write to the new
+ ** segment. The new segment contains:
+ **
+ ** 1. Records from LHS of each of the nMerge levels being merged.
+ ** 2. Separators from either the last level being merged, or the
+ ** separators attached to the LHS of the following level, or neither.
+ **
+ ** If the new level is the lowest (oldest) in the db, discard any
+ ** delete keys. Key annihilation.
+ */
+ pCsr = multiCursorNew(pDb, &rc);
+ if( pCsr ){
+ pCsr->flags |= CURSOR_NEXT_OK;
+ rc = multiCursorAddRhs(pCsr, pLevel);
+ }
+ if( rc==LSM_OK && pMerge->nInput > pLevel->nRight ){
+ rc = btreeCursorNew(pDb, &pNext->lhs, &pCsr->pBtCsr);
+ }else if( pNext ){
+ multiCursorReadSeparators(pCsr);
+ }else{
+ multiCursorIgnoreDelete(pCsr);
+ }
+
+ assert( rc!=LSM_OK || pMerge->nInput==(pCsr->nPtr+(pCsr->pBtCsr!=0)) );
+ pMW->pCsr = pCsr;
+
+ /* Load the b-tree hierarchy into memory. */
+ if( rc==LSM_OK ) rc = mergeWorkerLoadHierarchy(pMW);
+ if( rc==LSM_OK && pMW->hier.nHier==0 ){
+ pMW->aSave[0].iPgno = pLevel->lhs.iFirst;
+ }
+
+ /* Position the cursor. */
+ if( rc==LSM_OK ){
+ pCsr->pPrevMergePtr = &pMerge->iCurrentPtr;
+ if( pLevel->lhs.iFirst==0 ){
+ /* The output array is still empty. So position the cursor at the very
+ ** start of the input. */
+ rc = multiCursorEnd(pCsr, 0);
+ }else{
+ /* The output array is non-empty. Position the cursor based on the
+ ** page/cell data saved in the Merge.aInput[] array. */
+ int i;
+ for(i=0; rc==LSM_OK && i<pCsr->nPtr; i++){
+ MergeInput *pInput = &pMerge->aInput[i];
+ if( pInput->iPg ){
+ SegmentPtr *pPtr;
+ assert( pCsr->aPtr[i].pPg==0 );
+ pPtr = &pCsr->aPtr[i];
+ rc = segmentPtrLoadPage(pDb->pFS, pPtr, (int)pInput->iPg);
+ if( rc==LSM_OK && pPtr->nCell>0 ){
+ rc = segmentPtrLoadCell(pPtr, pInput->iCell);
+ }
+ }
+ }
+
+ if( rc==LSM_OK && pCsr->pBtCsr ){
+ int (*xCmp)(void *, int, void *, int) = pCsr->pDb->xCmp;
+ assert( i==pCsr->nPtr );
+ rc = btreeCursorRestore(pCsr->pBtCsr, xCmp, &pMerge->aInput[i]);
+ }
+
+ if( rc==LSM_OK ){
+ rc = multiCursorSetupTree(pCsr, 0);
+ }
+ }
+ pCsr->flags |= CURSOR_NEXT_OK;
+ }
+
+ return rc;
+}
+
+static int sortedBtreeGobble(
+ lsm_db *pDb, /* Worker connection */
+ MultiCursor *pCsr, /* Multi-cursor being used for a merge */
+ int iGobble /* pCsr->aPtr[] entry to operate on */
+){
+ int rc = LSM_OK;
+ if( rtTopic(pCsr->eType)==0 ){
+ Segment *pSeg = pCsr->aPtr[iGobble].pSeg;
+ LsmPgno *aPg;
+ int nPg;
+
+ /* Seek from the root of the b-tree to the segment leaf that may contain
+ ** a key equal to the one multi-cursor currently points to. Record the
+ ** page number of each b-tree page and the leaf. The segment may be
+ ** gobbled up to (but not including) the first of these page numbers.
+ */
+ assert( pSeg->iRoot>0 );
+ aPg = lsmMallocZeroRc(pDb->pEnv, sizeof(LsmPgno)*32, &rc);
+ if( rc==LSM_OK ){
+ rc = seekInBtree(pCsr, pSeg,
+ rtTopic(pCsr->eType), pCsr->key.pData, pCsr->key.nData, aPg, 0
+ );
+ }
+
+ if( rc==LSM_OK ){
+ for(nPg=0; aPg[nPg]; nPg++);
+ lsmFsGobble(pDb, pSeg, aPg, nPg);
+ }
+
+ lsmFree(pDb->pEnv, aPg);
+ }
+ return rc;
+}
+
+/*
+** Argument p points to a level of age N. Return the number of levels in
+** the linked list starting at p that have age=N (always at least 1).
+*/
+static int sortedCountLevels(Level *p){
+ int iAge = p->iAge;
+ int nRet = 0;
+ do {
+ nRet++;
+ p = p->pNext;
+ }while( p && p->iAge==iAge );
+ return nRet;
+}
+
+static int sortedSelectLevel(lsm_db *pDb, int nMerge, Level **ppOut){
+ Level *pTopLevel = lsmDbSnapshotLevel(pDb->pWorker);
+ int rc = LSM_OK;
+ Level *pLevel = 0; /* Output value */
+ Level *pBest = 0; /* Best level to work on found so far */
+ int nBest; /* Number of segments merged at pBest */
+ Level *pThis = 0; /* First in run of levels with age=iAge */
+ int nThis = 0; /* Number of levels starting at pThis */
+
+ assert( nMerge>=1 );
+ nBest = LSM_MAX(1, nMerge-1);
+
+ /* Find the longest contiguous run of levels not currently undergoing a
+ ** merge with the same age in the structure. Or the level being merged
+ ** with the largest number of right-hand segments. Work on it. */
+ for(pLevel=pTopLevel; pLevel; pLevel=pLevel->pNext){
+ if( pLevel->nRight==0 && pThis && pLevel->iAge==pThis->iAge ){
+ nThis++;
+ }else{
+ if( nThis>nBest ){
+ if( (pLevel->iAge!=pThis->iAge+1)
+ || (pLevel->nRight==0 && sortedCountLevels(pLevel)<=pDb->nMerge)
+ ){
+ pBest = pThis;
+ nBest = nThis;
+ }
+ }
+ if( pLevel->nRight ){
+ if( pLevel->nRight>nBest ){
+ nBest = pLevel->nRight;
+ pBest = pLevel;
+ }
+ nThis = 0;
+ pThis = 0;
+ }else{
+ pThis = pLevel;
+ nThis = 1;
+ }
+ }
+ }
+ if( nThis>nBest ){
+ assert( pThis );
+ pBest = pThis;
+ nBest = nThis;
+ }
+
+ if( pBest==0 && nMerge==1 ){
+ int nFree = 0;
+ int nUsr = 0;
+ for(pLevel=pTopLevel; pLevel; pLevel=pLevel->pNext){
+ assert( !pLevel->nRight );
+ if( pLevel->flags & LEVEL_FREELIST_ONLY ){
+ nFree++;
+ }else{
+ nUsr++;
+ }
+ }
+ if( nUsr>1 ){
+ pBest = pTopLevel;
+ nBest = nFree + nUsr;
+ }
+ }
+
+ if( pBest ){
+ if( pBest->nRight==0 ){
+ rc = sortedMergeSetup(pDb, pBest, nBest, ppOut);
+ }else{
+ *ppOut = pBest;
+ }
+ }
+
+ return rc;
+}
+
+static int sortedDbIsFull(lsm_db *pDb){
+ Level *pTop = lsmDbSnapshotLevel(pDb->pWorker);
+
+ if( lsmDatabaseFull(pDb) ) return 1;
+ if( pTop && pTop->iAge==0
+ && (pTop->nRight || sortedCountLevels(pTop)>=pDb->nMerge)
+ ){
+ return 1;
+ }
+ return 0;
+}
+
+typedef struct MoveBlockCtx MoveBlockCtx;
+struct MoveBlockCtx {
+ int iSeen; /* Previous free block on list */
+ int iFrom; /* Total number of blocks in file */
+};
+
+static int moveBlockCb(void *pCtx, int iBlk, i64 iSnapshot){
+ MoveBlockCtx *p = (MoveBlockCtx *)pCtx;
+ assert( p->iFrom==0 );
+ if( iBlk==(p->iSeen-1) ){
+ p->iSeen = iBlk;
+ return 0;
+ }
+ p->iFrom = p->iSeen-1;
+ return 1;
+}
+
+/*
+** This function is called to further compact a database for which all
+** of the content has already been merged into a single segment. If
+** possible, it moves the contents of a single block from the end of the
+** file to a free-block that lies closer to the start of the file (allowing
+** the file to be eventually truncated).
