summaryrefslogtreecommitdiffstats
path: root/ext/fts5/fts5_expr.c
diff options
context:
space:
mode:
Diffstat (limited to 'ext/fts5/fts5_expr.c')
-rw-r--r--ext/fts5/fts5_expr.c3071
1 files changed, 3071 insertions, 0 deletions
diff --git a/ext/fts5/fts5_expr.c b/ext/fts5/fts5_expr.c
new file mode 100644
index 0000000..66bd304
--- /dev/null
+++ b/ext/fts5/fts5_expr.c
@@ -0,0 +1,3071 @@
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+
+
+
+#include "fts5Int.h"
+#include "fts5parse.h"
+
+/*
+** All token types in the generated fts5parse.h file are greater than 0.
+*/
+#define FTS5_EOF 0
+
+#define FTS5_LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
+
+typedef struct Fts5ExprTerm Fts5ExprTerm;
+
+/*
+** Functions generated by lemon from fts5parse.y.
+*/
+void *sqlite3Fts5ParserAlloc(void *(*mallocProc)(u64));
+void sqlite3Fts5ParserFree(void*, void (*freeProc)(void*));
+void sqlite3Fts5Parser(void*, int, Fts5Token, Fts5Parse*);
+#ifndef NDEBUG
+#include <stdio.h>
+void sqlite3Fts5ParserTrace(FILE*, char*);
+#endif
+int sqlite3Fts5ParserFallback(int);
+
+
+struct Fts5Expr {
+ Fts5Index *pIndex;
+ Fts5Config *pConfig;
+ Fts5ExprNode *pRoot;
+ int bDesc; /* Iterate in descending rowid order */
+ int nPhrase; /* Number of phrases in expression */
+ Fts5ExprPhrase **apExprPhrase; /* Pointers to phrase objects */
+};
+
+/*
+** eType:
+** Expression node type. Always one of:
+**
+** FTS5_AND (nChild, apChild valid)
+** FTS5_OR (nChild, apChild valid)
+** FTS5_NOT (nChild, apChild valid)
+** FTS5_STRING (pNear valid)
+** FTS5_TERM (pNear valid)
+*/
+struct Fts5ExprNode {
+ int eType; /* Node type */
+ int bEof; /* True at EOF */
+ int bNomatch; /* True if entry is not a match */
+
+ /* Next method for this node. */
+ int (*xNext)(Fts5Expr*, Fts5ExprNode*, int, i64);
+
+ i64 iRowid; /* Current rowid */
+ Fts5ExprNearset *pNear; /* For FTS5_STRING - cluster of phrases */
+
+ /* Child nodes. For a NOT node, this array always contains 2 entries. For
+ ** AND or OR nodes, it contains 2 or more entries. */
+ int nChild; /* Number of child nodes */
+ Fts5ExprNode *apChild[1]; /* Array of child nodes */
+};
+
+#define Fts5NodeIsString(p) ((p)->eType==FTS5_TERM || (p)->eType==FTS5_STRING)
+
+/*
+** Invoke the xNext method of an Fts5ExprNode object. This macro should be
+** used as if it has the same signature as the xNext() methods themselves.
+*/
+#define fts5ExprNodeNext(a,b,c,d) (b)->xNext((a), (b), (c), (d))
+
+/*
+** An instance of the following structure represents a single search term
+** or term prefix.
+*/
+struct Fts5ExprTerm {
+ u8 bPrefix; /* True for a prefix term */
+ u8 bFirst; /* True if token must be first in column */
+ char *zTerm; /* nul-terminated term */
+ Fts5IndexIter *pIter; /* Iterator for this term */
+ Fts5ExprTerm *pSynonym; /* Pointer to first in list of synonyms */
+};
+
+/*
+** A phrase. One or more terms that must appear in a contiguous sequence
+** within a document for it to match.
+*/
+struct Fts5ExprPhrase {
+ Fts5ExprNode *pNode; /* FTS5_STRING node this phrase is part of */
+ Fts5Buffer poslist; /* Current position list */
+ int nTerm; /* Number of entries in aTerm[] */
+ Fts5ExprTerm aTerm[1]; /* Terms that make up this phrase */
+};
+
+/*
+** One or more phrases that must appear within a certain token distance of
+** each other within each matching document.
+*/
+struct Fts5ExprNearset {
+ int nNear; /* NEAR parameter */
+ Fts5Colset *pColset; /* Columns to search (NULL -> all columns) */
+ int nPhrase; /* Number of entries in aPhrase[] array */
+ Fts5ExprPhrase *apPhrase[1]; /* Array of phrase pointers */
+};
+
+
+/*
+** Parse context.
+*/
+struct Fts5Parse {
+ Fts5Config *pConfig;
+ char *zErr;
+ int rc;
+ int nPhrase; /* Size of apPhrase array */
+ Fts5ExprPhrase **apPhrase; /* Array of all phrases */
+ Fts5ExprNode *pExpr; /* Result of a successful parse */
+ int bPhraseToAnd; /* Convert "a+b" to "a AND b" */
+};
+
+void sqlite3Fts5ParseError(Fts5Parse *pParse, const char *zFmt, ...){
+ va_list ap;
+ va_start(ap, zFmt);
+ if( pParse->rc==SQLITE_OK ){
+ assert( pParse->zErr==0 );
+ pParse->zErr = sqlite3_vmprintf(zFmt, ap);
+ pParse->rc = SQLITE_ERROR;
+ }
+ va_end(ap);
+}
+
+static int fts5ExprIsspace(char t){
+ return t==' ' || t=='\t' || t=='\n' || t=='\r';
+}
+
+/*
+** Read the first token from the nul-terminated string at *pz.
+*/
+static int fts5ExprGetToken(
+ Fts5Parse *pParse,
+ const char **pz, /* IN/OUT: Pointer into buffer */
+ Fts5Token *pToken
+){
+ const char *z = *pz;
+ int tok;
+
+ /* Skip past any whitespace */
+ while( fts5ExprIsspace(*z) ) z++;
+
+ pToken->p = z;
+ pToken->n = 1;
+ switch( *z ){
+ case '(': tok = FTS5_LP; break;
+ case ')': tok = FTS5_RP; break;
+ case '{': tok = FTS5_LCP; break;
+ case '}': tok = FTS5_RCP; break;
+ case ':': tok = FTS5_COLON; break;
+ case ',': tok = FTS5_COMMA; break;
+ case '+': tok = FTS5_PLUS; break;
+ case '*': tok = FTS5_STAR; break;
+ case '-': tok = FTS5_MINUS; break;
+ case '^': tok = FTS5_CARET; break;
+ case '\0': tok = FTS5_EOF; break;
+
+ case '"': {
+ const char *z2;
+ tok = FTS5_STRING;
+
+ for(z2=&z[1]; 1; z2++){
+ if( z2[0]=='"' ){
+ z2++;
+ if( z2[0]!='"' ) break;
+ }
+ if( z2[0]=='\0' ){
+ sqlite3Fts5ParseError(pParse, "unterminated string");
+ return FTS5_EOF;
+ }
+ }
+ pToken->n = (z2 - z);
+ break;
+ }
+
+ default: {
+ const char *z2;
+ if( sqlite3Fts5IsBareword(z[0])==0 ){
+ sqlite3Fts5ParseError(pParse, "fts5: syntax error near \"%.1s\"", z);
+ return FTS5_EOF;
+ }
+ tok = FTS5_STRING;
+ for(z2=&z[1]; sqlite3Fts5IsBareword(*z2); z2++);
+ pToken->n = (z2 - z);
+ if( pToken->n==2 && memcmp(pToken->p, "OR", 2)==0 ) tok = FTS5_OR;
+ if( pToken->n==3 && memcmp(pToken->p, "NOT", 3)==0 ) tok = FTS5_NOT;
+ if( pToken->n==3 && memcmp(pToken->p, "AND", 3)==0 ) tok = FTS5_AND;
+ break;
+ }
+ }
+
+ *pz = &pToken->p[pToken->n];
+ return tok;
+}
+
+static void *fts5ParseAlloc(u64 t){ return sqlite3_malloc64((sqlite3_int64)t);}
+static void fts5ParseFree(void *p){ sqlite3_free(p); }
+
+int sqlite3Fts5ExprNew(
+ Fts5Config *pConfig, /* FTS5 Configuration */
+ int bPhraseToAnd,
+ int iCol,
+ const char *zExpr, /* Expression text */
+ Fts5Expr **ppNew,
+ char **pzErr
+){
+ Fts5Parse sParse;
+ Fts5Token token;
+ const char *z = zExpr;
+ int t; /* Next token type */
+ void *pEngine;
+ Fts5Expr *pNew;
+
+ *ppNew = 0;
+ *pzErr = 0;
+ memset(&sParse, 0, sizeof(sParse));
+ sParse.bPhraseToAnd = bPhraseToAnd;
+ pEngine = sqlite3Fts5ParserAlloc(fts5ParseAlloc);
+ if( pEngine==0 ){ return SQLITE_NOMEM; }
+ sParse.pConfig = pConfig;
+
+ do {
+ t = fts5ExprGetToken(&sParse, &z, &token);
+ sqlite3Fts5Parser(pEngine, t, token, &sParse);
+ }while( sParse.rc==SQLITE_OK && t!=FTS5_EOF );
+ sqlite3Fts5ParserFree(pEngine, fts5ParseFree);
+
+ /* If the LHS of the MATCH expression was a user column, apply the
+ ** implicit column-filter. */
+ if( iCol<pConfig->nCol && sParse.pExpr && sParse.rc==SQLITE_OK ){
+ int n = sizeof(Fts5Colset);
+ Fts5Colset *pColset = (Fts5Colset*)sqlite3Fts5MallocZero(&sParse.rc, n);
+ if( pColset ){
+ pColset->nCol = 1;
+ pColset->aiCol[0] = iCol;
+ sqlite3Fts5ParseSetColset(&sParse, sParse.pExpr, pColset);
+ }
+ }
+
+ assert( sParse.rc!=SQLITE_OK || sParse.zErr==0 );
+ if( sParse.rc==SQLITE_OK ){
+ *ppNew = pNew = sqlite3_malloc(sizeof(Fts5Expr));
+ if( pNew==0 ){
+ sParse.rc = SQLITE_NOMEM;
+ sqlite3Fts5ParseNodeFree(sParse.pExpr);
+ }else{
+ if( !sParse.pExpr ){
+ const int nByte = sizeof(Fts5ExprNode);
+ pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&sParse.rc, nByte);
+ if( pNew->pRoot ){
+ pNew->pRoot->bEof = 1;
+ }
+ }else{
+ pNew->pRoot = sParse.pExpr;
+ }
+ pNew->pIndex = 0;
+ pNew->pConfig = pConfig;
+ pNew->apExprPhrase = sParse.apPhrase;
+ pNew->nPhrase = sParse.nPhrase;
+ pNew->bDesc = 0;
+ sParse.apPhrase = 0;
+ }
+ }else{
+ sqlite3Fts5ParseNodeFree(sParse.pExpr);
+ }
+
+ sqlite3_free(sParse.apPhrase);
+ *pzErr = sParse.zErr;
+ return sParse.rc;
+}
+
+/*
+** This function is only called when using the special 'trigram' tokenizer.
+** Argument zText contains the text of a LIKE or GLOB pattern matched
+** against column iCol. This function creates and compiles an FTS5 MATCH
+** expression that will match a superset of the rows matched by the LIKE or
+** GLOB. If successful, SQLITE_OK is returned. Otherwise, an SQLite error
+** code.
+*/
+int sqlite3Fts5ExprPattern(
+ Fts5Config *pConfig, int bGlob, int iCol, const char *zText, Fts5Expr **pp
+){
+ i64 nText = strlen(zText);
+ char *zExpr = (char*)sqlite3_malloc64(nText*4 + 1);
+ int rc = SQLITE_OK;
+
+ if( zExpr==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ char aSpec[3];
+ int iOut = 0;
+ int i = 0;
+ int iFirst = 0;
+
+ if( bGlob==0 ){
+ aSpec[0] = '_';
+ aSpec[1] = '%';
+ aSpec[2] = 0;
+ }else{
+ aSpec[0] = '*';
+ aSpec[1] = '?';
+ aSpec[2] = '[';
+ }
+
+ while( i<=nText ){
+ if( i==nText
+ || zText[i]==aSpec[0] || zText[i]==aSpec[1] || zText[i]==aSpec[2]
+ ){
+ if( i-iFirst>=3 ){
+ int jj;
+ zExpr[iOut++] = '"';
+ for(jj=iFirst; jj<i; jj++){
+ zExpr[iOut++] = zText[jj];
+ if( zText[jj]=='"' ) zExpr[iOut++] = '"';
+ }
+ zExpr[iOut++] = '"';
+ zExpr[iOut++] = ' ';
+ }
+ if( zText[i]==aSpec[2] ){
+ i += 2;
+ if( zText[i-1]=='^' ) i++;
+ while( i<nText && zText[i]!=']' ) i++;
+ }
+ iFirst = i+1;
+ }
+ i++;
+ }
+ if( iOut>0 ){
+ int bAnd = 0;
+ if( pConfig->eDetail!=FTS5_DETAIL_FULL ){
+ bAnd = 1;
+ if( pConfig->eDetail==FTS5_DETAIL_NONE ){
+ iCol = pConfig->nCol;
+ }
+ }
+ zExpr[iOut] = '\0';
+ rc = sqlite3Fts5ExprNew(pConfig, bAnd, iCol, zExpr, pp,pConfig->pzErrmsg);
+ }else{
+ *pp = 0;
+ }
+ sqlite3_free(zExpr);
+ }
+
+ return rc;
+}
+
+/*
+** Free the expression node object passed as the only argument.
+*/
+void sqlite3Fts5ParseNodeFree(Fts5ExprNode *p){
+ if( p ){
+ int i;
+ for(i=0; i<p->nChild; i++){
+ sqlite3Fts5ParseNodeFree(p->apChild[i]);
+ }
+ sqlite3Fts5ParseNearsetFree(p->pNear);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Free the expression object passed as the only argument.
