diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-05 17:28:19 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-05 17:28:19 +0000 |
commit | 18657a960e125336f704ea058e25c27bd3900dcb (patch) | |
tree | 17b438b680ed45a996d7b59951e6aa34023783f2 /src/vdbeaux.c | |
parent | Initial commit. (diff) | |
download | sqlite3-upstream.tar.xz sqlite3-upstream.zip |
Adding upstream version 3.40.1.upstream/3.40.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/vdbeaux.c')
-rw-r--r-- | src/vdbeaux.c | 5325 |
1 files changed, 5325 insertions, 0 deletions
diff --git a/src/vdbeaux.c b/src/vdbeaux.c new file mode 100644 index 0000000..fd196f3 --- /dev/null +++ b/src/vdbeaux.c @@ -0,0 +1,5325 @@ +/* +** 2003 September 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used for creating, destroying, and populating +** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) +*/ +#include "sqliteInt.h" +#include "vdbeInt.h" + +/* Forward references */ +static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); +static void vdbeFreeOpArray(sqlite3 *, Op *, int); + +/* +** Create a new virtual database engine. +*/ +Vdbe *sqlite3VdbeCreate(Parse *pParse){ + sqlite3 *db = pParse->db; + Vdbe *p; + p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); + if( p==0 ) return 0; + memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); + p->db = db; + if( db->pVdbe ){ + db->pVdbe->ppVPrev = &p->pVNext; + } + p->pVNext = db->pVdbe; + p->ppVPrev = &db->pVdbe; + db->pVdbe = p; + assert( p->eVdbeState==VDBE_INIT_STATE ); + p->pParse = pParse; + pParse->pVdbe = p; + assert( pParse->aLabel==0 ); + assert( pParse->nLabel==0 ); + assert( p->nOpAlloc==0 ); + assert( pParse->szOpAlloc==0 ); + sqlite3VdbeAddOp2(p, OP_Init, 0, 1); + return p; +} + +/* +** Return the Parse object that owns a Vdbe object. +*/ +Parse *sqlite3VdbeParser(Vdbe *p){ + return p->pParse; +} + +/* +** Change the error string stored in Vdbe.zErrMsg +*/ +void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ + va_list ap; + sqlite3DbFree(p->db, p->zErrMsg); + va_start(ap, zFormat); + p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); + va_end(ap); +} + +/* +** Remember the SQL string for a prepared statement. +*/ +void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ + if( p==0 ) return; + p->prepFlags = prepFlags; + if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ + p->expmask = 0; + } + assert( p->zSql==0 ); + p->zSql = sqlite3DbStrNDup(p->db, z, n); +} + +#ifdef SQLITE_ENABLE_NORMALIZE +/* +** Add a new element to the Vdbe->pDblStr list. +*/ +void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ + if( p ){ + int n = sqlite3Strlen30(z); + DblquoteStr *pStr = sqlite3DbMallocRawNN(db, + sizeof(*pStr)+n+1-sizeof(pStr->z)); + if( pStr ){ + pStr->pNextStr = p->pDblStr; + p->pDblStr = pStr; + memcpy(pStr->z, z, n+1); + } + } +} +#endif + +#ifdef SQLITE_ENABLE_NORMALIZE +/* +** zId of length nId is a double-quoted identifier. Check to see if +** that identifier is really used as a string literal. +*/ +int sqlite3VdbeUsesDoubleQuotedString( + Vdbe *pVdbe, /* The prepared statement */ + const char *zId /* The double-quoted identifier, already dequoted */ +){ + DblquoteStr *pStr; + assert( zId!=0 ); + if( pVdbe->pDblStr==0 ) return 0; + for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ + if( strcmp(zId, pStr->z)==0 ) return 1; + } + return 0; +} +#endif + +/* +** Swap byte-code between two VDBE structures. +** +** This happens after pB was previously run and returned +** SQLITE_SCHEMA. The statement was then reprepared in pA. +** This routine transfers the new bytecode in pA over to pB +** so that pB can be run again. The old pB byte code is +** moved back to pA so that it will be cleaned up when pA is +** finalized. +*/ +void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ + Vdbe tmp, *pTmp, **ppTmp; + char *zTmp; + assert( pA->db==pB->db ); + tmp = *pA; + *pA = *pB; + *pB = tmp; + pTmp = pA->pVNext; + pA->pVNext = pB->pVNext; + pB->pVNext = pTmp; + ppTmp = pA->ppVPrev; + pA->ppVPrev = pB->ppVPrev; + pB->ppVPrev = ppTmp; + zTmp = pA->zSql; + pA->zSql = pB->zSql; + pB->zSql = zTmp; +#ifdef SQLITE_ENABLE_NORMALIZE + zTmp = pA->zNormSql; + pA->zNormSql = pB->zNormSql; + pB->zNormSql = zTmp; +#endif + pB->expmask = pA->expmask; + pB->prepFlags = pA->prepFlags; + memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); + pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; +} + +/* +** Resize the Vdbe.aOp array so that it is at least nOp elements larger +** than its current size. nOp is guaranteed to be less than or equal +** to 1024/sizeof(Op). +** +** If an out-of-memory error occurs while resizing the array, return +** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain +** unchanged (this is so that any opcodes already allocated can be +** correctly deallocated along with the rest of the Vdbe). +*/ +static int growOpArray(Vdbe *v, int nOp){ + VdbeOp *pNew; + Parse *p = v->pParse; + + /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force + ** more frequent reallocs and hence provide more opportunities for + ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used + ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array + ** by the minimum* amount required until the size reaches 512. Normal + ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current + ** size of the op array or add 1KB of space, whichever is smaller. */ +#ifdef SQLITE_TEST_REALLOC_STRESS + sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc + : (sqlite3_int64)v->nOpAlloc+nOp); +#else + sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc + : (sqlite3_int64)(1024/sizeof(Op))); + UNUSED_PARAMETER(nOp); +#endif + + /* Ensure that the size of a VDBE does not grow too large */ + if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ + sqlite3OomFault(p->db); + return SQLITE_NOMEM; + } + + assert( nOp<=(int)(1024/sizeof(Op)) ); + assert( nNew>=(v->nOpAlloc+nOp) ); + pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); + if( pNew ){ + p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); + v->nOpAlloc = p->szOpAlloc/sizeof(Op); + v->aOp = pNew; + } + return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); +} + +#ifdef SQLITE_DEBUG +/* This routine is just a convenient place to set a breakpoint that will +** fire after each opcode is inserted and displayed using +** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and +** pOp are available to make the breakpoint conditional. +** +** Other useful labels for breakpoints include: +** test_trace_breakpoint(pc,pOp) +** sqlite3CorruptError(lineno) +** sqlite3MisuseError(lineno) +** sqlite3CantopenError(lineno) +*/ +static void test_addop_breakpoint(int pc, Op *pOp){ + static int n = 0; + n++; +} +#endif + +/* +** Add a new instruction to the list of instructions current in the +** VDBE. Return the address of the new instruction. +** +** Parameters: +** +** p Pointer to the VDBE +** +** op The opcode for this instruction +** +** p1, p2, p3 Operands +** +** Use the sqlite3VdbeResolveLabel() function to fix an address and +** the sqlite3VdbeChangeP4() function to change the value of the P4 +** operand. +*/ +static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ + assert( p->nOpAlloc<=p->nOp ); + if( growOpArray(p, 1) ) return 1; + assert( p->nOpAlloc>p->nOp ); + return sqlite3VdbeAddOp3(p, op, p1, p2, p3); +} +int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ + int i; + VdbeOp *pOp; + + i = p->nOp; + assert( p->eVdbeState==VDBE_INIT_STATE ); + assert( op>=0 && op<0xff ); + if( p->nOpAlloc<=i ){ + return growOp3(p, op, p1, p2, p3); + } + assert( p->aOp!=0 ); + p->nOp++; + pOp = &p->aOp[i]; + assert( pOp!=0 ); + pOp->opcode = (u8)op; + pOp->p5 = 0; + pOp->p1 = p1; + pOp->p2 = p2; + pOp->p3 = p3; + pOp->p4.p = 0; + pOp->p4type = P4_NOTUSED; +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS + pOp->zComment = 0; +#endif +#ifdef SQLITE_DEBUG + if( p->db->flags & SQLITE_VdbeAddopTrace ){ + sqlite3VdbePrintOp(0, i, &p->aOp[i]); + test_addop_breakpoint(i, &p->aOp[i]); + } +#endif +#ifdef VDBE_PROFILE + pOp->cycles = 0; + pOp->cnt = 0; +#endif +#ifdef SQLITE_VDBE_COVERAGE + pOp->iSrcLine = 0; +#endif + return i; +} +int sqlite3VdbeAddOp0(Vdbe *p, int op){ + return sqlite3VdbeAddOp3(p, op, 0, 0, 0); +} +int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ + return sqlite3VdbeAddOp3(p, op, p1, 0, 0); +} +int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ + return sqlite3VdbeAddOp3(p, op, p1, p2, 0); +} + +/* Generate code for an unconditional jump to instruction iDest +*/ +int sqlite3VdbeGoto(Vdbe *p, int iDest){ + return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); +} + +/* Generate code to cause the string zStr to be loaded into +** register iDest +*/ +int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ + return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); +} + +/* +** Generate code that initializes multiple registers to string or integer +** constants. The registers begin with iDest and increase consecutively. +** One register is initialized for each characgter in zTypes[]. For each +** "s" character in zTypes[], the register is a string if the argument is +** not NULL, or OP_Null if the value is a null pointer. For each "i" character +** in zTypes[], the register is initialized to an integer. +** +** If the input string does not end with "X" then an OP_ResultRow instruction +** is generated for the values inserted. +*/ +void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ + va_list ap; + int i; + char c; + va_start(ap, zTypes); + for(i=0; (c = zTypes[i])!=0; i++){ + if( c=='s' ){ + const char *z = va_arg(ap, const char*); + sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); + }else if( c=='i' ){ + sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); + }else{ + goto skip_op_resultrow; + } + } + sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); +skip_op_resultrow: + va_end(ap); +} + +/* +** Add an opcode that includes the p4 value as a pointer. +*/ +int sqlite3VdbeAddOp4( + Vdbe *p, /* Add the opcode to this VM */ + int op, /* The new opcode */ + int p1, /* The P1 operand */ + int p2, /* The P2 operand */ + int p3, /* The P3 operand */ + const char *zP4, /* The P4 operand */ + int p4type /* P4 operand type */ +){ + int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); + sqlite3VdbeChangeP4(p, addr, zP4, p4type); + return addr; +} + +/* +** Add an OP_Function or OP_PureFunc opcode. +** +** The eCallCtx argument is information (typically taken from Expr.op2) +** that describes the calling context of the function. 0 means a general +** function call. NC_IsCheck means called by a check constraint, +** NC_IdxExpr means called as part of an index expression. NC_PartIdx +** means in the WHERE clause of a partial index. NC_GenCol means called +** while computing a generated column value. 0 is the usual case. +*/ +int sqlite3VdbeAddFunctionCall( + Parse *pParse, /* Parsing context */ + int p1, /* Constant argument mask */ + int p2, /* First argument register */ + int p3, /* Register into which results are written */ + int nArg, /* Number of argument */ + const FuncDef *pFunc, /* The function to be invoked */ + int eCallCtx /* Calling context */ +){ + Vdbe *v = pParse->pVdbe; + int nByte; + int addr; + sqlite3_context *pCtx; + assert( v ); + nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); + pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); + if( pCtx==0 ){ + assert( pParse->db->mallocFailed ); + freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); + return 0; + } + pCtx->pOut = 0; + pCtx->pFunc = (FuncDef*)pFunc; + pCtx->pVdbe = 0; + pCtx->isError = 0; + pCtx->argc = nArg; + pCtx->iOp = sqlite3VdbeCurrentAddr(v); + addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, + p1, p2, p3, (char*)pCtx, P4_FUNCCTX); + sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); + sqlite3MayAbort(pParse); + return addr; +} + +/* +** Add an opcode that includes the p4 value with a P4_INT64 or +** P4_REAL type. +*/ +int sqlite3VdbeAddOp4Dup8( + Vdbe *p, /* Add the opcode to this VM */ + int op, /* The new opcode */ + int p1, /* The P1 operand */ + int p2, /* The P2 operand */ + int p3, /* The P3 operand */ + const u8 *zP4, /* The P4 operand */ + int p4type /* P4 operand type */ +){ + char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); + if( p4copy ) memcpy(p4copy, zP4, 8); + return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); +} + +#ifndef SQLITE_OMIT_EXPLAIN +/* +** Return the address of the current EXPLAIN QUERY PLAN baseline. +** 0 means "none". +*/ +int sqlite3VdbeExplainParent(Parse *pParse){ + VdbeOp *pOp; + if( pParse->addrExplain==0 ) return 0; + pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); + return pOp->p2; +} + +/* +** Set a debugger breakpoint on the following routine in order to +** monitor the EXPLAIN QUERY PLAN code generation. +*/ +#if defined(SQLITE_DEBUG) +void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ + (void)z1; + (void)z2; +} +#endif + +/* +** Add a new OP_Explain opcode. +** +** If the bPush flag is true, then make this opcode the parent for +** subsequent Explains until sqlite3VdbeExplainPop() is called. +*/ +void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ +#ifndef SQLITE_DEBUG + /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. + ** But omit them (for performance) during production builds */ + if( pParse->explain==2 ) +#endif + { + char *zMsg; + Vdbe *v; + va_list ap; + int iThis; + va_start(ap, zFmt); + zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); + va_end(ap); + v = pParse->pVdbe; + iThis = v->nOp; + sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, + zMsg, P4_DYNAMIC); + sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z); + if( bPush){ + pParse->addrExplain = iThis; + } + } +} + +/* +** Pop the EXPLAIN QUERY PLAN stack one level. +*/ +void sqlite3VdbeExplainPop(Parse *pParse){ + sqlite3ExplainBreakpoint("POP", 0); + pParse->addrExplain = sqlite3VdbeExplainParent(pParse); +} +#endif /* SQLITE_OMIT_EXPLAIN */ + +/* +** Add an OP_ParseSchema opcode. This routine is broken out from +** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees +** as having been used. +** +** The zWhere string must have been obtained from sqlite3_malloc(). +** This routine will take ownership of the allocated memory. +*/ +void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){ + int j; + sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); + sqlite3VdbeChangeP5(p, p5); + for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); + sqlite3MayAbort(p->pParse); +} + +/* +** Add an opcode that includes the p4 value as an integer. +*/ +int sqlite3VdbeAddOp4Int( + Vdbe *p, /* Add the opcode to this VM */ + int op, /* The new opcode */ + int p1, /* The P1 operand */ + int p2, /* The P2 operand */ + int p3, /* The P3 operand */ + int p4 /* The P4 operand as an integer */ +){ + int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); + if( p->db->mallocFailed==0 ){ + VdbeOp *pOp = &p->aOp[addr]; + pOp->p4type = P4_INT32; + pOp->p4.i = p4; + } + return addr; +} + +/* Insert the end of a co-routine +*/ +void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ + sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); + + /* Clear the temporary register cache, thereby ensuring that each + ** co-routine has its own independent set of registers, because co-routines + ** might expect their registers to be preserved across an OP_Yield, and + ** that could cause problems if two or more co-routines are using the same + ** temporary register. + */ + v->pParse->nTempReg = 0; + v->pParse->nRangeReg = 0; +} + +/* +** Create a new symbolic label for an instruction that has yet to be +** coded. The symbolic label is really just a negative number. The +** label can be used as the P2 value of an operation. Later, when +** the label is resolved to a specific address, the VDBE will scan +** through its operation list and change all values of P2 which match +** the label into the resolved address. +** +** The VDBE knows that a P2 value is a label because labels are +** always negative and P2 values are suppose to be non-negative. +** Hence, a negative P2 value is a label that has yet to be resolved. +** (Later:) This is only true for opcodes that have the OPFLG_JUMP +** property. +** +** Variable usage notes: +** +** Parse.aLabel[x] Stores the address that the x-th label resolves +** into. For testing (SQLITE_DEBUG), unresolved +** labels stores -1, but that is not required. +** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] +** Parse.nLabel The *negative* of the number of labels that have +** been issued. The negative is stored because +** that gives a performance improvement over storing +** the equivalent positive value. +*/ +int sqlite3VdbeMakeLabel(Parse *pParse){ + return --pParse->nLabel; +} + +/* +** Resolve label "x" to be the address of the next instruction to +** be inserted. The parameter "x" must have been obtained from +** a prior call to sqlite3VdbeMakeLabel(). +*/ +static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ + int nNewSize = 10 - p->nLabel; + p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, + nNewSize*sizeof(p->aLabel[0])); + if( p->aLabel==0 ){ + p->nLabelAlloc = 0; + }else{ +#ifdef SQLITE_DEBUG + int i; + for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1; +#endif + p->nLabelAlloc = nNewSize; + p->aLabel[j] = v->nOp; + } +} +void sqlite3VdbeResolveLabel(Vdbe *v, int x){ + Parse *p = v->pParse; + int j = ADDR(x); + assert( v->eVdbeState==VDBE_INIT_STATE ); + assert( j<-p->nLabel ); + assert( j>=0 ); +#ifdef SQLITE_DEBUG + if( p->db->flags & SQLITE_VdbeAddopTrace ){ + printf("RESOLVE LABEL %d to %d\n", x, v->nOp); + } +#endif + if( p->nLabelAlloc + p->nLabel < 0 ){ + resizeResolveLabel(p,v,j); + }else{ + assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ + p->aLabel[j] = v->nOp; + } +} + +/* +** Mark the VDBE as one that can only be run one time. +*/ +void sqlite3VdbeRunOnlyOnce(Vdbe *p){ + sqlite3VdbeAddOp2(p, OP_Expire, 1, 1); +} + +/* +** Mark the VDBE as one that can be run multiple times. +*/ +void sqlite3VdbeReusable(Vdbe *p){ + int i; + for(i=1; ALWAYS(i<p->nOp); i++){ + if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){ + p->aOp[1].opcode = OP_Noop; + break; + } + } +} + +#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ + +/* +** The following type and function are used to iterate through all opcodes +** in a Vdbe main program and each of the sub-programs (triggers) it may +** invoke directly or indirectly. It should be used as follows: +** +** Op *pOp; +** VdbeOpIter sIter; +** +** memset(&sIter, 0, sizeof(sIter)); +** sIter.v = v; // v is of type Vdbe* +** while( (pOp = opIterNext(&sIter)) ){ +** // Do something with pOp +** } +** sqlite3DbFree(v->db, sIter.apSub); +** +*/ +typedef struct VdbeOpIter VdbeOpIter; +struct VdbeOpIter { + Vdbe *v; /* Vdbe to iterate through the opcodes of */ + SubProgram **apSub; /* Array of subprograms */ + int nSub; /* Number of entries in apSub */ + int iAddr; /* Address of next instruction to return */ + int iSub; /* 0 = main program, 1 = first sub-program etc. */ +}; +static Op *opIterNext(VdbeOpIter *p){ + Vdbe *v = p->v; + Op *pRet = 0; + Op *aOp; + int nOp; + + if( p->iSub<=p->nSub ){ + + if( p->iSub==0 ){ + aOp = v->aOp; + nOp = v->nOp; + }else{ + aOp = p->apSub[p->iSub-1]->aOp; + nOp = p->apSub[p->iSub-1]->nOp; + } + assert( p->iAddr<nOp ); + + pRet = &aOp[p->iAddr]; + p->iAddr++; + if( p->iAddr==nOp ){ + p->iSub++; + p->iAddr = 0; + } + + if( pRet->p4type==P4_SUBPROGRAM ){ + int nByte = (p->nSub+1)*sizeof(SubProgram*); + int j; + for(j=0; j<p->nSub; j++){ + if( p->apSub[j]==pRet->p4.pProgram ) break; + } + if( j==p->nSub ){ + p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); + if( !p->apSub ){ + pRet = 0; + }else{ + p->apSub[p->nSub++] = pRet->p4.pProgram; + } + } + } + } + + return pRet; +} + +/* +** Check if the program stored in the VM associated with pParse may +** throw an ABORT exception (causing the statement, but not entire transaction +** to be rolled back). This condition is true if the main program or any +** sub-programs contains any of the following: +** +** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. +** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. +** * OP_Destroy +** * OP_VUpdate +** * OP_VCreate +** * OP_VRename +** * OP_FkCounter with P2==0 (immediate foreign key constraint) +** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine +** (for CREATE TABLE AS SELECT ...) +** +** Then check that the value of Parse.mayAbort is true if an +** ABORT may be thrown, or false otherwise. Return true if it does +** match, or false otherwise. This function is intended to be used as +** part of an assert statement in the compiler. Similar to: +** +** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); +*/ +int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ + int hasAbort = 0; + int hasFkCounter = 0; + int hasCreateTable = 0; + int hasCreateIndex = 0; + int hasInitCoroutine = 0; + Op *pOp; + VdbeOpIter sIter; + + if( v==0 ) return 0; + memset(&sIter, 0, sizeof(sIter)); + sIter.v = v; + + while( (pOp = opIterNext(&sIter))!