+*/
+static int sortedMoveBlock(lsm_db *pDb, int *pnWrite){
+ Snapshot *p = pDb->pWorker;
+ Level *pLvl = lsmDbSnapshotLevel(p);
+ int iFrom; /* Block to move */
+ int iTo; /* Destination to move block to */
+ int rc; /* Return code */
+
+ MoveBlockCtx sCtx;
+
+ assert( pLvl->pNext==0 && pLvl->nRight==0 );
+ assert( p->redirect.n<=LSM_MAX_BLOCK_REDIRECTS );
+
+ *pnWrite = 0;
+
+ /* Check that the redirect array is not already full. If it is, return
+ ** without moving any database content. */
+ if( p->redirect.n>=LSM_MAX_BLOCK_REDIRECTS ) return LSM_OK;
+
+ /* Find the last block of content in the database file. Do this by
+ ** traversing the free-list in reverse (descending block number) order.
+ ** The first block not on the free list is the one that will be moved.
+ ** Since the db consists of a single segment, there is no ambiguity as
+ ** to which segment the block belongs to. */
+ sCtx.iSeen = p->nBlock+1;
+ sCtx.iFrom = 0;
+ rc = lsmWalkFreelist(pDb, 1, moveBlockCb, &sCtx);
+ if( rc!=LSM_OK || sCtx.iFrom==0 ) return rc;
+ iFrom = sCtx.iFrom;
+
+ /* Find the first free block in the database, ignoring block 1. Block
+ ** 1 is tricky as it is smaller than the other blocks. */
+ rc = lsmBlockAllocate(pDb, iFrom, &iTo);
+ if( rc!=LSM_OK || iTo==0 ) return rc;
+ assert( iTo!=1 && iTo<iFrom );
+
+ rc = lsmFsMoveBlock(pDb->pFS, &pLvl->lhs, iTo, iFrom);
+ if( rc==LSM_OK ){
+ if( p->redirect.a==0 ){
+ int nByte = sizeof(struct RedirectEntry) * LSM_MAX_BLOCK_REDIRECTS;
+ p->redirect.a = lsmMallocZeroRc(pDb->pEnv, nByte, &rc);
+ }
+ if( rc==LSM_OK ){
+
+ /* Check if the block just moved was already redirected. */
+ int i;
+ for(i=0; i<p->redirect.n; i++){
+ if( p->redirect.a[i].iTo==iFrom ) break;
+ }
+
+ if( i==p->redirect.n ){
+ /* Block iFrom was not already redirected. Add a new array entry. */
+ memmove(&p->redirect.a[1], &p->redirect.a[0],
+ sizeof(struct RedirectEntry) * p->redirect.n
+ );
+ p->redirect.a[0].iFrom = iFrom;
+ p->redirect.a[0].iTo = iTo;
+ p->redirect.n++;
+ }else{
+ /* Block iFrom was already redirected. Overwrite existing entry. */
+ p->redirect.a[i].iTo = iTo;
+ }
+
+ rc = lsmBlockFree(pDb, iFrom);
+
+ *pnWrite = lsmFsBlockSize(pDb->pFS) / lsmFsPageSize(pDb->pFS);
+ pLvl->lhs.pRedirect = &p->redirect;
+ }
+ }
+
+#if LSM_LOG_STRUCTURE
+ if( rc==LSM_OK ){
+ char aBuf[64];
+ sprintf(aBuf, "move-block %d/%d", p->redirect.n-1, LSM_MAX_BLOCK_REDIRECTS);
+ lsmSortedDumpStructure(pDb, pDb->pWorker, LSM_LOG_DATA, 0, aBuf);
+ }
+#endif
+ return rc;
+}
+
+/*
+*/
+static int mergeInsertFreelistSegments(
+ lsm_db *pDb,
+ int nFree,
+ MergeWorker *pMW
+){
+ int rc = LSM_OK;
+ if( nFree>0 ){
+ MultiCursor *pCsr = pMW->pCsr;
+ Level *pLvl = pMW->pLevel;
+ SegmentPtr *aNew1;
+ Segment *aNew2;
+
+ Level *pIter;
+ Level *pNext;
+ int i = 0;
+
+ aNew1 = (SegmentPtr *)lsmMallocZeroRc(
+ pDb->pEnv, sizeof(SegmentPtr) * (pCsr->nPtr+nFree), &rc
+ );
+ if( rc ) return rc;
+ memcpy(&aNew1[nFree], pCsr->aPtr, sizeof(SegmentPtr)*pCsr->nPtr);
+ pCsr->nPtr += nFree;
+ lsmFree(pDb->pEnv, pCsr->aTree);
+ lsmFree(pDb->pEnv, pCsr->aPtr);
+ pCsr->aTree = 0;
+ pCsr->aPtr = aNew1;
+
+ aNew2 = (Segment *)lsmMallocZeroRc(
+ pDb->pEnv, sizeof(Segment) * (pLvl->nRight+nFree), &rc
+ );
+ if( rc ) return rc;
+ memcpy(&aNew2[nFree], pLvl->aRhs, sizeof(Segment)*pLvl->nRight);
+ pLvl->nRight += nFree;
+ lsmFree(pDb->pEnv, pLvl->aRhs);
+ pLvl->aRhs = aNew2;
+
+ for(pIter=pDb->pWorker->pLevel; rc==LSM_OK && pIter!=pLvl; pIter=pNext){
+ Segment *pSeg = &pLvl->aRhs[i];
+ memcpy(pSeg, &pIter->lhs, sizeof(Segment));
+
+ pCsr->aPtr[i].pSeg = pSeg;
+ pCsr->aPtr[i].pLevel = pLvl;
+ rc = segmentPtrEnd(pCsr, &pCsr->aPtr[i], 0);
+
+ pDb->pWorker->pLevel = pNext = pIter->pNext;
+ sortedFreeLevel(pDb->pEnv, pIter);
+ i++;
+ }
+ assert( i==nFree );
+ assert( rc!=LSM_OK || pDb->pWorker->pLevel==pLvl );
+
+ for(i=nFree; i<pCsr->nPtr; i++){
+ pCsr->aPtr[i].pSeg = &pLvl->aRhs[i];
+ }
+
+ lsmFree(pDb->pEnv, pMW->aGobble);
+ pMW->aGobble = 0;
+ }
+ return rc;
+}
+
+static int sortedWork(
+ lsm_db *pDb, /* Database handle. Must be worker. */
+ int nWork, /* Number of pages of work to do */
+ int nMerge, /* Try to merge this many levels at once */
+ int bFlush, /* Set if call is to make room for a flush */
+ int *pnWrite /* OUT: Actual number of pages written */
+){
+ int rc = LSM_OK; /* Return Code */
+ int nRemaining = nWork; /* Units of work to do before returning */
+ Snapshot *pWorker = pDb->pWorker;
+
+ assert( pWorker );
+ if( lsmDbSnapshotLevel(pWorker)==0 ) return LSM_OK;
+
+ while( nRemaining>0 ){
+ Level *pLevel = 0;
+
+ /* Find a level to work on. */
+ rc = sortedSelectLevel(pDb, nMerge, &pLevel);
+ assert( rc==LSM_OK || pLevel==0 );
+
+ if( pLevel==0 ){
+ int nDone = 0;
+ Level *pTopLevel = lsmDbSnapshotLevel(pDb->pWorker);
+ if( bFlush==0 && nMerge==1 && pTopLevel && pTopLevel->pNext==0 ){
+ rc = sortedMoveBlock(pDb, &nDone);
+ }
+ nRemaining -= nDone;
+
+ /* Could not find any work to do. Finished. */
+ if( nDone==0 ) break;
+ }else{
+ int bSave = 0;
+ Freelist freelist = {0, 0, 0};
+ MergeWorker mergeworker; /* State used to work on the level merge */
+
+ assert( pDb->bIncrMerge==0 );
+ assert( pDb->pFreelist==0 && pDb->bUseFreelist==0 );
+
+ pDb->bIncrMerge = 1;
+ rc = mergeWorkerInit(pDb, pLevel, &mergeworker);
+ assert( mergeworker.nWork==0 );
+
+ while( rc==LSM_OK
+ && 0==mergeWorkerDone(&mergeworker)
+ && (mergeworker.nWork<nRemaining || pDb->bUseFreelist)
+ ){
+ int eType = rtTopic(mergeworker.pCsr->eType);