+*/
+void sqlite3Fts5ExprFree(Fts5Expr *p){
+ if( p ){
+ sqlite3Fts5ParseNodeFree(p->pRoot);
+ sqlite3_free(p->apExprPhrase);
+ sqlite3_free(p);
+ }
+}
+
+int sqlite3Fts5ExprAnd(Fts5Expr **pp1, Fts5Expr *p2){
+ Fts5Parse sParse;
+ memset(&sParse, 0, sizeof(sParse));
+
+ if( *pp1 ){
+ Fts5Expr *p1 = *pp1;
+ int nPhrase = p1->nPhrase + p2->nPhrase;
+
+ p1->pRoot = sqlite3Fts5ParseNode(&sParse, FTS5_AND, p1->pRoot, p2->pRoot,0);
+ p2->pRoot = 0;
+
+ if( sParse.rc==SQLITE_OK ){
+ Fts5ExprPhrase **ap = (Fts5ExprPhrase**)sqlite3_realloc(
+ p1->apExprPhrase, nPhrase * sizeof(Fts5ExprPhrase*)
+ );
+ if( ap==0 ){
+ sParse.rc = SQLITE_NOMEM;
+ }else{
+ int i;
+ memmove(&ap[p2->nPhrase], ap, p1->nPhrase*sizeof(Fts5ExprPhrase*));
+ for(i=0; i<p2->nPhrase; i++){
+ ap[i] = p2->apExprPhrase[i];
+ }
+ p1->nPhrase = nPhrase;
+ p1->apExprPhrase = ap;
+ }
+ }
+ sqlite3_free(p2->apExprPhrase);
+ sqlite3_free(p2);
+ }else{
+ *pp1 = p2;
+ }
+
+ return sParse.rc;
+}
+
+/*
+** Argument pTerm must be a synonym iterator. Return the current rowid
+** that it points to.
+*/
+static i64 fts5ExprSynonymRowid(Fts5ExprTerm *pTerm, int bDesc, int *pbEof){
+ i64 iRet = 0;
+ int bRetValid = 0;
+ Fts5ExprTerm *p;
+
+ assert( pTerm );
+ assert( pTerm->pSynonym );
+ assert( bDesc==0 || bDesc==1 );
+ for(p=pTerm; p; p=p->pSynonym){
+ if( 0==sqlite3Fts5IterEof(p->pIter) ){
+ i64 iRowid = p->pIter->iRowid;
+ if( bRetValid==0 || (bDesc!=(iRowid<iRet)) ){
+ iRet = iRowid;
+ bRetValid = 1;
+ }
+ }
+ }
+
+ if( pbEof && bRetValid==0 ) *pbEof = 1;
+ return iRet;
+}
+
+/*
+** Argument pTerm must be a synonym iterator.
+*/
+static int fts5ExprSynonymList(
+ Fts5ExprTerm *pTerm,
+ i64 iRowid,
+ Fts5Buffer *pBuf, /* Use this buffer for space if required */
+ u8 **pa, int *pn
+){
+ Fts5PoslistReader aStatic[4];
+ Fts5PoslistReader *aIter = aStatic;
+ int nIter = 0;
+ int nAlloc = 4;
+ int rc = SQLITE_OK;
+ Fts5ExprTerm *p;
+
+ assert( pTerm->pSynonym );
+ for(p=pTerm; p; p=p->pSynonym){
+ Fts5IndexIter *pIter = p->pIter;
+ if( sqlite3Fts5IterEof(pIter)==0 && pIter->iRowid==iRowid ){
+ if( pIter->nData==0 ) continue;
+ if( nIter==nAlloc ){
+ sqlite3_int64 nByte = sizeof(Fts5PoslistReader) * nAlloc * 2;
+ Fts5PoslistReader *aNew = (Fts5PoslistReader*)sqlite3_malloc64(nByte);
+ if( aNew==0 ){
+ rc = SQLITE_NOMEM;
+ goto synonym_poslist_out;
+ }
+ memcpy(aNew, aIter, sizeof(Fts5PoslistReader) * nIter);
+ nAlloc = nAlloc*2;
+ if( aIter!=aStatic ) sqlite3_free(aIter);
+ aIter = aNew;
+ }
+ sqlite3Fts5PoslistReaderInit(pIter->pData, pIter->nData, &aIter[nIter]);
+ assert( aIter[nIter].bEof==0 );
+ nIter++;
+ }
+ }
+
+ if( nIter==1 ){
+ *pa = (u8*)aIter[0].a;
+ *pn = aIter[0].n;
+ }else{
+ Fts5PoslistWriter writer = {0};
+ i64 iPrev = -1;
+ fts5BufferZero(pBuf);
+ while( 1 ){
+ int i;
+ i64 iMin = FTS5_LARGEST_INT64;
+ for(i=0; i<nIter; i++){
+ if( aIter[i].bEof==0 ){
+ if( aIter[i].iPos==iPrev ){
+ if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) continue;
+ }
+ if( aIter[i].iPos<iMin ){
+ iMin = aIter[i].iPos;
+ }
+ }
+ }
+ if( iMin==FTS5_LARGEST_INT64 || rc!=SQLITE_OK ) break;
+ rc = sqlite3Fts5PoslistWriterAppend(pBuf, &writer, iMin);
+ iPrev = iMin;
+ }
+ if( rc==SQLITE_OK ){
+ *pa = pBuf->p;
+ *pn = pBuf->n;
+ }
+ }
+
+ synonym_poslist_out:
+ if( aIter!=aStatic ) sqlite3_free(aIter);
+ return rc;
+}
+
+
+/*
+** All individual term iterators in pPhrase are guaranteed to be valid and
+** pointing to the same rowid when this function is called. This function
+** checks if the current rowid really is a match, and if so populates
+** the pPhrase->poslist buffer accordingly. Output parameter *pbMatch
+** is set to true if this is really a match, or false otherwise.
+**
+** SQLITE_OK is returned if an error occurs, or an SQLite error code
+** otherwise. It is not considered an error code if the current rowid is
+** not a match.
+*/
+static int fts5ExprPhraseIsMatch(
+ Fts5ExprNode *pNode, /* Node pPhrase belongs to */
+ Fts5ExprPhrase *pPhrase, /* Phrase object to initialize */
+ int *pbMatch /* OUT: Set to true if really a match */
+){
+ Fts5PoslistWriter writer = {0};
+ Fts5PoslistReader aStatic[4];
+ Fts5PoslistReader *aIter = aStatic;
+ int i;
+ int rc = SQLITE_OK;
+ int bFirst = pPhrase->aTerm[0].bFirst;
+
+ fts5BufferZero(&pPhrase->poslist);
+
+ /* If the aStatic[] array is not large enough, allocate a large array
+ ** using sqlite3_malloc(). This approach could be improved upon. */
+ if( pPhrase->nTerm>ArraySize(aStatic) ){
+ sqlite3_int64 nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm;
+ aIter = (Fts5PoslistReader*)sqlite3_malloc64(nByte);
+ if( !aIter ) return SQLITE_NOMEM;
+ }
+ memset(aIter, 0, sizeof(Fts5PoslistReader) * pPhrase->nTerm);
+
+ /* Initialize a term iterator for each term in the phrase */
+ for(i=0; i<pPhrase->nTerm; i++){
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
+ int n = 0;
+ int bFlag = 0;
+ u8 *a = 0;
+ if( pTerm->pSynonym ){
+ Fts5Buffer buf = {0, 0, 0};
+ rc = fts5ExprSynonymList(pTerm, pNode->iRowid, &buf, &a, &n);
+ if( rc ){
+ sqlite3_free(a);
+ goto ismatch_out;
+ }
+ if( a==buf.p ) bFlag = 1;
+ }else{
+ a = (u8*)pTerm->pIter->pData;
+ n = pTerm->pIter->nData;
+ }
+ sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
+ aIter[i].bFlag = (u8)bFlag;
+ if( aIter[i].bEof ) goto ismatch_out;
+ }
+
+ while( 1 ){
+ int bMatch;
+ i64 iPos = aIter[0].iPos;
+ do {
+ bMatch = 1;
+ for(i=0; i<pPhrase->nTerm; i++){
+ Fts5PoslistReader *pPos = &aIter[i];
+ i64 iAdj = iPos + i;
+ if( pPos->iPos!=iAdj ){
+ bMatch = 0;
+ while( pPos->iPos<iAdj ){
+ if( sqlite3Fts5PoslistReaderNext(pPos) ) goto ismatch_out;
+ }
+ if( pPos->iPos>iAdj ) iPos = pPos->iPos-i;
+ }
+ }
+ }while( bMatch==0 );
+
+ /* Append position iPos to the output */
+ if( bFirst==0 || FTS5_POS2OFFSET(iPos)==0 ){
+ rc = sqlite3Fts5PoslistWriterAppend(&pPhrase->poslist, &writer, iPos);
+ if( rc!=SQLITE_OK ) goto ismatch_out;
+ }
+
+ for(i=0; i<pPhrase->nTerm; i++){
+ if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) goto ismatch_out;
+ }
+ }
+
+ ismatch_out:
+ *pbMatch = (pPhrase->poslist.n>0);
+ for(i=0; i<pPhrase->nTerm; i++){
+ if( aIter[i].bFlag ) sqlite3_free((u8*)aIter[i].a);
+ }
+ if( aIter!=aStatic ) sqlite3_free(aIter);
+ return rc;
+}
+
+typedef struct Fts5LookaheadReader Fts5LookaheadReader;
+struct Fts5LookaheadReader {
+ const u8 *a; /* Buffer containing position list */
+ int n; /* Size of buffer a[] in bytes */
+ int i; /* Current offset in position list */
+ i64 iPos; /* Current position */
+ i64 iLookahead; /* Next position */
+};
+
+#define FTS5_LOOKAHEAD_EOF (((i64)1) << 62)
+
+static int fts5LookaheadReaderNext(Fts5LookaheadReader *p){
+ p->iPos = p->iLookahead;
+ if( sqlite3Fts5PoslistNext64(p->a, p->n, &p->i, &p->iLookahead) ){
+ p->iLookahead = FTS5_LOOKAHEAD_EOF;
+ }
+ return (p->iPos==FTS5_LOOKAHEAD_EOF);
+}
+
+static int fts5LookaheadReaderInit(
+ const u8 *a, int n, /* Buffer to read position list from */
+ Fts5LookaheadReader *p /* Iterator object to initialize */
+){
+ memset(p, 0, sizeof(Fts5LookaheadReader));
+ p->a = a;
+ p->n = n;
+ fts5LookaheadReaderNext(p);
+ return fts5LookaheadReaderNext(p);
+}
+
+typedef struct Fts5NearTrimmer Fts5NearTrimmer;
+struct Fts5NearTrimmer {
+ Fts5LookaheadReader reader; /* Input iterator */
+ Fts5PoslistWriter writer; /* Writer context */
+ Fts5Buffer *pOut; /* Output poslist */
+};
+
+/*
+** The near-set object passed as the first argument contains more than
+** one phrase. All phrases currently point to the same row. The
+** Fts5ExprPhrase.poslist buffers are populated accordingly. This function
+** tests if the current row contains instances of each phrase sufficiently
+** close together to meet the NEAR constraint. Non-zero is returned if it
+** does, or zero otherwise.
+**
+** If in/out parameter (*pRc) is set to other than SQLITE_OK when this
+** function is called, it is a no-op. Or, if an error (e.g. SQLITE_NOMEM)
+** occurs within this function (*pRc) is set accordingly before returning.
+** The return value is undefined in both these cases.
+**
+** If no error occurs and non-zero (a match) is returned, the position-list
+** of each phrase object is edited to contain only those entries that
+** meet the constraint before returning.
+*/
+static int fts5ExprNearIsMatch(int *pRc, Fts5ExprNearset *pNear){
+ Fts5NearTrimmer aStatic[4];
+ Fts5NearTrimmer *a = aStatic;
+ Fts5ExprPhrase **apPhrase = pNear->apPhrase;
+
+ int i;
+ int rc = *pRc;
+ int bMatch;
+
+ assert( pNear->nPhrase>1 );
+
+ /* If the aStatic[] array is not large enough, allocate a large array
+ ** using sqlite3_malloc(). This approach could be improved upon. */
+ if( pNear->nPhrase>ArraySize(aStatic) ){
+ sqlite3_int64 nByte = sizeof(Fts5NearTrimmer) * pNear->nPhrase;
+ a = (Fts5NearTrimmer*)sqlite3Fts5MallocZero(&rc, nByte);
+ }else{
+ memset(aStatic, 0, sizeof(aStatic));
+ }
+ if( rc!=SQLITE_OK ){
+ *pRc = rc;
+ return 0;
+ }
+
+ /* Initialize a lookahead iterator for each phrase. After passing the
+ ** buffer and buffer size to the lookaside-reader init function, zero
+ ** the phrase poslist buffer. The new poslist for the phrase (containing
+ ** the same entries as the original with some entries removed on account
+ ** of the NEAR constraint) is written over the original even as it is
+ ** being read. This is safe as the entries for the new poslist are a
+ ** subset of the old, so it is not possible for data yet to be read to
+ ** be overwritten. */
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5Buffer *pPoslist = &apPhrase[i]->poslist;
+ fts5LookaheadReaderInit(pPoslist->p, pPoslist->n, &a[i].reader);
+ pPoslist->n = 0;
+ a[i].pOut = pPoslist;
+ }
+
+ while( 1 ){
+ int iAdv;
+ i64 iMin;
+ i64 iMax;
+
+ /* This block advances the phrase iterators until they point to a set of
+ ** entries that together comprise a match. */
+ iMax = a[0].reader.iPos;
+ do {
+ bMatch = 1;
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5LookaheadReader *pPos = &a[i].reader;
+ iMin = iMax - pNear->apPhrase[i]->nTerm - pNear->nNear;
+ if( pPos->iPos<iMin || pPos->iPos>iMax ){
+ bMatch = 0;
+ while( pPos->iPos<iMin ){
+ if( fts5LookaheadReaderNext(pPos) ) goto ismatch_out;
+ }
+ if( pPos->iPos>iMax ) iMax = pPos->iPos;
+ }
+ }
+ }while( bMatch==0 );
+
+ /* Add an entry to each output position list */
+ for(i=0; i<pNear->nPhrase; i++){
+ i64 iPos = a[i].reader.iPos;
+ Fts5PoslistWriter *pWriter = &a[i].writer;
+ if( a[i].pOut->n==0 || iPos!=pWriter->iPrev ){
+ sqlite3Fts5PoslistWriterAppend(a[i].pOut, pWriter, iPos);
+ }
+ }
+
+ iAdv = 0;
+ iMin = a[0].reader.iLookahead;
+ for(i=0; i<pNear->nPhrase; i++){
+ if( a[i].reader.iLookahead < iMin ){
+ iMin = a[i].reader.iLookahead;
+ iAdv = i;
+ }
+ }
+ if( fts5LookaheadReaderNext(&a[iAdv].reader) ) goto ismatch_out;
+ }
+
+ ismatch_out: {
+ int bRet = a[0].pOut->n>0;
+ *pRc = rc;
+ if( a!=aStatic ) sqlite3_free(a);
+ return bRet;
+ }
+}
+
+/*
+** Advance iterator pIter until it points to a value equal to or laster
+** than the initial value of *piLast. If this means the iterator points
+** to a value laster than *piLast, update *piLast to the new lastest value.