=0 ){ + int opcode = pOp->opcode; + if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename + || opcode==OP_VDestroy + || opcode==OP_VCreate + || opcode==OP_ParseSchema + || opcode==OP_Function || opcode==OP_PureFunc + || ((opcode==OP_Halt || opcode==OP_HaltIfNull) + && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) + ){ + hasAbort = 1; + break; + } + if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; + if( mayAbort ){ + /* hasCreateIndex may also be set for some DELETE statements that use + ** OP_Clear. So this routine may end up returning true in the case + ** where a "DELETE FROM tbl" has a statement-journal but does not + ** require one. This is not so bad - it is an inefficiency, not a bug. */ + if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; + if( opcode==OP_Clear ) hasCreateIndex = 1; + } + if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; +#ifndef SQLITE_OMIT_FOREIGN_KEY + if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ + hasFkCounter = 1; + } +#endif + } + sqlite3DbFree(v->db, sIter.apSub); + + /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. + ** If malloc failed, then the while() loop above may not have iterated + ** through all opcodes and hasAbort may be set incorrectly. Return + ** true for this case to prevent the assert() in the callers frame + ** from failing. */ + return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter + || (hasCreateTable && hasInitCoroutine) || hasCreateIndex + ); +} +#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ + +#ifdef SQLITE_DEBUG +/* +** Increment the nWrite counter in the VDBE if the cursor is not an +** ephemeral cursor, or if the cursor argument is NULL. +*/ +void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ + if( pC==0 + || (pC->eCurType!=CURTYPE_SORTER + && pC->eCurType!=CURTYPE_PSEUDO + && !pC->isEphemeral) + ){ + p->nWrite++; + } +} +#endif + +#ifdef SQLITE_DEBUG +/* +** Assert if an Abort at this point in time might result in a corrupt +** database. +*/ +void sqlite3VdbeAssertAbortable(Vdbe *p){ + assert( p->nWrite==0 || p->usesStmtJournal ); +} +#endif + +/* +** This routine is called after all opcodes have been inserted. It loops +** through all the opcodes and fixes up some details. +** +** (1) For each jump instruction with a negative P2 value (a label) +** resolve the P2 value to an actual address. +** +** (2) Compute the maximum number of arguments used by any SQL function +** and store that value in *pMaxFuncArgs. +** +** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately +** indicate what the prepared statement actually does. +** +** (4) (discontinued) +** +** (5) Reclaim the memory allocated for storing labels. +** +** This routine will only function correctly if the mkopcodeh.tcl generator +** script numbers the opcodes correctly. Changes to this routine must be +** coordinated with changes to mkopcodeh.tcl. +*/ +static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ + int nMaxArgs = *pMaxFuncArgs; + Op *pOp; + Parse *pParse = p->pParse; + int *aLabel = pParse->aLabel; + p->readOnly = 1; + p->bIsReader = 0; + pOp = &p->aOp[p->nOp-1]; + assert( p->aOp[0].opcode==OP_Init ); + while( 1 /* Loop termates when it reaches the OP_Init opcode */ ){ + /* Only JUMP opcodes and the short list of special opcodes in the switch + ** below need to be considered. The mkopcodeh.tcl generator script groups + ** all these opcodes together near the front of the opcode list. Skip + ** any opcode that does not need processing by virtual of the fact that + ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. + */ + if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ + /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing + ** cases from this switch! */ + switch( pOp->opcode ){ + case OP_Transaction: { + if( pOp->p2!=0 ) p->readOnly = 0; + /* no break */ deliberate_fall_through + } + case OP_AutoCommit: + case OP_Savepoint: { + p->bIsReader = 1; + break; + } +#ifndef SQLITE_OMIT_WAL + case OP_Checkpoint: +#endif + case OP_Vacuum: + case OP_JournalMode: { + p->readOnly = 0; + p->bIsReader = 1; + break; + } + case OP_Init: { + assert( pOp->p2>=0 ); + goto resolve_p2_values_loop_exit; + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + case OP_VUpdate: { + if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; + break; + } + case OP_VFilter: { + int n; + assert( (pOp - p->aOp) >= 3 ); + assert( pOp[-1].opcode==OP_Integer ); + n = pOp[-1].p1; + if( n>nMaxArgs ) nMaxArgs = n; + /* Fall through into the default case */ + /* no break */ deliberate_fall_through + } +#endif + default: { + if( pOp->p2<0 ){ + /* The mkopcodeh.tcl script has so arranged things that the only + ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to + ** have non-negative values for P2. */ + assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); + assert( ADDR(pOp->p2)<-pParse->nLabel ); + pOp->p2 = aLabel[ADDR(pOp->p2)]; + } + break; + } + } + /* The mkopcodeh.tcl script has so arranged things that the only + ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to + ** have non-negative values for P2. */ + assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); + } + assert( pOp>p->aOp ); + pOp--; + } +resolve_p2_values_loop_exit: + if( aLabel ){ + sqlite3DbNNFreeNN(p->db, pParse->aLabel); + pParse->aLabel = 0; + } + pParse->nLabel = 0; + *pMaxFuncArgs = nMaxArgs; + assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); +} + +#ifdef SQLITE_DEBUG +/* +** Check to see if a subroutine contains a jump to a location outside of +** the subroutine. If a jump outside the subroutine is detected, add code +** that will cause the program to halt with an error message. +** +** The subroutine consists of opcodes between iFirst and iLast. Jumps to +** locations within the subroutine are acceptable. iRetReg is a register +** that contains the return address. Jumps to outside the range of iFirst +** through iLast are also acceptable as long as the jump destination is +** an OP_Return to iReturnAddr. +** +** A jump to an unresolved label means that the jump destination will be +** beyond the current address. That is normally a jump to an early +** termination and is consider acceptable. +** +** This routine only runs during debug builds. The purpose is (of course) +** to detect invalid escapes out of a subroutine. The OP_Halt opcode +** is generated rather than an assert() or other error, so that ".eqp full" +** will still work to show the original bytecode, to aid in debugging. +*/ +void sqlite3VdbeNoJumpsOutsideSubrtn( + Vdbe *v, /* The byte-code program under construction */ + int iFirst, /* First opcode of the subroutine */ + int iLast, /* Last opcode of the subroutine */ + int iRetReg /* Subroutine return address register */ +){ + VdbeOp *pOp; + Parse *pParse; + int i; + sqlite3_str *pErr = 0; + assert( v!=0 ); + pParse = v->pParse; + assert( pParse!=0 ); + if( pParse->nErr ) return; + assert( iLast>=iFirst ); + assert( iLast<v->nOp ); + pOp = &v->aOp[iFirst]; + for(i=iFirst; i<=iLast; i++, pOp++){ + if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){ + int iDest = pOp->p2; /* Jump destination */ + if( iDest==0 ) continue; + if( pOp->opcode==OP_Gosub ) continue; + if( iDest<0 ){ + int j = ADDR(iDest); + assert( j>=0 ); + if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){ + continue; + } + iDest = pParse->aLabel[j]; + } + if( iDest<iFirst || iDest>iLast ){ + int j = iDest; + for(; j<v->nOp; j++){ + VdbeOp *pX = &v->aOp[j]; + if( pX->opcode==OP_Return ){ + if( pX->p1==iRetReg ) break; + continue; + } + if( pX->opcode==OP_Noop ) continue; + if( pX->opcode==OP_Explain ) continue; + if( pErr==0 ){ + pErr = sqlite3_str_new(0); + }else{ + sqlite3_str_appendchar(pErr, 1, '\n'); + } + sqlite3_str_appendf(pErr, + "Opcode at %d jumps to %d which is outside the " + "subroutine at %d..%d", + i, iDest, iFirst, iLast); + break; + } + } + } + } + if( pErr ){ + char *zErr = sqlite3_str_finish(pErr); + sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0); + sqlite3_free(zErr); + sqlite3MayAbort(pParse); + } +} +#endif /* SQLITE_DEBUG */ + +/* +** Return the address of the next instruction to be inserted. +*/ +int sqlite3VdbeCurrentAddr(Vdbe *p){ + assert( p->eVdbeState==VDBE_INIT_STATE ); + return p->nOp; +} + +/* +** Verify that at least N opcode slots are available in p without +** having to malloc for more space (except when compiled using +** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing +** to verify that certain calls to sqlite3VdbeAddOpList() can never +** fail due to a OOM fault and hence that the return value from +** sqlite3VdbeAddOpList() will always be non-NULL. +*/ +#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) +void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ + assert( p->nOp + N <= p->nOpAlloc ); +} +#endif + +/* +** Verify that the VM passed as the only argument does not contain +** an OP_ResultRow opcode. Fail an assert() if it does. This is used +** by code in pragma.c to ensure that the implementation of certain +** pragmas comports with the flags specified in the mkpragmatab.tcl +** script. +*/ +#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) +void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ + int i; + for(i=0; i<p->nOp; i++){ + assert( p->aOp[i].opcode!=OP_ResultRow ); + } +} +#endif + +/* +** Generate code (a single OP_Abortable opcode) that will +** verify that the VDBE program can safely call Abort in the current +** context. +*/ +#if defined(SQLITE_DEBUG) +void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ + if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); +} +#endif + +/* +** This function returns a pointer to the array of opcodes associated with +** the Vdbe passed as the first argument. It is the callers responsibility +** to arrange for the returned array to be eventually freed using the +** vdbeFreeOpArray() function. +** +** Before returning, *pnOp is set to the number of entries in the returned +** array. Also, *pnMaxArg is set to the larger of its current value and +** the number of entries in the Vdbe.apArg[] array required to execute the +** returned program. +*/ +VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ + VdbeOp *aOp = p->aOp; + assert( aOp && !p->db->mallocFailed ); + + /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ + assert( DbMaskAllZero(p->btreeMask) ); + + resolveP2Values(p, pnMaxArg); + *pnOp = p->nOp; + p->aOp = 0; + return aOp; +} + +/* +** Add a whole list of operations to the operation stack. Return a +** pointer to the first operation inserted. +** +** Non-zero P2 arguments to jump instructions are automatically adjusted +** so that the jump target is relative to the first operation inserted. +*/ +VdbeOp *sqlite3VdbeAddOpList( + Vdbe *p, /* Add opcodes to the prepared statement */ + int nOp, /* Number of opcodes to add */ + VdbeOpList const *aOp, /* The opcodes to be added */ + int iLineno /* Source-file line number of first opcode */ +){ + int i; + VdbeOp *pOut, *pFirst; + assert( nOp>0 ); + assert( p->eVdbeState==VDBE_INIT_STATE ); + if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ + return 0; + } + pFirst = pOut = &p->aOp[p->nOp]; + for(i=0; i<nOp; i++, aOp++, pOut++){ + pOut->opcode = aOp->opcode; + pOut->p1 = aOp->p1; + pOut->p2 = aOp->p2; + assert( aOp->p2>=0 ); + if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ + pOut->p2 += p->nOp; + } + pOut->p3 = aOp->p3; + pOut->p4type = P4_NOTUSED; + pOut->p4.p = 0; + pOut->p5 = 0; +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS + pOut->zComment = 0; +#endif +#ifdef SQLITE_VDBE_COVERAGE + pOut->iSrcLine = iLineno+i; +#else + (void)iLineno; +#endif +#ifdef SQLITE_DEBUG + if( p->db->flags & SQLITE_VdbeAddopTrace ){ + sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); + } +#endif + } + p->nOp += nOp; + return pFirst; +} + +#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) +/* +** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). +*/ +void sqlite3VdbeScanStatus( + Vdbe *p, /* VM to add scanstatus() to */ + int addrExplain, /* Address of OP_Explain (or 0) */ + int addrLoop, /* Address of loop counter */ + int addrVisit, /* Address of rows visited counter */ + LogEst nEst, /* Estimated number of output rows */ + const char *zName /* Name of table or index being scanned */ +){ + sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); + ScanStatus *aNew; + aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); + if( aNew ){ + ScanStatus *pNew = &aNew[p->nScan++]; + pNew->addrExplain = addrExplain; + pNew->addrLoop = addrLoop; + pNew->addrVisit = addrVisit; + pNew->nEst = nEst; + pNew->zName = sqlite3DbStrDup(p->db, zName); + p->aScan = aNew; + } +} +#endif + + +/* +** Change the value of the opcode, or P1, P2, P3, or P5 operands +** for a specific instruction. +*/ +void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ + assert( addr>=0 ); + sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; +} +void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ + assert( addr>=0 ); + sqlite3VdbeGetOp(p,addr)->p1 = val; +} +void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ + assert( addr>=0 || p->db->mallocFailed ); + sqlite3VdbeGetOp(p,addr)->p2 = val; +} +void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ + assert( addr>=0 ); + sqlite3VdbeGetOp(p,addr)->p3 = val; +} +void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ + assert( p->nOp>0 || p->db->mallocFailed ); + if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; +} + +/* +** If the previous opcode is an OP_Column that delivers results +** into register iDest, then add the OPFLAG_TYPEOFARG flag to that +** opcode. +*/ +void sqlite3VdbeTypeofColumn(Vdbe *p, int iDest){ + VdbeOp *pOp = sqlite3VdbeGetLastOp(p); + if( pOp->p3==iDest && pOp->opcode==OP_Column ){ + pOp->p5 |= OPFLAG_TYPEOFARG; + } +} + +/* +** Change the P2 operand of instruction addr so that it points to +** the address of the next instruction to be coded. +*/ +void sqlite3VdbeJumpHere(Vdbe *p, int addr){ + sqlite3VdbeChangeP2(p, addr, p->nOp); +} + +/* +** Change the P2 operand of the jump instruction at addr so that +** the jump lands on the next opcode. Or if the jump instruction was +** the previous opcode (and is thus a no-op) then simply back up +** the next instruction counter by one slot so that the jump is +** overwritten by the next inserted opcode. +** +** This routine is an optimization of sqlite3VdbeJumpHere() that +** strives to omit useless byte-code like this: +** +** 7 Once 0 8 0 +** 8 ... +*/ +void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){ + if( addr==p->nOp-1 ){ + assert( p->aOp[addr].opcode==OP_Once + || p->aOp[addr].opcode==OP_If + || p->aOp[addr].opcode==OP_FkIfZero ); + assert( p->aOp[addr].p4type==0 ); +#ifdef SQLITE_VDBE_COVERAGE + sqlite3VdbeGetLastOp(p)->iSrcLine = 0; /* Erase VdbeCoverage() macros */ +#endif + p->nOp--; + }else{ + sqlite3VdbeChangeP2(p, addr, p->nOp); + } +} + + +/* +** If the input FuncDef structure is ephemeral, then free it. If +** the FuncDef is not ephermal, then do nothing. +*/ +static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ + assert( db!=0 ); + if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ + sqlite3DbNNFreeNN(db, pDef); + } +} + +/* +** Delete a P4 value if necessary. +*/ +static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ + if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); + sqlite3DbNNFreeNN(db, p); +} +static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ + assert( db!=0 ); + freeEphemeralFunction(db, p->pFunc); + sqlite3DbNNFreeNN(db, p); +} +static void freeP4(sqlite3 *db, int p4type, void *p4){ + assert( db ); + switch( p4type ){ + case P4_FUNCCTX: { + freeP4FuncCtx(db, (sqlite3_context*)p4); + break; + } + case P4_REAL: + case P4_INT64: + case P4_DYNAMIC: + case P4_INTARRAY: { + if( p4 ) sqlite3DbNNFreeNN(db, p4); + break; + } + case P4_KEYINFO: { + if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); + break; + } +#ifdef SQLITE_ENABLE_CURSOR_HINTS + case P4_EXPR: { + sqlite3ExprDelete(db, (Expr*)p4); + break; + } +#endif + case P4_FUNCDEF: { + freeEphemeralFunction(db, (FuncDef*)p4); + break; + } + case P4_MEM: { + if( db->pnBytesFreed==0 ){ + sqlite3ValueFree((sqlite3_value*)p4); + }else{ + freeP4Mem(db, (Mem*)p4); + } + break; + } + case P4_VTAB : { + if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); + break; + } + } +} + +/* +** Free the space allocated for aOp and any p4 values allocated for the +** opcodes contained within. If aOp is not NULL it is assumed to contain +** nOp entries. +*/ +static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ + assert( nOp>=0 ); + assert( db!=0 ); + if( aOp ){ + Op *pOp = &aOp[nOp-1]; + while(1){ /* Exit via break */ + if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS + sqlite3DbFree(db, pOp->zComment); +#endif + if( pOp==aOp ) break; + pOp--; + } + sqlite3DbNNFreeNN(db, aOp); + } +} + +/* +** Link the SubProgram object passed as the second argument into the linked +** list at Vdbe.pSubProgram. This list is used to delete all sub-program +** objects when the VM is no longer required. +*/ +void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ + p->pNext = pVdbe->pProgram; + pVdbe->pProgram = p; +} + +/* +** Return true if the given Vdbe has any SubPrograms. +*/ +int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ + return pVdbe->pProgram!=0; +} + +/* +** Change the opcode at addr into OP_Noop +*/ +int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ + VdbeOp *pOp; + if( p->db->mallocFailed ) return 0; + assert( addr>=0 && addr<p->nOp ); + pOp = &p->aOp[addr]; + freeP4(p->db, pOp->p4type, pOp->p4.p); + pOp->p4type = P4_NOTUSED; + pOp->p4.z = 0; + pOp->opcode = OP_Noop; + return 1; +} + +/* +** If the last opcode is "op" and it is not a jump destination, +** then remove it. Return true if and only if an opcode was removed. +*/ +int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ + if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ + return sqlite3VdbeChangeToNoop(p, p->nOp-1); + }else{ + return 0; + } +} + +#ifdef SQLITE_DEBUG +/* +** Generate an OP_ReleaseReg opcode to indicate that a range of +** registers, except any identified by mask, are no longer in use. +*/ +void sqlite3VdbeReleaseRegisters( + Parse *pParse, /* Parsing context */ + int iFirst, /* Index of first register to be released */ + int N, /* Number of registers to release */ + u32 mask, /* Mask of registers to NOT release */ + int bUndefine /* If true, mark registers as undefined */ +){ + if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return; + assert( pParse->pVdbe ); + assert( iFirst>=1 ); + assert( iFirst+N-1<=pParse->nMem ); + if( N<=31 && mask!=0 ){ + while( N>0 && (mask&1)!