+ rc = mergeWorkerStep(&mergeworker);
+
+ /* If the cursor now points at the first entry past the end of the
+ ** user data (i.e. either to EOF or to the first free-list entry
+ ** that will be added to the run), then check if it is possible to
+ ** merge in any free-list entries that are either in-memory or in
+ ** free-list-only blocks. */
+ if( rc==LSM_OK && nMerge==1 && eType==0
+ && (rtTopic(mergeworker.pCsr->eType) || mergeWorkerDone(&mergeworker))
+ ){
+ int nFree = 0; /* Number of free-list-only levels to merge */
+ Level *pLvl;
+ assert( pDb->pFreelist==0 && pDb->bUseFreelist==0 );
+
+ /* Now check if all levels containing data newer than this one
+ ** are single-segment free-list only levels. If so, they will be
+ ** merged in now. */
+ for(pLvl=pDb->pWorker->pLevel;
+ pLvl!=mergeworker.pLevel && (pLvl->flags & LEVEL_FREELIST_ONLY);
+ pLvl=pLvl->pNext
+ ){
+ assert( pLvl->nRight==0 );
+ nFree++;
+ }
+ if( pLvl==mergeworker.pLevel ){
+
+ rc = mergeInsertFreelistSegments(pDb, nFree, &mergeworker);
+ if( rc==LSM_OK ){
+ rc = multiCursorVisitFreelist(mergeworker.pCsr);
+ }
+ if( rc==LSM_OK ){
+ rc = multiCursorSetupTree(mergeworker.pCsr, 0);
+ pDb->pFreelist = &freelist;
+ pDb->bUseFreelist = 1;
+ }
+ }
+ }
+ }
+ nRemaining -= LSM_MAX(mergeworker.nWork, 1);
+
+ if( rc==LSM_OK ){
+ /* Check if the merge operation is completely finished. If not,
+ ** gobble up (declare eligible for recycling) any pages from rhs
+ ** segments for which the content has been completely merged into
+ ** the lhs of the level. */
+ if( mergeWorkerDone(&mergeworker)==0 ){
+ int i;
+ for(i=0; i<pLevel->nRight; i++){
+ SegmentPtr *pGobble = &mergeworker.pCsr->aPtr[i];
+ if( pGobble->pSeg->iRoot ){
+ rc = sortedBtreeGobble(pDb, mergeworker.pCsr, i);
+ }else if( mergeworker.aGobble[i] ){
+ lsmFsGobble(pDb, pGobble->pSeg, &mergeworker.aGobble[i], 1);
+ }
+ }
+ }else{
+ int i;
+ int bEmpty;
+ mergeWorkerShutdown(&mergeworker, &rc);
+ bEmpty = (pLevel->lhs.iFirst==0);
+
+ if( bEmpty==0 && rc==LSM_OK ){
+ rc = lsmFsSortedFinish(pDb->pFS, &pLevel->lhs);
+ }
+
+ if( pDb->bUseFreelist ){
+ Freelist *p = &pDb->pWorker->freelist;
+ lsmFree(pDb->pEnv, p->aEntry);
+ memcpy(p, &freelist, sizeof(freelist));
+ pDb->bUseFreelist = 0;
+ pDb->pFreelist = 0;
+ bSave = 1;
+ }
+
+ for(i=0; i<pLevel->nRight; i++){
+ lsmFsSortedDelete(pDb->pFS, pWorker, 1, &pLevel->aRhs[i]);
+ }
+
+ if( bEmpty ){
+ /* If the new level is completely empty, remove it from the
+ ** database snapshot. This can only happen if all input keys were
+ ** annihilated. Since keys are only annihilated if the new level
+ ** is the last in the linked list (contains the most ancient of
+ ** database content), this guarantees that pLevel->pNext==0. */
+ Level *pTop; /* Top level of worker snapshot */
+ Level **pp; /* Read/write iterator for Level.pNext list */
+
+ assert( pLevel->pNext==0 );
+
+ /* Remove the level from the worker snapshot. */
+ pTop = lsmDbSnapshotLevel(pWorker);
+ for(pp=&pTop; *pp!=pLevel; pp=&((*pp)->pNext));
+ *pp = pLevel->pNext;
+ lsmDbSnapshotSetLevel(pWorker, pTop);
+
+ /* Free the Level structure. */
+ sortedFreeLevel(pDb->pEnv, pLevel);
+ }else{
+
+ /* Free the separators of the next level, if required. */
+ if( pLevel->pMerge->nInput > pLevel->nRight ){
+ assert( pLevel->pNext->lhs.iRoot );
+ pLevel->pNext->lhs.iRoot = 0;
+ }
+
+ /* Zero the right-hand-side of pLevel */
+ lsmFree(pDb->pEnv, pLevel->aRhs);
+ pLevel->nRight = 0;
+ pLevel->aRhs = 0;
+
+ /* Free the Merge object */
+ lsmFree(pDb->pEnv, pLevel->pMerge);
+ pLevel->pMerge = 0;
+ }
+
+ if( bSave && rc==LSM_OK ){
+ pDb->bIncrMerge = 0;
+ rc = lsmSaveWorker(pDb, 0);
+ }
+ }
+ }
+
+ /* Clean up the MergeWorker object initialized above. If no error
+ ** has occurred, invoke the work-hook to inform the application that
+ ** the database structure has changed. */
+ mergeWorkerShutdown(&mergeworker, &rc);
+ pDb->bIncrMerge = 0;
+ if( rc==LSM_OK ) sortedInvokeWorkHook(pDb);
+
+#if LSM_LOG_STRUCTURE
+ lsmSortedDumpStructure(pDb, pDb->pWorker, LSM_LOG_DATA, 0, "work");
+#endif
+ assertBtreeOk(pDb, &pLevel->lhs);
+ assertRunInOrder(pDb, &pLevel->lhs);
+
+ /* If bFlush is true and the database is no longer considered "full",
+ ** break out of the loop even if nRemaining is still greater than
+ ** zero. The caller has an in-memory tree to flush to disk. */
+ if( bFlush && sortedDbIsFull(pDb)==0 ) break;
+ }
+ }
+
+ if( pnWrite ) *pnWrite = (nWork - nRemaining);
+ pWorker->nWrite += (nWork - nRemaining);
+
+#ifdef LSM_LOG_WORK
+ lsmLogMessage(pDb, rc, "sortedWork(): %d pages", (nWork-nRemaining));
+#endif
+ return rc;
+}
+
+/*
+** The database connection passed as the first argument must be a worker
+** connection. This function checks if there exists an "old" in-memory tree
+** ready to be flushed to disk. If so, true is returned. Otherwise false.
+**
+** If an error occurs, *pRc is set to an LSM error code before returning.
+** It is assumed that *pRc is set to LSM_OK when this function is called.
+*/
+static int sortedTreeHasOld(lsm_db *pDb, int *pRc){
+ int rc = LSM_OK;
+ int bRet = 0;
+
+ assert( pDb->pWorker );
+ if( *pRc==LSM_OK ){
+ if( rc==LSM_OK
+ && pDb->treehdr.iOldShmid
+ && pDb->treehdr.iOldLog!=pDb->pWorker->iLogOff
+ ){
+ bRet = 1;
+ }else{
+ bRet = 0;
+ }
+ *pRc = rc;
+ }
+ assert( *pRc==LSM_OK || bRet==0 );
+ return bRet;
+}
+
+/*
+** Create a new free-list only top-level segment. Return LSM_OK if successful
+** or an LSM error code if some error occurs.