+**
+** If the iterator reaches EOF, set *pbEof to true before returning. If
+** an error occurs, set *pRc to an error code. If either *pbEof or *pRc
+** are set, return a non-zero value. Otherwise, return zero.
+*/
+static int fts5ExprAdvanceto(
+ Fts5IndexIter *pIter, /* Iterator to advance */
+ int bDesc, /* True if iterator is "rowid DESC" */
+ i64 *piLast, /* IN/OUT: Lastest rowid seen so far */
+ int *pRc, /* OUT: Error code */
+ int *pbEof /* OUT: Set to true if EOF */
+){
+ i64 iLast = *piLast;
+ i64 iRowid;
+
+ iRowid = pIter->iRowid;
+ if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
+ int rc = sqlite3Fts5IterNextFrom(pIter, iLast);
+ if( rc || sqlite3Fts5IterEof(pIter) ){
+ *pRc = rc;
+ *pbEof = 1;
+ return 1;
+ }
+ iRowid = pIter->iRowid;
+ assert( (bDesc==0 && iRowid>=iLast) || (bDesc==1 && iRowid<=iLast) );
+ }
+ *piLast = iRowid;
+
+ return 0;
+}
+
+static int fts5ExprSynonymAdvanceto(
+ Fts5ExprTerm *pTerm, /* Term iterator to advance */
+ int bDesc, /* True if iterator is "rowid DESC" */
+ i64 *piLast, /* IN/OUT: Lastest rowid seen so far */
+ int *pRc /* OUT: Error code */
+){
+ int rc = SQLITE_OK;
+ i64 iLast = *piLast;
+ Fts5ExprTerm *p;
+ int bEof = 0;
+
+ for(p=pTerm; rc==SQLITE_OK && p; p=p->pSynonym){
+ if( sqlite3Fts5IterEof(p->pIter)==0 ){
+ i64 iRowid = p->pIter->iRowid;
+ if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
+ rc = sqlite3Fts5IterNextFrom(p->pIter, iLast);
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ *pRc = rc;
+ bEof = 1;
+ }else{
+ *piLast = fts5ExprSynonymRowid(pTerm, bDesc, &bEof);
+ }
+ return bEof;
+}
+
+
+static int fts5ExprNearTest(
+ int *pRc,
+ Fts5Expr *pExpr, /* Expression that pNear is a part of */
+ Fts5ExprNode *pNode /* The "NEAR" node (FTS5_STRING) */
+){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ int rc = *pRc;
+
+ if( pExpr->pConfig->eDetail!=FTS5_DETAIL_FULL ){
+ Fts5ExprTerm *pTerm;
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[0];
+ pPhrase->poslist.n = 0;
+ for(pTerm=&pPhrase->aTerm[0]; pTerm; pTerm=pTerm->pSynonym){
+ Fts5IndexIter *pIter = pTerm->pIter;
+ if( sqlite3Fts5IterEof(pIter)==0 ){
+ if( pIter->iRowid==pNode->iRowid && pIter->nData>0 ){
+ pPhrase->poslist.n = 1;
+ }
+ }
+ }
+ return pPhrase->poslist.n;
+ }else{
+ int i;
+
+ /* Check that each phrase in the nearset matches the current row.
+ ** Populate the pPhrase->poslist buffers at the same time. If any
+ ** phrase is not a match, break out of the loop early. */
+ for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ if( pPhrase->nTerm>1 || pPhrase->aTerm[0].pSynonym
+ || pNear->pColset || pPhrase->aTerm[0].bFirst
+ ){
+ int bMatch = 0;
+ rc = fts5ExprPhraseIsMatch(pNode, pPhrase, &bMatch);
+ if( bMatch==0 ) break;
+ }else{
+ Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;
+ fts5BufferSet(&rc, &pPhrase->poslist, pIter->nData, pIter->pData);
+ }
+ }
+
+ *pRc = rc;
+ if( i==pNear->nPhrase && (i==1 || fts5ExprNearIsMatch(pRc, pNear)) ){
+ return 1;
+ }
+ return 0;
+ }
+}
+
+
+/*
+** Initialize all term iterators in the pNear object. If any term is found
+** to match no documents at all, return immediately without initializing any
+** further iterators.
+**
+** If an error occurs, return an SQLite error code. Otherwise, return
+** SQLITE_OK. It is not considered an error if some term matches zero
+** documents.
+*/
+static int fts5ExprNearInitAll(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode
+){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ int i;
+
+ assert( pNode->bNomatch==0 );
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ if( pPhrase->nTerm==0 ){
+ pNode->bEof = 1;
+ return SQLITE_OK;
+ }else{
+ int j;
+ for(j=0; j<pPhrase->nTerm; j++){
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
+ Fts5ExprTerm *p;
+ int bHit = 0;
+
+ for(p=pTerm; p; p=p->pSynonym){
+ int rc;
+ if( p->pIter ){
+ sqlite3Fts5IterClose(p->pIter);
+ p->pIter = 0;
+ }
+ rc = sqlite3Fts5IndexQuery(
+ pExpr->pIndex, p->zTerm, (int)strlen(p->zTerm),
+ (pTerm->bPrefix ? FTS5INDEX_QUERY_PREFIX : 0) |
+ (pExpr->bDesc ? FTS5INDEX_QUERY_DESC : 0),
+ pNear->pColset,
+ &p->pIter
+ );
+ assert( (rc==SQLITE_OK)==(p->pIter!=0) );
+ if( rc!=SQLITE_OK ) return rc;
+ if( 0==sqlite3Fts5IterEof(p->pIter) ){
+ bHit = 1;
+ }
+ }
+
+ if( bHit==0 ){
+ pNode->bEof = 1;
+ return SQLITE_OK;
+ }
+ }
+ }
+ }
+
+ pNode->bEof = 0;
+ return SQLITE_OK;
+}
+
+/*
+** If pExpr is an ASC iterator, this function returns a value with the
+** same sign as:
+**
+** (iLhs - iRhs)
+**
+** Otherwise, if this is a DESC iterator, the opposite is returned:
+**
+** (iRhs - iLhs)
+*/
+static int fts5RowidCmp(
+ Fts5Expr *pExpr,
+ i64 iLhs,
+ i64 iRhs
+){
+ assert( pExpr->bDesc==0 || pExpr->bDesc==1 );
+ if( pExpr->bDesc==0 ){
+ if( iLhs<iRhs ) return -1;
+ return (iLhs > iRhs);
+ }else{
+ if( iLhs>iRhs ) return -1;
+ return (iLhs < iRhs);
+ }
+}
+
+static void fts5ExprSetEof(Fts5ExprNode *pNode){
+ int i;
+ pNode->bEof = 1;
+ pNode->bNomatch = 0;
+ for(i=0; i<pNode->nChild; i++){
+ fts5ExprSetEof(pNode->apChild[i]);
+ }
+}
+
+static void fts5ExprNodeZeroPoslist(Fts5ExprNode *pNode){
+ if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ int i;
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ pPhrase->poslist.n = 0;
+ }
+ }else{
+ int i;
+ for(i=0; i<pNode->nChild; i++){
+ fts5ExprNodeZeroPoslist(pNode->apChild[i]);
+ }
+ }
+}
+
+
+
+/*
+** Compare the values currently indicated by the two nodes as follows:
+**
+** res = (*p1) - (*p2)
+**
+** Nodes that point to values that come later in the iteration order are
+** considered to be larger. Nodes at EOF are the largest of all.
+**
+** This means that if the iteration order is ASC, then numerically larger
+** rowids are considered larger. Or if it is the default DESC, numerically
+** smaller rowids are larger.
+*/
+static int fts5NodeCompare(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *p1,
+ Fts5ExprNode *p2
+){
+ if( p2->bEof ) return -1;
+ if( p1->bEof ) return +1;
+ return fts5RowidCmp(pExpr, p1->iRowid, p2->iRowid);
+}
+
+/*
+** All individual term iterators in pNear are guaranteed to be valid when
+** this function is called. This function checks if all term iterators
+** point to the same rowid, and if not, advances them until they do.
+** If an EOF is reached before this happens, *pbEof is set to true before
+** returning.
+**
+** SQLITE_OK is returned if an error occurs, or an SQLite error code
+** otherwise. It is not considered an error code if an iterator reaches
+** EOF.
+*/
+static int fts5ExprNodeTest_STRING(
+ Fts5Expr *pExpr, /* Expression pPhrase belongs to */
+ Fts5ExprNode *pNode
+){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ Fts5ExprPhrase *pLeft = pNear->apPhrase[0];
+ int rc = SQLITE_OK;
+ i64 iLast; /* Lastest rowid any iterator points to */
+ int i, j; /* Phrase and token index, respectively */
+ int bMatch; /* True if all terms are at the same rowid */
+ const int bDesc = pExpr->bDesc;
+
+ /* Check that this node should not be FTS5_TERM */
+ assert( pNear->nPhrase>1
+ || pNear->apPhrase[0]->nTerm>1
+ || pNear->apPhrase[0]->aTerm[0].pSynonym
+ || pNear->apPhrase[0]->aTerm[0].bFirst
+ );
+
+ /* Initialize iLast, the "lastest" rowid any iterator points to. If the
+ ** iterator skips through rowids in the default ascending order, this means
+ ** the maximum rowid. Or, if the iterator is "ORDER BY rowid DESC", then it
+ ** means the minimum rowid. */
+ if( pLeft->aTerm[0].pSynonym ){
+ iLast = fts5ExprSynonymRowid(&pLeft->aTerm[0], bDesc, 0);
+ }else{
+ iLast = pLeft->aTerm[0].pIter->iRowid;
+ }
+
+ do {
+ bMatch = 1;
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ for(j=0; j<pPhrase->nTerm; j++){
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
+ if( pTerm->pSynonym ){
+ i64 iRowid = fts5ExprSynonymRowid(pTerm, bDesc, 0);
+ if( iRowid==iLast ) continue;
+ bMatch = 0;
+ if( fts5ExprSynonymAdvanceto(pTerm, bDesc, &iLast, &rc) ){
+ pNode->bNomatch = 0;
+ pNode->bEof = 1;
+ return rc;
+ }
+ }else{
+ Fts5IndexIter *pIter = pPhrase->aTerm[j].pIter;
+ if( pIter->iRowid==iLast || pIter->bEof ) continue;
+ bMatch = 0;
+ if( fts5ExprAdvanceto(pIter, bDesc, &iLast, &rc, &pNode->bEof) ){
+ return rc;
+ }
+ }
+ }
+ }
+ }while( bMatch==0 );
+
+ pNode->iRowid = iLast;
+ pNode->bNomatch = ((0==fts5ExprNearTest(&rc, pExpr, pNode)) && rc==SQLITE_OK);
+ assert( pNode->bEof==0 || pNode->bNomatch==0 );
+
+ return rc;
+}
+
+/*
+** Advance the first term iterator in the first phrase of pNear. Set output
+** variable *pbEof to true if it reaches EOF or if an error occurs.
+**
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs.
+*/
+static int fts5ExprNodeNext_STRING(
+ Fts5Expr *pExpr, /* Expression pPhrase belongs to */
+ Fts5ExprNode *pNode, /* FTS5_STRING or FTS5_TERM node */
+ int bFromValid,
+ i64 iFrom
+){
+ Fts5ExprTerm *pTerm = &pNode->pNear->apPhrase[0]->aTerm[0];
+ int rc = SQLITE_OK;
+
+ pNode->bNomatch = 0;
+ if( pTerm->pSynonym ){
+ int bEof = 1;
+ Fts5ExprTerm *p;
+
+ /* Find the firstest rowid any synonym points to. */
+ i64 iRowid = fts5ExprSynonymRowid(pTerm, pExpr->bDesc, 0);
+
+ /* Advance each iterator that currently points to iRowid. Or, if iFrom
+ ** is valid - each iterator that points to a rowid before iFrom. */
+ for(p=pTerm; p; p=p->pSynonym){
+ if( sqlite3Fts5IterEof(p->pIter)==0 ){
+ i64 ii = p->pIter->iRowid;
+ if( ii==iRowid
+ || (bFromValid && ii!=iFrom && (ii>iFrom)==pExpr->bDesc)
+ ){
+ if( bFromValid ){
+ rc = sqlite3Fts5IterNextFrom(p->pIter, iFrom);
+ }else{
+ rc = sqlite3Fts5IterNext(p->pIter);
+ }
+ if( rc!=SQLITE_OK ) break;
+ if( sqlite3Fts5IterEof(p->pIter)==0 ){
+ bEof = 0;
+ }
+ }else{
+ bEof = 0;
+ }
+ }
+ }
+
+ /* Set the EOF flag if either all synonym iterators are at EOF or an
+ ** error has occurred. */
+ pNode->bEof = (rc || bEof);
+ }else{
+ Fts5IndexIter *pIter = pTerm->pIter;
+
+ assert( Fts5NodeIsString(pNode) );
+ if( bFromValid ){
+ rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
+ }else{
+ rc = sqlite3Fts5IterNext(pIter);
+ }
+
+ pNode->bEof = (rc || sqlite3Fts5IterEof(pIter));
+ }
+
+ if( pNode->bEof==0 ){
+ assert( rc==SQLITE_OK );
+ rc = fts5ExprNodeTest_STRING(pExpr, pNode);
+ }
+
+ return rc;
+}
+
+
+static int fts5ExprNodeTest_TERM(
+ Fts5Expr *pExpr, /* Expression that pNear is a part of */
+ Fts5ExprNode *pNode /* The "NEAR" node (FTS5_TERM) */
+){
+ /* As this "NEAR" object is actually a single phrase that consists
+ ** of a single term only, grab pointers into the poslist managed by the
+ ** fts5_index.c iterator object. This is much faster than synthesizing
+ ** a new poslist the way we have to for more complicated phrase or NEAR
+ ** expressions. */
+ Fts5ExprPhrase *pPhrase = pNode->pNear->apPhrase[0];
+ Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;
+
+ assert( pNode->eType==FTS5_TERM );
+ assert( pNode->pNear->nPhrase==1 && pPhrase->nTerm==1 );
+ assert( pPhrase->aTerm[0].pSynonym==0 );
+
+ pPhrase->poslist.n = pIter->nData;
+ if( pExpr->pConfig->eDetail==FTS5_DETAIL_FULL ){
+ pPhrase->poslist.p = (u8*)pIter->pData;
+ }
+ pNode->iRowid = pIter->iRowid;
+ pNode->bNomatch = (pPhrase->poslist.n==0);
+ return SQLITE_OK;
+}
+
+/*
+** xNext() method for a node of type FTS5_TERM.