=0 ){ + mask >>= 1; + iFirst++; + N--; + } + while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ + mask &= ~MASKBIT32(N-1); + N--; + } + } + if( N>0 ){ + sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); + if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); + } +} +#endif /* SQLITE_DEBUG */ + + +/* +** Change the value of the P4 operand for a specific instruction. +** This routine is useful when a large program is loaded from a +** static array using sqlite3VdbeAddOpList but we want to make a +** few minor changes to the program. +** +** If n>=0 then the P4 operand is dynamic, meaning that a copy of +** the string is made into memory obtained from sqlite3_malloc(). +** A value of n==0 means copy bytes of zP4 up to and including the +** first null byte. If n>0 then copy n+1 bytes of zP4. +** +** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points +** to a string or structure that is guaranteed to exist for the lifetime of +** the Vdbe. In these cases we can just copy the pointer. +** +** If addr<0 then change P4 on the most recently inserted instruction. +*/ +static void SQLITE_NOINLINE vdbeChangeP4Full( + Vdbe *p, + Op *pOp, + const char *zP4, + int n +){ + if( pOp->p4type ){ + freeP4(p->db, pOp->p4type, pOp->p4.p); + pOp->p4type = 0; + pOp->p4.p = 0; + } + if( n<0 ){ + sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); + }else{ + if( n==0 ) n = sqlite3Strlen30(zP4); + pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); + pOp->p4type = P4_DYNAMIC; + } +} +void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ + Op *pOp; + sqlite3 *db; + assert( p!=0 ); + db = p->db; + assert( p->eVdbeState==VDBE_INIT_STATE ); + assert( p->aOp!=0 || db->mallocFailed ); + if( db->mallocFailed ){ + if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); + return; + } + assert( p->nOp>0 ); + assert( addr<p->nOp ); + if( addr<0 ){ + addr = p->nOp - 1; + } + pOp = &p->aOp[addr]; + if( n>=0 || pOp->p4type ){ + vdbeChangeP4Full(p, pOp, zP4, n); + return; + } + if( n==P4_INT32 ){ + /* Note: this cast is safe, because the origin data point was an int + ** that was cast to a (const char *). */ + pOp->p4.i = SQLITE_PTR_TO_INT(zP4); + pOp->p4type = P4_INT32; + }else if( zP4!=0 ){ + assert( n<0 ); + pOp->p4.p = (void*)zP4; + pOp->p4type = (signed char)n; + if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); + } +} + +/* +** Change the P4 operand of the most recently coded instruction +** to the value defined by the arguments. This is a high-speed +** version of sqlite3VdbeChangeP4(). +** +** The P4 operand must not have been previously defined. And the new +** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of +** those cases. +*/ +void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ + VdbeOp *pOp; + assert( n!=P4_INT32 && n!=P4_VTAB ); + assert( n<=0 ); + if( p->db->mallocFailed ){ + freeP4(p->db, n, pP4); + }else{ + assert( pP4!=0 || n==P4_DYNAMIC ); + assert( p->nOp>0 ); + pOp = &p->aOp[p->nOp-1]; + assert( pOp->p4type==P4_NOTUSED ); + pOp->p4type = n; + pOp->p4.p = pP4; + } +} + +/* +** Set the P4 on the most recently added opcode to the KeyInfo for the +** index given. +*/ +void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ + Vdbe *v = pParse->pVdbe; + KeyInfo *pKeyInfo; + assert( v!=0 ); + assert( pIdx!=0 ); + pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); + if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); +} + +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS +/* +** Change the comment on the most recently coded instruction. Or +** insert a No-op and add the comment to that new instruction. This +** makes the code easier to read during debugging. None of this happens +** in a production build. +*/ +static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ + assert( p->nOp>0 || p->aOp==0 ); + assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 ); + if( p->nOp ){ + assert( p->aOp ); + sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); + p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); + } +} +void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ + va_list ap; + if( p ){ + va_start(ap, zFormat); + vdbeVComment(p, zFormat, ap); + va_end(ap); + } +} +void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ + va_list ap; + if( p ){ + sqlite3VdbeAddOp0(p, OP_Noop); + va_start(ap, zFormat); + vdbeVComment(p, zFormat, ap); + va_end(ap); + } +} +#endif /* NDEBUG */ + +#ifdef SQLITE_VDBE_COVERAGE +/* +** Set the value if the iSrcLine field for the previously coded instruction. +*/ +void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ + sqlite3VdbeGetLastOp(v)->iSrcLine = iLine; +} +#endif /* SQLITE_VDBE_COVERAGE */ + +/* +** Return the opcode for a given address. The address must be non-negative. +** See sqlite3VdbeGetLastOp() to get the most recently added opcode. +** +** If a memory allocation error has occurred prior to the calling of this +** routine, then a pointer to a dummy VdbeOp will be returned. That opcode +** is readable but not writable, though it is cast to a writable value. +** The return of a dummy opcode allows the call to continue functioning +** after an OOM fault without having to check to see if the return from +** this routine is a valid pointer. But because the dummy.opcode is 0, +** dummy will never be written to. This is verified by code inspection and +** by running with Valgrind. +*/ +VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ + /* C89 specifies that the constant "dummy" will be initialized to all + ** zeros, which is correct. MSVC generates a warning, nevertheless. */ + static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ + assert( p->eVdbeState==VDBE_INIT_STATE ); + assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); + if( p->db->mallocFailed ){ + return (VdbeOp*)&dummy; + }else{ + return &p->aOp[addr]; + } +} + +/* Return the most recently added opcode +*/ +VdbeOp * sqlite3VdbeGetLastOp(Vdbe *p){ + return sqlite3VdbeGetOp(p, p->nOp - 1); +} + +#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) +/* +** Return an integer value for one of the parameters to the opcode pOp +** determined by character c. +*/ +static int translateP(char c, const Op *pOp){ + if( c=='1' ) return pOp->p1; + if( c=='2' ) return pOp->p2; + if( c=='3' ) return pOp->p3; + if( c=='4' ) return pOp->p4.i; + return pOp->p5; +} + +/* +** Compute a string for the "comment" field of a VDBE opcode listing. +** +** The Synopsis: field in comments in the vdbe.c source file gets converted +** to an extra string that is appended to the sqlite3OpcodeName(). In the +** absence of other comments, this synopsis becomes the comment on the opcode. +** Some translation occurs: +** +** "PX" -> "r[X]" +** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 +** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 +** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x +*/ +char *sqlite3VdbeDisplayComment( + sqlite3 *db, /* Optional - Oom error reporting only */ + const Op *pOp, /* The opcode to be commented */ + const char *zP4 /* Previously obtained value for P4 */ +){ + const char *zOpName; + const char *zSynopsis; + int nOpName; + int ii; + char zAlt[50]; + StrAccum x; + + sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); + zOpName = sqlite3OpcodeName(pOp->opcode); + nOpName = sqlite3Strlen30(zOpName); + if( zOpName[nOpName+1] ){ + int seenCom = 0; + char c; + zSynopsis = zOpName + nOpName + 1; + if( strncmp(zSynopsis,"IF ",3)==0 ){ + sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); + zSynopsis = zAlt; + } + for(ii=0; (c = zSynopsis[ii])!=0; ii++){ + if( c=='P' ){ + c = zSynopsis[++ii]; + if( c=='4' ){ + sqlite3_str_appendall(&x, zP4); + }else if( c=='X' ){ + if( pOp->zComment && pOp->zComment[0] ){ + sqlite3_str_appendall(&x, pOp->zComment); + seenCom = 1; + break; + } + }else{ + int v1 = translateP(c, pOp); + int v2; + if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ + ii += 3; + v2 = translateP(zSynopsis[ii], pOp); + if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ + ii += 2; + v2++; + } + if( v2<2 ){ + sqlite3_str_appendf(&x, "%d", v1); + }else{ + sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1); + } + }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){ + sqlite3_context *pCtx = pOp->p4.pCtx; + if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){ + sqlite3_str_appendf(&x, "%d", v1); + }else if( pCtx->argc>1 ){ + sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1); + }else if( x.accError==0 ){ + assert( x.nChar>2 ); + x.nChar -= 2; + ii++; + } + ii += 3; + }else{ + sqlite3_str_appendf(&x, "%d", v1); + if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ + ii += 4; + } + } + } + }else{ + sqlite3_str_appendchar(&x, 1, c); + } + } + if( !seenCom && pOp->zComment ){ + sqlite3_str_appendf(&x, "; %s", pOp->zComment); + } + }else if( pOp->zComment ){ + sqlite3_str_appendall(&x, pOp->zComment); + } + if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){ + sqlite3OomFault(db); + } + return sqlite3StrAccumFinish(&x); +} +#endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */ + +#if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) +/* +** Translate the P4.pExpr value for an OP_CursorHint opcode into text +** that can be displayed in the P4 column of EXPLAIN output. +*/ +static void displayP4Expr(StrAccum *p, Expr *pExpr){ + const char *zOp = 0; + switch( pExpr->op ){ + case TK_STRING: + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); + break; + case TK_INTEGER: + sqlite3_str_appendf(p, "%d", pExpr->u.iValue); + break; + case TK_NULL: + sqlite3_str_appendf(p, "NULL"); + break; + case TK_REGISTER: { + sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); + break; + } + case TK_COLUMN: { + if( pExpr->iColumn<0 ){ + sqlite3_str_appendf(p, "rowid"); + }else{ + sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); + } + break; + } + case TK_LT: zOp = "LT"; break; + case TK_LE: zOp = "LE"; break; + case TK_GT: zOp = "GT"; break; + case TK_GE: zOp = "GE"; break; + case TK_NE: zOp = "NE"; break; + case TK_EQ: zOp = "EQ"; break; + case TK_IS: zOp = "IS"; break; + case TK_ISNOT: zOp = "ISNOT"; break; + case TK_AND: zOp = "AND"; break; + case TK_OR: zOp = "OR"; break; + case TK_PLUS: zOp = "ADD"; break; + case TK_STAR: zOp = "MUL"; break; + case TK_MINUS: zOp = "SUB"; break; + case TK_REM: zOp = "REM"; break; + case TK_BITAND: zOp = "BITAND"; break; + case TK_BITOR: zOp = "BITOR"; break; + case TK_SLASH: zOp = "DIV"; break; + case TK_LSHIFT: zOp = "LSHIFT"; break; + case TK_RSHIFT: zOp = "RSHIFT"; break; + case TK_CONCAT: zOp = "CONCAT"; break; + case TK_UMINUS: zOp = "MINUS"; break; + case TK_UPLUS: zOp = "PLUS"; break; + case TK_BITNOT: zOp = "BITNOT"; break; + case TK_NOT: zOp = "NOT"; break; + case TK_ISNULL: zOp = "ISNULL"; break; + case TK_NOTNULL: zOp = "NOTNULL"; break; + + default: + sqlite3_str_appendf(p, "%s", "expr"); + break; + } + + if( zOp ){ + sqlite3_str_appendf(p, "%s(", zOp); + displayP4Expr(p, pExpr->pLeft); + if( pExpr->pRight ){ + sqlite3_str_append(p, ",", 1); + displayP4Expr(p, pExpr->pRight); + } + sqlite3_str_append(p, ")", 1); + } +} +#endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ + + +#if VDBE_DISPLAY_P4 +/* +** Compute a string that describes the P4 parameter for an opcode. +** Use zTemp for any required temporary buffer space. +*/ +char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){ + char *zP4 = 0; + StrAccum x; + + sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); + switch( pOp->p4type ){ + case P4_KEYINFO: { + int j; + KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; + assert( pKeyInfo->aSortFlags!=0 ); + sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); + for(j=0; j<pKeyInfo->nKeyField; j++){ + CollSeq *pColl = pKeyInfo->aColl[j]; + const char *zColl = pColl ? pColl->zName : ""; + if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; + sqlite3_str_appendf(&x, ",%s%s%s", + (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", + (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", + zColl); + } + sqlite3_str_append(&x, ")", 1); + break; + } +#ifdef SQLITE_ENABLE_CURSOR_HINTS + case P4_EXPR: { + displayP4Expr(&x, pOp->p4.pExpr); + break; + } +#endif + case P4_COLLSEQ: { + static const char *const encnames[] = {"?", "8", "16LE", "16BE"}; + CollSeq *pColl = pOp->p4.pColl; + assert( pColl->enc<4 ); + sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName, + encnames[pColl->enc]); + break; + } + case P4_FUNCDEF: { + FuncDef *pDef = pOp->p4.pFunc; + sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); + break; + } + case P4_FUNCCTX: { + FuncDef *pDef = pOp->p4.pCtx->pFunc; + sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); + break; + } + case P4_INT64: { + sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); + break; + } + case P4_INT32: { + sqlite3_str_appendf(&x, "%d", pOp->p4.i); + break; + } + case P4_REAL: { + sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); + break; + } + case P4_MEM: { + Mem *pMem = pOp->p4.pMem; + if( pMem->flags & MEM_Str ){ + zP4 = pMem->z; + }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ + sqlite3_str_appendf(&x, "%lld", pMem->u.i); + }else if( pMem->flags & MEM_Real ){ + sqlite3_str_appendf(&x, "%.16g", pMem->u.r); + }else if( pMem->flags & MEM_Null ){ + zP4 = "NULL"; + }else{ + assert( pMem->flags & MEM_Blob ); + zP4 = "(blob)"; + } + break; + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + case P4_VTAB: { + sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; + sqlite3_str_appendf(&x, "vtab:%p", pVtab); + break; + } +#endif + case P4_INTARRAY: { + u32 i; + u32 *ai = pOp->p4.ai; + u32 n = ai[0]; /* The first element of an INTARRAY is always the + ** count of the number of elements to follow */ + for(i=1; i<=n; i++){ + sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]); + } + sqlite3_str_append(&x, "]", 1); + break; + } + case P4_SUBPROGRAM: { + zP4 = "program"; + break; + } + case P4_TABLE: { + zP4 = pOp->p4.pTab->zName; + break; + } + default: { + zP4 = pOp->p4.z; + } + } + if( zP4 ) sqlite3_str_appendall(&x, zP4); + if( (x.accError & SQLITE_NOMEM)!=0 ){ + sqlite3OomFault(db); + } + return sqlite3StrAccumFinish(&x); +} +#endif /* VDBE_DISPLAY_P4 */ + +/* +** Declare to the Vdbe that the BTree object at db->aDb[i] is used. +** +** The prepared statements need to know in advance the complete set of +** attached databases that will be use. A mask of these databases +** is maintained in p->btreeMask. The p->lockMask value is the subset of +** p->btreeMask of databases that will require a lock. +*/ +void sqlite3VdbeUsesBtree(Vdbe *p, int i){ + assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); + assert( i<(int)sizeof(p->btreeMask)*8 ); + DbMaskSet(p->btreeMask, i); + if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ + DbMaskSet(p->lockMask, i); + } +} + +#if !defined(SQLITE_OMIT_SHARED_CACHE) +/* +** If SQLite is compiled to support shared-cache mode and to be threadsafe, +** this routine obtains the mutex associated with each BtShared structure +** that may be accessed by the VM passed as an argument. In doing so it also +** sets the BtShared.db member of each of the BtShared structures, ensuring +** that the correct busy-handler callback is invoked if required. +** +** If SQLite is not threadsafe but does support shared-cache mode, then +** sqlite3BtreeEnter() is invoked to set the BtShared.db variables +** of all of BtShared structures accessible via the database handle +** associated with the VM. +** +** If SQLite is not threadsafe and does not support shared-cache mode, this +** function is a no-op. +** +** The p->btreeMask field is a bitmask of all btrees that the prepared +** statement p will ever use. Let N be the number of bits in p->btreeMask +** corresponding to btrees that use shared cache. Then the runtime of +** this routine is N*N. But as N is rarely more than 1, this should not +** be a problem. +*/ +void sqlite3VdbeEnter(Vdbe *p){ + int i; + sqlite3 *db; + Db *aDb; + int nDb; + if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ + db = p->db; + aDb = db->aDb; + nDb = db->nDb; + for(i=0; i<nDb; i++){ + if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ + sqlite3BtreeEnter(aDb[i].pBt); + } + } +} +#endif + +#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 +/* +** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). +*/ +static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ + int i; + sqlite3 *db; + Db *aDb; + int nDb; + db = p->db; + aDb = db->aDb; + nDb = db->nDb; + for(i=0; i<nDb; i++){ + if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ + sqlite3BtreeLeave(aDb[i].pBt); + } + } +} +void sqlite3VdbeLeave(Vdbe *p){ + if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ + vdbeLeave(p); +} +#endif + +#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) +/* +** Print a single opcode. This routine is used for debugging only. +*/ +void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ + char *zP4; + char *zCom; + sqlite3 dummyDb; + static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; + if( pOut==0 ) pOut = stdout; + sqlite3BeginBenignMalloc(); + dummyDb.mallocFailed = 1; + zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp); +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS + zCom = sqlite3VdbeDisplayComment(0, pOp, zP4); +#else + zCom = 0; +#endif + /* NB: The sqlite3OpcodeName() function is implemented by code created + ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the + ** information from the vdbe.c source text */ + fprintf(pOut, zFormat1, pc, + sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, + zP4 ? zP4 : "", pOp->p5, + zCom ? zCom : "" + ); + fflush(pOut); + sqlite3_free(zP4); + sqlite3_free(zCom); + sqlite3EndBenignMalloc(); +} +#endif + +/* +** Initialize an array of N Mem element. +** +** This is a high-runner, so only those fields that really do need to +** be initialized are set. The Mem structure is organized so that +** the fields that get initialized are nearby and hopefully on the same +** cache line. +** +** Mem.flags = flags +** Mem.db = db +** Mem.szMalloc = 0 +** +** All other fields of Mem can safely remain uninitialized for now. They +** will be initialized before use. +*/ +static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ + if( N>0 ){ + do{ + p->flags = flags; + p->db = db; + p->szMalloc = 0; +#ifdef SQLITE_DEBUG + p->pScopyFrom = 0; +#endif + p++; + }while( (--N)>0 ); + } +} + +/* +** Release auxiliary memory held in an array of N Mem elements. +** +** After this routine returns, all Mem elements in the array will still +** be valid. Those Mem elements that were not holding auxiliary resources +** will be unchanged. Mem elements which had something freed will be +** set to MEM_Undefined. +*/ +static void releaseMemArray(Mem *p, int N){ + if( p && N ){ + Mem *pEnd = &p[N]; + sqlite3 *db = p->db; + if( db->pnBytesFreed ){ + do{ + if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); + }while( (++p)<pEnd ); + return; + } + do{ + assert( (&p[1])==pEnd || p[0].db==p[1].db ); + assert( sqlite3VdbeCheckMemInvariants(p) ); + + /* This block is really an inlined version of sqlite3VdbeMemRelease() + ** that takes advantage of the fact that the memory cell value is + ** being set to NULL after releasing any dynamic resources. + ** + ** The justification for duplicating code is that according to + ** callgrind, this causes a certain test case to hit the CPU 4.7 + ** percent less (x86 linux, gcc version 4.1.2, -O6) than if + ** sqlite3MemRelease() were called from here. With -O2, this jumps + ** to 6.6 percent. The test case is inserting 1000 rows into a table + ** with no indexes using a single prepared INSERT statement, bind() + ** and reset(). Inserts are grouped into a transaction. + */ + testcase( p->flags & MEM_Agg ); + testcase( p->flags & MEM_Dyn ); + if( p->flags&(MEM_Agg|MEM_Dyn) ){ + testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel ); + sqlite3VdbeMemRelease(p); + p->flags = MEM_Undefined; + }else if( p->szMalloc ){ + sqlite3DbNNFreeNN(db, p->zMalloc); + p->szMalloc = 0; + p->flags = MEM_Undefined; + } +#ifdef SQLITE_DEBUG + else{ + p->flags = MEM_Undefined; + } +#endif + }while( (++p)<pEnd ); + } +} + +#ifdef SQLITE_DEBUG +/* +** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is +** and false if something is wrong. +** +** This routine is intended for use inside of assert() statements only. +*/ +int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ + if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; + return 1; +} +#endif + + +/* +** This is a destructor on a Mem object (which is really an sqlite3_value) +** that deletes the Frame object that is attached to it as a blob. +** +** This routine does not delete the Frame right away. It merely adds the +** frame to a list of frames to be deleted when the Vdbe halts. +*/ +void sqlite3VdbeFrameMemDel(void *pArg){ + VdbeFrame *pFrame = (VdbeFrame*)pArg; + assert( sqlite3VdbeFrameIsValid(pFrame) ); + pFrame->pParent = pFrame->v->pDelFrame; + pFrame->v->pDelFrame = pFrame; +} + +#if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN) +/* +** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN +** QUERY PLAN output. +** +** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no +** more opcodes to be displayed. +*/ +int sqlite3VdbeNextOpcode( + Vdbe *p, /* The statement being explained */ + Mem *pSub, /* Storage for keeping track of subprogram nesting */ + int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */ + int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */ + int *piAddr, /* OUT: Write index into (*paOp)[] here */ + Op **paOp /* OUT: Write the opcode array here */ +){ + int nRow; /* Stop when row count reaches this */ + int nSub = 0; /* Number of sub-vdbes seen so far */ + SubProgram **apSub = 0; /* Array of sub-vdbes */ + int i; /* Next instruction address */ + int rc = SQLITE_OK; /* Result code */ + Op *aOp = 0; /* Opcode array */ + int iPc; /* Rowid. Copy of value in *piPc */ + + /* When the number of output rows reaches nRow, that means the + ** listing has finished and sqlite3_step() should return SQLITE_DONE. + ** nRow is the sum of the number of rows in the main program, plus + ** the sum of the number of rows in all trigger subprograms encountered + ** so far. The nRow value will increase as new trigger subprograms are + ** encountered, but p->pc will eventually catch up to nRow. + */ + nRow = p->nOp; + if( pSub!