+*/
+static int sortedNewFreelistOnly(lsm_db *pDb){
+ return sortedNewToplevel(pDb, TREE_NONE, 0);
+}
+
+int lsmSaveWorker(lsm_db *pDb, int bFlush){
+ Snapshot *p = pDb->pWorker;
+ if( p->freelist.nEntry>pDb->nMaxFreelist ){
+ int rc = sortedNewFreelistOnly(pDb);
+ if( rc!=LSM_OK ) return rc;
+ }
+ return lsmCheckpointSaveWorker(pDb, bFlush);
+}
+
+static int doLsmSingleWork(
+ lsm_db *pDb,
+ int bShutdown,
+ int nMerge, /* Minimum segments to merge together */
+ int nPage, /* Number of pages to write to disk */
+ int *pnWrite, /* OUT: Pages actually written to disk */
+ int *pbCkpt /* OUT: True if an auto-checkpoint is req. */
+){
+ Snapshot *pWorker; /* Worker snapshot */
+ int rc = LSM_OK; /* Return code */
+ int bDirty = 0;
+ int nMax = nPage; /* Maximum pages to write to disk */
+ int nRem = nPage;
+ int bCkpt = 0;
+
+ assert( nPage>0 );
+
+ /* Open the worker 'transaction'. It will be closed before this function
+ ** returns. */
+ assert( pDb->pWorker==0 );
+ rc = lsmBeginWork(pDb);
+ if( rc!=LSM_OK ) return rc;
+ pWorker = pDb->pWorker;
+
+ /* If this connection is doing auto-checkpoints, set nMax (and nRem) so
+ ** that this call stops writing when the auto-checkpoint is due. The
+ ** caller will do the checkpoint, then possibly call this function again. */
+ if( bShutdown==0 && pDb->nAutockpt ){
+ u32 nSync;
+ u32 nUnsync;
+ int nPgsz;
+
+ lsmCheckpointSynced(pDb, 0, 0, &nSync);
+ nUnsync = lsmCheckpointNWrite(pDb->pShmhdr->aSnap1, 0);
+ nPgsz = lsmCheckpointPgsz(pDb->pShmhdr->aSnap1);
+
+ nMax = (int)LSM_MIN(nMax, (pDb->nAutockpt/nPgsz) - (int)(nUnsync-nSync));
+ if( nMax<nRem ){
+ bCkpt = 1;
+ nRem = LSM_MAX(nMax, 0);
+ }
+ }
+
+ /* If there exists in-memory data ready to be flushed to disk, attempt
+ ** to flush it now. */
+ if( pDb->nTransOpen==0 ){
+ rc = lsmTreeLoadHeader(pDb, 0);
+ }
+ if( sortedTreeHasOld(pDb, &rc) ){
+ /* sortedDbIsFull() returns non-zero if either (a) there are too many
+ ** levels in total in the db, or (b) there are too many levels with the
+ ** the same age in the db. Either way, call sortedWork() to merge
+ ** existing segments together until this condition is cleared. */
+ if( sortedDbIsFull(pDb) ){
+ int nPg = 0;
+ rc = sortedWork(pDb, nRem, nMerge, 1, &nPg);
+ nRem -= nPg;
+ assert( rc!=LSM_OK || nRem<=0 || !sortedDbIsFull(pDb) );
+ bDirty = 1;
+ }
+
+ if( rc==LSM_OK && nRem>0 ){
+ int nPg = 0;
+ rc = sortedNewToplevel(pDb, TREE_OLD, &nPg);
+ nRem -= nPg;
+ if( rc==LSM_OK ){
+ if( pDb->nTransOpen>0 ){
+ lsmTreeDiscardOld(pDb);
+ }
+ rc = lsmSaveWorker(pDb, 1);
+ bDirty = 0;
+ }
+ }
+ }
+
+ /* If nPage is still greater than zero, do some merging. */
+ if( rc==LSM_OK && nRem>0 && bShutdown==0 ){
+ int nPg = 0;
+ rc = sortedWork(pDb, nRem, nMerge, 0, &nPg);
+ nRem -= nPg;
+ if( nPg ) bDirty = 1;
+ }
+
+ /* If the in-memory part of the free-list is too large, write a new
+ ** top-level containing just the in-memory free-list entries to disk. */
+ if( rc==LSM_OK && pDb->pWorker->freelist.nEntry > pDb->nMaxFreelist ){
+ while( rc==LSM_OK && lsmDatabaseFull(pDb) ){
+ int nPg = 0;
+ rc = sortedWork(pDb, 16, nMerge, 1, &nPg);
+ nRem -= nPg;
+ }
+ if( rc==LSM_OK ){
+ rc = sortedNewFreelistOnly(pDb);
+ }
+ bDirty = 1;
+ }
+
+ if( rc==LSM_OK ){
+ *pnWrite = (nMax - nRem);
+ *pbCkpt = (bCkpt && nRem<=0);
+ if( nMerge==1 && pDb->nAutockpt>0 && *pnWrite>0
+ && pWorker->pLevel
+ && pWorker->pLevel->nRight==0
+ && pWorker->pLevel->pNext==0
+ ){
+ *pbCkpt = 1;
+ }
+ }
+
+ if( rc==LSM_OK && bDirty ){
+ lsmFinishWork(pDb, 0, &rc);
+ }else{
+ int rcdummy = LSM_BUSY;
+ lsmFinishWork(pDb, 0, &rcdummy);
+ *pnWrite = 0;
+ }
+ assert( pDb->pWorker==0 );
+ return rc;
+}
+
+static int doLsmWork(lsm_db *pDb, int nMerge, int nPage, int *pnWrite){
+ int rc = LSM_OK; /* Return code */
+ int nWrite = 0; /* Number of pages written */
+
+ assert( nMerge>=1 );
+
+ if( nPage!=0 ){
+ int bCkpt = 0;
+ do {
+ int nThis = 0;
+ int nReq = (nPage>=0) ? (nPage-nWrite) : ((int)0x7FFFFFFF);
+
+ bCkpt = 0;
+ rc = doLsmSingleWork(pDb, 0, nMerge, nReq, &nThis, &bCkpt);
+ nWrite += nThis;
+ if( rc==LSM_OK && bCkpt ){
+ rc = lsm_checkpoint(pDb, 0);
+ }
+ }while( rc==LSM_OK && bCkpt && (nWrite<nPage || nPage<0) );
+ }
+
+ if( pnWrite ){
+ if( rc==LSM_OK ){
+ *pnWrite = nWrite;
+ }else{
+ *pnWrite = 0;
+ }
+ }
+ return rc;
+}
+
+/*
+** Perform work to merge database segments together.
+*/
+int lsm_work(lsm_db *pDb, int nMerge, int nKB, int *pnWrite){
+ int rc; /* Return code */
+ int nPgsz; /* Nominal page size in bytes */
+ int nPage; /* Equivalent of nKB in pages */
+ int nWrite = 0; /* Number of pages written */
+
+ /* This function may not be called if pDb has an open read or write
+ ** transaction. Return LSM_MISUSE if an application attempts this. */
+ if( pDb->nTransOpen || pDb->pCsr ) return LSM_MISUSE_BKPT;
+ if( nMerge<=0 ) nMerge = pDb->nMerge;
+
+ lsmFsPurgeCache(pDb->pFS);
+
+ /* Convert from KB to pages */
+ nPgsz = lsmFsPageSize(pDb->pFS);
+ if( nKB>=0 ){
+ nPage = ((i64)nKB * 1024 + nPgsz - 1) / nPgsz;
+ }else{
+ nPage = -1;
+ }
+
+ rc = doLsmWork(pDb, nMerge, nPage, &nWrite);
+
+ if( pnWrite ){
+ /* Convert back from pages to KB */
+ *pnWrite = (int)(((i64)nWrite * 1024 + nPgsz - 1) / nPgsz);
+ }
+ return rc;
+}
+
+int lsm_flush(lsm_db *db){
+ int rc;
+
+ if( db->nTransOpen>0 || db->pCsr ){
+ rc = LSM_MISUSE_BKPT;
+ }else{
+ rc = lsmBeginWriteTrans(db);
+ if( rc==LSM_OK ){
+ lsmFlushTreeToDisk(db);
+ lsmTreeDiscardOld(db);
+ lsmTreeMakeOld(db);
+ lsmTreeDiscardOld(db);
+ }
+
+ if( rc==LSM_OK ){
+ rc = lsmFinishWriteTrans(db, 1);
+ }else{
+ lsmFinishWriteTrans(db, 0);
+ }
+ lsmFinishReadTrans(db);
+ }
+
+ return rc;
+}
+
+/*
+** This function is called in auto-work mode to perform merging work on
+** the data structure. It performs enough merging work to prevent the
+** height of the tree from growing indefinitely assuming that roughly
+** nUnit database pages worth of data have been written to the database
+** (i.e. the in-memory tree) since the last call.