+*/
+static int fts5ExprNodeNext_TERM(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode,
+ int bFromValid,
+ i64 iFrom
+){
+ int rc;
+ Fts5IndexIter *pIter = pNode->pNear->apPhrase[0]->aTerm[0].pIter;
+
+ assert( pNode->bEof==0 );
+ if( bFromValid ){
+ rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
+ }else{
+ rc = sqlite3Fts5IterNext(pIter);
+ }
+ if( rc==SQLITE_OK && sqlite3Fts5IterEof(pIter)==0 ){
+ rc = fts5ExprNodeTest_TERM(pExpr, pNode);
+ }else{
+ pNode->bEof = 1;
+ pNode->bNomatch = 0;
+ }
+ return rc;
+}
+
+static void fts5ExprNodeTest_OR(
+ Fts5Expr *pExpr, /* Expression of which pNode is a part */
+ Fts5ExprNode *pNode /* Expression node to test */
+){
+ Fts5ExprNode *pNext = pNode->apChild[0];
+ int i;
+
+ for(i=1; i<pNode->nChild; i++){
+ Fts5ExprNode *pChild = pNode->apChild[i];
+ int cmp = fts5NodeCompare(pExpr, pNext, pChild);
+ if( cmp>0 || (cmp==0 && pChild->bNomatch==0) ){
+ pNext = pChild;
+ }
+ }
+ pNode->iRowid = pNext->iRowid;
+ pNode->bEof = pNext->bEof;
+ pNode->bNomatch = pNext->bNomatch;
+}
+
+static int fts5ExprNodeNext_OR(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode,
+ int bFromValid,
+ i64 iFrom
+){
+ int i;
+ i64 iLast = pNode->iRowid;
+
+ for(i=0; i<pNode->nChild; i++){
+ Fts5ExprNode *p1 = pNode->apChild[i];
+ assert( p1->bEof || fts5RowidCmp(pExpr, p1->iRowid, iLast)>=0 );
+ if( p1->bEof==0 ){
+ if( (p1->iRowid==iLast)
+ || (bFromValid && fts5RowidCmp(pExpr, p1->iRowid, iFrom)<0)
+ ){
+ int rc = fts5ExprNodeNext(pExpr, p1, bFromValid, iFrom);
+ if( rc!=SQLITE_OK ){
+ pNode->bNomatch = 0;
+ return rc;
+ }
+ }
+ }
+ }
+
+ fts5ExprNodeTest_OR(pExpr, pNode);
+ return SQLITE_OK;
+}
+
+/*
+** Argument pNode is an FTS5_AND node.
+*/
+static int fts5ExprNodeTest_AND(
+ Fts5Expr *pExpr, /* Expression pPhrase belongs to */
+ Fts5ExprNode *pAnd /* FTS5_AND node to advance */
+){
+ int iChild;
+ i64 iLast = pAnd->iRowid;
+ int rc = SQLITE_OK;
+ int bMatch;
+
+ assert( pAnd->bEof==0 );
+ do {
+ pAnd->bNomatch = 0;
+ bMatch = 1;
+ for(iChild=0; iChild<pAnd->nChild; iChild++){
+ Fts5ExprNode *pChild = pAnd->apChild[iChild];
+ int cmp = fts5RowidCmp(pExpr, iLast, pChild->iRowid);
+ if( cmp>0 ){
+ /* Advance pChild until it points to iLast or laster */
+ rc = fts5ExprNodeNext(pExpr, pChild, 1, iLast);
+ if( rc!=SQLITE_OK ){
+ pAnd->bNomatch = 0;
+ return rc;
+ }
+ }
+
+ /* If the child node is now at EOF, so is the parent AND node. Otherwise,
+ ** the child node is guaranteed to have advanced at least as far as
+ ** rowid iLast. So if it is not at exactly iLast, pChild->iRowid is the
+ ** new lastest rowid seen so far. */
+ assert( pChild->bEof || fts5RowidCmp(pExpr, iLast, pChild->iRowid)<=0 );
+ if( pChild->bEof ){
+ fts5ExprSetEof(pAnd);
+ bMatch = 1;
+ break;
+ }else if( iLast!=pChild->iRowid ){
+ bMatch = 0;
+ iLast = pChild->iRowid;
+ }
+
+ if( pChild->bNomatch ){
+ pAnd->bNomatch = 1;
+ }
+ }
+ }while( bMatch==0 );
+
+ if( pAnd->bNomatch && pAnd!=pExpr->pRoot ){
+ fts5ExprNodeZeroPoslist(pAnd);
+ }
+ pAnd->iRowid = iLast;
+ return SQLITE_OK;
+}
+
+static int fts5ExprNodeNext_AND(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode,
+ int bFromValid,
+ i64 iFrom
+){
+ int rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom);
+ if( rc==SQLITE_OK ){
+ rc = fts5ExprNodeTest_AND(pExpr, pNode);
+ }else{
+ pNode->bNomatch = 0;
+ }
+ return rc;
+}
+
+static int fts5ExprNodeTest_NOT(
+ Fts5Expr *pExpr, /* Expression pPhrase belongs to */
+ Fts5ExprNode *pNode /* FTS5_NOT node to advance */
+){
+ int rc = SQLITE_OK;
+ Fts5ExprNode *p1 = pNode->apChild[0];
+ Fts5ExprNode *p2 = pNode->apChild[1];
+ assert( pNode->nChild==2 );
+
+ while( rc==SQLITE_OK && p1->bEof==0 ){
+ int cmp = fts5NodeCompare(pExpr, p1, p2);
+ if( cmp>0 ){
+ rc = fts5ExprNodeNext(pExpr, p2, 1, p1->iRowid);
+ cmp = fts5NodeCompare(pExpr, p1, p2);
+ }
+ assert( rc!=SQLITE_OK || cmp<=0 );
+ if( cmp || p2->bNomatch ) break;
+ rc = fts5ExprNodeNext(pExpr, p1, 0, 0);
+ }
+ pNode->bEof = p1->bEof;
+ pNode->bNomatch = p1->bNomatch;
+ pNode->iRowid = p1->iRowid;
+ if( p1->bEof ){
+ fts5ExprNodeZeroPoslist(p2);
+ }
+ return rc;
+}
+
+static int fts5ExprNodeNext_NOT(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode,
+ int bFromValid,
+ i64 iFrom
+){
+ int rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom);
+ if( rc==SQLITE_OK ){
+ rc = fts5ExprNodeTest_NOT(pExpr, pNode);
+ }
+ if( rc!=SQLITE_OK ){
+ pNode->bNomatch = 0;
+ }
+ return rc;
+}
+
+/*
+** If pNode currently points to a match, this function returns SQLITE_OK
+** without modifying it. Otherwise, pNode is advanced until it does point
+** to a match or EOF is reached.
+*/
+static int fts5ExprNodeTest(
+ Fts5Expr *pExpr, /* Expression of which pNode is a part */
+ Fts5ExprNode *pNode /* Expression node to test */
+){
+ int rc = SQLITE_OK;
+ if( pNode->bEof==0 ){
+ switch( pNode->eType ){
+
+ case FTS5_STRING: {
+ rc = fts5ExprNodeTest_STRING(pExpr, pNode);
+ break;
+ }
+
+ case FTS5_TERM: {
+ rc = fts5ExprNodeTest_TERM(pExpr, pNode);
+ break;
+ }
+
+ case FTS5_AND: {
+ rc = fts5ExprNodeTest_AND(pExpr, pNode);
+ break;
+ }
+
+ case FTS5_OR: {
+ fts5ExprNodeTest_OR(pExpr, pNode);
+ break;
+ }
+
+ default: assert( pNode->eType==FTS5_NOT ); {
+ rc = fts5ExprNodeTest_NOT(pExpr, pNode);
+ break;
+ }
+ }
+ }
+ return rc;
+}
+
+
+/*
+** Set node pNode, which is part of expression pExpr, to point to the first
+** match. If there are no matches, set the Node.bEof flag to indicate EOF.
+**
+** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
+** It is not an error if there are no matches.
+*/
+static int fts5ExprNodeFirst(Fts5Expr *pExpr, Fts5ExprNode *pNode){
+ int rc = SQLITE_OK;
+ pNode->bEof = 0;
+ pNode->bNomatch = 0;
+
+ if( Fts5NodeIsString(pNode) ){
+ /* Initialize all term iterators in the NEAR object. */
+ rc = fts5ExprNearInitAll(pExpr, pNode);
+ }else if( pNode->xNext==0 ){
+ pNode->bEof = 1;
+ }else{
+ int i;
+ int nEof = 0;
+ for(i=0; i<pNode->nChild && rc==SQLITE_OK; i++){
+ Fts5ExprNode *pChild = pNode->apChild[i];
+ rc = fts5ExprNodeFirst(pExpr, pNode->apChild[i]);
+ assert( pChild->bEof==0 || pChild->bEof==1 );
+ nEof += pChild->bEof;
+ }
+ pNode->iRowid = pNode->apChild[0]->iRowid;
+
+ switch( pNode->eType ){
+ case FTS5_AND:
+ if( nEof>0 ) fts5ExprSetEof(pNode);
+ break;
+
+ case FTS5_OR:
+ if( pNode->nChild==nEof ) fts5ExprSetEof(pNode);
+ break;
+
+ default:
+ assert( pNode->eType==FTS5_NOT );
+ pNode->bEof = pNode->apChild[0]->bEof;
+ break;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = fts5ExprNodeTest(pExpr, pNode);
+ }
+ return rc;
+}
+
+
+/*
+** Begin iterating through the set of documents in index pIdx matched by
+** the MATCH expression passed as the first argument. If the "bDesc"
+** parameter is passed a non-zero value, iteration is in descending rowid
+** order. Or, if it is zero, in ascending order.
+**
+** If iterating in ascending rowid order (bDesc==0), the first document
+** visited is that with the smallest rowid that is larger than or equal
+** to parameter iFirst. Or, if iterating in ascending order (bDesc==1),
+** then the first document visited must have a rowid smaller than or
+** equal to iFirst.
+**
+** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
+** is not considered an error if the query does not match any documents.
+*/
+int sqlite3Fts5ExprFirst(Fts5Expr *p, Fts5Index *pIdx, i64 iFirst, int bDesc){
+ Fts5ExprNode *pRoot = p->pRoot;
+ int rc; /* Return code */
+
+ p->pIndex = pIdx;
+ p->bDesc = bDesc;
+ rc = fts5ExprNodeFirst(p, pRoot);
+
+ /* If not at EOF but the current rowid occurs earlier than iFirst in
+ ** the iteration order, move to document iFirst or later. */
+ if( rc==SQLITE_OK
+ && 0==pRoot->bEof
+ && fts5RowidCmp(p, pRoot->iRowid, iFirst)<0
+ ){
+ rc = fts5ExprNodeNext(p, pRoot, 1, iFirst);
+ }
+
+ /* If the iterator is not at a real match, skip forward until it is. */
+ while( pRoot->bNomatch && rc==SQLITE_OK ){
+ assert( pRoot->bEof==0 );
+ rc = fts5ExprNodeNext(p, pRoot, 0, 0);
+ }
+ return rc;
+}
+
+/*
+** Move to the next document
+**
+** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
+** is not considered an error if the query does not match any documents.
+*/
+int sqlite3Fts5ExprNext(Fts5Expr *p, i64 iLast){
+ int rc;
+ Fts5ExprNode *pRoot = p->pRoot;
+ assert( pRoot->bEof==0 && pRoot->bNomatch==0 );
+ do {
+ rc = fts5ExprNodeNext(p, pRoot, 0, 0);
+ assert( pRoot->bNomatch==0 || (rc==SQLITE_OK && pRoot->bEof==0) );
+ }while( pRoot->bNomatch );
+ if( fts5RowidCmp(p, pRoot->iRowid, iLast)>0 ){
+ pRoot->bEof = 1;
+ }
+ return rc;
+}
+
+int sqlite3Fts5ExprEof(Fts5Expr *p){
+ return p->pRoot->bEof;
+}
+
+i64 sqlite3Fts5ExprRowid(Fts5Expr *p){
+ return p->pRoot->iRowid;
+}
+
+static int fts5ParseStringFromToken(Fts5Token *pToken, char **pz){
+ int rc = SQLITE_OK;
+ *pz = sqlite3Fts5Strndup(&rc, pToken->p, pToken->n);
+ return rc;
+}
+
+/*
+** Free the phrase object passed as the only argument.
+*/
+static void fts5ExprPhraseFree(Fts5ExprPhrase *pPhrase){
+ if( pPhrase ){
+ int i;
+ for(i=0; i<pPhrase->nTerm; i++){
+ Fts5ExprTerm *pSyn;
+ Fts5ExprTerm *pNext;
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
+ sqlite3_free(pTerm->zTerm);
+ sqlite3Fts5IterClose(pTerm->pIter);
+ for(pSyn=pTerm->pSynonym; pSyn; pSyn=pNext){
+ pNext = pSyn->pSynonym;
+ sqlite3Fts5IterClose(pSyn->pIter);
+ fts5BufferFree((Fts5Buffer*)&pSyn[1]);
+ sqlite3_free(pSyn);
+ }
+ }
+ if( pPhrase->poslist.nSpace>0 ) fts5BufferFree(&pPhrase->poslist);
+ sqlite3_free(pPhrase);
+ }
+}
+
+/*
+** Set the "bFirst" flag on the first token of the phrase passed as the
+** only argument.