=0 ){ + if( pSub->flags&MEM_Blob ){ + /* pSub is initiallly NULL. It is initialized to a BLOB by + ** the P4_SUBPROGRAM processing logic below */ + nSub = pSub->n/sizeof(Vdbe*); + apSub = (SubProgram **)pSub->z; + } + for(i=0; i<nSub; i++){ + nRow += apSub[i]->nOp; + } + } + iPc = *piPc; + while(1){ /* Loop exits via break */ + i = iPc++; + if( i>=nRow ){ + p->rc = SQLITE_OK; + rc = SQLITE_DONE; + break; + } + if( i<p->nOp ){ + /* The rowid is small enough that we are still in the + ** main program. */ + aOp = p->aOp; + }else{ + /* We are currently listing subprograms. Figure out which one and + ** pick up the appropriate opcode. */ + int j; + i -= p->nOp; + assert( apSub!=0 ); + assert( nSub>0 ); + for(j=0; i>=apSub[j]->nOp; j++){ + i -= apSub[j]->nOp; + assert( i<apSub[j]->nOp || j+1<nSub ); + } + aOp = apSub[j]->aOp; + } + + /* When an OP_Program opcode is encounter (the only opcode that has + ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms + ** kept in p->aMem[9].z to hold the new program - assuming this subprogram + ** has not already been seen. + */ + if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){ + int nByte = (nSub+1)*sizeof(SubProgram*); + int j; + for(j=0; j<nSub; j++){ + if( apSub[j]==aOp[i].p4.pProgram ) break; + } + if( j==nSub ){ + p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); + if( p->rc!=SQLITE_OK ){ + rc = SQLITE_ERROR; + break; + } + apSub = (SubProgram **)pSub->z; + apSub[nSub++] = aOp[i].p4.pProgram; + MemSetTypeFlag(pSub, MEM_Blob); + pSub->n = nSub*sizeof(SubProgram*); + nRow += aOp[i].p4.pProgram->nOp; + } + } + if( eMode==0 ) break; +#ifdef SQLITE_ENABLE_BYTECODE_VTAB + if( eMode==2 ){ + Op *pOp = aOp + i; + if( pOp->opcode==OP_OpenRead ) break; + if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break; + if( pOp->opcode==OP_ReopenIdx ) break; + }else +#endif + { + assert( eMode==1 ); + if( aOp[i].opcode==OP_Explain ) break; + if( aOp[i].opcode==OP_Init && iPc>1 ) break; + } + } + *piPc = iPc; + *piAddr = i; + *paOp = aOp; + return rc; +} +#endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */ + + +/* +** Delete a VdbeFrame object and its contents. VdbeFrame objects are +** allocated by the OP_Program opcode in sqlite3VdbeExec(). +*/ +void sqlite3VdbeFrameDelete(VdbeFrame *p){ + int i; + Mem *aMem = VdbeFrameMem(p); + VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; + assert( sqlite3VdbeFrameIsValid(p) ); + for(i=0; i<p->nChildCsr; i++){ + if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]); + } + releaseMemArray(aMem, p->nChildMem); + sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); + sqlite3DbFree(p->v->db, p); +} + +#ifndef SQLITE_OMIT_EXPLAIN +/* +** Give a listing of the program in the virtual machine. +** +** The interface is the same as sqlite3VdbeExec(). But instead of +** running the code, it invokes the callback once for each instruction. +** This feature is used to implement "EXPLAIN". +** +** When p->explain==1, each instruction is listed. When +** p->explain==2, only OP_Explain instructions are listed and these +** are shown in a different format. p->explain==2 is used to implement +** EXPLAIN QUERY PLAN. +** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers +** are also shown, so that the boundaries between the main program and +** each trigger are clear. +** +** When p->explain==1, first the main program is listed, then each of +** the trigger subprograms are listed one by one. +*/ +int sqlite3VdbeList( + Vdbe *p /* The VDBE */ +){ + Mem *pSub = 0; /* Memory cell hold array of subprogs */ + sqlite3 *db = p->db; /* The database connection */ + int i; /* Loop counter */ + int rc = SQLITE_OK; /* Return code */ + Mem *pMem = &p->aMem[1]; /* First Mem of result set */ + int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); + Op *aOp; /* Array of opcodes */ + Op *pOp; /* Current opcode */ + + assert( p->explain ); + assert( p->eVdbeState==VDBE_RUN_STATE ); + assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); + + /* Even though this opcode does not use dynamic strings for + ** the result, result columns may become dynamic if the user calls + ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. + */ + releaseMemArray(pMem, 8); + p->pResultSet = 0; + + if( p->rc==SQLITE_NOMEM ){ + /* This happens if a malloc() inside a call to sqlite3_column_text() or + ** sqlite3_column_text16() failed. */ + sqlite3OomFault(db); + return SQLITE_ERROR; + } + + if( bListSubprogs ){ + /* The first 8 memory cells are used for the result set. So we will + ** commandeer the 9th cell to use as storage for an array of pointers + ** to trigger subprograms. The VDBE is guaranteed to have at least 9 + ** cells. */ + assert( p->nMem>9 ); + pSub = &p->aMem[9]; + }else{ + pSub = 0; + } + + /* Figure out which opcode is next to display */ + rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp); + + if( rc==SQLITE_OK ){ + pOp = aOp + i; + if( AtomicLoad(&db->u1.isInterrupted) ){ + p->rc = SQLITE_INTERRUPT; + rc = SQLITE_ERROR; + sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); + }else{ + char *zP4 = sqlite3VdbeDisplayP4(db, pOp); + if( p->explain==2 ){ + sqlite3VdbeMemSetInt64(pMem, pOp->p1); + sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); + sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); + sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); + p->nResColumn = 4; + }else{ + sqlite3VdbeMemSetInt64(pMem+0, i); + sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), + -1, SQLITE_UTF8, SQLITE_STATIC); + sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); + sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); + sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); + /* pMem+5 for p4 is done last */ + sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS + { + char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); + sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); + } +#else + sqlite3VdbeMemSetNull(pMem+7); +#endif + sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); + p->nResColumn = 8; + } + p->pResultSet = pMem; + if( db->mallocFailed ){ + p->rc = SQLITE_NOMEM; + rc = SQLITE_ERROR; + }else{ + p->rc = SQLITE_OK; + rc = SQLITE_ROW; + } + } + } + return rc; +} +#endif /* SQLITE_OMIT_EXPLAIN */ + +#ifdef SQLITE_DEBUG +/* +** Print the SQL that was used to generate a VDBE program. +*/ +void sqlite3VdbePrintSql(Vdbe *p){ + const char *z = 0; + if( p->zSql ){ + z = p->zSql; + }else if( p->nOp>=1 ){ + const VdbeOp *pOp = &p->aOp[0]; + if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ + z = pOp->p4.z; + while( sqlite3Isspace(*z) ) z++; + } + } + if( z ) printf("SQL: [%s]\n", z); +} +#endif + +#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) +/* +** Print an IOTRACE message showing SQL content. +*/ +void sqlite3VdbeIOTraceSql(Vdbe *p){ + int nOp = p->nOp; + VdbeOp *pOp; + if( sqlite3IoTrace==0 ) return; + if( nOp<1 ) return; + pOp = &p->aOp[0]; + if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ + int i, j; + char z[1000]; + sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); + for(i=0; sqlite3Isspace(z[i]); i++){} + for(j=0; z[i]; i++){ + if( sqlite3Isspace(z[i]) ){ + if( z[i-1]!=' ' ){ + z[j++] = ' '; + } + }else{ + z[j++] = z[i]; + } + } + z[j] = 0; + sqlite3IoTrace("SQL %s\n", z); + } +} +#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ + +/* An instance of this object describes bulk memory available for use +** by subcomponents of a prepared statement. Space is allocated out +** of a ReusableSpace object by the allocSpace() routine below. +*/ +struct ReusableSpace { + u8 *pSpace; /* Available memory */ + sqlite3_int64 nFree; /* Bytes of available memory */ + sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ +}; + +/* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf +** from the ReusableSpace object. Return a pointer to the allocated +** memory on success. If insufficient memory is available in the +** ReusableSpace object, increase the ReusableSpace.nNeeded +** value by the amount needed and return NULL. +** +** If pBuf is not initially NULL, that means that the memory has already +** been allocated by a prior call to this routine, so just return a copy +** of pBuf and leave ReusableSpace unchanged. +** +** This allocator is employed to repurpose unused slots at the end of the +** opcode array of prepared state for other memory needs of the prepared +** statement. +*/ +static void *allocSpace( + struct ReusableSpace *p, /* Bulk memory available for allocation */ + void *pBuf, /* Pointer to a prior allocation */ + sqlite3_int64 nByte /* Bytes of memory needed. */ +){ + assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); + if( pBuf==0 ){ + nByte = ROUND8P(nByte); + if( nByte <= p->nFree ){ + p->nFree -= nByte; + pBuf = &p->pSpace[p->nFree]; + }else{ + p->nNeeded += nByte; + } + } + assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); + return pBuf; +} + +/* +** Rewind the VDBE back to the beginning in preparation for +** running it. +*/ +void sqlite3VdbeRewind(Vdbe *p){ +#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) + int i; +#endif + assert( p!=0 ); + assert( p->eVdbeState==VDBE_INIT_STATE + || p->eVdbeState==VDBE_READY_STATE + || p->eVdbeState==VDBE_HALT_STATE ); + + /* There should be at least one opcode. + */ + assert( p->nOp>0 ); + + p->eVdbeState = VDBE_READY_STATE; + +#ifdef SQLITE_DEBUG + for(i=0; i<p->nMem; i++){ + assert( p->aMem[i].db==p->db ); + } +#endif + p->pc = -1; + p->rc = SQLITE_OK; + p->errorAction = OE_Abort; + p->nChange = 0; + p->cacheCtr = 1; + p->minWriteFileFormat = 255; + p->iStatement = 0; + p->nFkConstraint = 0; +#ifdef VDBE_PROFILE + for(i=0; i<p->nOp; i++){ + p->aOp[i].cnt = 0; + p->aOp[i].cycles = 0; + } +#endif +} + +/* +** Prepare a virtual machine for execution for the first time after +** creating the virtual machine. This involves things such +** as allocating registers and initializing the program counter. +** After the VDBE has be prepped, it can be executed by one or more +** calls to sqlite3VdbeExec(). +** +** This function may be called exactly once on each virtual machine. +** After this routine is called the VM has been "packaged" and is ready +** to run. After this routine is called, further calls to +** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects +** the Vdbe from the Parse object that helped generate it so that the +** the Vdbe becomes an independent entity and the Parse object can be +** destroyed. +** +** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back +** to its initial state after it has been run. +*/ +void sqlite3VdbeMakeReady( + Vdbe *p, /* The VDBE */ + Parse *pParse /* Parsing context */ +){ + sqlite3 *db; /* The database connection */ + int nVar; /* Number of parameters */ + int nMem; /* Number of VM memory registers */ + int nCursor; /* Number of cursors required */ + int nArg; /* Number of arguments in subprograms */ + int n; /* Loop counter */ + struct ReusableSpace x; /* Reusable bulk memory */ + + assert( p!=0 ); + assert( p->nOp>0 ); + assert( pParse!=0 ); + assert( p->eVdbeState==VDBE_INIT_STATE ); + assert( pParse==p->pParse ); + p->pVList = pParse->pVList; + pParse->pVList = 0; + db = p->db; + assert( db->mallocFailed==0 ); + nVar = pParse->nVar; + nMem = pParse->nMem; + nCursor = pParse->nTab; + nArg = pParse->nMaxArg; + + /* Each cursor uses a memory cell. The first cursor (cursor 0) can + ** use aMem[0] which is not otherwise used by the VDBE program. Allocate + ** space at the end of aMem[] for cursors 1 and greater. + ** See also: allocateCursor(). + */ + nMem += nCursor; + if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ + + /* Figure out how much reusable memory is available at the end of the + ** opcode array. This extra memory will be reallocated for other elements + ** of the prepared statement. + */ + n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ + x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ + assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); + x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ + assert( x.nFree>=0 ); + assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); + + resolveP2Values(p, &nArg); + p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); + if( pParse->explain ){ + static const char * const azColName[] = { + "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", + "id", "parent", "notused", "detail" + }; + int iFirst, mx, i; + if( nMem<10 ) nMem = 10; + p->explain = pParse->explain; + if( pParse->explain==2 ){ + sqlite3VdbeSetNumCols(p, 4); + iFirst = 8; + mx = 12; + }else{ + sqlite3VdbeSetNumCols(p, 8); + iFirst = 0; + mx = 8; + } + for(i=iFirst; i<mx; i++){ + sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME, + azColName[i], SQLITE_STATIC); + } + } + p->expired = 0; + + /* Memory for registers, parameters, cursor, etc, is allocated in one or two + ** passes. On the first pass, we try to reuse unused memory at the + ** end of the opcode array. If we are unable to satisfy all memory + ** requirements by reusing the opcode array tail, then the second + ** pass will fill in the remainder using a fresh memory allocation. + ** + ** This two-pass approach that reuses as much memory as possible from + ** the leftover memory at the end of the opcode array. This can significantly + ** reduce the amount of memory held by a prepared statement. + */ + x.nNeeded = 0; + p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); + p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); + p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); + p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); +#ifdef SQLITE_ENABLE_STMT_SCANSTATUS + p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64)); +#endif + if( x.nNeeded ){ + x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); + x.nFree = x.nNeeded; + if( !db->mallocFailed ){ + p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); + p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); + p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); + p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); +#ifdef SQLITE_ENABLE_STMT_SCANSTATUS + p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); +#endif + } + } + + if( db->mallocFailed ){ + p->nVar = 0; + p->nCursor = 0; + p->nMem = 0; + }else{ + p->nCursor = nCursor; + p->nVar = (ynVar)nVar; + initMemArray(p->aVar, nVar, db, MEM_Null); + p->nMem = nMem; + initMemArray(p->aMem, nMem, db, MEM_Undefined); + memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); +#ifdef SQLITE_ENABLE_STMT_SCANSTATUS + memset(p->anExec, 0, p->nOp*sizeof(i64)); +#endif + } + sqlite3VdbeRewind(p); +} + +/* +** Close a VDBE cursor and release all the resources that cursor +** happens to hold. +*/ +void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ + if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx); +} +void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){ + switch( pCx->eCurType ){ + case CURTYPE_SORTER: { + sqlite3VdbeSorterClose(p->db, pCx); + break; + } + case CURTYPE_BTREE: { + assert( pCx->uc.pCursor!=0 ); + sqlite3BtreeCloseCursor(pCx->uc.pCursor); + break; + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + case CURTYPE_VTAB: { + sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; + const sqlite3_module *pModule = pVCur->pVtab->pModule; + assert( pVCur->pVtab->nRef>0 ); + pVCur->pVtab->nRef--; + pModule->xClose(pVCur); + break; + } +#endif + } +} + +/* +** Close all cursors in the current frame. +*/ +static void closeCursorsInFrame(Vdbe *p){ + int i; + for(i=0; i<p->nCursor; i++){ + VdbeCursor *pC = p->apCsr[i]; + if( pC ){ + sqlite3VdbeFreeCursorNN(p, pC); + p->apCsr[i] = 0; + } + } +} + +/* +** Copy the values stored in the VdbeFrame structure to its Vdbe. This +** is used, for example, when a trigger sub-program is halted to restore +** control to the main program. +*/ +int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ + Vdbe *v = pFrame->v; + closeCursorsInFrame(v); +#ifdef SQLITE_ENABLE_STMT_SCANSTATUS + v->anExec = pFrame->anExec; +#endif + v->aOp = pFrame->aOp; + v->nOp = pFrame->nOp; + v->aMem = pFrame->aMem; + v->nMem = pFrame->nMem; + v->apCsr = pFrame->apCsr; + v->nCursor = pFrame->nCursor; + v->db->lastRowid = pFrame->lastRowid; + v->nChange = pFrame->nChange; + v->db->nChange = pFrame->nDbChange; + sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); + v->pAuxData = pFrame->pAuxData; + pFrame->pAuxData = 0; + return pFrame->pc; +} + +/* +** Close all cursors. +** +** Also release any dynamic memory held by the VM in the Vdbe.aMem memory +** cell array. This is necessary as the memory cell array may contain +** pointers to VdbeFrame objects, which may in turn contain pointers to +** open cursors. +*/ +static void closeAllCursors(Vdbe *p){ + if( p->pFrame ){ + VdbeFrame *pFrame; + for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); + sqlite3VdbeFrameRestore(pFrame); + p->pFrame = 0; + p->nFrame = 0; + } + assert( p->nFrame==0 ); + closeCursorsInFrame(p); + releaseMemArray(p->aMem, p->nMem); + while( p->pDelFrame ){ + VdbeFrame *pDel = p->pDelFrame; + p->pDelFrame = pDel->pParent; + sqlite3VdbeFrameDelete(pDel); + } + + /* Delete any auxdata allocations made by the VM */ + if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); + assert( p->pAuxData==0 ); +} + +/* +** Set the number of result columns that will be returned by this SQL +** statement. This is now set at compile time, rather than during +** execution of the vdbe program so that sqlite3_column_count() can +** be called on an SQL statement before sqlite3_step(). +*/ +void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ + int n; + sqlite3 *db = p->db; + + if( p->nResColumn ){ + releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); + sqlite3DbFree(db, p->aColName); + } + n = nResColumn*COLNAME_N; + p->nResColumn = (u16)nResColumn; + p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); + if( p->aColName==0 ) return; + initMemArray(p->aColName, n, db, MEM_Null); +} + +/* +** Set the name of the idx'th column to be returned by the SQL statement. +** zName must be a pointer to a nul terminated string. +** +** This call must be made after a call to sqlite3VdbeSetNumCols(). +** +** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC +** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed +** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. +*/ +int sqlite3VdbeSetColName( + Vdbe *p, /* Vdbe being configured */ + int idx, /* Index of column zName applies to */ + int var, /* One of the COLNAME_* constants */ + const char *zName, /* Pointer to buffer containing name */ + void (*xDel)(void*) /* Memory management strategy for zName */ +){ + int rc; + Mem *pColName; + assert( idx<p->nResColumn ); + assert( var<COLNAME_N ); + if( p->db->mallocFailed ){ + assert( !zName || xDel!