+*/
+int lsmSortedAutoWork(
+ lsm_db *pDb, /* Database handle */
+ int nUnit /* Pages of data written to in-memory tree */
+){
+ int rc = LSM_OK; /* Return code */
+ int nDepth = 0; /* Current height of tree (longest path) */
+ Level *pLevel; /* Used to iterate through levels */
+ int bRestore = 0;
+
+ assert( pDb->pWorker==0 );
+ assert( pDb->nTransOpen>0 );
+
+ /* Determine how many units of work to do before returning. One unit of
+ ** work is achieved by writing one page (~4KB) of merged data. */
+ for(pLevel=lsmDbSnapshotLevel(pDb->pClient); pLevel; pLevel=pLevel->pNext){
+ /* nDepth += LSM_MAX(1, pLevel->nRight); */
+ nDepth += 1;
+ }
+ if( lsmTreeHasOld(pDb) ){
+ nDepth += 1;
+ bRestore = 1;
+ rc = lsmSaveCursors(pDb);
+ if( rc!=LSM_OK ) return rc;
+ }
+
+ if( nDepth>0 ){
+ int nRemaining; /* Units of work to do before returning */
+
+ nRemaining = nUnit * nDepth;
+#ifdef LSM_LOG_WORK
+ lsmLogMessage(pDb, rc, "lsmSortedAutoWork(): %d*%d = %d pages",
+ nUnit, nDepth, nRemaining);
+#endif
+ assert( nRemaining>=0 );
+ rc = doLsmWork(pDb, pDb->nMerge, nRemaining, 0);
+ if( rc==LSM_BUSY ) rc = LSM_OK;
+
+ if( bRestore && pDb->pCsr ){
+ lsmMCursorFreeCache(pDb);
+ lsmFreeSnapshot(pDb->pEnv, pDb->pClient);
+ pDb->pClient = 0;
+ if( rc==LSM_OK ){
+ rc = lsmCheckpointLoad(pDb, 0);
+ }
+ if( rc==LSM_OK ){
+ rc = lsmCheckpointDeserialize(pDb, 0, pDb->aSnapshot, &pDb->pClient);
+ }
+ if( rc==LSM_OK ){
+ rc = lsmRestoreCursors(pDb);
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** This function is only called during system shutdown. The contents of
+** any in-memory trees present (old or current) are written out to disk.
+*/
+int lsmFlushTreeToDisk(lsm_db *pDb){
+ int rc;
+
+ rc = lsmBeginWork(pDb);
+ while( rc==LSM_OK && sortedDbIsFull(pDb) ){
+ rc = sortedWork(pDb, 256, pDb->nMerge, 1, 0);
+ }
+
+ if( rc==LSM_OK ){
+ rc = sortedNewToplevel(pDb, TREE_BOTH, 0);
+ }
+
+ lsmFinishWork(pDb, 1, &rc);
+ return rc;
+}
+
+/*
+** Return a string representation of the segment passed as the only argument.
+** Space for the returned string is allocated using lsmMalloc(), and should
+** be freed by the caller using lsmFree().
+*/
+static char *segToString(lsm_env *pEnv, Segment *pSeg, int nMin){
+ int nSize = pSeg->nSize;
+ LsmPgno iRoot = pSeg->iRoot;
+ LsmPgno iFirst = pSeg->iFirst;
+ LsmPgno iLast = pSeg->iLastPg;
+ char *z;
+
+ char *z1;
+ char *z2;
+ int nPad;
+
+ z1 = lsmMallocPrintf(pEnv, "%d.%d", iFirst, iLast);
+ if( iRoot ){
+ z2 = lsmMallocPrintf(pEnv, "root=%d", iRoot);
+ }else{
+ z2 = lsmMallocPrintf(pEnv, "size=%d", nSize);
+ }
+
+ nPad = nMin - 2 - strlen(z1) - 1 - strlen(z2);
+ nPad = LSM_MAX(0, nPad);
+
+ if( iRoot ){
+ z = lsmMallocPrintf(pEnv, "/%s %*s%s\\", z1, nPad, "", z2);
+ }else{
+ z = lsmMallocPrintf(pEnv, "|%s %*s%s|", z1, nPad, "", z2);
+ }
+ lsmFree(pEnv, z1);
+ lsmFree(pEnv, z2);
+
+ return z;
+}
+
+static int fileToString(
+ lsm_db *pDb, /* For xMalloc() */
+ char *aBuf,
+ int nBuf,
+ int nMin,
+ Segment *pSeg
+){
+ int i = 0;
+ if( pSeg ){
+ char *zSeg;
+
+ zSeg = segToString(pDb->pEnv, pSeg, nMin);
+ snprintf(&aBuf[i], nBuf-i, "%s", zSeg);
+ i += strlen(&aBuf[i]);
+ lsmFree(pDb->pEnv, zSeg);
+
+#ifdef LSM_LOG_FREELIST
+ lsmInfoArrayStructure(pDb, 1, pSeg->iFirst, &zSeg);
+ snprintf(&aBuf[i], nBuf-1, " (%s)", zSeg);
+ i += strlen(&aBuf[i]);
+ lsmFree(pDb->pEnv, zSeg);
+#endif
+ aBuf[nBuf] = 0;
+ }else{
+ aBuf[0] = '\0';
+ }
+
+ return i;
+}
+
+void sortedDumpPage(lsm_db *pDb, Segment *pRun, Page *pPg, int bVals){
+ LsmBlob blob = {0, 0, 0}; /* LsmBlob used for keys */
+ LsmString s;
+ int i;
+
+ int nRec;
+ int iPtr;
+ int flags;
+ u8 *aData;
+ int nData;
+
+ aData = fsPageData(pPg, &nData);
+
+ nRec = pageGetNRec(aData, nData);
+ iPtr = (int)pageGetPtr(aData, nData);
+ flags = pageGetFlags(aData, nData);
+
+ lsmStringInit(&s, pDb->pEnv);
+ lsmStringAppendf(&s,"nCell=%d iPtr=%d flags=%d {", nRec, iPtr, flags);
+ if( flags&SEGMENT_BTREE_FLAG ) iPtr = 0;
+
+ for(i=0; i<nRec; i++){
+ Page *pRef = 0; /* Pointer to page iRef */
+ int iChar;
+ u8 *aKey; int nKey = 0; /* Key */
+ u8 *aVal = 0; int nVal = 0; /* Value */
+ int iTopic;
+ u8 *aCell;
+ int iPgPtr;
+ int eType;
+
+ aCell = pageGetCell(aData, nData, i);
+ eType = *aCell++;
+ assert( (flags & SEGMENT_BTREE_FLAG) || eType!=0 );
+ aCell += lsmVarintGet32(aCell, &iPgPtr);
+
+ if( eType==0 ){
+ LsmPgno iRef; /* Page number of referenced page */
+ aCell += lsmVarintGet64(aCell, &iRef);
+ lsmFsDbPageGet(pDb->pFS, pRun, iRef, &pRef);
+ aKey = pageGetKey(pRun, pRef, 0, &iTopic, &nKey, &blob);
+ }else{
+ aCell += lsmVarintGet32(aCell, &nKey);
+ if( rtIsWrite(eType) ) aCell += lsmVarintGet32(aCell, &nVal);
+ sortedReadData(0, pPg, (aCell-aData), nKey+nVal, (void **)&aKey, &blob);
+ aVal = &aKey[nKey];
+ iTopic = eType;
+ }
+
+ lsmStringAppendf(&s, "%s%2X:", (i==0?"":" "), iTopic);
+ for(iChar=0; iChar<nKey; iChar++){
+ lsmStringAppendf(&s, "%c", isalnum(aKey[iChar]) ? aKey[iChar] : '.');
+ }
+ if( nVal>0 && bVals ){
+ lsmStringAppendf(&s, "##");
+ for(iChar=0; iChar<nVal; iChar++){
+ lsmStringAppendf(&s, "%c", isalnum(aVal[iChar]) ? aVal[iChar] : '.');
+ }
+ }
+
+ lsmStringAppendf(&s, " %d", iPgPtr+iPtr);
+ lsmFsPageRelease(pRef);
+ }
+ lsmStringAppend(&s, "}", 1);
+
+ lsmLogMessage(pDb, LSM_OK, " Page %d: %s", lsmFsPageNumber(pPg), s.z);
+ lsmStringClear(&s);
+
+ sortedBlobFree(&blob);
+}
+
+static void infoCellDump(
+ lsm_db *pDb, /* Database handle */
+ Segment *pSeg, /* Segment page belongs to */