+*/
+void sqlite3Fts5ParseSetCaret(Fts5ExprPhrase *pPhrase){
+ if( pPhrase && pPhrase->nTerm ){
+ pPhrase->aTerm[0].bFirst = 1;
+ }
+}
+
+/*
+** If argument pNear is NULL, then a new Fts5ExprNearset object is allocated
+** and populated with pPhrase. Or, if pNear is not NULL, phrase pPhrase is
+** appended to it and the results returned.
+**
+** If an OOM error occurs, both the pNear and pPhrase objects are freed and
+** NULL returned.
+*/
+Fts5ExprNearset *sqlite3Fts5ParseNearset(
+ Fts5Parse *pParse, /* Parse context */
+ Fts5ExprNearset *pNear, /* Existing nearset, or NULL */
+ Fts5ExprPhrase *pPhrase /* Recently parsed phrase */
+){
+ const int SZALLOC = 8;
+ Fts5ExprNearset *pRet = 0;
+
+ if( pParse->rc==SQLITE_OK ){
+ if( pPhrase==0 ){
+ return pNear;
+ }
+ if( pNear==0 ){
+ sqlite3_int64 nByte;
+ nByte = sizeof(Fts5ExprNearset) + SZALLOC * sizeof(Fts5ExprPhrase*);
+ pRet = sqlite3_malloc64(nByte);
+ if( pRet==0 ){
+ pParse->rc = SQLITE_NOMEM;
+ }else{
+ memset(pRet, 0, (size_t)nByte);
+ }
+ }else if( (pNear->nPhrase % SZALLOC)==0 ){
+ int nNew = pNear->nPhrase + SZALLOC;
+ sqlite3_int64 nByte;
+
+ nByte = sizeof(Fts5ExprNearset) + nNew * sizeof(Fts5ExprPhrase*);
+ pRet = (Fts5ExprNearset*)sqlite3_realloc64(pNear, nByte);
+ if( pRet==0 ){
+ pParse->rc = SQLITE_NOMEM;
+ }
+ }else{
+ pRet = pNear;
+ }
+ }
+
+ if( pRet==0 ){
+ assert( pParse->rc!=SQLITE_OK );
+ sqlite3Fts5ParseNearsetFree(pNear);
+ sqlite3Fts5ParsePhraseFree(pPhrase);
+ }else{
+ if( pRet->nPhrase>0 ){
+ Fts5ExprPhrase *pLast = pRet->apPhrase[pRet->nPhrase-1];
+ assert( pParse!=0 );
+ assert( pParse->apPhrase!=0 );
+ assert( pParse->nPhrase>=2 );
+ assert( pLast==pParse->apPhrase[pParse->nPhrase-2] );
+ if( pPhrase->nTerm==0 ){
+ fts5ExprPhraseFree(pPhrase);
+ pRet->nPhrase--;
+ pParse->nPhrase--;
+ pPhrase = pLast;
+ }else if( pLast->nTerm==0 ){
+ fts5ExprPhraseFree(pLast);
+ pParse->apPhrase[pParse->nPhrase-2] = pPhrase;
+ pParse->nPhrase--;
+ pRet->nPhrase--;
+ }
+ }
+ pRet->apPhrase[pRet->nPhrase++] = pPhrase;
+ }
+ return pRet;
+}
+
+typedef struct TokenCtx TokenCtx;
+struct TokenCtx {
+ Fts5ExprPhrase *pPhrase;
+ int rc;
+};
+
+/*
+** Callback for tokenizing terms used by ParseTerm().
+*/
+static int fts5ParseTokenize(
+ void *pContext, /* Pointer to Fts5InsertCtx object */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iUnused1, /* Start offset of token */
+ int iUnused2 /* End offset of token */
+){
+ int rc = SQLITE_OK;
+ const int SZALLOC = 8;
+ TokenCtx *pCtx = (TokenCtx*)pContext;
+ Fts5ExprPhrase *pPhrase = pCtx->pPhrase;
+
+ UNUSED_PARAM2(iUnused1, iUnused2);
+
+ /* If an error has already occurred, this is a no-op */
+ if( pCtx->rc!=SQLITE_OK ) return pCtx->rc;
+ if( nToken>FTS5_MAX_TOKEN_SIZE ) nToken = FTS5_MAX_TOKEN_SIZE;
+
+ if( pPhrase && pPhrase->nTerm>0 && (tflags & FTS5_TOKEN_COLOCATED) ){
+ Fts5ExprTerm *pSyn;
+ sqlite3_int64 nByte = sizeof(Fts5ExprTerm) + sizeof(Fts5Buffer) + nToken+1;
+ pSyn = (Fts5ExprTerm*)sqlite3_malloc64(nByte);
+ if( pSyn==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pSyn, 0, (size_t)nByte);
+ pSyn->zTerm = ((char*)pSyn) + sizeof(Fts5ExprTerm) + sizeof(Fts5Buffer);
+ memcpy(pSyn->zTerm, pToken, nToken);
+ pSyn->pSynonym = pPhrase->aTerm[pPhrase->nTerm-1].pSynonym;
+ pPhrase->aTerm[pPhrase->nTerm-1].pSynonym = pSyn;
+ }
+ }else{
+ Fts5ExprTerm *pTerm;
+ if( pPhrase==0 || (pPhrase->nTerm % SZALLOC)==0 ){
+ Fts5ExprPhrase *pNew;
+ int nNew = SZALLOC + (pPhrase ? pPhrase->nTerm : 0);
+
+ pNew = (Fts5ExprPhrase*)sqlite3_realloc64(pPhrase,
+ sizeof(Fts5ExprPhrase) + sizeof(Fts5ExprTerm) * nNew
+ );
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ if( pPhrase==0 ) memset(pNew, 0, sizeof(Fts5ExprPhrase));
+ pCtx->pPhrase = pPhrase = pNew;
+ pNew->nTerm = nNew - SZALLOC;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pTerm = &pPhrase->aTerm[pPhrase->nTerm++];
+ memset(pTerm, 0, sizeof(Fts5ExprTerm));
+ pTerm->zTerm = sqlite3Fts5Strndup(&rc, pToken, nToken);
+ }
+ }
+
+ pCtx->rc = rc;
+ return rc;
+}
+
+
+/*
+** Free the phrase object passed as the only argument.
+*/
+void sqlite3Fts5ParsePhraseFree(Fts5ExprPhrase *pPhrase){
+ fts5ExprPhraseFree(pPhrase);
+}
+
+/*
+** Free the phrase object passed as the second argument.
+*/
+void sqlite3Fts5ParseNearsetFree(Fts5ExprNearset *pNear){
+ if( pNear ){
+ int i;
+ for(i=0; i<pNear->nPhrase; i++){
+ fts5ExprPhraseFree(pNear->apPhrase[i]);
+ }
+ sqlite3_free(pNear->pColset);
+ sqlite3_free(pNear);
+ }
+}
+
+void sqlite3Fts5ParseFinished(Fts5Parse *pParse, Fts5ExprNode *p){
+ assert( pParse->pExpr==0 );
+ pParse->pExpr = p;
+}
+
+static int parseGrowPhraseArray(Fts5Parse *pParse){
+ if( (pParse->nPhrase % 8)==0 ){
+ sqlite3_int64 nByte = sizeof(Fts5ExprPhrase*) * (pParse->nPhrase + 8);
+ Fts5ExprPhrase **apNew;
+ apNew = (Fts5ExprPhrase**)sqlite3_realloc64(pParse->apPhrase, nByte);
+ if( apNew==0 ){
+ pParse->rc = SQLITE_NOMEM;
+ return SQLITE_NOMEM;
+ }
+ pParse->apPhrase = apNew;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** This function is called by the parser to process a string token. The
+** string may or may not be quoted. In any case it is tokenized and a
+** phrase object consisting of all tokens returned.
+*/
+Fts5ExprPhrase *sqlite3Fts5ParseTerm(
+ Fts5Parse *pParse, /* Parse context */
+ Fts5ExprPhrase *pAppend, /* Phrase to append to */
+ Fts5Token *pToken, /* String to tokenize */
+ int bPrefix /* True if there is a trailing "*" */
+){
+ Fts5Config *pConfig = pParse->pConfig;
+ TokenCtx sCtx; /* Context object passed to callback */
+ int rc; /* Tokenize return code */
+ char *z = 0;
+
+ memset(&sCtx, 0, sizeof(TokenCtx));
+ sCtx.pPhrase = pAppend;
+
+ rc = fts5ParseStringFromToken(pToken, &z);
+ if( rc==SQLITE_OK ){
+ int flags = FTS5_TOKENIZE_QUERY | (bPrefix ? FTS5_TOKENIZE_PREFIX : 0);
+ int n;
+ sqlite3Fts5Dequote(z);
+ n = (int)strlen(z);
+ rc = sqlite3Fts5Tokenize(pConfig, flags, z, n, &sCtx, fts5ParseTokenize);
+ }
+ sqlite3_free(z);
+ if( rc || (rc = sCtx.rc) ){
+ pParse->rc = rc;
+ fts5ExprPhraseFree(sCtx.pPhrase);
+ sCtx.pPhrase = 0;
+ }else{
+
+ if( pAppend==0 ){
+ if( parseGrowPhraseArray(pParse) ){
+ fts5ExprPhraseFree(sCtx.pPhrase);
+ return 0;
+ }
+ pParse->nPhrase++;
+ }
+
+ if( sCtx.pPhrase==0 ){
+ /* This happens when parsing a token or quoted phrase that contains
+ ** no token characters at all. (e.g ... MATCH '""'). */
+ sCtx.pPhrase = sqlite3Fts5MallocZero(&pParse->rc, sizeof(Fts5ExprPhrase));
+ }else if( sCtx.pPhrase->nTerm ){
+ sCtx.pPhrase->aTerm[sCtx.pPhrase->nTerm-1].bPrefix = (u8)bPrefix;
+ }
+ pParse->apPhrase[pParse->nPhrase-1] = sCtx.pPhrase;
+ }
+
+ return sCtx.pPhrase;
+}
+
+/*
+** Create a new FTS5 expression by cloning phrase iPhrase of the
+** expression passed as the second argument.
+*/
+int sqlite3Fts5ExprClonePhrase(
+ Fts5Expr *pExpr,
+ int iPhrase,
+ Fts5Expr **ppNew
+){
+ int rc = SQLITE_OK; /* Return code */
+ Fts5ExprPhrase *pOrig; /* The phrase extracted from pExpr */
+ Fts5Expr *pNew = 0; /* Expression to return via *ppNew */
+ TokenCtx sCtx = {0,0}; /* Context object for fts5ParseTokenize */
+
+ pOrig = pExpr->apExprPhrase[iPhrase];
+ pNew = (Fts5Expr*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Expr));
+ if( rc==SQLITE_OK ){
+ pNew->apExprPhrase = (Fts5ExprPhrase**)sqlite3Fts5MallocZero(&rc,
+ sizeof(Fts5ExprPhrase*));
+ }
+ if( rc==SQLITE_OK ){
+ pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&rc,
+ sizeof(Fts5ExprNode));
+ }
+ if( rc==SQLITE_OK ){
+ pNew->pRoot->pNear = (Fts5ExprNearset*)sqlite3Fts5MallocZero(&rc,
+ sizeof(Fts5ExprNearset) + sizeof(Fts5ExprPhrase*));
+ }
+ if( rc==SQLITE_OK ){
+ Fts5Colset *pColsetOrig = pOrig->pNode->pNear->pColset;
+ if( pColsetOrig ){
+ sqlite3_int64 nByte;
+ Fts5Colset *pColset;
+ nByte = sizeof(Fts5Colset) + (pColsetOrig->nCol-1) * sizeof(int);
+ pColset = (Fts5Colset*)sqlite3Fts5MallocZero(&rc, nByte);
+ if( pColset ){
+ memcpy(pColset, pColsetOrig, (size_t)nByte);
+ }
+ pNew->pRoot->pNear->pColset = pColset;
+ }
+ }
+
+ if( pOrig->nTerm ){
+ int i; /* Used to iterate through phrase terms */
+ for(i=0; rc==SQLITE_OK && i<pOrig->nTerm; i++){
+ int tflags = 0;
+ Fts5ExprTerm *p;
+ for(p=&pOrig->aTerm[i]; p && rc==SQLITE_OK; p=p->pSynonym){
+ const char *zTerm = p->zTerm;
+ rc = fts5ParseTokenize((void*)&sCtx, tflags, zTerm, (int)strlen(zTerm),
+ 0, 0);
+ tflags = FTS5_TOKEN_COLOCATED;
+ }
+ if( rc==SQLITE_OK ){
+ sCtx.pPhrase->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix;
+ sCtx.pPhrase->aTerm[i].bFirst = pOrig->aTerm[i].bFirst;
+ }
+ }
+ }else{
+ /* This happens when parsing a token or quoted phrase that contains
+ ** no token characters at all. (e.g ... MATCH '""'). */
+ sCtx.pPhrase = sqlite3Fts5MallocZero(&rc, sizeof(Fts5ExprPhrase));
+ }
+
+ if( rc==SQLITE_OK && ALWAYS(sCtx.pPhrase) ){
+ /* All the allocations succeeded. Put the expression object together. */
+ pNew->pIndex = pExpr->pIndex;
+ pNew->pConfig = pExpr->pConfig;
+ pNew->nPhrase = 1;
+ pNew->apExprPhrase[0] = sCtx.pPhrase;
+ pNew->pRoot->pNear->apPhrase[0] = sCtx.pPhrase;
+ pNew->pRoot->pNear->nPhrase = 1;
+ sCtx.pPhrase->pNode = pNew->pRoot;
+
+ if( pOrig->nTerm==1
+ && pOrig->aTerm[0].pSynonym==0
+ && pOrig->aTerm[0].bFirst==0
+ ){
+ pNew->pRoot->eType = FTS5_TERM;
+ pNew->pRoot->xNext = fts5ExprNodeNext_TERM;
+ }else{
+ pNew->pRoot->eType = FTS5_STRING;
+ pNew->pRoot->xNext = fts5ExprNodeNext_STRING;
+ }
+ }else{
+ sqlite3Fts5ExprFree(pNew);
+ fts5ExprPhraseFree(sCtx.pPhrase);
+ pNew = 0;
+ }
+
+ *ppNew = pNew;
+ return rc;
+}
+
+
+/*
+** Token pTok has appeared in a MATCH expression where the NEAR operator
+** is expected. If token pTok does not contain "NEAR", store an error
+** in the pParse object.