=SQLITE_DYNAMIC ); + return SQLITE_NOMEM_BKPT; + } + assert( p->aColName!=0 ); + pColName = &(p->aColName[idx+var*p->nResColumn]); + rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); + assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); + return rc; +} + +/* +** A read or write transaction may or may not be active on database handle +** db. If a transaction is active, commit it. If there is a +** write-transaction spanning more than one database file, this routine +** takes care of the super-journal trickery. +*/ +static int vdbeCommit(sqlite3 *db, Vdbe *p){ + int i; + int nTrans = 0; /* Number of databases with an active write-transaction + ** that are candidates for a two-phase commit using a + ** super-journal */ + int rc = SQLITE_OK; + int needXcommit = 0; + +#ifdef SQLITE_OMIT_VIRTUALTABLE + /* With this option, sqlite3VtabSync() is defined to be simply + ** SQLITE_OK so p is not used. + */ + UNUSED_PARAMETER(p); +#endif + + /* Before doing anything else, call the xSync() callback for any + ** virtual module tables written in this transaction. This has to + ** be done before determining whether a super-journal file is + ** required, as an xSync() callback may add an attached database + ** to the transaction. + */ + rc = sqlite3VtabSync(db, p); + + /* This loop determines (a) if the commit hook should be invoked and + ** (b) how many database files have open write transactions, not + ** including the temp database. (b) is important because if more than + ** one database file has an open write transaction, a super-journal + ** file is required for an atomic commit. + */ + for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ + /* Whether or not a database might need a super-journal depends upon + ** its journal mode (among other things). This matrix determines which + ** journal modes use a super-journal and which do not */ + static const u8 aMJNeeded[] = { + /* DELETE */ 1, + /* PERSIST */ 1, + /* OFF */ 0, + /* TRUNCATE */ 1, + /* MEMORY */ 0, + /* WAL */ 0 + }; + Pager *pPager; /* Pager associated with pBt */ + needXcommit = 1; + sqlite3BtreeEnter(pBt); + pPager = sqlite3BtreePager(pBt); + if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF + && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] + && sqlite3PagerIsMemdb(pPager)==0 + ){ + assert( i!=1 ); + nTrans++; + } + rc = sqlite3PagerExclusiveLock(pPager); + sqlite3BtreeLeave(pBt); + } + } + if( rc!=SQLITE_OK ){ + return rc; + } + + /* If there are any write-transactions at all, invoke the commit hook */ + if( needXcommit && db->xCommitCallback ){ + rc = db->xCommitCallback(db->pCommitArg); + if( rc ){ + return SQLITE_CONSTRAINT_COMMITHOOK; + } + } + + /* The simple case - no more than one database file (not counting the + ** TEMP database) has a transaction active. There is no need for the + ** super-journal. + ** + ** If the return value of sqlite3BtreeGetFilename() is a zero length + ** string, it means the main database is :memory: or a temp file. In + ** that case we do not support atomic multi-file commits, so use the + ** simple case then too. + */ + if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) + || nTrans<=1 + ){ + for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( pBt ){ + rc = sqlite3BtreeCommitPhaseOne(pBt, 0); + } + } + + /* Do the commit only if all databases successfully complete phase 1. + ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an + ** IO error while deleting or truncating a journal file. It is unlikely, + ** but could happen. In this case abandon processing and return the error. + */ + for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( pBt ){ + rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); + } + } + if( rc==SQLITE_OK ){ + sqlite3VtabCommit(db); + } + } + + /* The complex case - There is a multi-file write-transaction active. + ** This requires a super-journal file to ensure the transaction is + ** committed atomically. + */ +#ifndef SQLITE_OMIT_DISKIO + else{ + sqlite3_vfs *pVfs = db->pVfs; + char *zSuper = 0; /* File-name for the super-journal */ + char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); + sqlite3_file *pSuperJrnl = 0; + i64 offset = 0; + int res; + int retryCount = 0; + int nMainFile; + + /* Select a super-journal file name */ + nMainFile = sqlite3Strlen30(zMainFile); + zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0); + if( zSuper==0 ) return SQLITE_NOMEM_BKPT; + zSuper += 4; + do { + u32 iRandom; + if( retryCount ){ + if( retryCount>100 ){ + sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper); + sqlite3OsDelete(pVfs, zSuper, 0); + break; + }else if( retryCount==1 ){ + sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper); + } + } + retryCount++; + sqlite3_randomness(sizeof(iRandom), &iRandom); + sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X", + (iRandom>>8)&0xffffff, iRandom&0xff); + /* The antipenultimate character of the super-journal name must + ** be "9" to avoid name collisions when using 8+3 filenames. */ + assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' ); + sqlite3FileSuffix3(zMainFile, zSuper); + rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); + }while( rc==SQLITE_OK && res ); + if( rc==SQLITE_OK ){ + /* Open the super-journal. */ + rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl, + SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| + SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0 + ); + } + if( rc!=SQLITE_OK ){ + sqlite3DbFree(db, zSuper-4); + return rc; + } + + /* Write the name of each database file in the transaction into the new + ** super-journal file. If an error occurs at this point close + ** and delete the super-journal file. All the individual journal files + ** still have 'null' as the super-journal pointer, so they will roll + ** back independently if a failure occurs. + */ + for(i=0; i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ + char const *zFile = sqlite3BtreeGetJournalname(pBt); + if( zFile==0 ){ + continue; /* Ignore TEMP and :memory: databases */ + } + assert( zFile[0]!=0 ); + rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset); + offset += sqlite3Strlen30(zFile)+1; + if( rc!=SQLITE_OK ){ + sqlite3OsCloseFree(pSuperJrnl); + sqlite3OsDelete(pVfs, zSuper, 0); + sqlite3DbFree(db, zSuper-4); + return rc; + } + } + } + + /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device + ** flag is set this is not required. + */ + if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL) + && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL)) + ){ + sqlite3OsCloseFree(pSuperJrnl); + sqlite3OsDelete(pVfs, zSuper, 0); + sqlite3DbFree(db, zSuper-4); + return rc; + } + + /* Sync all the db files involved in the transaction. The same call + ** sets the super-journal pointer in each individual journal. If + ** an error occurs here, do not delete the super-journal file. + ** + ** If the error occurs during the first call to + ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the + ** super-journal file will be orphaned. But we cannot delete it, + ** in case the super-journal file name was written into the journal + ** file before the failure occurred. + */ + for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( pBt ){ + rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper); + } + } + sqlite3OsCloseFree(pSuperJrnl); + assert( rc!=SQLITE_BUSY ); + if( rc!=SQLITE_OK ){ + sqlite3DbFree(db, zSuper-4); + return rc; + } + + /* Delete the super-journal file. This commits the transaction. After + ** doing this the directory is synced again before any individual + ** transaction files are deleted. + */ + rc = sqlite3OsDelete(pVfs, zSuper, 1); + sqlite3DbFree(db, zSuper-4); + zSuper = 0; + if( rc ){ + return rc; + } + + /* All files and directories have already been synced, so the following + ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and + ** deleting or truncating journals. If something goes wrong while + ** this is happening we don't really care. The integrity of the + ** transaction is already guaranteed, but some stray 'cold' journals + ** may be lying around. Returning an error code won't help matters. + */ + disable_simulated_io_errors(); + sqlite3BeginBenignMalloc(); + for(i=0; i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( pBt ){ + sqlite3BtreeCommitPhaseTwo(pBt, 1); + } + } + sqlite3EndBenignMalloc(); + enable_simulated_io_errors(); + + sqlite3VtabCommit(db); + } +#endif + + return rc; +} + +/* +** This routine checks that the sqlite3.nVdbeActive count variable +** matches the number of vdbe's in the list sqlite3.pVdbe that are +** currently active. An assertion fails if the two counts do not match. +** This is an internal self-check only - it is not an essential processing +** step. +** +** This is a no-op if NDEBUG is defined. +*/ +#ifndef NDEBUG +static void checkActiveVdbeCnt(sqlite3 *db){ + Vdbe *p; + int cnt = 0; + int nWrite = 0; + int nRead = 0; + p = db->pVdbe; + while( p ){ + if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ + cnt++; + if( p->readOnly==0 ) nWrite++; + if( p->bIsReader ) nRead++; + } + p = p->pVNext; + } + assert( cnt==db->nVdbeActive ); + assert( nWrite==db->nVdbeWrite ); + assert( nRead==db->nVdbeRead ); +} +#else +#define checkActiveVdbeCnt(x) +#endif + +/* +** If the Vdbe passed as the first argument opened a statement-transaction, +** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or +** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement +** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the +** statement transaction is committed. +** +** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. +** Otherwise SQLITE_OK. +*/ +static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ + sqlite3 *const db = p->db; + int rc = SQLITE_OK; + int i; + const int iSavepoint = p->iStatement-1; + + assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); + assert( db->nStatement>0 ); + assert( p->iStatement==(db->nStatement+db->nSavepoint) ); + + for(i=0; i<db->nDb; i++){ + int rc2 = SQLITE_OK; + Btree *pBt = db->aDb[i].pBt; + if( pBt ){ + if( eOp==SAVEPOINT_ROLLBACK ){ + rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); + } + if( rc2==SQLITE_OK ){ + rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); + } + if( rc==SQLITE_OK ){ + rc = rc2; + } + } + } + db->nStatement--; + p->iStatement = 0; + + if( rc==SQLITE_OK ){ + if( eOp==SAVEPOINT_ROLLBACK ){ + rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); + } + if( rc==SQLITE_OK ){ + rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); + } + } + + /* If the statement transaction is being rolled back, also restore the + ** database handles deferred constraint counter to the value it had when + ** the statement transaction was opened. */ + if( eOp==SAVEPOINT_ROLLBACK ){ + db->nDeferredCons = p->nStmtDefCons; + db->nDeferredImmCons = p->nStmtDefImmCons; + } + return rc; +} +int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ + if( p->db->nStatement && p->iStatement ){ + return vdbeCloseStatement(p, eOp); + } + return SQLITE_OK; +} + + +/* +** This function is called when a transaction opened by the database +** handle associated with the VM passed as an argument is about to be +** committed. If there are outstanding deferred foreign key constraint +** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. +** +** If there are outstanding FK violations and this function returns +** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY +** and write an error message to it. Then return SQLITE_ERROR. +*/ +#ifndef SQLITE_OMIT_FOREIGN_KEY +int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ + sqlite3 *db = p->db; + if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) + || (!deferred && p->nFkConstraint>0) + ){ + p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; + p->errorAction = OE_Abort; + sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); + if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR; + return SQLITE_CONSTRAINT_FOREIGNKEY; + } + return SQLITE_OK; +} +#endif + +/* +** This routine is called the when a VDBE tries to halt. If the VDBE +** has made changes and is in autocommit mode, then commit those +** changes. If a rollback is needed, then do the rollback. +** +** This routine is the only way to move the sqlite3eOpenState of a VM from +** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to +** call this on a VM that is in the SQLITE_STATE_HALT state. +** +** Return an error code. If the commit could not complete because of +** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it +** means the close did not happen and needs to be repeated. +*/ +int sqlite3VdbeHalt(Vdbe *p){ + int rc; /* Used to store transient return codes */ + sqlite3 *db = p->db; + + /* This function contains the logic that determines if a statement or + ** transaction will be committed or rolled back as a result of the + ** execution of this virtual machine. + ** + ** If any of the following errors occur: + ** + ** SQLITE_NOMEM + ** SQLITE_IOERR + ** SQLITE_FULL + ** SQLITE_INTERRUPT + ** + ** Then the internal cache might have been left in an inconsistent + ** state. We need to rollback the statement transaction, if there is + ** one, or the complete transaction if there is no statement transaction. + */ + + assert( p->eVdbeState==VDBE_RUN_STATE ); + if( db->mallocFailed ){ + p->rc = SQLITE_NOMEM_BKPT; + } + closeAllCursors(p); + checkActiveVdbeCnt(db); + + /* No commit or rollback needed if the program never started or if the + ** SQL statement does not read or write a database file. */ + if( p->bIsReader ){ + int mrc; /* Primary error code from p->rc */ + int eStatementOp = 0; + int isSpecialError; /* Set to true if a 'special' error */ + + /* Lock all btrees used by the statement */ + sqlite3VdbeEnter(p); + + /* Check for one of the special errors */ + if( p->rc ){ + mrc = p->rc & 0xff; + isSpecialError = mrc==SQLITE_NOMEM + || mrc==SQLITE_IOERR + || mrc==SQLITE_INTERRUPT + || mrc==SQLITE_FULL; + }else{ + mrc = isSpecialError = 0; + } + if( isSpecialError ){ + /* If the query was read-only and the error code is SQLITE_INTERRUPT, + ** no rollback is necessary. Otherwise, at least a savepoint + ** transaction must be rolled back to restore the database to a + ** consistent state. + ** + ** Even if the statement is read-only, it is important to perform + ** a statement or transaction rollback operation. If the error + ** occurred while writing to the journal, sub-journal or database + ** file as part of an effort to free up cache space (see function + ** pagerStress() in pager.c), the rollback is required to restore + ** the pager to a consistent state. + */ + if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ + if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ + eStatementOp = SAVEPOINT_ROLLBACK; + }else{ + /* We are forced to roll back the active transaction. Before doing + ** so, abort any other statements this handle currently has active. + */ + sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); + sqlite3CloseSavepoints(db); + db->autoCommit = 1; + p->nChange = 0; + } + } + } + + /* Check for immediate foreign key violations. */ + if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ + sqlite3VdbeCheckFk(p, 0); + } + + /* If the auto-commit flag is set and this is the only active writer + ** VM, then we do either a commit or rollback of the current transaction. + ** + ** Note: This block also runs if one of the special errors handled + ** above has occurred. + */ + if( !sqlite3VtabInSync(db) + && db->autoCommit + && db->nVdbeWrite==(p->readOnly==0) + ){ + if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ + rc = sqlite3VdbeCheckFk(p, 1); + if( rc!=SQLITE_OK ){ + if( NEVER(p->readOnly) ){ + sqlite3VdbeLeave(p); + return SQLITE_ERROR; + } + rc = SQLITE_CONSTRAINT_FOREIGNKEY; + }else if( db->flags & SQLITE_CorruptRdOnly ){ + rc = SQLITE_CORRUPT; + db->flags &= ~SQLITE_CorruptRdOnly; + }else{ + /* The auto-commit flag is true, the vdbe program was successful + ** or hit an 'OR FAIL' constraint and there are no deferred foreign + ** key constraints to hold up the transaction. This means a commit + ** is required. */ + rc = vdbeCommit(db, p); + } + if( rc==SQLITE_BUSY && p->readOnly ){ + sqlite3VdbeLeave(p); + return SQLITE_BUSY; + }else if( rc!=SQLITE_OK ){ + p->rc = rc; + sqlite3RollbackAll(db, SQLITE_OK); + p->nChange = 0; + }else{ + db->nDeferredCons = 0; + db->nDeferredImmCons = 0; + db->flags &= ~(u64)SQLITE_DeferFKs; + sqlite3CommitInternalChanges(db); + } + }else{ + sqlite3RollbackAll(db, SQLITE_OK); + p->nChange = 0; + } + db->nStatement = 0; + }else if( eStatementOp==0 ){ + if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ + eStatementOp = SAVEPOINT_RELEASE; + }else if( p->errorAction==OE_Abort ){ + eStatementOp = SAVEPOINT_ROLLBACK; + }else{ + sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); + sqlite3CloseSavepoints(db); + db->autoCommit = 1; + p->nChange = 0; + } + } + + /* If eStatementOp is non-zero, then a statement transaction needs to + ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to + ** do so. If this operation returns an error, and the current statement + ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the + ** current statement error code. + */ + if( eStatementOp ){ + rc = sqlite3VdbeCloseStatement(p, eStatementOp); + if( rc ){ + if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ + p->rc = rc; + sqlite3DbFree(db, p->zErrMsg); + p->zErrMsg = 0; + } + sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); + sqlite3CloseSavepoints(db); + db->autoCommit = 1; + p->nChange = 0; + } + } + + /* If this was an INSERT, UPDATE or DELETE and no statement transaction + ** has been rolled back, update the database connection change-counter. + */ + if( p->changeCntOn ){ + if( eStatementOp!