+ int bIndirect, /* True to follow indirect refs */
+ Page *pPg,
+ int iCell,
+ int *peType,
+ int *piPgPtr,
+ u8 **paKey, int *pnKey,
+ u8 **paVal, int *pnVal,
+ LsmBlob *pBlob
+){
+ u8 *aData; int nData; /* Page data */
+ u8 *aKey; int nKey = 0; /* Key */
+ u8 *aVal = 0; int nVal = 0; /* Value */
+ int eType;
+ int iPgPtr;
+ Page *pRef = 0; /* Pointer to page iRef */
+ u8 *aCell;
+
+ aData = fsPageData(pPg, &nData);
+
+ aCell = pageGetCell(aData, nData, iCell);
+ eType = *aCell++;
+ aCell += lsmVarintGet32(aCell, &iPgPtr);
+
+ if( eType==0 ){
+ int dummy;
+ LsmPgno iRef; /* Page number of referenced page */
+ aCell += lsmVarintGet64(aCell, &iRef);
+ if( bIndirect ){
+ lsmFsDbPageGet(pDb->pFS, pSeg, iRef, &pRef);
+ pageGetKeyCopy(pDb->pEnv, pSeg, pRef, 0, &dummy, pBlob);
+ aKey = (u8 *)pBlob->pData;
+ nKey = pBlob->nData;
+ lsmFsPageRelease(pRef);
+ }else{
+ aKey = (u8 *)"<indirect>";
+ nKey = 11;
+ }
+ }else{
+ aCell += lsmVarintGet32(aCell, &nKey);
+ if( rtIsWrite(eType) ) aCell += lsmVarintGet32(aCell, &nVal);
+ sortedReadData(pSeg, pPg, (aCell-aData), nKey+nVal, (void **)&aKey, pBlob);
+ aVal = &aKey[nKey];
+ }
+
+ if( peType ) *peType = eType;
+ if( piPgPtr ) *piPgPtr = iPgPtr;
+ if( paKey ) *paKey = aKey;
+ if( paVal ) *paVal = aVal;
+ if( pnKey ) *pnKey = nKey;
+ if( pnVal ) *pnVal = nVal;
+}
+
+static int infoAppendBlob(LsmString *pStr, int bHex, u8 *z, int n){
+ int iChar;
+ for(iChar=0; iChar<n; iChar++){
+ if( bHex ){
+ lsmStringAppendf(pStr, "%02X", z[iChar]);
+ }else{
+ lsmStringAppendf(pStr, "%c", isalnum(z[iChar]) ?z[iChar] : '.');
+ }
+ }
+ return LSM_OK;
+}
+
+#define INFO_PAGE_DUMP_DATA 0x01
+#define INFO_PAGE_DUMP_VALUES 0x02
+#define INFO_PAGE_DUMP_HEX 0x04
+#define INFO_PAGE_DUMP_INDIRECT 0x08
+
+static int infoPageDump(
+ lsm_db *pDb, /* Database handle */
+ LsmPgno iPg, /* Page number of page to dump */
+ int flags,
+ char **pzOut /* OUT: lsmMalloc'd string */
+){
+ int rc = LSM_OK; /* Return code */
+ Page *pPg = 0; /* Handle for page iPg */
+ int i, j; /* Loop counters */
+ const int perLine = 16; /* Bytes per line in the raw hex dump */
+ Segment *pSeg = 0;
+ Snapshot *pSnap;
+
+ int bValues = (flags & INFO_PAGE_DUMP_VALUES);
+ int bHex = (flags & INFO_PAGE_DUMP_HEX);
+ int bData = (flags & INFO_PAGE_DUMP_DATA);
+ int bIndirect = (flags & INFO_PAGE_DUMP_INDIRECT);
+
+ *pzOut = 0;
+ if( iPg==0 ) return LSM_ERROR;
+
+ assert( pDb->pClient || pDb->pWorker );
+ pSnap = pDb->pClient;
+ if( pSnap==0 ) pSnap = pDb->pWorker;
+ if( pSnap->redirect.n>0 ){
+ Level *pLvl;
+ int bUse = 0;
+ for(pLvl=pSnap->pLevel; pLvl->pNext; pLvl=pLvl->pNext);
+ pSeg = (pLvl->nRight==0 ? &pLvl->lhs : &pLvl->aRhs[pLvl->nRight-1]);
+ rc = lsmFsSegmentContainsPg(pDb->pFS, pSeg, iPg, &bUse);
+ if( bUse==0 ){
+ pSeg = 0;
+ }
+ }
+
+ /* iPg is a real page number (not subject to redirection). So it is safe
+ ** to pass a NULL in place of the segment pointer as the second argument
+ ** to lsmFsDbPageGet() here. */
+ if( rc==LSM_OK ){
+ rc = lsmFsDbPageGet(pDb->pFS, 0, iPg, &pPg);
+ }
+
+ if( rc==LSM_OK ){
+ LsmBlob blob = {0, 0, 0, 0};
+ int nKeyWidth = 0;
+ LsmString str;
+ int nRec;
+ int iPtr;
+ int flags2;
+ int iCell;
+ u8 *aData; int nData; /* Page data and size thereof */
+
+ aData = fsPageData(pPg, &nData);
+ nRec = pageGetNRec(aData, nData);
+ iPtr = (int)pageGetPtr(aData, nData);
+ flags2 = pageGetFlags(aData, nData);
+
+ lsmStringInit(&str, pDb->pEnv);
+ lsmStringAppendf(&str, "Page : %lld (%d bytes)\n", iPg, nData);
+ lsmStringAppendf(&str, "nRec : %d\n", nRec);
+ lsmStringAppendf(&str, "iPtr : %d\n", iPtr);
+ lsmStringAppendf(&str, "flags: %04x\n", flags2);
+ lsmStringAppendf(&str, "\n");
+
+ for(iCell=0; iCell<nRec; iCell++){
+ int nKey;
+ infoCellDump(
+ pDb, pSeg, bIndirect, pPg, iCell, 0, 0, 0, &nKey, 0, 0, &blob
+ );
+ if( nKey>nKeyWidth ) nKeyWidth = nKey;
+ }
+ if( bHex ) nKeyWidth = nKeyWidth * 2;
+
+ for(iCell=0; iCell<nRec; iCell++){
+ u8 *aKey; int nKey = 0; /* Key */
+ u8 *aVal; int nVal = 0; /* Value */
+ int iPgPtr;
+ int eType;
+ LsmPgno iAbsPtr;
+ char zFlags[8];
+
+ infoCellDump(pDb, pSeg, bIndirect, pPg, iCell, &eType, &iPgPtr,
+ &aKey, &nKey, &aVal, &nVal, &blob
+ );
+ iAbsPtr = iPgPtr + ((flags2 & SEGMENT_BTREE_FLAG) ? 0 : iPtr);
+
+ lsmFlagsToString(eType, zFlags);
+ lsmStringAppendf(&str, "%s %d (%s) ",
+ zFlags, iAbsPtr, (rtTopic(eType) ? "sys" : "usr")
+ );
+ infoAppendBlob(&str, bHex, aKey, nKey);
+ if( nVal>0 && bValues ){
+ lsmStringAppendf(&str, "%*s", nKeyWidth - (nKey*(1+bHex)), "");
+ lsmStringAppendf(&str, " ");
+ infoAppendBlob(&str, bHex, aVal, nVal);
+ }
+ if( rtTopic(eType) ){
+ int iBlk = (int)~lsmGetU32(aKey);
+ lsmStringAppendf(&str, " (block=%d", iBlk);
+ if( nVal>0 ){
+ i64 iSnap = lsmGetU64(aVal);
+ lsmStringAppendf(&str, " snapshot=%lld", iSnap);
+ }
+ lsmStringAppendf(&str, ")");
+ }
+ lsmStringAppendf(&str, "\n");
+ }
+
+ if( bData ){
+ lsmStringAppendf(&str, "\n-------------------"
+ "-------------------------------------------------------------\n");
+ lsmStringAppendf(&str, "Page %d\n",
+ iPg, (iPg-1)*nData, iPg*nData - 1);
+ for(i=0; i<nData; i += perLine){
+ lsmStringAppendf(&str, "%04x: ", i);
+ for(j=0; j<perLine; j++){
+ if( i+j>nData ){
+ lsmStringAppendf(&str, " ");
+ }else{
+ lsmStringAppendf(&str, "%02x ", aData[i+j]);
+ }
+ }
+ lsmStringAppendf(&str, " ");
+ for(j=0; j<perLine; j++){
+ if( i+j>nData ){
+ lsmStringAppendf(&str, " ");
+ }else{
+ lsmStringAppendf(&str,"%c", isprint(aData[i+j]) ? aData[i+j] : '.');
+ }
+ }
+ lsmStringAppendf(&str,"\n");
+ }
+ }
+
+ *pzOut = str.z;
+ sortedBlobFree(&blob);
+ lsmFsPageRelease(pPg);
+ }
+
+ return rc;
+}
+
+int lsmInfoPageDump(
+ lsm_db *pDb, /* Database handle */
+ LsmPgno iPg, /* Page number of page to dump */
+ int bHex, /* True to output key/value in hex form */
+ char **pzOut /* OUT: lsmMalloc'd string */
+){
+ int flags = INFO_PAGE_DUMP_DATA | INFO_PAGE_DUMP_VALUES;
+ if( bHex ) flags |= INFO_PAGE_DUMP_HEX;
+ return infoPageDump(pDb, iPg, flags, pzOut);
+}
+
+void sortedDumpSegment(lsm_db *pDb, Segment *pRun, int bVals){
+ assert( pDb->xLog );
+ if( pRun && pRun->iFirst ){
+ int flags = (bVals ? INFO_PAGE_DUMP_VALUES : 0);
+ char *zSeg;
+ Page *pPg;
+
+ zSeg = segToString(pDb->pEnv, pRun, 0);
+ lsmLogMessage(pDb, LSM_OK, "Segment: %s", zSeg);
+ lsmFree(pDb->pEnv, zSeg);
+
+ lsmFsDbPageGet(pDb->pFS, pRun, pRun->iFirst, &pPg);
+ while( pPg ){
+ Page *pNext;
+ char *z = 0;
+ infoPageDump(pDb, lsmFsPageNumber(pPg), flags, &z);
+ lsmLogMessage(pDb, LSM_OK, "%s", z);
+ lsmFree(pDb->pEnv, z);
+#if 0
+ sortedDumpPage(pDb, pRun, pPg, bVals);
+#endif
+ lsmFsDbPageNext(pRun, pPg, 1, &pNext);
+ lsmFsPageRelease(pPg);
+ pPg = pNext;
+ }
+ }
+}
+
+/*
+** Invoke the log callback zero or more times with messages that describe
+** the current database structure.
+*/
+void lsmSortedDumpStructure(
+ lsm_db *pDb, /* Database handle (used for xLog callback) */
+ Snapshot *pSnap, /* Snapshot to dump */
+ int bKeys, /* Output the keys from each segment */
+ int bVals, /* Output the values from each segment */
+ const char *zWhy /* Caption to print near top of dump */
+){
+ Snapshot *pDump = pSnap;
+ Level *pTopLevel;
+ char *zFree = 0;
+
+ assert( pSnap );
+ pTopLevel = lsmDbSnapshotLevel(pDump);
+ if( pDb->xLog && pTopLevel ){
+ static int nCall = 0;
+ Level *pLevel;
+ int iLevel = 0;
+
+ nCall++;
+ lsmLogMessage(pDb, LSM_OK, "Database structure %d (%s)", nCall, zWhy);
+
+#if 0
+ if( nCall==1031 || nCall==1032 ) bKeys=1;
+#endif
+
+ for(pLevel=pTopLevel; pLevel; pLevel=pLevel->pNext){
+ char zLeft[1024];
+ char zRight[1024];
+ int i = 0;
+
+ Segment *aLeft[24];
+ Segment *aRight[24];
+
+ int nLeft = 0;
+ int nRight = 0;
+
+ Segment *pSeg = &pLevel->lhs;
+ aLeft[nLeft++] = pSeg;
+
+ for(i=0; i<pLevel->nRight; i++){
+ aRight[nRight++] = &pLevel->aRhs[i];
+ }
+
+#ifdef LSM_LOG_FREELIST
+ if( nRight ){
+ memmove(&aRight[1], aRight, sizeof(aRight[0])*nRight);
+ aRight[0] = 0;
+ nRight++;
+ }
+#endif
+
+ for(i=0; i<nLeft || i<nRight; i++){
+ int iPad = 0;
+ char zLevel[32];
+ zLeft[0] = '\0';
+ zRight[0] = '\0';
+
+ if( i<nLeft ){
+ fileToString(pDb, zLeft, sizeof(zLeft), 24, aLeft[i]);
+ }
+ if( i<nRight ){
+ fileToString(pDb, zRight, sizeof(zRight), 24, aRight[i]);
+ }
+
+ if( i==0 ){
+ snprintf(zLevel, sizeof(zLevel), "L%d: (age=%d) (flags=%.4x)",
+ iLevel, (int)pLevel->iAge, (int)pLevel->flags
+ );
+ }else{
+ zLevel[0] = '\0';
+ }
+
+ if( nRight==0 ){
+ iPad = 10;
+ }
+
+ lsmLogMessage(pDb, LSM_OK, "% 25s % *s% -35s %s",
+ zLevel, iPad, "", zLeft, zRight
+ );
+ }
+
+ iLevel++;
+ }
+
+ if( bKeys ){
+ for(pLevel=pTopLevel; pLevel; pLevel=pLevel->pNext){
+ int i;
+ sortedDumpSegment(pDb, &pLevel->lhs, bVals);
+ for(i=0; i<pLevel->nRight; i++){
+ sortedDumpSegment(pDb, &pLevel->aRhs[i], bVals);
+ }
+ }
+ }
+ }
+
+ lsmInfoFreelist(pDb, &zFree);
+ lsmLogMessage(pDb, LSM_OK, "Freelist: %s", zFree);
+ lsmFree(pDb->pEnv, zFree);
+
+ assert( lsmFsIntegrityCheck(pDb) );
+}
+
+void lsmSortedFreeLevel(lsm_env *pEnv, Level *pLevel){
+ Level *pNext;
+ Level *p;
+
+ for(p=pLevel; p; p=pNext){
+ pNext = p->pNext;
+ sortedFreeLevel(pEnv, p);
+ }
+}
+
+void lsmSortedSaveTreeCursors(lsm_db *pDb){
+ MultiCursor *pCsr;
+ for(pCsr=pDb->pCsr; pCsr; pCsr=pCsr->pNext){
+ lsmTreeCursorSave(pCsr->apTreeCsr[0]);
+ lsmTreeCursorSave(pCsr->apTreeCsr[1]);
+ }
+}
+
+void lsmSortedExpandBtreePage(Page *pPg, int nOrig){
+ u8 *aData;
+ int nData;
+ int nEntry;
+ int iHdr;
+
+ aData = lsmFsPageData(pPg, &nData);
+ nEntry = pageGetNRec(aData, nOrig);
+ iHdr = SEGMENT_EOF(nOrig, nEntry);
+ memmove(&aData[iHdr + (nData-nOrig)], &aData[iHdr], nOrig-iHdr);
+}
+
+#ifdef LSM_DEBUG_EXPENSIVE
+static void assertRunInOrder(lsm_db *pDb, Segment *pSeg){
+ Page *pPg = 0;
+ LsmBlob blob1 = {0, 0, 0, 0};
+ LsmBlob blob2 = {0, 0, 0, 0};
+
+ lsmFsDbPageGet(pDb->pFS, pSeg, pSeg->iFirst, &pPg);
+ while( pPg ){
+ u8 *aData; int nData;
+ Page *pNext;
+
+ aData = lsmFsPageData(pPg, &nData);
+ if( 0==(pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG) ){
+ int i;
+ int nRec = pageGetNRec(aData, nData);
+ for(i=0; i<nRec; i++){
+ int iTopic1, iTopic2;
+ pageGetKeyCopy(pDb->pEnv, pSeg, pPg, i, &iTopic1, &blob1);
+
+ if( i==0 && blob2.nData ){
+ assert( sortedKeyCompare(
+ pDb->xCmp, iTopic2, blob2.pData, blob2.nData,
+ iTopic1, blob1.pData, blob1.nData
+ )<0 );
+ }
+
+ if( i<(nRec-1) ){
+ pageGetKeyCopy(pDb->pEnv, pSeg, pPg, i+1, &iTopic2, &blob2);
+ assert( sortedKeyCompare(
+ pDb->xCmp, iTopic1, blob1.pData, blob1.nData,
+ iTopic2, blob2.pData, blob2.nData
+ )<0 );
+ }
+ }
+ }
+
+ lsmFsDbPageNext(pSeg, pPg, 1, &pNext);
+ lsmFsPageRelease(pPg);
+ pPg = pNext;
+ }
+
+ sortedBlobFree(&blob1);
+ sortedBlobFree(&blob2);
+}
+#endif
+
+#ifdef LSM_DEBUG_EXPENSIVE
+/*
+** This function is only included in the build if LSM_DEBUG_EXPENSIVE is
+** defined. Its only purpose is to evaluate various assert() statements to
+** verify that the database is well formed in certain respects.
+**
+** More specifically, it checks that the array pOne contains the required
+** pointers to pTwo. Array pTwo must be a main array. pOne may be either a
+** separators array or another main array. If pOne does not contain the
+** correct set of pointers, an assert() statement fails.
+*/
+static int assertPointersOk(
+ lsm_db *pDb, /* Database handle */
+ Segment *pOne, /* Segment containing pointers */
+ Segment *pTwo, /* Segment containing pointer targets */
+ int bRhs /* True if pTwo may have been Gobble()d */
+){
+ int rc = LSM_OK; /* Error code */
+ SegmentPtr ptr1; /* Iterates through pOne */
+ SegmentPtr ptr2; /* Iterates through pTwo */
+ LsmPgno iPrev;
+
+ assert( pOne && pTwo );
+
+ memset(&ptr1, 0, sizeof(ptr1));
+ memset(&ptr2, 0, sizeof(ptr1));
+ ptr1.pSeg = pOne;
+ ptr2.pSeg = pTwo;
+ segmentPtrEndPage(pDb->pFS, &ptr1, 0, &rc);
+ segmentPtrEndPage(pDb->pFS, &ptr2, 0, &rc);
+
+ /* Check that the footer pointer of the first page of pOne points to
+ ** the first page of pTwo. */
+ iPrev = pTwo->iFirst;
+ if( ptr1.iPtr!=iPrev && !bRhs ){
+ assert( 0 );
+ }
+
+ if( rc==LSM_OK && ptr1.nCell>0 ){
+ rc = segmentPtrLoadCell(&ptr1, 0);
+ }
+
+ while( rc==LSM_OK && ptr2.pPg ){
+ LsmPgno iThis;
+
+ /* Advance to the next page of segment pTwo that contains at least
+ ** one cell. Break out of the loop if the iterator reaches EOF. */
+ do{
+ rc = segmentPtrNextPage(&ptr2, 1);
+ assert( rc==LSM_OK );
+ }while( rc==LSM_OK && ptr2.pPg && ptr2.nCell==0 );
+ if( rc!=LSM_OK || ptr2.pPg==0 ) break;
+ iThis = lsmFsPageNumber(ptr2.pPg);
+
+ if( (ptr2.flags & (PGFTR_SKIP_THIS_FLAG|SEGMENT_BTREE_FLAG))==0 ){
+
+ /* Load the first cell in the array pTwo page. */
+ rc = segmentPtrLoadCell(&ptr2, 0);
+
+ /* Iterate forwards through pOne, searching for a key that matches the
+ ** key ptr2.pKey/nKey. This key should have a pointer to the page that
+ ** ptr2 currently points to. */
+ while( rc==LSM_OK ){
+ int res = rtTopic(ptr1.eType) - rtTopic(ptr2.eType);
+ if( res==0 ){
+ res = pDb->xCmp(ptr1.pKey, ptr1.nKey, ptr2.pKey, ptr2.nKey);
+ }
+
+ if( res<0 ){
+ assert( bRhs || ptr1.iPtr+ptr1.iPgPtr==iPrev );
+ }else if( res>0 ){
+ assert( 0 );
+ }else{
+ assert( ptr1.iPtr+ptr1.iPgPtr==iThis );
+ iPrev = iThis;
+ break;
+ }
+
+ rc = segmentPtrAdvance(0, &ptr1, 0);
+ if( ptr1.pPg==0 ){
+ assert( 0 );
+ }
+ }
+ }
+ }
+
+ segmentPtrReset(&ptr1, 0);
+ segmentPtrReset(&ptr2, 0);
+ return LSM_OK;
+}
+
+/*
+** This function is only included in the build if LSM_DEBUG_EXPENSIVE is
+** defined. Its only purpose is to evaluate various assert() statements to
+** verify that the database is well formed in certain respects.
+**
+** More specifically, it checks that the b-tree embedded in array pRun
+** contains the correct keys. If not, an assert() fails.
+*/
+static int assertBtreeOk(
+ lsm_db *pDb,
+ Segment *pSeg
+){
+ int rc = LSM_OK; /* Return code */
+ if( pSeg->iRoot ){
+ LsmBlob blob = {0, 0, 0}; /* Buffer used to cache overflow keys */
+ FileSystem *pFS = pDb->pFS; /* File system to read from */
+ Page *pPg = 0; /* Main run page */
+ BtreeCursor *pCsr = 0; /* Btree cursor */
+
+ rc = btreeCursorNew(pDb, pSeg, &pCsr);
+ if( rc==LSM_OK ){
+ rc = btreeCursorFirst(pCsr);
+ }
+ if( rc==LSM_OK ){
+ rc = lsmFsDbPageGet(pFS, pSeg, pSeg->iFirst, &pPg);
+ }
+
+ while( rc==LSM_OK ){
+ Page *pNext;
+ u8 *aData;
+ int nData;
+ int flags;
+
+ rc = lsmFsDbPageNext(pSeg, pPg, 1, &pNext);
+ lsmFsPageRelease(pPg);
+ pPg = pNext;
+ if( pPg==0 ) break;
+ aData = fsPageData(pPg, &nData);
+ flags = pageGetFlags(aData, nData);
+ if( rc==LSM_OK
+ && 0==((SEGMENT_BTREE_FLAG|PGFTR_SKIP_THIS_FLAG) & flags)
+ && 0!=pageGetNRec(aData, nData)
+ ){
+ u8 *pKey;
+ int nKey;
+ int iTopic;
+ pKey = pageGetKey(pSeg, pPg, 0, &iTopic, &nKey, &blob);
+ assert( nKey==pCsr->nKey && 0==memcmp(pKey, pCsr->pKey, nKey) );
+ assert( lsmFsPageNumber(pPg)==pCsr->iPtr );
+ rc = btreeCursorNext(pCsr);
+ }
+ }
+ assert( rc!=LSM_OK || pCsr->pKey==0 );
+
+ if( pPg ) lsmFsPageRelease(pPg);
+
+ btreeCursorFree(pCsr);
+ sortedBlobFree(&blob);
+ }
+
+ return rc;
+}
+#endif /* ifdef LSM_DEBUG_EXPENSIVE */