+*/
+void sqlite3Fts5ParseNear(Fts5Parse *pParse, Fts5Token *pTok){
+ if( pTok->n!=4 || memcmp("NEAR", pTok->p, 4) ){
+ sqlite3Fts5ParseError(
+ pParse, "fts5: syntax error near \"%.*s\"", pTok->n, pTok->p
+ );
+ }
+}
+
+void sqlite3Fts5ParseSetDistance(
+ Fts5Parse *pParse,
+ Fts5ExprNearset *pNear,
+ Fts5Token *p
+){
+ if( pNear ){
+ int nNear = 0;
+ int i;
+ if( p->n ){
+ for(i=0; i<p->n; i++){
+ char c = (char)p->p[i];
+ if( c<'0' || c>'9' ){
+ sqlite3Fts5ParseError(
+ pParse, "expected integer, got \"%.*s\"", p->n, p->p
+ );
+ return;
+ }
+ nNear = nNear * 10 + (p->p[i] - '0');
+ }
+ }else{
+ nNear = FTS5_DEFAULT_NEARDIST;
+ }
+ pNear->nNear = nNear;
+ }
+}
+
+/*
+** The second argument passed to this function may be NULL, or it may be
+** an existing Fts5Colset object. This function returns a pointer to
+** a new colset object containing the contents of (p) with new value column
+** number iCol appended.
+**
+** If an OOM error occurs, store an error code in pParse and return NULL.
+** The old colset object (if any) is not freed in this case.
+*/
+static Fts5Colset *fts5ParseColset(
+ Fts5Parse *pParse, /* Store SQLITE_NOMEM here if required */
+ Fts5Colset *p, /* Existing colset object */
+ int iCol /* New column to add to colset object */
+){
+ int nCol = p ? p->nCol : 0; /* Num. columns already in colset object */
+ Fts5Colset *pNew; /* New colset object to return */
+
+ assert( pParse->rc==SQLITE_OK );
+ assert( iCol>=0 && iCol<pParse->pConfig->nCol );
+
+ pNew = sqlite3_realloc64(p, sizeof(Fts5Colset) + sizeof(int)*nCol);
+ if( pNew==0 ){
+ pParse->rc = SQLITE_NOMEM;
+ }else{
+ int *aiCol = pNew->aiCol;
+ int i, j;
+ for(i=0; i<nCol; i++){
+ if( aiCol[i]==iCol ) return pNew;
+ if( aiCol[i]>iCol ) break;
+ }
+ for(j=nCol; j>i; j--){
+ aiCol[j] = aiCol[j-1];
+ }
+ aiCol[i] = iCol;
+ pNew->nCol = nCol+1;
+
+#ifndef NDEBUG
+ /* Check that the array is in order and contains no duplicate entries. */
+ for(i=1; i<pNew->nCol; i++) assert( pNew->aiCol[i]>pNew->aiCol[i-1] );
+#endif
+ }
+
+ return pNew;
+}
+
+/*
+** Allocate and return an Fts5Colset object specifying the inverse of
+** the colset passed as the second argument. Free the colset passed
+** as the second argument before returning.
+*/
+Fts5Colset *sqlite3Fts5ParseColsetInvert(Fts5Parse *pParse, Fts5Colset *p){
+ Fts5Colset *pRet;
+ int nCol = pParse->pConfig->nCol;
+
+ pRet = (Fts5Colset*)sqlite3Fts5MallocZero(&pParse->rc,
+ sizeof(Fts5Colset) + sizeof(int)*nCol
+ );
+ if( pRet ){
+ int i;
+ int iOld = 0;
+ for(i=0; i<nCol; i++){
+ if( iOld>=p->nCol || p->aiCol[iOld]!=i ){
+ pRet->aiCol[pRet->nCol++] = i;
+ }else{
+ iOld++;
+ }
+ }
+ }
+
+ sqlite3_free(p);
+ return pRet;
+}
+
+Fts5Colset *sqlite3Fts5ParseColset(
+ Fts5Parse *pParse, /* Store SQLITE_NOMEM here if required */
+ Fts5Colset *pColset, /* Existing colset object */
+ Fts5Token *p
+){
+ Fts5Colset *pRet = 0;
+ int iCol;
+ char *z; /* Dequoted copy of token p */
+
+ z = sqlite3Fts5Strndup(&pParse->rc, p->p, p->n);
+ if( pParse->rc==SQLITE_OK ){
+ Fts5Config *pConfig = pParse->pConfig;
+ sqlite3Fts5Dequote(z);
+ for(iCol=0; iCol<pConfig->nCol; iCol++){
+ if( 0==sqlite3_stricmp(pConfig->azCol[iCol], z) ) break;
+ }
+ if( iCol==pConfig->nCol ){
+ sqlite3Fts5ParseError(pParse, "no such column: %s", z);
+ }else{
+ pRet = fts5ParseColset(pParse, pColset, iCol);
+ }
+ sqlite3_free(z);
+ }
+
+ if( pRet==0 ){
+ assert( pParse->rc!=SQLITE_OK );
+ sqlite3_free(pColset);
+ }
+
+ return pRet;
+}
+
+/*
+** If argument pOrig is NULL, or if (*pRc) is set to anything other than
+** SQLITE_OK when this function is called, NULL is returned.
+**
+** Otherwise, a copy of (*pOrig) is made into memory obtained from
+** sqlite3Fts5MallocZero() and a pointer to it returned. If the allocation
+** fails, (*pRc) is set to SQLITE_NOMEM and NULL is returned.
+*/
+static Fts5Colset *fts5CloneColset(int *pRc, Fts5Colset *pOrig){
+ Fts5Colset *pRet;
+ if( pOrig ){
+ sqlite3_int64 nByte = sizeof(Fts5Colset) + (pOrig->nCol-1) * sizeof(int);
+ pRet = (Fts5Colset*)sqlite3Fts5MallocZero(pRc, nByte);
+ if( pRet ){
+ memcpy(pRet, pOrig, (size_t)nByte);
+ }
+ }else{
+ pRet = 0;
+ }
+ return pRet;
+}
+
+/*
+** Remove from colset pColset any columns that are not also in colset pMerge.
+*/
+static void fts5MergeColset(Fts5Colset *pColset, Fts5Colset *pMerge){
+ int iIn = 0; /* Next input in pColset */
+ int iMerge = 0; /* Next input in pMerge */
+ int iOut = 0; /* Next output slot in pColset */
+
+ while( iIn<pColset->nCol && iMerge<pMerge->nCol ){
+ int iDiff = pColset->aiCol[iIn] - pMerge->aiCol[iMerge];
+ if( iDiff==0 ){
+ pColset->aiCol[iOut++] = pMerge->aiCol[iMerge];
+ iMerge++;
+ iIn++;
+ }else if( iDiff>0 ){
+ iMerge++;
+ }else{
+ iIn++;
+ }
+ }
+ pColset->nCol = iOut;
+}
+
+/*
+** Recursively apply colset pColset to expression node pNode and all of
+** its decendents. If (*ppFree) is not NULL, it contains a spare copy
+** of pColset. This function may use the spare copy and set (*ppFree) to
+** zero, or it may create copies of pColset using fts5CloneColset().
+*/
+static void fts5ParseSetColset(
+ Fts5Parse *pParse,
+ Fts5ExprNode *pNode,
+ Fts5Colset *pColset,
+ Fts5Colset **ppFree
+){
+ if( pParse->rc==SQLITE_OK ){
+ assert( pNode->eType==FTS5_TERM || pNode->eType==FTS5_STRING
+ || pNode->eType==FTS5_AND || pNode->eType==FTS5_OR
+ || pNode->eType==FTS5_NOT || pNode->eType==FTS5_EOF
+ );
+ if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ if( pNear->pColset ){
+ fts5MergeColset(pNear->pColset, pColset);
+ if( pNear->pColset->nCol==0 ){
+ pNode->eType = FTS5_EOF;
+ pNode->xNext = 0;
+ }
+ }else if( *ppFree ){
+ pNear->pColset = pColset;
+ *ppFree = 0;
+ }else{
+ pNear->pColset = fts5CloneColset(&pParse->rc, pColset);
+ }
+ }else{
+ int i;
+ assert( pNode->eType!=FTS5_EOF || pNode->nChild==0 );
+ for(i=0; i<pNode->nChild; i++){
+ fts5ParseSetColset(pParse, pNode->apChild[i], pColset, ppFree);
+ }
+ }
+ }
+}
+
+/*
+** Apply colset pColset to expression node pExpr and all of its descendents.
+*/
+void sqlite3Fts5ParseSetColset(
+ Fts5Parse *pParse,
+ Fts5ExprNode *pExpr,
+ Fts5Colset *pColset
+){
+ Fts5Colset *pFree = pColset;
+ if( pParse->pConfig->eDetail==FTS5_DETAIL_NONE ){
+ sqlite3Fts5ParseError(pParse,
+ "fts5: column queries are not supported (detail=none)"
+ );
+ }else{
+ fts5ParseSetColset(pParse, pExpr, pColset, &pFree);
+ }
+ sqlite3_free(pFree);
+}
+
+static void fts5ExprAssignXNext(Fts5ExprNode *pNode){
+ switch( pNode->eType ){
+ case FTS5_STRING: {
+ Fts5ExprNearset *pNear = pNode->pNear;
+ if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1
+ && pNear->apPhrase[0]->aTerm[0].pSynonym==0
+ && pNear->apPhrase[0]->aTerm[0].bFirst==0
+ ){
+ pNode->eType = FTS5_TERM;
+ pNode->xNext = fts5ExprNodeNext_TERM;
+ }else{
+ pNode->xNext = fts5ExprNodeNext_STRING;
+ }
+ break;
+ };
+
+ case FTS5_OR: {
+ pNode->xNext = fts5ExprNodeNext_OR;
+ break;
+ };
+
+ case FTS5_AND: {
+ pNode->xNext = fts5ExprNodeNext_AND;
+ break;
+ };
+
+ default: assert( pNode->eType==FTS5_NOT ); {
+ pNode->xNext = fts5ExprNodeNext_NOT;
+ break;
+ };
+ }
+}
+
+static void fts5ExprAddChildren(Fts5ExprNode *p, Fts5ExprNode *pSub){
+ if( p->eType!=FTS5_NOT && pSub->eType==p->eType ){
+ int nByte = sizeof(Fts5ExprNode*) * pSub->nChild;
+ memcpy(&p->apChild[p->nChild], pSub->apChild, nByte);
+ p->nChild += pSub->nChild;
+ sqlite3_free(pSub);
+ }else{
+ p->apChild[p->nChild++] = pSub;
+ }
+}
+
+/*
+** This function is used when parsing LIKE or GLOB patterns against
+** trigram indexes that specify either detail=column or detail=none.
+** It converts a phrase:
+**
+** abc + def + ghi
+**
+** into an AND tree:
+**
+** abc AND def AND ghi
+*/
+static Fts5ExprNode *fts5ParsePhraseToAnd(
+ Fts5Parse *pParse,
+ Fts5ExprNearset *pNear
+){
+ int nTerm = pNear->apPhrase[0]->nTerm;
+ int ii;
+ int nByte;
+ Fts5ExprNode *pRet;
+
+ assert( pNear->nPhrase==1 );
+ assert( pParse->bPhraseToAnd );
+
+ nByte = sizeof(Fts5ExprNode) + nTerm*sizeof(Fts5ExprNode*);
+ pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte);
+ if( pRet ){
+ pRet->eType = FTS5_AND;
+ pRet->nChild = nTerm;
+ fts5ExprAssignXNext(pRet);
+ pParse->nPhrase--;
+ for(ii=0; ii<nTerm; ii++){
+ Fts5ExprPhrase *pPhrase = (Fts5ExprPhrase*)sqlite3Fts5MallocZero(
+ &pParse->rc, sizeof(Fts5ExprPhrase)
+ );
+ if( pPhrase ){
+ if( parseGrowPhraseArray(pParse) ){
+ fts5ExprPhraseFree(pPhrase);
+ }else{
+ pParse->apPhrase[pParse->nPhrase++] = pPhrase;
+ pPhrase->nTerm = 1;
+ pPhrase->aTerm[0].zTerm = sqlite3Fts5Strndup(
+ &pParse->rc, pNear->apPhrase[0]->aTerm[ii].zTerm, -1
+ );
+ pRet->apChild[ii] = sqlite3Fts5ParseNode(pParse, FTS5_STRING,
+ 0, 0, sqlite3Fts5ParseNearset(pParse, 0, pPhrase)
+ );
+ }
+ }
+ }
+
+ if( pParse->rc ){
+ sqlite3Fts5ParseNodeFree(pRet);
+ pRet = 0;
+ }else{
+ sqlite3Fts5ParseNearsetFree(pNear);
+ }
+ }
+
+ return pRet;
+}
+
+/*
+** Allocate and return a new expression object. If anything goes wrong (i.e.
+** OOM error), leave an error code in pParse and return NULL.