=SAVEPOINT_ROLLBACK ){ + sqlite3VdbeSetChanges(db, p->nChange); + }else{ + sqlite3VdbeSetChanges(db, 0); + } + p->nChange = 0; + } + + /* Release the locks */ + sqlite3VdbeLeave(p); + } + + /* We have successfully halted and closed the VM. Record this fact. */ + db->nVdbeActive--; + if( !p->readOnly ) db->nVdbeWrite--; + if( p->bIsReader ) db->nVdbeRead--; + assert( db->nVdbeActive>=db->nVdbeRead ); + assert( db->nVdbeRead>=db->nVdbeWrite ); + assert( db->nVdbeWrite>=0 ); + p->eVdbeState = VDBE_HALT_STATE; + checkActiveVdbeCnt(db); + if( db->mallocFailed ){ + p->rc = SQLITE_NOMEM_BKPT; + } + + /* If the auto-commit flag is set to true, then any locks that were held + ** by connection db have now been released. Call sqlite3ConnectionUnlocked() + ** to invoke any required unlock-notify callbacks. + */ + if( db->autoCommit ){ + sqlite3ConnectionUnlocked(db); + } + + assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); + return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); +} + + +/* +** Each VDBE holds the result of the most recent sqlite3_step() call +** in p->rc. This routine sets that result back to SQLITE_OK. +*/ +void sqlite3VdbeResetStepResult(Vdbe *p){ + p->rc = SQLITE_OK; +} + +/* +** Copy the error code and error message belonging to the VDBE passed +** as the first argument to its database handle (so that they will be +** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). +** +** This function does not clear the VDBE error code or message, just +** copies them to the database handle. +*/ +int sqlite3VdbeTransferError(Vdbe *p){ + sqlite3 *db = p->db; + int rc = p->rc; + if( p->zErrMsg ){ + db->bBenignMalloc++; + sqlite3BeginBenignMalloc(); + if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); + sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); + sqlite3EndBenignMalloc(); + db->bBenignMalloc--; + }else if( db->pErr ){ + sqlite3ValueSetNull(db->pErr); + } + db->errCode = rc; + db->errByteOffset = -1; + return rc; +} + +#ifdef SQLITE_ENABLE_SQLLOG +/* +** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, +** invoke it. +*/ +static void vdbeInvokeSqllog(Vdbe *v){ + if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ + char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); + assert( v->db->init.busy==0 ); + if( zExpanded ){ + sqlite3GlobalConfig.xSqllog( + sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 + ); + sqlite3DbFree(v->db, zExpanded); + } + } +} +#else +# define vdbeInvokeSqllog(x) +#endif + +/* +** Clean up a VDBE after execution but do not delete the VDBE just yet. +** Write any error messages into *pzErrMsg. Return the result code. +** +** After this routine is run, the VDBE should be ready to be executed +** again. +** +** To look at it another way, this routine resets the state of the +** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to +** VDBE_READY_STATE. +*/ +int sqlite3VdbeReset(Vdbe *p){ +#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) + int i; +#endif + + sqlite3 *db; + db = p->db; + + /* If the VM did not run to completion or if it encountered an + ** error, then it might not have been halted properly. So halt + ** it now. + */ + if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); + + /* If the VDBE has been run even partially, then transfer the error code + ** and error message from the VDBE into the main database structure. But + ** if the VDBE has just been set to run but has not actually executed any + ** instructions yet, leave the main database error information unchanged. + */ + if( p->pc>=0 ){ + vdbeInvokeSqllog(p); + if( db->pErr || p->zErrMsg ){ + sqlite3VdbeTransferError(p); + }else{ + db->errCode = p->rc; + } + } + + /* Reset register contents and reclaim error message memory. + */ +#ifdef SQLITE_DEBUG + /* Execute assert() statements to ensure that the Vdbe.apCsr[] and + ** Vdbe.aMem[] arrays have already been cleaned up. */ + if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); + if( p->aMem ){ + for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); + } +#endif + if( p->zErrMsg ){ + sqlite3DbFree(db, p->zErrMsg); + p->zErrMsg = 0; + } + p->pResultSet = 0; +#ifdef SQLITE_DEBUG + p->nWrite = 0; +#endif + + /* Save profiling information from this VDBE run. + */ +#ifdef VDBE_PROFILE + { + FILE *out = fopen("vdbe_profile.out", "a"); + if( out ){ + fprintf(out, "---- "); + for(i=0; i<p->nOp; i++){ + fprintf(out, "%02x", p->aOp[i].opcode); + } + fprintf(out, "\n"); + if( p->zSql ){ + char c, pc = 0; + fprintf(out, "-- "); + for(i=0; (c = p->zSql[i])!=0; i++){ + if( pc=='\n' ) fprintf(out, "-- "); + putc(c, out); + pc = c; + } + if( pc!='\n' ) fprintf(out, "\n"); + } + for(i=0; i<p->nOp; i++){ + char zHdr[100]; + sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", + p->aOp[i].cnt, + p->aOp[i].cycles, + p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 + ); + fprintf(out, "%s", zHdr); + sqlite3VdbePrintOp(out, i, &p->aOp[i]); + } + fclose(out); + } + } +#endif + return p->rc & db->errMask; +} + +/* +** Clean up and delete a VDBE after execution. Return an integer which is +** the result code. Write any error message text into *pzErrMsg. +*/ +int sqlite3VdbeFinalize(Vdbe *p){ + int rc = SQLITE_OK; + assert( VDBE_RUN_STATE>VDBE_READY_STATE ); + assert( VDBE_HALT_STATE>VDBE_READY_STATE ); + assert( VDBE_INIT_STATE<VDBE_READY_STATE ); + if( p->eVdbeState>=VDBE_READY_STATE ){ + rc = sqlite3VdbeReset(p); + assert( (rc & p->db->errMask)==rc ); + } + sqlite3VdbeDelete(p); + return rc; +} + +/* +** If parameter iOp is less than zero, then invoke the destructor for +** all auxiliary data pointers currently cached by the VM passed as +** the first argument. +** +** Or, if iOp is greater than or equal to zero, then the destructor is +** only invoked for those auxiliary data pointers created by the user +** function invoked by the OP_Function opcode at instruction iOp of +** VM pVdbe, and only then if: +** +** * the associated function parameter is the 32nd or later (counting +** from left to right), or +** +** * the corresponding bit in argument mask is clear (where the first +** function parameter corresponds to bit 0 etc.). +*/ +void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ + while( *pp ){ + AuxData *pAux = *pp; + if( (iOp<0) + || (pAux->iAuxOp==iOp + && pAux->iAuxArg>=0 + && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) + ){ + testcase( pAux->iAuxArg==31 ); + if( pAux->xDeleteAux ){ + pAux->xDeleteAux(pAux->pAux); + } + *pp = pAux->pNextAux; + sqlite3DbFree(db, pAux); + }else{ + pp= &pAux->pNextAux; + } + } +} + +/* +** Free all memory associated with the Vdbe passed as the second argument, +** except for object itself, which is preserved. +** +** The difference between this function and sqlite3VdbeDelete() is that +** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with +** the database connection and frees the object itself. +*/ +static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ + SubProgram *pSub, *pNext; + assert( db!=0 ); + assert( p->db==0 || p->db==db ); + if( p->aColName ){ + releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); + sqlite3DbNNFreeNN(db, p->aColName); + } + for(pSub=p->pProgram; pSub; pSub=pNext){ + pNext = pSub->pNext; + vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); + sqlite3DbFree(db, pSub); + } + if( p->eVdbeState!=VDBE_INIT_STATE ){ + releaseMemArray(p->aVar, p->nVar); + if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList); + if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree); + } + vdbeFreeOpArray(db, p->aOp, p->nOp); + if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql); +#ifdef SQLITE_ENABLE_NORMALIZE + sqlite3DbFree(db, p->zNormSql); + { + DblquoteStr *pThis, *pNext; + for(pThis=p->pDblStr; pThis; pThis=pNext){ + pNext = pThis->pNextStr; + sqlite3DbFree(db, pThis); + } + } +#endif +#ifdef SQLITE_ENABLE_STMT_SCANSTATUS + { + int i; + for(i=0; i<p->nScan; i++){ + sqlite3DbFree(db, p->aScan[i].zName); + } + sqlite3DbFree(db, p->aScan); + } +#endif +} + +/* +** Delete an entire VDBE. +*/ +void sqlite3VdbeDelete(Vdbe *p){ + sqlite3 *db; + + assert( p!=0 ); + db = p->db; + assert( db!=0 ); + assert( sqlite3_mutex_held(db->mutex) ); + sqlite3VdbeClearObject(db, p); + if( db->pnBytesFreed==0 ){ + assert( p->ppVPrev!=0 ); + *p->ppVPrev = p->pVNext; + if( p->pVNext ){ + p->pVNext->ppVPrev = p->ppVPrev; + } + } + sqlite3DbNNFreeNN(db, p); +} + +/* +** The cursor "p" has a pending seek operation that has not yet been +** carried out. Seek the cursor now. If an error occurs, return +** the appropriate error code. +*/ +int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ + int res, rc; +#ifdef SQLITE_TEST + extern int sqlite3_search_count; +#endif + assert( p->deferredMoveto ); + assert( p->isTable ); + assert( p->eCurType==CURTYPE_BTREE ); + rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res); + if( rc ) return rc; + if( res!=0 ) return SQLITE_CORRUPT_BKPT; +#ifdef SQLITE_TEST + sqlite3_search_count++; +#endif + p->deferredMoveto = 0; + p->cacheStatus = CACHE_STALE; + return SQLITE_OK; +} + +/* +** Something has moved cursor "p" out of place. Maybe the row it was +** pointed to was deleted out from under it. Or maybe the btree was +** rebalanced. Whatever the cause, try to restore "p" to the place it +** is supposed to be pointing. If the row was deleted out from under the +** cursor, set the cursor to point to a NULL row. +*/ +int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){ + int isDifferentRow, rc; + assert( p->eCurType==CURTYPE_BTREE ); + assert( p->uc.pCursor!=0 ); + assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); + rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); + p->cacheStatus = CACHE_STALE; + if( isDifferentRow ) p->nullRow = 1; + return rc; +} + +/* +** Check to ensure that the cursor is valid. Restore the cursor +** if need be. Return any I/O error from the restore operation. +*/ +int sqlite3VdbeCursorRestore(VdbeCursor *p){ + assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) ); + if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ + return sqlite3VdbeHandleMovedCursor(p); + } + return SQLITE_OK; +} + +/* +** The following functions: +** +** sqlite3VdbeSerialType() +** sqlite3VdbeSerialTypeLen() +** sqlite3VdbeSerialLen() +** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02 +** sqlite3VdbeSerialGet() +** +** encapsulate the code that serializes values for storage in SQLite +** data and index records. Each serialized value consists of a +** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned +** integer, stored as a varint. +** +** In an SQLite index record, the serial type is stored directly before +** the blob of data that it corresponds to. In a table record, all serial +** types are stored at the start of the record, and the blobs of data at +** the end. Hence these functions allow the caller to handle the +** serial-type and data blob separately. +** +** The following table describes the various storage classes for data: +** +** serial type bytes of data type +** -------------- --------------- --------------- +** 0 0 NULL +** 1 1 signed integer +** 2 2 signed integer +** 3 3 signed integer +** 4 4 signed integer +** 5 6 signed integer +** 6 8 signed integer +** 7 8 IEEE float +** 8 0 Integer constant 0 +** 9 0 Integer constant 1 +** 10,11 reserved for expansion +** N>=12 and even (N-12)/2 BLOB +** N>=13 and odd (N-13)/2 text +** +** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions +** of SQLite will not understand those serial types. +*/ + +#if 0 /* Inlined into the OP_MakeRecord opcode */ +/* +** Return the serial-type for the value stored in pMem. +** +** This routine might convert a large MEM_IntReal value into MEM_Real. +** +** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord +** opcode in the byte-code engine. But by moving this routine in-line, we +** can omit some redundant tests and make that opcode a lot faster. So +** this routine is now only used by the STAT3 logic and STAT3 support has +** ended. The code is kept here for historical reference only. +*/ +u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ + int flags = pMem->flags; + u32 n; + + assert( pLen!=0 ); + if( flags&MEM_Null ){ + *pLen = 0; + return 0; + } + if( flags&(MEM_Int|MEM_IntReal) ){ + /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ +# define MAX_6BYTE ((((i64)0x00008000)<<32)-1) + i64 i = pMem->u.i; + u64 u; + testcase( flags & MEM_Int ); + testcase( flags & MEM_IntReal ); + if( i<0 ){ + u = ~i; + }else{ + u = i; + } + if( u<=127 ){ + if( (i&1)==i && file_format>=4 ){ + *pLen = 0; + return 8+(u32)u; + }else{ + *pLen = 1; + return 1; + } + } + if( u<=32767 ){ *pLen = 2; return 2; } + if( u<=8388607 ){ *pLen = 3; return 3; } + if( u<=2147483647 ){ *pLen = 4; return 4; } + if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } + *pLen = 8; + if( flags&MEM_IntReal ){ + /* If the value is IntReal and is going to take up 8 bytes to store + ** as an integer, then we might as well make it an 8-byte floating + ** point value */ + pMem->u.r = (double)pMem->u.i; + pMem->flags &= ~MEM_IntReal; + pMem->flags |= MEM_Real; + return 7; + } + return 6; + } + if( flags&MEM_Real ){ + *pLen = 8; + return 7; + } + assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); + assert( pMem->n>=0 ); + n = (u32)pMem->n; + if( flags & MEM_Zero ){ + n += pMem->u.nZero; + } + *pLen = n; + return ((n*2) + 12 + ((flags&MEM_Str)!=0)); +} +#endif /* inlined into OP_MakeRecord */ + +/* +** The sizes for serial types less than 128 +*/ +const u8 sqlite3SmallTypeSizes[128] = { + /* 0 1 2 3 4 5 6 7 8 9 */ +/* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, +/* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, +/* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, +/* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, +/* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, +/* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, +/* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, +/* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, +/* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, +/* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, +/* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, +/* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, +/* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 +}; + +/* +** Return the length of the data corresponding to the supplied serial-type. +*/ +u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ + if( serial_type>=128 ){ + return (serial_type-12)/2; + }else{ + assert( serial_type<12 + || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); + return sqlite3SmallTypeSizes[serial_type]; + } +} +u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ + assert( serial_type<128 ); + return sqlite3SmallTypeSizes[serial_type]; +} + +/* +** If we are on an architecture with mixed-endian floating +** points (ex: ARM7) then swap the lower 4 bytes with the +** upper 4 bytes. Return the result. +** +** For most architectures, this is a no-op. +** +** (later): It is reported to me that the mixed-endian problem +** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems +** that early versions of GCC stored the two words of a 64-bit +** float in the wrong order. And that error has been propagated +** ever since. The blame is not necessarily with GCC, though. +** GCC might have just copying the problem from a prior compiler. +** I am also told that newer versions of GCC that follow a different +** ABI get the byte order right. +** +** Developers using SQLite on an ARM7 should compile and run their +** application using -DSQLITE_DEBUG=1 at least once. With DEBUG +** enabled, some asserts below will ensure that the byte order of +** floating point values is correct. +** +** (2007-08-30) Frank van Vugt has studied this problem closely +** and has send his findings to the SQLite developers. Frank +** writes that some Linux kernels offer floating point hardware +** emulation that uses only 32-bit mantissas instead of a full +** 48-bits as required by the IEEE standard. (This is the +** CONFIG_FPE_FASTFPE option.) On such systems, floating point +** byte swapping becomes very complicated. To avoid problems, +** the necessary byte swapping is carried out using a 64-bit integer +** rather than a 64-bit float. Frank assures us that the code here +** works for him. We, the developers, have no way to independently +** verify this, but Frank seems to know what he is talking about +** so we trust him. +*/ +#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT +u64 sqlite3FloatSwap(u64 in){ + union { + u64 r; + u32 i[2]; + } u; + u32 t; + + u.r = in; + t = u.i[0]; + u.i[0] = u.i[1]; + u.i[1] = t; + return u.r; +} +#endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */ + + +/* Input "x" is a sequence of unsigned characters that represent a +** big-endian integer. Return the equivalent native integer +*/ +#define ONE_BYTE_INT(x) ((i8)(x)[0]) +#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) +#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) +#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) +#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) + +/* +** Deserialize the data blob pointed to by buf as serial type serial_type +** and store the result in pMem. +** +** This function is implemented as two separate routines for performance. +** The few cases that require local variables are broken out into a separate +** routine so that in most cases the overhead of moving the stack pointer +** is avoided. +*/ +static void serialGet( + const unsigned char *buf, /* Buffer to deserialize from */ + u32 serial_type, /* Serial type to deserialize */ + Mem *pMem /* Memory cell to write value into */ +){ + u64 x = FOUR_BYTE_UINT(buf); + u32 y = FOUR_BYTE_UINT(buf+4); + x = (x<<32) + y; + if( serial_type==6 ){ + /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit + ** twos-complement integer. */ + pMem->u.i = *(i64*)&x; + pMem->flags = MEM_Int; + testcase( pMem->u.i<0 ); + }else{ + /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit + ** floating point number. */ +#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) + /* Verify that integers and floating point values use the same + ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is + ** defined that 64-bit floating point values really are mixed + ** endian. + */ + static const u64 t1 = ((u64)0x3ff00000)<<32; + static const double r1 = 1.0; + u64 t2 = t1; + swapMixedEndianFloat(t2); + assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); +#endif + assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); + swapMixedEndianFloat(x); + memcpy(&pMem->u.r, &x, sizeof(x)); + pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; + } +} +void sqlite3VdbeSerialGet( + const unsigned char *buf, /* Buffer to deserialize from */ + u32 serial_type, /* Serial type to deserialize */ + Mem *pMem /* Memory cell to write value into */ +){ + switch( serial_type ){ + case 10: { /* Internal use only: NULL with virtual table + ** UPDATE no-change flag set */ + pMem->flags = MEM_Null|MEM_Zero; + pMem->n = 0; + pMem->u.nZero = 0; + return; + } + case 11: /* Reserved for future use */ + case 0: { /* Null */ + /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ + pMem->flags = MEM_Null; + return; + } + case 1: { + /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement + ** integer. */ + pMem->u.i = ONE_BYTE_INT(buf); + pMem->flags = MEM_Int; + testcase( pMem->u.i<0 ); + return; + } + case 2: { /* 2-byte signed integer */ + /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit + ** twos-complement integer. */ + pMem->u.i = TWO_BYTE_INT(buf); + pMem->flags = MEM_Int; + testcase( pMem->u.i<0 ); + return; + } + case 3: { /* 3-byte signed integer */ + /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit + ** twos-complement integer. */ + pMem->u.i = THREE_BYTE_INT(buf); + pMem->flags = MEM_Int; + testcase( pMem->u.i<0 ); + return; + } + case 4: { /* 4-byte signed integer */ + /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit + ** twos-complement integer. */ + pMem->u.i = FOUR_BYTE_INT(buf); +#ifdef __HP_cc + /* Work around a sign-extension bug in the HP compiler for HP/UX */ + if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; +#endif + pMem->flags = MEM_Int; + testcase( pMem->u.i<0 ); + return; + } + case 5: { /* 6-byte signed integer */ + /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit + ** twos-complement integer. */ + pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); + pMem->flags = MEM_Int; + testcase( pMem->u.i<0 ); + return; + } + case 6: /* 8-byte signed integer */ + case 7: { /* IEEE floating point */ + /* These use local variables, so do them in a separate routine + ** to avoid having to move the frame pointer in the common case */ + serialGet(buf,serial_type,pMem); + return; + } + case 8: /* Integer 0 */ + case 9: { /* Integer 1 */ + /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ + /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ + pMem->u.i = serial_type-8; + pMem->flags = MEM_Int; + return; + } + default: { + /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in + ** length. + ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and + ** (N-13)/2 bytes in length. */ + static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; + pMem->z = (char *)buf; + pMem->n = (serial_type-12)/2; + pMem->flags = aFlag[serial_type&1]; + return; + } + } + return; +} +/* +** This routine is used to allocate sufficient space for an UnpackedRecord +** structure large enough to be used with sqlite3VdbeRecordUnpack() if +** the first argument is a pointer to KeyInfo structure pKeyInfo. +** +** The space is either allocated using sqlite3DbMallocRaw() or from within +** the unaligned buffer passed via the second and third arguments (presumably +** stack space). If the former, then *ppFree is set to a pointer that should +** be eventually freed by the caller using sqlite3DbFree(). Or, if the +** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL +** before returning. +** +** If an OOM error occurs, NULL is returned. +*/ +UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( + KeyInfo *pKeyInfo /* Description of the record */ +){ + UnpackedRecord *p; /* Unpacked record to return */ + int nByte; /* Number of bytes required for *p */ + nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); + p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); + if( !p ) return 0; + p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))]; + assert( pKeyInfo->aSortFlags!=0 ); + p->pKeyInfo = pKeyInfo; + p->nField = pKeyInfo->nKeyField + 1; + return p; +} + +/* +** Given the nKey-byte encoding of a record in pKey[], populate the +** UnpackedRecord structure indicated by the fourth argument with the +** contents of the decoded record. +*/ +void sqlite3VdbeRecordUnpack( + KeyInfo *pKeyInfo, /* Information about the record format */ + int nKey, /* Size of the binary record */ + const void *pKey, /* The binary record */ + UnpackedRecord *p /* Populate this structure before returning. */ +){ + const unsigned char *aKey = (const unsigned char *)pKey; + u32 d; + u32 idx; /* Offset in aKey[] to read from */ + u16 u; /* Unsigned loop counter */ + u32 szHdr; + Mem *pMem = p->aMem; + + p->default_rc = 0; + assert( EIGHT_BYTE_ALIGNMENT(pMem) ); + idx = getVarint32(aKey, szHdr); + d = szHdr; + u = 0; + while( idx<szHdr && d<=(u32)nKey ){ + u32 serial_type; + + idx += getVarint32(&aKey[idx], serial_type); + pMem->enc = pKeyInfo->enc; + pMem->db = pKeyInfo->db; + /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ + pMem->szMalloc = 0; + pMem->z = 0; + sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); + d += sqlite3VdbeSerialTypeLen(serial_type); + pMem++; + if( (++u)>=p->nField ) break; + } + if( d>(u32)nKey && u ){ + assert( CORRUPT_DB ); + /* In a corrupt record entry, the last pMem might have been set up using + ** uninitialized memory. Overwrite its value with NULL, to prevent + ** warnings from MSAN. */ + sqlite3VdbeMemSetNull(pMem-1); + } + assert( u<=pKeyInfo->nKeyField + 1 ); + p->nField = u; +} + +#ifdef SQLITE_DEBUG +/* +** This function compares two index or table record keys in the same way +** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), +** this function deserializes and compares values using the +** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used +** in assert() statements to ensure that the optimized code in +** sqlite3VdbeRecordCompare() returns results with these two primitives. +** +** Return true if the result of comparison is equivalent to desiredResult. +** Return false if there is a disagreement. +*/ +static int vdbeRecordCompareDebug( + int nKey1, const void *pKey1, /* Left key */ + const UnpackedRecord *pPKey2, /* Right key */ + int desiredResult /* Correct answer */ +){ + u32 d1; /* Offset into aKey[] of next data element */ + u32 idx1; /* Offset into aKey[] of next header element */ + u32 szHdr1; /* Number of bytes in header */ + int i = 0; + int rc = 0; + const unsigned char *aKey1 = (const unsigned char *)pKey1; + KeyInfo *pKeyInfo; + Mem mem1; + + pKeyInfo = pPKey2->pKeyInfo; + if( pKeyInfo->db==0 ) return 1; + mem1.enc = pKeyInfo->enc; + mem1.db = pKeyInfo->db; + /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ + VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ + + /* Compilers may complain that mem1.u.i is potentially uninitialized. + ** We could initialize it, as shown here, to silence those complaints. + ** But in fact, mem1.u.i will never actually be used uninitialized, and doing + ** the unnecessary initialization has a measurable negative performance + ** impact, since this routine is a very high runner. And so, we choose + ** to ignore the compiler warnings and leave this variable uninitialized. + */ + /* mem1.u.i = 0; // not needed, here to silence compiler warning */ + + idx1 = getVarint32(aKey1, szHdr1); + if( szHdr1>98307 ) return SQLITE_CORRUPT; + d1 = szHdr1; + assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); + assert( pKeyInfo->aSortFlags!=0 ); + assert( pKeyInfo->nKeyField>0 ); + assert( idx1<=szHdr1 || CORRUPT_DB ); + do{ + u32 serial_type1; + + /* Read the serial types for the next element in each key. */ + idx1 += getVarint32( aKey1+idx1, serial_type1 ); + + /* Verify that there is enough key space remaining to avoid + ** a buffer overread. The "d1+serial_type1+2" subexpression will + ** always be greater than or equal to the amount of required key space. + ** Use that approximation to avoid the more expensive call to + ** sqlite3VdbeSerialTypeLen() in the common case. + */ + if( d1+(u64)serial_type1+2>(u64)nKey1 + && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 + ){ + break; + } + + /* Extract the values to be compared. + */ + sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); + d1 += sqlite3VdbeSerialTypeLen(serial_type1); + + /* Do the comparison + */ + rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], + pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); + if( rc!=0 ){ + assert( mem1.szMalloc==0 ); /* See comment below */ + if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) + && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) + ){ + rc = -rc; + } + if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ + rc = -rc; /* Invert the result for DESC sort order. */ + } + goto debugCompareEnd; + } + i++; + }while( idx1<szHdr1 && i<pPKey2->nField ); + + /* No memory allocation is ever used on mem1. Prove this using + ** the following assert(). If the assert() fails, it indicates a + ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). + */ + assert( mem1.szMalloc==0 ); + + /* rc==0 here means that one of the keys ran out of fields and + ** all the fields up to that point were equal. Return the default_rc + ** value. */ + rc = pPKey2->default_rc; + +debugCompareEnd: + if( desiredResult==0 && rc==0 ) return 1; + if( desiredResult<0 && rc<0 ) return 1; + if( desiredResult>0 && rc>0 ) return 1; + if( CORRUPT_DB ) return 1; + if( pKeyInfo->db->mallocFailed ) return 1; + return 0; +} +#endif + +#ifdef SQLITE_DEBUG +/* +** Count the number of fields (a.k.a. columns) in the record given by +** pKey,nKey. The verify that this count is less than or equal to the +** limit given by pKeyInfo->nAllField. +** +** If this constraint is not satisfied, it means that the high-speed +** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will +** not work correctly. If this assert() ever fires, it probably means +** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed +** incorrectly. +*/ +static void vdbeAssertFieldCountWithinLimits( + int nKey, const void *pKey, /* The record to verify */ + const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ +){ + int nField = 0; + u32 szHdr; + u32 idx; + u32 notUsed; + const unsigned char *aKey = (const unsigned char*)pKey; + + if( CORRUPT_DB ) return; + idx = getVarint32(aKey, szHdr); + assert( nKey>=0 ); + assert( szHdr<=(u32)nKey ); + while( idx<szHdr ){ + idx += getVarint32(aKey+idx, notUsed); + nField++; + } + assert( nField <= pKeyInfo->nAllField ); +} +#else +# define vdbeAssertFieldCountWithinLimits(A,B,C) +#endif + +/* +** Both *pMem1 and *pMem2 contain string values. Compare the two values +** using the collation sequence pColl. As usual, return a negative , zero +** or positive value if *pMem1 is less than, equal to or greater than +** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". +*/ +static int vdbeCompareMemString( + const Mem *pMem1, + const Mem *pMem2, + const CollSeq *pColl, + u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ +){ + if( pMem1->enc==pColl->enc ){ + /* The strings are already in the correct encoding. Call the + ** comparison function directly */ + return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); + }else{ + int rc; + const void *v1, *v2; + Mem c1; + Mem c2; + sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); + sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); + sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); + sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); + v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); + v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); + if( (v1==0 || v2==0) ){ + if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; + rc = 0; + }else{ + rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); + } + sqlite3VdbeMemReleaseMalloc(&c1); + sqlite3VdbeMemReleaseMalloc(&c2); + return rc; + } +} + +/* +** The input pBlob is guaranteed to be a Blob that is not marked +** with MEM_Zero. Return true if it could be a zero-blob. +*/ +static int isAllZero(const char *z, int n){ + int i; + for(i=0; i<n; i++){ + if( z[i] ) return 0; + } + return 1; +} + +/* +** Compare two blobs. Return negative, zero, or positive if the first +** is less than, equal to, or greater than the second, respectively. +** If one blob is a prefix of the other, then the shorter is the lessor. +*/ +SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ + int c; + int n1 = pB1->n; + int n2 = pB2->n; + + /* It is possible to have a Blob value that has some non-zero content + ** followed by zero content. But that only comes up for Blobs formed + ** by the OP_MakeRecord opcode, and such Blobs never get passed into + ** sqlite3MemCompare(). */ + assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); + assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); + + if( (pB1->flags|pB2->flags) & MEM_Zero ){ + if( pB1->flags & pB2->flags & MEM_Zero ){ + return pB1->u.nZero - pB2->u.nZero; + }else if( pB1->flags & MEM_Zero ){ + if( !isAllZero(pB2->z, pB2->n) ) return -1; + return pB1->u.nZero - n2; + }else{ + if( !isAllZero(pB1->z, pB1->n) ) return +1; + return n1 - pB2->u.nZero; + } + } + c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); + if( c ) return c; + return n1 - n2; +} + +/* +** Do a comparison between a 64-bit signed integer and a 64-bit floating-point +** number. Return negative, zero, or positive if the first (i64) is less than, +** equal to, or greater than the second (double). +*/ +int sqlite3IntFloatCompare(i64 i, double r){ + if( sizeof(LONGDOUBLE_TYPE)>8 ){ + LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; + testcase( x<r ); + testcase( x>r ); + testcase( x==r ); + if( x<r ) return -1; + if( x>r ) return +1; /*NO_TEST*/ /* work around bugs in gcov */ + return 0; /*NO_TEST*/ /* work around bugs in gcov */ + }else{ + i64 y; + double s; + if( r<-9223372036854775808.0 ) return +1; + if( r>=9223372036854775808.0 ) return -1; + y = (i64)r; + if( i<y ) return -1; + if( i>y ) return +1; + s = (double)i; + if( s<r ) return -1; + if( s>r ) return +1; + return 0; + } +} + +/* +** Compare the values contained by the two memory cells, returning +** negative, zero or positive if pMem1 is less than, equal to, or greater +** than pMem2. Sorting order is NULL's first, followed by numbers (integers +** and reals) sorted numerically, followed by text ordered by the collating +** sequence pColl and finally blob's ordered by memcmp(). +** +** Two NULL values are considered equal by this function. +*/ +int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ + int f1, f2; + int combined_flags; + + f1 = pMem1->flags; + f2 = pMem2->flags; + combined_flags = f1|f2; + assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); + + /* If one value is NULL, it is less than the other. If both values + ** are NULL, return 0. + */ + if( combined_flags&MEM_Null ){ + return (f2&MEM_Null) - (f1&MEM_Null); + } + + /* At least one of the two values is a number + */ + if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ + testcase( combined_flags & MEM_Int ); + testcase( combined_flags & MEM_Real ); + testcase( combined_flags & MEM_IntReal ); + if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ + testcase( f1 & f2 & MEM_Int ); + testcase( f1 & f2 & MEM_IntReal ); + if( pMem1->u.i < pMem2->u.i ) return -1; + if( pMem1->u.i > pMem2->u.i ) return +1; + return 0; + } + if( (f1 & f2 & MEM_Real)!=0 ){ + if( pMem1->u.r < pMem2->u.r ) return -1; + if( pMem1->u.r > pMem2->u.r ) return +1; + return 0; + } + if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ + testcase( f1 & MEM_Int ); + testcase( f1 & MEM_IntReal ); + if( (f2&MEM_Real)!=0 ){ + return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); + }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ + if( pMem1->u.i < pMem2->u.i ) return -1; + if( pMem1->u.i > pMem2->u.i ) return +1; + return 0; + }else{ + return -1; + } + } + if( (f1&MEM_Real)!=0 ){ + if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ + testcase( f2 & MEM_Int ); + testcase( f2 & MEM_IntReal ); + return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); + }else{ + return -1; + } + } + return +1; + } + + /* If one value is a string and the other is a blob, the string is less. + ** If both are strings, compare using the collating functions. + */ + if( combined_flags&MEM_Str ){ + if( (f1 & MEM_Str)==0 ){ + return 1; + } + if( (f2 & MEM_Str)==0 ){ + return -1; + } + + assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); + assert( pMem1->enc==SQLITE_UTF8 || + pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); + + /* The collation sequence must be defined at this point, even if + ** the user deletes the collation sequence after the vdbe program is + ** compiled (this was not always the case). + */ + assert( !pColl || pColl->xCmp ); + + if( pColl ){ + return vdbeCompareMemString(pMem1, pMem2, pColl, 0); + } + /* If a NULL pointer was passed as the collate function, fall through + ** to the blob case and use memcmp(). */ + } + + /* Both values must be blobs. Compare using memcmp(). */ + return sqlite3BlobCompare(pMem1, pMem2); +} + + +/* +** The first argument passed to this function is a serial-type that +** corresponds to an integer - all values between 1 and 9 inclusive +** except 7. The second points to a buffer containing an integer value +** serialized according to serial_type. This function deserializes +** and returns the value. +*/ +static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ + u32 y; + assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); + switch( serial_type ){ + case 0: + case 1: + testcase( aKey[0]&0x80 ); + return ONE_BYTE_INT(aKey); + case 2: + testcase( aKey[0]&0x80 ); + return TWO_BYTE_INT(aKey); + case 3: + testcase( aKey[0]&0x80 ); + return THREE_BYTE_INT(aKey); + case 4: { + testcase( aKey[0]&0x80 ); + y = FOUR_BYTE_UINT(aKey); + return (i64)*(int*)&y; + } + case 5: { + testcase( aKey[0]&0x80 ); + return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); + } + case 6: { + u64 x = FOUR_BYTE_UINT(aKey); + testcase( aKey[0]&0x80 ); + x = (x<<32) | FOUR_BYTE_UINT(aKey+4); + return (i64)*(i64*)&x; + } + } + + return (serial_type - 8); +} + +/* +** This function compares the two table rows or index records +** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero +** or positive integer if key1 is less than, equal to or +** greater than key2. The {nKey1, pKey1} key must be a blob +** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 +** key must be a parsed key such as obtained from +** sqlite3VdbeParseRecord. +** +** If argument bSkip is non-zero, it is assumed that the caller has already +** determined that the first fields of the keys are equal. +** +** Key1 and Key2 do not have to contain the same number of fields. If all +** fields that appear in both keys are equal, then pPKey2->default_rc is +** returned. +** +** If database corruption is discovered, set pPKey2->errCode to +** SQLITE_CORRUPT and return 0. If an OOM error is encountered, +** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the +** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). +*/ +int sqlite3VdbeRecordCompareWithSkip( + int nKey1, const void *pKey1, /* Left key */ + UnpackedRecord *pPKey2, /* Right key */ + int bSkip /* If true, skip the first field */ +){ + u32 d1; /* Offset into aKey[] of next data element */ + int i; /* Index of next field to compare */ + u32 szHdr1; /* Size of record header in bytes */ + u32 idx1; /* Offset of first type in header */ + int rc = 0; /* Return value */ + Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ + KeyInfo *pKeyInfo; + const unsigned char *aKey1 = (const unsigned char *)pKey1; + Mem mem1; + + /* If bSkip is true, then the caller has already determined that the first + ** two elements in the keys are equal. Fix the various stack variables so + ** that this routine begins comparing at the second field. */ + if( bSkip ){ + u32 s1 = aKey1[1]; + if( s1<0x80 ){ + idx1 = 2; + }else{ + idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1); + } + szHdr1 = aKey1[0]; + d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); + i = 1; + pRhs++; + }else{ + if( (szHdr1 = aKey1[0])<0x80 ){ + idx1 = 1; + }else{ + idx1 = sqlite3GetVarint32(aKey1, &szHdr1); + } + d1 = szHdr1; + i = 0; + } + if( d1>(unsigned)nKey1 ){ + pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; + return 0; /* Corruption */ + } + + VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ + assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField + || CORRUPT_DB ); + assert( pPKey2->pKeyInfo->aSortFlags!=0 ); + assert( pPKey2->pKeyInfo->nKeyField>0 ); + assert( idx1<=szHdr1 || CORRUPT_DB ); + while( 1 /*exit-by-break*/ ){ + u32 serial_type; + + /* RHS is an integer */ + if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ + testcase( pRhs->flags & MEM_Int ); + testcase( pRhs->flags & MEM_IntReal ); + serial_type = aKey1[idx1]; + testcase( serial_type==12 ); + if( serial_type>=10 ){ + rc = serial_type==10 ? -1 : +1; + }else if( serial_type==0 ){ + rc = -1; + }else if( serial_type==7 ){ + sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); + rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); + }else{ + i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); + i64 rhs = pRhs->u.i; + if( lhs<rhs ){ + rc = -1; + }else if( lhs>rhs ){ + rc = +1; + } + } + } + + /* RHS is real */ + else if( pRhs->flags & MEM_Real ){ + serial_type = aKey1[idx1]; + if( serial_type>=10 ){ + /* Serial types 12 or greater are strings and blobs (greater than + ** numbers). Types 10 and 11 are currently "reserved for future + ** use", so it doesn't really matter what the results of comparing + ** them to numberic values are. */ + rc = serial_type==10 ? -1 : +1; + }else if( serial_type==0 ){ + rc = -1; + }else{ + sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); + if( serial_type==7 ){ + if( mem1.u.r<pRhs->u.r ){ + rc = -1; + }else if( mem1.u.r>pRhs->u.r ){ + rc = +1; + } + }else{ + rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); + } + } + } + + /* RHS is a string */ + else if( pRhs->flags & MEM_Str ){ + getVarint32NR(&aKey1[idx1], serial_type); + testcase( serial_type==12 ); + if( serial_type<12 ){ + rc = -1; + }else if( !