+*/
+Fts5ExprNode *sqlite3Fts5ParseNode(
+ Fts5Parse *pParse, /* Parse context */
+ int eType, /* FTS5_STRING, AND, OR or NOT */
+ Fts5ExprNode *pLeft, /* Left hand child expression */
+ Fts5ExprNode *pRight, /* Right hand child expression */
+ Fts5ExprNearset *pNear /* For STRING expressions, the near cluster */
+){
+ Fts5ExprNode *pRet = 0;
+
+ if( pParse->rc==SQLITE_OK ){
+ int nChild = 0; /* Number of children of returned node */
+ sqlite3_int64 nByte; /* Bytes of space to allocate for this node */
+
+ assert( (eType!=FTS5_STRING && !pNear)
+ || (eType==FTS5_STRING && !pLeft && !pRight)
+ );
+ if( eType==FTS5_STRING && pNear==0 ) return 0;
+ if( eType!=FTS5_STRING && pLeft==0 ) return pRight;
+ if( eType!=FTS5_STRING && pRight==0 ) return pLeft;
+
+ if( eType==FTS5_STRING
+ && pParse->bPhraseToAnd
+ && pNear->apPhrase[0]->nTerm>1
+ ){
+ pRet = fts5ParsePhraseToAnd(pParse, pNear);
+ }else{
+ if( eType==FTS5_NOT ){
+ nChild = 2;
+ }else if( eType==FTS5_AND || eType==FTS5_OR ){
+ nChild = 2;
+ if( pLeft->eType==eType ) nChild += pLeft->nChild-1;
+ if( pRight->eType==eType ) nChild += pRight->nChild-1;
+ }
+
+ nByte = sizeof(Fts5ExprNode) + sizeof(Fts5ExprNode*)*(nChild-1);
+ pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte);
+
+ if( pRet ){
+ pRet->eType = eType;
+ pRet->pNear = pNear;
+ fts5ExprAssignXNext(pRet);
+ if( eType==FTS5_STRING ){
+ int iPhrase;
+ for(iPhrase=0; iPhrase<pNear->nPhrase; iPhrase++){
+ pNear->apPhrase[iPhrase]->pNode = pRet;
+ if( pNear->apPhrase[iPhrase]->nTerm==0 ){
+ pRet->xNext = 0;
+ pRet->eType = FTS5_EOF;
+ }
+ }
+
+ if( pParse->pConfig->eDetail!=FTS5_DETAIL_FULL ){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[0];
+ if( pNear->nPhrase!=1
+ || pPhrase->nTerm>1
+ || (pPhrase->nTerm>0 && pPhrase->aTerm[0].bFirst)
+ ){
+ sqlite3Fts5ParseError(pParse,
+ "fts5: %s queries are not supported (detail!=full)",
+ pNear->nPhrase==1 ? "phrase": "NEAR"
+ );
+ sqlite3_free(pRet);
+ pRet = 0;
+ }
+ }
+ }else{
+ fts5ExprAddChildren(pRet, pLeft);
+ fts5ExprAddChildren(pRet, pRight);
+ }
+ }
+ }
+ }
+
+ if( pRet==0 ){
+ assert( pParse->rc!=SQLITE_OK );
+ sqlite3Fts5ParseNodeFree(pLeft);
+ sqlite3Fts5ParseNodeFree(pRight);
+ sqlite3Fts5ParseNearsetFree(pNear);
+ }
+ return pRet;
+}
+
+Fts5ExprNode *sqlite3Fts5ParseImplicitAnd(
+ Fts5Parse *pParse, /* Parse context */
+ Fts5ExprNode *pLeft, /* Left hand child expression */
+ Fts5ExprNode *pRight /* Right hand child expression */
+){
+ Fts5ExprNode *pRet = 0;
+ Fts5ExprNode *pPrev;
+
+ if( pParse->rc ){
+ sqlite3Fts5ParseNodeFree(pLeft);
+ sqlite3Fts5ParseNodeFree(pRight);
+ }else{
+
+ assert( pLeft->eType==FTS5_STRING
+ || pLeft->eType==FTS5_TERM
+ || pLeft->eType==FTS5_EOF
+ || pLeft->eType==FTS5_AND
+ );
+ assert( pRight->eType==FTS5_STRING
+ || pRight->eType==FTS5_TERM
+ || pRight->eType==FTS5_EOF
+ );
+
+ if( pLeft->eType==FTS5_AND ){
+ pPrev = pLeft->apChild[pLeft->nChild-1];
+ }else{
+ pPrev = pLeft;
+ }
+ assert( pPrev->eType==FTS5_STRING
+ || pPrev->eType==FTS5_TERM
+ || pPrev->eType==FTS5_EOF
+ );
+
+ if( pRight->eType==FTS5_EOF ){
+ assert( pParse->apPhrase[pParse->nPhrase-1]==pRight->pNear->apPhrase[0] );
+ sqlite3Fts5ParseNodeFree(pRight);
+ pRet = pLeft;
+ pParse->nPhrase--;
+ }
+ else if( pPrev->eType==FTS5_EOF ){
+ Fts5ExprPhrase **ap;
+
+ if( pPrev==pLeft ){
+ pRet = pRight;
+ }else{
+ pLeft->apChild[pLeft->nChild-1] = pRight;
+ pRet = pLeft;
+ }
+
+ ap = &pParse->apPhrase[pParse->nPhrase-1-pRight->pNear->nPhrase];
+ assert( ap[0]==pPrev->pNear->apPhrase[0] );
+ memmove(ap, &ap[1], sizeof(Fts5ExprPhrase*)*pRight->pNear->nPhrase);
+ pParse->nPhrase--;
+
+ sqlite3Fts5ParseNodeFree(pPrev);
+ }
+ else{
+ pRet = sqlite3Fts5ParseNode(pParse, FTS5_AND, pLeft, pRight, 0);
+ }
+ }
+
+ return pRet;
+}
+
+#ifdef SQLITE_TEST
+static char *fts5ExprTermPrint(Fts5ExprTerm *pTerm){
+ sqlite3_int64 nByte = 0;
+ Fts5ExprTerm *p;
+ char *zQuoted;
+
+ /* Determine the maximum amount of space required. */
+ for(p=pTerm; p; p=p->pSynonym){
+ nByte += (int)strlen(pTerm->zTerm) * 2 + 3 + 2;
+ }
+ zQuoted = sqlite3_malloc64(nByte);
+
+ if( zQuoted ){
+ int i = 0;
+ for(p=pTerm; p; p=p->pSynonym){
+ char *zIn = p->zTerm;
+ zQuoted[i++] = '"';
+ while( *zIn ){
+ if( *zIn=='"' ) zQuoted[i++] = '"';
+ zQuoted[i++] = *zIn++;
+ }
+ zQuoted[i++] = '"';
+ if( p->pSynonym ) zQuoted[i++] = '|';
+ }
+ if( pTerm->bPrefix ){
+ zQuoted[i++] = ' ';
+ zQuoted[i++] = '*';
+ }
+ zQuoted[i++] = '\0';
+ }
+ return zQuoted;
+}
+
+static char *fts5PrintfAppend(char *zApp, const char *zFmt, ...){
+ char *zNew;
+ va_list ap;
+ va_start(ap, zFmt);
+ zNew = sqlite3_vmprintf(zFmt, ap);
+ va_end(ap);
+ if( zApp && zNew ){
+ char *zNew2 = sqlite3_mprintf("%s%s", zApp, zNew);
+ sqlite3_free(zNew);
+ zNew = zNew2;
+ }
+ sqlite3_free(zApp);
+ return zNew;
+}
+
+/*
+** Compose a tcl-readable representation of expression pExpr. Return a
+** pointer to a buffer containing that representation. It is the
+** responsibility of the caller to at some point free the buffer using
+** sqlite3_free().
+*/
+static char *fts5ExprPrintTcl(
+ Fts5Config *pConfig,
+ const char *zNearsetCmd,
+ Fts5ExprNode *pExpr
+){
+ char *zRet = 0;
+ if( pExpr->eType==FTS5_STRING || pExpr->eType==FTS5_TERM ){
+ Fts5ExprNearset *pNear = pExpr->pNear;
+ int i;
+ int iTerm;
+
+ zRet = fts5PrintfAppend(zRet, "%s ", zNearsetCmd);
+ if( zRet==0 ) return 0;
+ if( pNear->pColset ){
+ int *aiCol = pNear->pColset->aiCol;
+ int nCol = pNear->pColset->nCol;
+ if( nCol==1 ){
+ zRet = fts5PrintfAppend(zRet, "-col %d ", aiCol[0]);
+ }else{
+ zRet = fts5PrintfAppend(zRet, "-col {%d", aiCol[0]);
+ for(i=1; i<pNear->pColset->nCol; i++){
+ zRet = fts5PrintfAppend(zRet, " %d", aiCol[i]);
+ }
+ zRet = fts5PrintfAppend(zRet, "} ");
+ }
+ if( zRet==0 ) return 0;
+ }
+
+ if( pNear->nPhrase>1 ){
+ zRet = fts5PrintfAppend(zRet, "-near %d ", pNear->nNear);
+ if( zRet==0 ) return 0;
+ }
+
+ zRet = fts5PrintfAppend(zRet, "--");
+ if( zRet==0 ) return 0;
+
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+
+ zRet = fts5PrintfAppend(zRet, " {");
+ for(iTerm=0; zRet && iTerm<pPhrase->nTerm; iTerm++){
+ char *zTerm = pPhrase->aTerm[iTerm].zTerm;
+ zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" ", zTerm);
+ if( pPhrase->aTerm[iTerm].bPrefix ){
+ zRet = fts5PrintfAppend(zRet, "*");
+ }
+ }
+
+ if( zRet ) zRet = fts5PrintfAppend(zRet, "}");
+ if( zRet==0 ) return 0;
+ }
+
+ }else{
+ char const *zOp = 0;
+ int i;
+ switch( pExpr->eType ){
+ case FTS5_AND: zOp = "AND"; break;
+ case FTS5_NOT: zOp = "NOT"; break;
+ default:
+ assert( pExpr->eType==FTS5_OR );
+ zOp = "OR";
+ break;
+ }
+
+ zRet = sqlite3_mprintf("%s", zOp);
+ for(i=0; zRet && i<pExpr->nChild; i++){
+ char *z = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->apChild[i]);
+ if( !z ){
+ sqlite3_free(zRet);
+ zRet = 0;
+ }else{
+ zRet = fts5PrintfAppend(zRet, " [%z]", z);
+ }
+ }
+ }
+
+ return zRet;
+}
+
+static char *fts5ExprPrint(Fts5Config *pConfig, Fts5ExprNode *pExpr){
+ char *zRet = 0;
+ if( pExpr->eType==0 ){
+ return sqlite3_mprintf("\"\"");
+ }else
+ if( pExpr->eType==FTS5_STRING || pExpr->eType==FTS5_TERM ){
+ Fts5ExprNearset *pNear = pExpr->pNear;
+ int i;
+ int iTerm;
+
+ if( pNear->pColset ){
+ int ii;
+ Fts5Colset *pColset = pNear->pColset;
+ if( pColset->nCol>1 ) zRet = fts5PrintfAppend(zRet, "{");
+ for(ii=0; ii<pColset->nCol; ii++){
+ zRet = fts5PrintfAppend(zRet, "%s%s",
+ pConfig->azCol[pColset->aiCol[ii]], ii==pColset->nCol-1 ? "" : " "
+ );
+ }
+ if( zRet ){
+ zRet = fts5PrintfAppend(zRet, "%s : ", pColset->nCol>1 ? "}" : "");
+ }
+ if( zRet==0 ) return 0;
+ }
+
+ if( pNear->nPhrase>1 ){
+ zRet = fts5PrintfAppend(zRet, "NEAR(");
+ if( zRet==0 ) return 0;
+ }
+
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ if( i!=0 ){
+ zRet = fts5PrintfAppend(zRet, " ");
+ if( zRet==0 ) return 0;
+ }
+ for(iTerm=0; iTerm<pPhrase->nTerm; iTerm++){
+ char *zTerm = fts5ExprTermPrint(&pPhrase->aTerm[iTerm]);
+ if( zTerm ){
+ zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" + ", zTerm);
+ sqlite3_free(zTerm);
+ }
+ if( zTerm==0 || zRet==0 ){
+ sqlite3_free(zRet);
+ return 0;
+ }
+ }
+ }
+
+ if( pNear->nPhrase>1 ){
+ zRet = fts5PrintfAppend(zRet, ", %d)", pNear->nNear);
+ if( zRet==0 ) return 0;
+ }
+
+ }else{
+ char const *zOp = 0;
+ int i;
+
+ switch( pExpr->eType ){
+ case FTS5_AND: zOp = " AND "; break;
+ case FTS5_NOT: zOp = " NOT "; break;
+ default:
+ assert( pExpr->eType==FTS5_OR );
+ zOp = " OR ";
+ break;
+ }
+
+ for(i=0; i<pExpr->nChild; i++){
+ char *z = fts5ExprPrint(pConfig, pExpr->apChild[i]);
+ if( z==0 ){
+ sqlite3_free(zRet);
+ zRet = 0;
+ }else{
+ int e = pExpr->apChild[i]->eType;
+ int b = (e!=FTS5_STRING && e!=FTS5_TERM && e!=FTS5_EOF);
+ zRet = fts5PrintfAppend(zRet, "%s%s%z%s",
+ (i==0 ? "" : zOp),
+ (b?"(":""), z, (b?")":"")
+ );
+ }
+ if( zRet==0 ) break;
+ }
+ }
+
+ return zRet;
+}
+
+/*
+** The implementation of user-defined scalar functions fts5_expr() (bTcl==0)
+** and fts5_expr_tcl() (bTcl!=0).
+*/
+static void fts5ExprFunction(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal, /* Function arguments */
+ int bTcl
+){
+ Fts5Global *pGlobal = (Fts5Global*)sqlite3_user_data(pCtx);
+ sqlite3 *db = sqlite3_context_db_handle(pCtx);
+ const char *zExpr = 0;
+ char *zErr = 0;
+ Fts5Expr *pExpr = 0;
+ int rc;
+ int i;
+
+ const char **azConfig; /* Array of arguments for Fts5Config */
+ const char *zNearsetCmd = "nearset";
+ int nConfig; /* Size of azConfig[] */
+ Fts5Config *pConfig = 0;
+ int iArg = 1;
+
+ if( nArg<1 ){
+ zErr = sqlite3_mprintf("wrong number of arguments to function %s",
+ bTcl ? "fts5_expr_tcl" : "fts5_expr"
+ );
+ sqlite3_result_error(pCtx, zErr, -1);
+ sqlite3_free(zErr);
+ return;
+ }
+
+ if( bTcl && nArg>1 ){
+ zNearsetCmd = (const char*)sqlite3_value_text(apVal[1]);
+ iArg = 2;
+ }
+
+ nConfig = 3 + (nArg-iArg);
+ azConfig = (const char**)sqlite3_malloc64(sizeof(char*) * nConfig);
+ if( azConfig==0 ){
+ sqlite3_result_error_nomem(pCtx);
+ return;
+ }
+ azConfig[0] = 0;
+ azConfig[1] = "main";
+ azConfig[2] = "tbl";
+ for(i=3; iArg<nArg; iArg++){
+ const char *z = (const char*)sqlite3_value_text(apVal[iArg]);
+ azConfig[i++] = (z ? z : "");
+ }
+
+ zExpr = (const char*)sqlite3_value_text(apVal[0]);
+ if( zExpr==0 ) zExpr = "";
+
+ rc = sqlite3Fts5ConfigParse(pGlobal, db, nConfig, azConfig, &pConfig, &zErr);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ExprNew(pConfig, 0, pConfig->nCol, zExpr, &pExpr, &zErr);
+ }
+ if( rc==SQLITE_OK ){
+ char *zText;
+ if( pExpr->pRoot->xNext==0 ){
+ zText = sqlite3_mprintf("");
+ }else if( bTcl ){
+ zText = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->pRoot);
+ }else{
+ zText = fts5ExprPrint(pConfig, pExpr->pRoot);
+ }
+ if( zText==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_result_text(pCtx, zText, -1, SQLITE_TRANSIENT);
+ sqlite3_free(zText);
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ if( zErr ){
+ sqlite3_result_error(pCtx, zErr, -1);
+ sqlite3_free(zErr);
+ }else{
+ sqlite3_result_error_code(pCtx, rc);
+ }
+ }
+ sqlite3_free((void *)azConfig);
+ sqlite3Fts5ConfigFree(pConfig);
+ sqlite3Fts5ExprFree(pExpr);
+}
+
+static void fts5ExprFunctionHr(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal /* Function arguments */
+){
+ fts5ExprFunction(pCtx, nArg, apVal, 0);
+}
+static void fts5ExprFunctionTcl(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal /* Function arguments */
+){
+ fts5ExprFunction(pCtx, nArg, apVal, 1);
+}
+
+/*
+** The implementation of an SQLite user-defined-function that accepts a
+** single integer as an argument. If the integer is an alpha-numeric
+** unicode code point, 1 is returned. Otherwise 0.
+*/
+static void fts5ExprIsAlnum(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal /* Function arguments */
+){
+ int iCode;
+ u8 aArr[32];
+ if( nArg!=1 ){
+ sqlite3_result_error(pCtx,
+ "wrong number of arguments to function fts5_isalnum", -1
+ );
+ return;
+ }
+ memset(aArr, 0, sizeof(aArr));
+ sqlite3Fts5UnicodeCatParse("L*", aArr);
+ sqlite3Fts5UnicodeCatParse("N*", aArr);
+ sqlite3Fts5UnicodeCatParse("Co", aArr);
+ iCode = sqlite3_value_int(apVal[0]);
+ sqlite3_result_int(pCtx, aArr[sqlite3Fts5UnicodeCategory((u32)iCode)]);
+}
+
+static void fts5ExprFold(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal /* Function arguments */
+){
+ if( nArg!=1 && nArg!=2 ){
+ sqlite3_result_error(pCtx,
+ "wrong number of arguments to function fts5_fold", -1
+ );
+ }else{
+ int iCode;
+ int bRemoveDiacritics = 0;
+ iCode = sqlite3_value_int(apVal[0]);
+ if( nArg==2 ) bRemoveDiacritics = sqlite3_value_int(apVal[1]);
+ sqlite3_result_int(pCtx, sqlite3Fts5UnicodeFold(iCode, bRemoveDiacritics));
+ }
+}
+#endif /* ifdef SQLITE_TEST */
+
+/*
+** This is called during initialization to register the fts5_expr() scalar
+** UDF with the SQLite handle passed as the only argument.
+*/
+int sqlite3Fts5ExprInit(Fts5Global *pGlobal, sqlite3 *db){
+#ifdef SQLITE_TEST
+ struct Fts5ExprFunc {
+ const char *z;
+ void (*x)(sqlite3_context*,int,sqlite3_value**);
+ } aFunc[] = {
+ { "fts5_expr", fts5ExprFunctionHr },
+ { "fts5_expr_tcl", fts5ExprFunctionTcl },
+ { "fts5_isalnum", fts5ExprIsAlnum },
+ { "fts5_fold", fts5ExprFold },
+ };
+ int i;
+ int rc = SQLITE_OK;
+ void *pCtx = (void*)pGlobal;
+
+ for(i=0; rc==SQLITE_OK && i<ArraySize(aFunc); i++){
+ struct Fts5ExprFunc *p = &aFunc[i];
+ rc = sqlite3_create_function(db, p->z, -1, SQLITE_UTF8, pCtx, p->x, 0, 0);
+ }
+#else
+ int rc = SQLITE_OK;
+ UNUSED_PARAM2(pGlobal,db);
+#endif
+
+ /* Avoid warnings indicating that sqlite3Fts5ParserTrace() and
+ ** sqlite3Fts5ParserFallback() are unused */
+#ifndef NDEBUG
+ (void)sqlite3Fts5ParserTrace;
+#endif
+ (void)sqlite3Fts5ParserFallback;
+
+ return rc;
+}
+
+/*
+** Return the number of phrases in expression pExpr.
+*/
+int sqlite3Fts5ExprPhraseCount(Fts5Expr *pExpr){
+ return (pExpr ? pExpr->nPhrase : 0);
+}
+
+/*
+** Return the number of terms in the iPhrase'th phrase in pExpr.
+*/
+int sqlite3Fts5ExprPhraseSize(Fts5Expr *pExpr, int iPhrase){
+ if( iPhrase<0 || iPhrase>=pExpr->nPhrase ) return 0;
+ return pExpr->apExprPhrase[iPhrase]->nTerm;
+}
+
+/*
+** This function is used to access the current position list for phrase
+** iPhrase.
+*/
+int sqlite3Fts5ExprPoslist(Fts5Expr *pExpr, int iPhrase, const u8 **pa){
+ int nRet;
+ Fts5ExprPhrase *pPhrase = pExpr->apExprPhrase[iPhrase];
+ Fts5ExprNode *pNode = pPhrase->pNode;
+ if( pNode->bEof==0 && pNode->iRowid==pExpr->pRoot->iRowid ){
+ *pa = pPhrase->poslist.p;
+ nRet = pPhrase->poslist.n;
+ }else{
+ *pa = 0;
+ nRet = 0;
+ }
+ return nRet;
+}
+
+struct Fts5PoslistPopulator {
+ Fts5PoslistWriter writer;
+ int bOk; /* True if ok to populate */
+ int bMiss;
+};
+
+/*
+** Clear the position lists associated with all phrases in the expression
+** passed as the first argument. Argument bLive is true if the expression
+** might be pointing to a real entry, otherwise it has just been reset.
+**
+** At present this function is only used for detail=col and detail=none
+** fts5 tables. This implies that all phrases must be at most 1 token
+** in size, as phrase matches are not supported without detail=full.
+*/
+Fts5PoslistPopulator *sqlite3Fts5ExprClearPoslists(Fts5Expr *pExpr, int bLive){
+ Fts5PoslistPopulator *pRet;
+ pRet = sqlite3_malloc64(sizeof(Fts5PoslistPopulator)*pExpr->nPhrase);
+ if( pRet ){
+ int i;
+ memset(pRet, 0, sizeof(Fts5PoslistPopulator)*pExpr->nPhrase);
+ for(i=0; i<pExpr->nPhrase; i++){
+ Fts5Buffer *pBuf = &pExpr->apExprPhrase[i]->poslist;
+ Fts5ExprNode *pNode = pExpr->apExprPhrase[i]->pNode;
+ assert( pExpr->apExprPhrase[i]->nTerm<=1 );
+ if( bLive &&
+ (pBuf->n==0 || pNode->iRowid!=pExpr->pRoot->iRowid || pNode->bEof)
+ ){
+ pRet[i].bMiss = 1;
+ }else{
+ pBuf->n = 0;
+ }
+ }
+ }
+ return pRet;
+}
+
+struct Fts5ExprCtx {
+ Fts5Expr *pExpr;
+ Fts5PoslistPopulator *aPopulator;
+ i64 iOff;
+};
+typedef struct Fts5ExprCtx Fts5ExprCtx;
+
+/*
+** TODO: Make this more efficient!
+*/
+static int fts5ExprColsetTest(Fts5Colset *pColset, int iCol){
+ int i;
+ for(i=0; i<pColset->nCol; i++){
+ if( pColset->aiCol[i]==iCol ) return 1;
+ }
+ return 0;
+}
+
+static int fts5ExprPopulatePoslistsCb(
+ void *pCtx, /* Copy of 2nd argument to xTokenize() */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Pointer to buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iUnused1, /* Byte offset of token within input text */
+ int iUnused2 /* Byte offset of end of token within input text */
+){
+ Fts5ExprCtx *p = (Fts5ExprCtx*)pCtx;
+ Fts5Expr *pExpr = p->pExpr;
+ int i;
+
+ UNUSED_PARAM2(iUnused1, iUnused2);
+
+ if( nToken>FTS5_MAX_TOKEN_SIZE ) nToken = FTS5_MAX_TOKEN_SIZE;
+ if( (tflags & FTS5_TOKEN_COLOCATED)==0 ) p->iOff++;
+ for(i=0; i<pExpr->nPhrase; i++){
+ Fts5ExprTerm *pTerm;
+ if( p->aPopulator[i].bOk==0 ) continue;
+ for(pTerm=&pExpr->apExprPhrase[i]->aTerm[0]; pTerm; pTerm=pTerm->pSynonym){
+ int nTerm = (int)strlen(pTerm->zTerm);
+ if( (nTerm==nToken || (nTerm<nToken && pTerm->bPrefix))
+ && memcmp(pTerm->zTerm, pToken, nTerm)==0
+ ){
+ int rc = sqlite3Fts5PoslistWriterAppend(
+ &pExpr->apExprPhrase[i]->poslist, &p->aPopulator[i].writer, p->iOff
+ );
+ if( rc ) return rc;
+ break;
+ }
+ }
+ }
+ return SQLITE_OK;
+}
+
+int sqlite3Fts5ExprPopulatePoslists(
+ Fts5Config *pConfig,
+ Fts5Expr *pExpr,
+ Fts5PoslistPopulator *aPopulator,
+ int iCol,
+ const char *z, int n
+){
+ int i;
+ Fts5ExprCtx sCtx;
+ sCtx.pExpr = pExpr;
+ sCtx.aPopulator = aPopulator;
+ sCtx.iOff = (((i64)iCol) << 32) - 1;
+
+ for(i=0; i<pExpr->nPhrase; i++){
+ Fts5ExprNode *pNode = pExpr->apExprPhrase[i]->pNode;
+ Fts5Colset *pColset = pNode->pNear->pColset;
+ if( (pColset && 0==fts5ExprColsetTest(pColset, iCol))
+ || aPopulator[i].bMiss
+ ){
+ aPopulator[i].bOk = 0;
+ }else{
+ aPopulator[i].bOk = 1;
+ }
+ }
+
+ return sqlite3Fts5Tokenize(pConfig,
+ FTS5_TOKENIZE_DOCUMENT, z, n, (void*)&sCtx, fts5ExprPopulatePoslistsCb
+ );
+}
+
+static void fts5ExprClearPoslists(Fts5ExprNode *pNode){
+ if( pNode->eType==FTS5_TERM || pNode->eType==FTS5_STRING ){
+ pNode->pNear->apPhrase[0]->poslist.n = 0;
+ }else{
+ int i;
+ for(i=0; i<pNode->nChild; i++){
+ fts5ExprClearPoslists(pNode->apChild[i]);
+ }
+ }
+}
+
+static int fts5ExprCheckPoslists(Fts5ExprNode *pNode, i64 iRowid){
+ pNode->iRowid = iRowid;
+ pNode->bEof = 0;
+ switch( pNode->eType ){
+ case FTS5_TERM:
+ case FTS5_STRING:
+ return (pNode->pNear->apPhrase[0]->poslist.n>0);
+
+ case FTS5_AND: {
+ int i;
+ for(i=0; i<pNode->nChild; i++){
+ if( fts5ExprCheckPoslists(pNode->apChild[i], iRowid)==0 ){
+ fts5ExprClearPoslists(pNode);
+ return 0;
+ }
+ }
+ break;
+ }
+
+ case FTS5_OR: {
+ int i;
+ int bRet = 0;
+ for(i=0; i<pNode->nChild; i++){
+ if( fts5ExprCheckPoslists(pNode->apChild[i], iRowid) ){
+ bRet = 1;
+ }
+ }
+ return bRet;
+ }
+
+ default: {
+ assert( pNode->eType==FTS5_NOT );
+ if( 0==fts5ExprCheckPoslists(pNode->apChild[0], iRowid)
+ || 0!=fts5ExprCheckPoslists(pNode->apChild[1], iRowid)
+ ){
+ fts5ExprClearPoslists(pNode);
+ return 0;
+ }
+ break;
+ }
+ }
+ return 1;
+}
+
+void sqlite3Fts5ExprCheckPoslists(Fts5Expr *pExpr, i64 iRowid){
+ fts5ExprCheckPoslists(pExpr->pRoot, iRowid);
+}
+
+/*
+** This function is only called for detail=columns tables.
+*/
+int sqlite3Fts5ExprPhraseCollist(
+ Fts5Expr *pExpr,
+ int iPhrase,
+ const u8 **ppCollist,
+ int *pnCollist
+){
+ Fts5ExprPhrase *pPhrase = pExpr->apExprPhrase[iPhrase];
+ Fts5ExprNode *pNode = pPhrase->pNode;
+ int rc = SQLITE_OK;
+
+ assert( iPhrase>=0 && iPhrase<pExpr->nPhrase );
+ assert( pExpr->pConfig->eDetail==FTS5_DETAIL_COLUMNS );
+
+ if( pNode->bEof==0
+ && pNode->iRowid==pExpr->pRoot->iRowid
+ && pPhrase->poslist.n>0
+ ){
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[0];
+ if( pTerm->pSynonym ){
+ Fts5Buffer *pBuf = (Fts5Buffer*)&pTerm->pSynonym[1];
+ rc = fts5ExprSynonymList(
+ pTerm, pNode->iRowid, pBuf, (u8**)ppCollist, pnCollist
+ );
+ }else{
+ *ppCollist = pPhrase->aTerm[0].pIter->pData;
+ *pnCollist = pPhrase->aTerm[0].pIter->nData;
+ }
+ }else{
+ *ppCollist = 0;
+ *pnCollist = 0;
+ }
+
+ return rc;
+}