(serial_type & 0x01) ){ + rc = +1; + }else{ + mem1.n = (serial_type - 12) / 2; + testcase( (d1+mem1.n)==(unsigned)nKey1 ); + testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); + if( (d1+mem1.n) > (unsigned)nKey1 + || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i + ){ + pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; + return 0; /* Corruption */ + }else if( pKeyInfo->aColl[i] ){ + mem1.enc = pKeyInfo->enc; + mem1.db = pKeyInfo->db; + mem1.flags = MEM_Str; + mem1.z = (char*)&aKey1[d1]; + rc = vdbeCompareMemString( + &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode + ); + }else{ + int nCmp = MIN(mem1.n, pRhs->n); + rc = memcmp(&aKey1[d1], pRhs->z, nCmp); + if( rc==0 ) rc = mem1.n - pRhs->n; + } + } + } + + /* RHS is a blob */ + else if( pRhs->flags & MEM_Blob ){ + assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); + getVarint32NR(&aKey1[idx1], serial_type); + testcase( serial_type==12 ); + if( serial_type<12 || (serial_type & 0x01) ){ + rc = -1; + }else{ + int nStr = (serial_type - 12) / 2; + testcase( (d1+nStr)==(unsigned)nKey1 ); + testcase( (d1+nStr+1)==(unsigned)nKey1 ); + if( (d1+nStr) > (unsigned)nKey1 ){ + pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; + return 0; /* Corruption */ + }else if( pRhs->flags & MEM_Zero ){ + if( !isAllZero((const char*)&aKey1[d1],nStr) ){ + rc = 1; + }else{ + rc = nStr - pRhs->u.nZero; + } + }else{ + int nCmp = MIN(nStr, pRhs->n); + rc = memcmp(&aKey1[d1], pRhs->z, nCmp); + if( rc==0 ) rc = nStr - pRhs->n; + } + } + } + + /* RHS is null */ + else{ + serial_type = aKey1[idx1]; + rc = (serial_type!=0 && serial_type!=10); + } + + if( rc!=0 ){ + int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; + if( sortFlags ){ + if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 + || ((sortFlags & KEYINFO_ORDER_DESC) + !=(serial_type==0 || (pRhs->flags&MEM_Null))) + ){ + rc = -rc; + } + } + assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); + assert( mem1.szMalloc==0 ); /* See comment below */ + return rc; + } + + i++; + if( i==pPKey2->nField ) break; + pRhs++; + d1 += sqlite3VdbeSerialTypeLen(serial_type); + if( d1>(unsigned)nKey1 ) break; + idx1 += sqlite3VarintLen(serial_type); + if( idx1>=(unsigned)szHdr1 ){ + pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; + return 0; /* Corrupt index */ + } + } + + /* No memory allocation is ever used on mem1. Prove this using + ** the following assert(). If the assert() fails, it indicates a + ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ + assert( mem1.szMalloc==0 ); + + /* rc==0 here means that one or both of the keys ran out of fields and + ** all the fields up to that point were equal. Return the default_rc + ** value. */ + assert( CORRUPT_DB + || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) + || pPKey2->pKeyInfo->db->mallocFailed + ); + pPKey2->eqSeen = 1; + return pPKey2->default_rc; +} +int sqlite3VdbeRecordCompare( + int nKey1, const void *pKey1, /* Left key */ + UnpackedRecord *pPKey2 /* Right key */ +){ + return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); +} + + +/* +** This function is an optimized version of sqlite3VdbeRecordCompare() +** that (a) the first field of pPKey2 is an integer, and (b) the +** size-of-header varint at the start of (pKey1/nKey1) fits in a single +** byte (i.e. is less than 128). +** +** To avoid concerns about buffer overreads, this routine is only used +** on schemas where the maximum valid header size is 63 bytes or less. +*/ +static int vdbeRecordCompareInt( + int nKey1, const void *pKey1, /* Left key */ + UnpackedRecord *pPKey2 /* Right key */ +){ + const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; + int serial_type = ((const u8*)pKey1)[1]; + int res; + u32 y; + u64 x; + i64 v; + i64 lhs; + + vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); + assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); + switch( serial_type ){ + case 1: { /* 1-byte signed integer */ + lhs = ONE_BYTE_INT(aKey); + testcase( lhs<0 ); + break; + } + case 2: { /* 2-byte signed integer */ + lhs = TWO_BYTE_INT(aKey); + testcase( lhs<0 ); + break; + } + case 3: { /* 3-byte signed integer */ + lhs = THREE_BYTE_INT(aKey); + testcase( lhs<0 ); + break; + } + case 4: { /* 4-byte signed integer */ + y = FOUR_BYTE_UINT(aKey); + lhs = (i64)*(int*)&y; + testcase( lhs<0 ); + break; + } + case 5: { /* 6-byte signed integer */ + lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); + testcase( lhs<0 ); + break; + } + case 6: { /* 8-byte signed integer */ + x = FOUR_BYTE_UINT(aKey); + x = (x<<32) | FOUR_BYTE_UINT(aKey+4); + lhs = *(i64*)&x; + testcase( lhs<0 ); + break; + } + case 8: + lhs = 0; + break; + case 9: + lhs = 1; + break; + + /* This case could be removed without changing the results of running + ** this code. Including it causes gcc to generate a faster switch + ** statement (since the range of switch targets now starts at zero and + ** is contiguous) but does not cause any duplicate code to be generated + ** (as gcc is clever enough to combine the two like cases). Other + ** compilers might be similar. */ + case 0: case 7: + return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); + + default: + return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); + } + + assert( pPKey2->u.i == pPKey2->aMem[0].u.i ); + v = pPKey2->u.i; + if( v>lhs ){ + res = pPKey2->r1; + }else if( v<lhs ){ + res = pPKey2->r2; + }else if( pPKey2->nField>1 ){ + /* The first fields of the two keys are equal. Compare the trailing + ** fields. */ + res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); + }else{ + /* The first fields of the two keys are equal and there are no trailing + ** fields. Return pPKey2->default_rc in this case. */ + res = pPKey2->default_rc; + pPKey2->eqSeen = 1; + } + + assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); + return res; +} + +/* +** This function is an optimized version of sqlite3VdbeRecordCompare() +** that (a) the first field of pPKey2 is a string, that (b) the first field +** uses the collation sequence BINARY and (c) that the size-of-header varint +** at the start of (pKey1/nKey1) fits in a single byte. +*/ +static int vdbeRecordCompareString( + int nKey1, const void *pKey1, /* Left key */ + UnpackedRecord *pPKey2 /* Right key */ +){ + const u8 *aKey1 = (const u8*)pKey1; + int serial_type; + int res; + + assert( pPKey2->aMem[0].flags & MEM_Str ); + assert( pPKey2->aMem[0].n == pPKey2->n ); + assert( pPKey2->aMem[0].z == pPKey2->u.z ); + vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); + serial_type = (signed char)(aKey1[1]); + +vrcs_restart: + if( serial_type<12 ){ + if( serial_type<0 ){ + sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type); + if( serial_type>=12 ) goto vrcs_restart; + assert( CORRUPT_DB ); + } + res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ + }else if( !(serial_type & 0x01) ){ + res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ + }else{ + int nCmp; + int nStr; + int szHdr = aKey1[0]; + + nStr = (serial_type-12) / 2; + if( (szHdr + nStr) > nKey1 ){ + pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; + return 0; /* Corruption */ + } + nCmp = MIN( pPKey2->n, nStr ); + res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp); + + if( res>0 ){ + res = pPKey2->r2; + }else if( res<0 ){ + res = pPKey2->r1; + }else{ + res = nStr - pPKey2->n; + if( res==0 ){ + if( pPKey2->nField>1 ){ + res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); + }else{ + res = pPKey2->default_rc; + pPKey2->eqSeen = 1; + } + }else if( res>0 ){ + res = pPKey2->r2; + }else{ + res = pPKey2->r1; + } + } + } + + assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) + || CORRUPT_DB + || pPKey2->pKeyInfo->db->mallocFailed + ); + return res; +} + +/* +** Return a pointer to an sqlite3VdbeRecordCompare() compatible function +** suitable for comparing serialized records to the unpacked record passed +** as the only argument. +*/ +RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ + /* varintRecordCompareInt() and varintRecordCompareString() both assume + ** that the size-of-header varint that occurs at the start of each record + ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() + ** also assumes that it is safe to overread a buffer by at least the + ** maximum possible legal header size plus 8 bytes. Because there is + ** guaranteed to be at least 74 (but not 136) bytes of padding following each + ** buffer passed to varintRecordCompareInt() this makes it convenient to + ** limit the size of the header to 64 bytes in cases where the first field + ** is an integer. + ** + ** The easiest way to enforce this limit is to consider only records with + ** 13 fields or less. If the first field is an integer, the maximum legal + ** header size is (12*5 + 1 + 1) bytes. */ + if( p->pKeyInfo->nAllField<=13 ){ + int flags = p->aMem[0].flags; + if( p->pKeyInfo->aSortFlags[0] ){ + if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ + return sqlite3VdbeRecordCompare; + } + p->r1 = 1; + p->r2 = -1; + }else{ + p->r1 = -1; + p->r2 = 1; + } + if( (flags & MEM_Int) ){ + p->u.i = p->aMem[0].u.i; + return vdbeRecordCompareInt; + } + testcase( flags & MEM_Real ); + testcase( flags & MEM_Null ); + testcase( flags & MEM_Blob ); + if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 + && p->pKeyInfo->aColl[0]==0 + ){ + assert( flags & MEM_Str ); + p->u.z = p->aMem[0].z; + p->n = p->aMem[0].n; + return vdbeRecordCompareString; + } + } + + return sqlite3VdbeRecordCompare; +} + +/* +** pCur points at an index entry created using the OP_MakeRecord opcode. +** Read the rowid (the last field in the record) and store it in *rowid. +** Return SQLITE_OK if everything works, or an error code otherwise. +** +** pCur might be pointing to text obtained from a corrupt database file. +** So the content cannot be trusted. Do appropriate checks on the content. +*/ +int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ + i64 nCellKey = 0; + int rc; + u32 szHdr; /* Size of the header */ + u32 typeRowid; /* Serial type of the rowid */ + u32 lenRowid; /* Size of the rowid */ + Mem m, v; + + /* Get the size of the index entry. Only indices entries of less + ** than 2GiB are support - anything large must be database corruption. + ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so + ** this code can safely assume that nCellKey is 32-bits + */ + assert( sqlite3BtreeCursorIsValid(pCur) ); + nCellKey = sqlite3BtreePayloadSize(pCur); + assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); + + /* Read in the complete content of the index entry */ + sqlite3VdbeMemInit(&m, db, 0); + rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); + if( rc ){ + return rc; + } + + /* The index entry must begin with a header size */ + getVarint32NR((u8*)m.z, szHdr); + testcase( szHdr==3 ); + testcase( szHdr==(u32)m.n ); + testcase( szHdr>0x7fffffff ); + assert( m.n>=0 ); + if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ + goto idx_rowid_corruption; + } + + /* The last field of the index should be an integer - the ROWID. + ** Verify that the last entry really is an integer. */ + getVarint32NR((u8*)&m.z[szHdr-1], typeRowid); + testcase( typeRowid==1 ); + testcase( typeRowid==2 ); + testcase( typeRowid==3 ); + testcase( typeRowid==4 ); + testcase( typeRowid==5 ); + testcase( typeRowid==6 ); + testcase( typeRowid==8 ); + testcase( typeRowid==9 ); + if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ + goto idx_rowid_corruption; + } + lenRowid = sqlite3SmallTypeSizes[typeRowid]; + testcase( (u32)m.n==szHdr+lenRowid ); + if( unlikely((u32)m.n<szHdr+lenRowid) ){ + goto idx_rowid_corruption; + } + + /* Fetch the integer off the end of the index record */ + sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); + *rowid = v.u.i; + sqlite3VdbeMemReleaseMalloc(&m); + return SQLITE_OK; + + /* Jump here if database corruption is detected after m has been + ** allocated. Free the m object and return SQLITE_CORRUPT. */ +idx_rowid_corruption: + testcase( m.szMalloc!=0 ); + sqlite3VdbeMemReleaseMalloc(&m); + return SQLITE_CORRUPT_BKPT; +} + +/* +** Compare the key of the index entry that cursor pC is pointing to against +** the key string in pUnpacked. Write into *pRes a number +** that is negative, zero, or positive if pC is less than, equal to, +** or greater than pUnpacked. Return SQLITE_OK on success. +** +** pUnpacked is either created without a rowid or is truncated so that it +** omits the rowid at the end. The rowid at the end of the index entry +** is ignored as well. Hence, this routine only compares the prefixes +** of the keys prior to the final rowid, not the entire key. +*/ +int sqlite3VdbeIdxKeyCompare( + sqlite3 *db, /* Database connection */ + VdbeCursor *pC, /* The cursor to compare against */ + UnpackedRecord *pUnpacked, /* Unpacked version of key */ + int *res /* Write the comparison result here */ +){ + i64 nCellKey = 0; + int rc; + BtCursor *pCur; + Mem m; + + assert( pC->eCurType==CURTYPE_BTREE ); + pCur = pC->uc.pCursor; + assert( sqlite3BtreeCursorIsValid(pCur) ); + nCellKey = sqlite3BtreePayloadSize(pCur); + /* nCellKey will always be between 0 and 0xffffffff because of the way + ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ + if( nCellKey<=0 || nCellKey>0x7fffffff ){ + *res = 0; + return SQLITE_CORRUPT_BKPT; + } + sqlite3VdbeMemInit(&m, db, 0); + rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); + if( rc ){ + return rc; + } + *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); + sqlite3VdbeMemReleaseMalloc(&m); + return SQLITE_OK; +} + +/* +** This routine sets the value to be returned by subsequent calls to +** sqlite3_changes() on the database handle 'db'. +*/ +void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){ + assert( sqlite3_mutex_held(db->mutex) ); + db->nChange = nChange; + db->nTotalChange += nChange; +} + +/* +** Set a flag in the vdbe to update the change counter when it is finalised +** or reset. +*/ +void sqlite3VdbeCountChanges(Vdbe *v){ + v->changeCntOn = 1; +} + +/* +** Mark every prepared statement associated with a database connection +** as expired. +** +** An expired statement means that recompilation of the statement is +** recommend. Statements expire when things happen that make their +** programs obsolete. Removing user-defined functions or collating +** sequences, or changing an authorization function are the types of +** things that make prepared statements obsolete. +** +** If iCode is 1, then expiration is advisory. The statement should +** be reprepared before being restarted, but if it is already running +** it is allowed to run to completion. +** +** Internally, this function just sets the Vdbe.expired flag on all +** prepared statements. The flag is set to 1 for an immediate expiration +** and set to 2 for an advisory expiration. +*/ +void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ + Vdbe *p; + for(p = db->pVdbe; p; p=p->pVNext){ + p->expired = iCode+1; + } +} + +/* +** Return the database associated with the Vdbe. +*/ +sqlite3 *sqlite3VdbeDb(Vdbe *v){ + return v->db; +} + +/* +** Return the SQLITE_PREPARE flags for a Vdbe. +*/ +u8 sqlite3VdbePrepareFlags(Vdbe *v){ + return v->prepFlags; +} + +/* +** Return a pointer to an sqlite3_value structure containing the value bound +** parameter iVar of VM v. Except, if the value is an SQL NULL, return +** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* +** constants) to the value before returning it. +** +** The returned value must be freed by the caller using sqlite3ValueFree(). +*/ +sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ + assert( iVar>0 ); + if( v ){ + Mem *pMem = &v->aVar[iVar-1]; + assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); + if( 0==(pMem->flags & MEM_Null) ){ + sqlite3_value *pRet = sqlite3ValueNew(v->db); + if( pRet ){ + sqlite3VdbeMemCopy((Mem *)pRet, pMem); + sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); + } + return pRet; + } + } + return 0; +} + +/* +** Configure SQL variable iVar so that binding a new value to it signals +** to sqlite3_reoptimize() that re-preparing the statement may result +** in a better query plan. +*/ +void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ + assert( iVar>0 ); + assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); + if( iVar>=32 ){ + v->expmask |= 0x80000000; + }else{ + v->expmask |= ((u32)1 << (iVar-1)); + } +} + +/* +** Cause a function to throw an error if it was call from OP_PureFunc +** rather than OP_Function. +** +** OP_PureFunc means that the function must be deterministic, and should +** throw an error if it is given inputs that would make it non-deterministic. +** This routine is invoked by date/time functions that use non-deterministic +** features such as 'now'. +*/ +int sqlite3NotPureFunc(sqlite3_context *pCtx){ + const VdbeOp *pOp; +#ifdef SQLITE_ENABLE_STAT4 + if( pCtx->pVdbe==0 ) return 1; +#endif + pOp = pCtx->pVdbe->aOp + pCtx->iOp; + if( pOp->opcode==OP_PureFunc ){ + const char *zContext; + char *zMsg; + if( pOp->p5 & NC_IsCheck ){ + zContext = "a CHECK constraint"; + }else if( pOp->p5 & NC_GenCol ){ + zContext = "a generated column"; + }else{ + zContext = "an index"; + } + zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", + pCtx->pFunc->zName, zContext); + sqlite3_result_error(pCtx, zMsg, -1); + sqlite3_free(zMsg); + return 0; + } + return 1; +} + +#ifndef SQLITE_OMIT_VIRTUALTABLE +/* +** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored +** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored +** in memory obtained from sqlite3DbMalloc). +*/ +void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ + if( pVtab->zErrMsg ){ + sqlite3 *db = p->db; + sqlite3DbFree(db, p->zErrMsg); + p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); + sqlite3_free(pVtab->zErrMsg); + pVtab->zErrMsg = 0; + } +} +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + +#ifdef SQLITE_ENABLE_PREUPDATE_HOOK + +/* +** If the second argument is not NULL, release any allocations associated +** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord +** structure itself, using sqlite3DbFree(). +** +** This function is used to free UnpackedRecord structures allocated by +** the vdbeUnpackRecord() function found in vdbeapi.c. +*/ +static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ + assert( db!=0 ); + if( p ){ + int i; + for(i=0; i<nField; i++){ + Mem *pMem = &p->aMem[i]; + if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem); + } + sqlite3DbNNFreeNN(db, p); + } +} +#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ + +#ifdef SQLITE_ENABLE_PREUPDATE_HOOK +/* +** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, +** then cursor passed as the second argument should point to the row about +** to be update or deleted. If the application calls sqlite3_preupdate_old(), +** the required value will be read from the row the cursor points to. +*/ +void sqlite3VdbePreUpdateHook( + Vdbe *v, /* Vdbe pre-update hook is invoked by */ + VdbeCursor *pCsr, /* Cursor to grab old.* values from */ + int op, /* SQLITE_INSERT, UPDATE or DELETE */ + const char *zDb, /* Database name */ + Table *pTab, /* Modified table */ + i64 iKey1, /* Initial key value */ + int iReg, /* Register for new.* record */ + int iBlobWrite +){ + sqlite3 *db = v->db; + i64 iKey2; + PreUpdate preupdate; + const char *zTbl = pTab->zName; + static const u8 fakeSortOrder = 0; + + assert( db->pPreUpdate==0 ); + memset(&preupdate, 0, sizeof(PreUpdate)); + if( HasRowid(pTab)==0 ){ + iKey1 = iKey2 = 0; + preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); + }else{ + if( op==SQLITE_UPDATE ){ + iKey2 = v->aMem[iReg].u.i; + }else{ + iKey2 = iKey1; + } + } + + assert( pCsr!=0 ); + assert( pCsr->eCurType==CURTYPE_BTREE ); + assert( pCsr->nField==pTab->nCol + || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) + ); + + preupdate.v = v; + preupdate.pCsr = pCsr; + preupdate.op = op; + preupdate.iNewReg = iReg; + preupdate.keyinfo.db = db; + preupdate.keyinfo.enc = ENC(db); + preupdate.keyinfo.nKeyField = pTab->nCol; + preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; + preupdate.iKey1 = iKey1; + preupdate.iKey2 = iKey2; + preupdate.pTab = pTab; + preupdate.iBlobWrite = iBlobWrite; + + db->pPreUpdate = &preupdate; + db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); + db->pPreUpdate = 0; + sqlite3DbFree(db, preupdate.aRecord); + vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); + vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); + if( preupdate.aNew ){ + int i; + for(i=0; i<pCsr->nField; i++){ + sqlite3VdbeMemRelease(&preupdate.aNew[i]); + } + sqlite3DbNNFreeNN(db, preupdate.aNew); + } +} +#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ |