1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
|
/*
** 2009 Oct 23
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file is part of the SQLite FTS3 extension module. Specifically,
** this file contains code to insert, update and delete rows from FTS3
** tables. It also contains code to merge FTS3 b-tree segments. Some
** of the sub-routines used to merge segments are also used by the query
** code in fts3.c.
*/
#include "fts3Int.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
#include <string.h>
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#define FTS_MAX_APPENDABLE_HEIGHT 16
/*
** When full-text index nodes are loaded from disk, the buffer that they
** are loaded into has the following number of bytes of padding at the end
** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
** of 920 bytes is allocated for it.
**
** This means that if we have a pointer into a buffer containing node data,
** it is always safe to read up to two varints from it without risking an
** overread, even if the node data is corrupted.
*/
#define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2)
/*
** Under certain circumstances, b-tree nodes (doclists) can be loaded into
** memory incrementally instead of all at once. This can be a big performance
** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext()
** method before retrieving all query results (as may happen, for example,
** if a query has a LIMIT clause).
**
** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD
** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes.
** The code is written so that the hard lower-limit for each of these values
** is 1. Clearly such small values would be inefficient, but can be useful
** for testing purposes.
**
** If this module is built with SQLITE_TEST defined, these constants may
** be overridden at runtime for testing purposes. File fts3_test.c contains
** a Tcl interface to read and write the values.
*/
#ifdef SQLITE_TEST
int test_fts3_node_chunksize = (4*1024);
int test_fts3_node_chunk_threshold = (4*1024)*4;
# define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize
# define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold
#else
# define FTS3_NODE_CHUNKSIZE (4*1024)
# define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4)
#endif
/*
** The values that may be meaningfully bound to the :1 parameter in
** statements SQL_REPLACE_STAT and SQL_SELECT_STAT.
*/
#define FTS_STAT_DOCTOTAL 0
#define FTS_STAT_INCRMERGEHINT 1
#define FTS_STAT_AUTOINCRMERGE 2
/*
** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic
** and incremental merge operation that takes place. This is used for
** debugging FTS only, it should not usually be turned on in production
** systems.
*/
#ifdef FTS3_LOG_MERGES
static void fts3LogMerge(int nMerge, sqlite3_int64 iAbsLevel){
sqlite3_log(SQLITE_OK, "%d-way merge from level %d", nMerge, (int)iAbsLevel);
}
#else
#define fts3LogMerge(x, y)
#endif
typedef struct PendingList PendingList;
typedef struct SegmentNode SegmentNode;
typedef struct SegmentWriter SegmentWriter;
/*
** An instance of the following data structure is used to build doclists
** incrementally. See function fts3PendingListAppend() for details.
*/
struct PendingList {
int nData;
char *aData;
int nSpace;
sqlite3_int64 iLastDocid;
sqlite3_int64 iLastCol;
sqlite3_int64 iLastPos;
};
/*
** Each cursor has a (possibly empty) linked list of the following objects.
*/
struct Fts3DeferredToken {
Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */
int iCol; /* Column token must occur in */
Fts3DeferredToken *pNext; /* Next in list of deferred tokens */
PendingList *pList; /* Doclist is assembled here */
};
/*
** An instance of this structure is used to iterate through the terms on
** a contiguous set of segment b-tree leaf nodes. Although the details of
** this structure are only manipulated by code in this file, opaque handles
** of type Fts3SegReader* are also used by code in fts3.c to iterate through
** terms when querying the full-text index. See functions:
**
** sqlite3Fts3SegReaderNew()
** sqlite3Fts3SegReaderFree()
** sqlite3Fts3SegReaderIterate()
**
** Methods used to manipulate Fts3SegReader structures:
**
** fts3SegReaderNext()
** fts3SegReaderFirstDocid()
** fts3SegReaderNextDocid()
*/
struct Fts3SegReader {
int iIdx; /* Index within level, or 0x7FFFFFFF for PT */
u8 bLookup; /* True for a lookup only */
u8 rootOnly; /* True for a root-only reader */
sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */
sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */
sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */
sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */
char *aNode; /* Pointer to node data (or NULL) */
int nNode; /* Size of buffer at aNode (or 0) */
int nPopulate; /* If >0, bytes of buffer aNode[] loaded */
sqlite3_blob *pBlob; /* If not NULL, blob handle to read node */
Fts3HashElem **ppNextElem;
/* Variables set by fts3SegReaderNext(). These may be read directly
** by the caller. They are valid from the time SegmentReaderNew() returns
** until SegmentReaderNext() returns something other than SQLITE_OK
** (i.e. SQLITE_DONE).
*/
int nTerm; /* Number of bytes in current term */
char *zTerm; /* Pointer to current term */
int nTermAlloc; /* Allocated size of zTerm buffer */
char *aDoclist; /* Pointer to doclist of current entry */
int nDoclist; /* Size of doclist in current entry */
/* The following variables are used by fts3SegReaderNextDocid() to iterate
** through the current doclist (aDoclist/nDoclist).
*/
char *pOffsetList;
int nOffsetList; /* For descending pending seg-readers only */
sqlite3_int64 iDocid;
};
#define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)
#define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0)
/*
** An instance of this structure is used to create a segment b-tree in the
** database. The internal details of this type are only accessed by the
** following functions:
**
** fts3SegWriterAdd()
** fts3SegWriterFlush()
** fts3SegWriterFree()
*/
struct SegmentWriter {
SegmentNode *pTree; /* Pointer to interior tree structure */
sqlite3_int64 iFirst; /* First slot in %_segments written */
sqlite3_int64 iFree; /* Next free slot in %_segments */
char *zTerm; /* Pointer to previous term buffer */
int nTerm; /* Number of bytes in zTerm */
int nMalloc; /* Size of malloc'd buffer at zMalloc */
char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
int nSize; /* Size of allocation at aData */
int nData; /* Bytes of data in aData */
char *aData; /* Pointer to block from malloc() */
i64 nLeafData; /* Number of bytes of leaf data written */
};
/*
** Type SegmentNode is used by the following three functions to create
** the interior part of the segment b+-tree structures (everything except
** the leaf nodes). These functions and type are only ever used by code
** within the fts3SegWriterXXX() family of functions described above.
**
** fts3NodeAddTerm()
** fts3NodeWrite()
** fts3NodeFree()
**
** When a b+tree is written to the database (either as a result of a merge
** or the pending-terms table being flushed), leaves are written into the
** database file as soon as they are completely populated. The interior of
** the tree is assembled in memory and written out only once all leaves have
** been populated and stored. This is Ok, as the b+-tree fanout is usually
** very large, meaning that the interior of the tree consumes relatively
** little memory.
*/
struct SegmentNode {
SegmentNode *pParent; /* Parent node (or NULL for root node) */
SegmentNode *pRight; /* Pointer to right-sibling */
SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */
int nEntry; /* Number of terms written to node so far */
char *zTerm; /* Pointer to previous term buffer */
int nTerm; /* Number of bytes in zTerm */
int nMalloc; /* Size of malloc'd buffer at zMalloc */
char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
int nData; /* Bytes of valid data so far */
char *aData; /* Node data */
};
/*
** Valid values for the second argument to fts3SqlStmt().
*/
#define SQL_DELETE_CONTENT 0
#define SQL_IS_EMPTY 1
#define SQL_DELETE_ALL_CONTENT 2
#define SQL_DELETE_ALL_SEGMENTS 3
#define SQL_DELETE_ALL_SEGDIR 4
#define SQL_DELETE_ALL_DOCSIZE 5
#define SQL_DELETE_ALL_STAT 6
#define SQL_SELECT_CONTENT_BY_ROWID 7
#define SQL_NEXT_SEGMENT_INDEX 8
#define SQL_INSERT_SEGMENTS 9
#define SQL_NEXT_SEGMENTS_ID 10
#define SQL_INSERT_SEGDIR 11
#define SQL_SELECT_LEVEL 12
#define SQL_SELECT_LEVEL_RANGE 13
#define SQL_SELECT_LEVEL_COUNT 14
#define SQL_SELECT_SEGDIR_MAX_LEVEL 15
#define SQL_DELETE_SEGDIR_LEVEL 16
#define SQL_DELETE_SEGMENTS_RANGE 17
#define SQL_CONTENT_INSERT 18
#define SQL_DELETE_DOCSIZE 19
#define SQL_REPLACE_DOCSIZE 20
#define SQL_SELECT_DOCSIZE 21
#define SQL_SELECT_STAT 22
#define SQL_REPLACE_STAT 23
#define SQL_SELECT_ALL_PREFIX_LEVEL 24
#define SQL_DELETE_ALL_TERMS_SEGDIR 25
#define SQL_DELETE_SEGDIR_RANGE 26
#define SQL_SELECT_ALL_LANGID 27
#define SQL_FIND_MERGE_LEVEL 28
#define SQL_MAX_LEAF_NODE_ESTIMATE 29
#define SQL_DELETE_SEGDIR_ENTRY 30
#define SQL_SHIFT_SEGDIR_ENTRY 31
#define SQL_SELECT_SEGDIR 32
#define SQL_CHOMP_SEGDIR 33
#define SQL_SEGMENT_IS_APPENDABLE 34
#define SQL_SELECT_INDEXES 35
#define SQL_SELECT_MXLEVEL 36
#define SQL_SELECT_LEVEL_RANGE2 37
#define SQL_UPDATE_LEVEL_IDX 38
#define SQL_UPDATE_LEVEL 39
/*
** This function is used to obtain an SQLite prepared statement handle
** for the statement identified by the second argument. If successful,
** *pp is set to the requested statement handle and SQLITE_OK returned.
** Otherwise, an SQLite error code is returned and *pp is set to 0.
**
** If argument apVal is not NULL, then it must point to an array with
** at least as many entries as the requested statement has bound
** parameters. The values are bound to the statements parameters before
** returning.
*/
static int fts3SqlStmt(
Fts3Table *p, /* Virtual table handle */
int eStmt, /* One of the SQL_XXX constants above */
sqlite3_stmt **pp, /* OUT: Statement handle */
sqlite3_value **apVal /* Values to bind to statement */
){
const char *azSql[] = {
/* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?",
/* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)",
/* 2 */ "DELETE FROM %Q.'%q_content'",
/* 3 */ "DELETE FROM %Q.'%q_segments'",
/* 4 */ "DELETE FROM %Q.'%q_segdir'",
/* 5 */ "DELETE FROM %Q.'%q_docsize'",
/* 6 */ "DELETE FROM %Q.'%q_stat'",
/* 7 */ "SELECT %s WHERE rowid=?",
/* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1",
/* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)",
/* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)",
/* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",
/* Return segments in order from oldest to newest.*/
/* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
"FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
/* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
"FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?"
"ORDER BY level DESC, idx ASC",
/* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
/* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
/* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
/* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
/* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)",
/* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
/* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
/* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
/* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?",
/* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)",
/* 24 */ "",
/* 25 */ "",
/* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
/* 27 */ "SELECT ? UNION SELECT level / (1024 * ?) FROM %Q.'%q_segdir'",
/* This statement is used to determine which level to read the input from
** when performing an incremental merge. It returns the absolute level number
** of the oldest level in the db that contains at least ? segments. Or,
** if no level in the FTS index contains more than ? segments, the statement
** returns zero rows. */
/* 28 */ "SELECT level, count(*) AS cnt FROM %Q.'%q_segdir' "
" GROUP BY level HAVING cnt>=?"
" ORDER BY (level %% 1024) ASC, 2 DESC LIMIT 1",
/* Estimate the upper limit on the number of leaf nodes in a new segment
** created by merging the oldest :2 segments from absolute level :1. See
** function sqlite3Fts3Incrmerge() for details. */
/* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) "
" FROM (SELECT * FROM %Q.'%q_segdir' "
" WHERE level = ? ORDER BY idx ASC LIMIT ?"
" )",
/* SQL_DELETE_SEGDIR_ENTRY
** Delete the %_segdir entry on absolute level :1 with index :2. */
/* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
/* SQL_SHIFT_SEGDIR_ENTRY
** Modify the idx value for the segment with idx=:3 on absolute level :2
** to :1. */
/* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?",
/* SQL_SELECT_SEGDIR
** Read a single entry from the %_segdir table. The entry from absolute
** level :1 with index value :2. */
/* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
"FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
/* SQL_CHOMP_SEGDIR
** Update the start_block (:1) and root (:2) fields of the %_segdir
** entry located on absolute level :3 with index :4. */
/* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?"
"WHERE level = ? AND idx = ?",
/* SQL_SEGMENT_IS_APPENDABLE
** Return a single row if the segment with end_block=? is appendable. Or
** no rows otherwise. */
/* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL",
/* SQL_SELECT_INDEXES
** Return the list of valid segment indexes for absolute level ? */
/* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC",
/* SQL_SELECT_MXLEVEL
** Return the largest relative level in the FTS index or indexes. */
/* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'",
/* Return segments in order from oldest to newest.*/
/* 37 */ "SELECT level, idx, end_block "
"FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? "
"ORDER BY level DESC, idx ASC",
/* Update statements used while promoting segments */
/* 38 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? "
"WHERE level=? AND idx=?",
/* 39 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1"
};
int rc = SQLITE_OK;
sqlite3_stmt *pStmt;
assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
pStmt = p->aStmt[eStmt];
if( !pStmt ){
int f = SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB;
char *zSql;
if( eStmt==SQL_CONTENT_INSERT ){
zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist);
}else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){
f &= ~SQLITE_PREPARE_NO_VTAB;
zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist);
}else{
zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName);
}
if( !zSql ){
rc = SQLITE_NOMEM;
}else{
rc = sqlite3_prepare_v3(p->db, zSql, -1, f, &pStmt, NULL);
sqlite3_free(zSql);
assert( rc==SQLITE_OK || pStmt==0 );
p->aStmt[eStmt] = pStmt;
}
}
if( apVal ){
int i;
int nParam = sqlite3_bind_parameter_count(pStmt);
for(i=0; rc==SQLITE_OK && i<nParam; i++){
rc = sqlite3_bind_value(pStmt, i+1, apVal[i]);
}
}
*pp = pStmt;
return rc;
}
static int fts3SelectDocsize(
Fts3Table *pTab, /* FTS3 table handle */
sqlite3_int64 iDocid, /* Docid to bind for SQL_SELECT_DOCSIZE */
sqlite3_stmt **ppStmt /* OUT: Statement handle */
){
sqlite3_stmt *pStmt = 0; /* Statement requested from fts3SqlStmt() */
int rc; /* Return code */
rc = fts3SqlStmt(pTab, SQL_SELECT_DOCSIZE, &pStmt, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pStmt, 1, iDocid);
rc = sqlite3_step(pStmt);
if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){
rc = sqlite3_reset(pStmt);
if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB;
pStmt = 0;
}else{
rc = SQLITE_OK;
}
}
*ppStmt = pStmt;
return rc;
}
int sqlite3Fts3SelectDoctotal(
Fts3Table *pTab, /* Fts3 table handle */
sqlite3_stmt **ppStmt /* OUT: Statement handle */
){
sqlite3_stmt *pStmt = 0;
int rc;
rc = fts3SqlStmt(pTab, SQL_SELECT_STAT, &pStmt, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
if( sqlite3_step(pStmt)!=SQLITE_ROW
|| sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB
){
rc = sqlite3_reset(pStmt);
if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB;
pStmt = 0;
}
}
*ppStmt = pStmt;
return rc;
}
int sqlite3Fts3SelectDocsize(
Fts3Table *pTab, /* Fts3 table handle */
sqlite3_int64 iDocid, /* Docid to read size data for */
sqlite3_stmt **ppStmt /* OUT: Statement handle */
){
return fts3SelectDocsize(pTab, iDocid, ppStmt);
}
/*
** Similar to fts3SqlStmt(). Except, after binding the parameters in
** array apVal[] to the SQL statement identified by eStmt, the statement
** is executed.
**
** Returns SQLITE_OK if the statement is successfully executed, or an
** SQLite error code otherwise.
*/
static void fts3SqlExec(
int *pRC, /* Result code */
Fts3Table *p, /* The FTS3 table */
int eStmt, /* Index of statement to evaluate */
sqlite3_value **apVal /* Parameters to bind */
){
sqlite3_stmt *pStmt;
int rc;
if( *pRC ) return;
rc = fts3SqlStmt(p, eStmt, &pStmt, apVal);
if( rc==SQLITE_OK ){
sqlite3_step(pStmt);
rc = sqlite3_reset(pStmt);
}
*pRC = rc;
}
/*
** This function ensures that the caller has obtained an exclusive
** shared-cache table-lock on the %_segdir table. This is required before
** writing data to the fts3 table. If this lock is not acquired first, then
** the caller may end up attempting to take this lock as part of committing
** a transaction, causing SQLite to return SQLITE_LOCKED or
** LOCKED_SHAREDCACHEto a COMMIT command.
**
** It is best to avoid this because if FTS3 returns any error when
** committing a transaction, the whole transaction will be rolled back.
** And this is not what users expect when they get SQLITE_LOCKED_SHAREDCACHE.
** It can still happen if the user locks the underlying tables directly
** instead of accessing them via FTS.
*/
static int fts3Writelock(Fts3Table *p){
int rc = SQLITE_OK;
if( p->nPendingData==0 ){
sqlite3_stmt *pStmt;
rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pStmt, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_null(pStmt, 1);
sqlite3_step(pStmt);
rc = sqlite3_reset(pStmt);
}
}
return rc;
}
/*
** FTS maintains a separate indexes for each language-id (a 32-bit integer).
** Within each language id, a separate index is maintained to store the
** document terms, and each configured prefix size (configured the FTS
** "prefix=" option). And each index consists of multiple levels ("relative
** levels").
**
** All three of these values (the language id, the specific index and the
** level within the index) are encoded in 64-bit integer values stored
** in the %_segdir table on disk. This function is used to convert three
** separate component values into the single 64-bit integer value that
** can be used to query the %_segdir table.
**
** Specifically, each language-id/index combination is allocated 1024
** 64-bit integer level values ("absolute levels"). The main terms index
** for language-id 0 is allocate values 0-1023. The first prefix index
** (if any) for language-id 0 is allocated values 1024-2047. And so on.
** Language 1 indexes are allocated immediately following language 0.
**
** So, for a system with nPrefix prefix indexes configured, the block of
** absolute levels that corresponds to language-id iLangid and index
** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024).
*/
static sqlite3_int64 getAbsoluteLevel(
Fts3Table *p, /* FTS3 table handle */
int iLangid, /* Language id */
int iIndex, /* Index in p->aIndex[] */
int iLevel /* Level of segments */
){
sqlite3_int64 iBase; /* First absolute level for iLangid/iIndex */
assert_fts3_nc( iLangid>=0 );
assert( p->nIndex>0 );
assert( iIndex>=0 && iIndex<p->nIndex );
iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL;
return iBase + iLevel;
}
/*
** Set *ppStmt to a statement handle that may be used to iterate through
** all rows in the %_segdir table, from oldest to newest. If successful,
** return SQLITE_OK. If an error occurs while preparing the statement,
** return an SQLite error code.
**
** There is only ever one instance of this SQL statement compiled for
** each FTS3 table.
**
** The statement returns the following columns from the %_segdir table:
**
** 0: idx
** 1: start_block
** 2: leaves_end_block
** 3: end_block
** 4: root
*/
int sqlite3Fts3AllSegdirs(
Fts3Table *p, /* FTS3 table */
int iLangid, /* Language being queried */
int iIndex, /* Index for p->aIndex[] */
int iLevel, /* Level to select (relative level) */
sqlite3_stmt **ppStmt /* OUT: Compiled statement */
){
int rc;
sqlite3_stmt *pStmt = 0;
assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 );
assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
assert( iIndex>=0 && iIndex<p->nIndex );
if( iLevel<0 ){
/* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */
rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
sqlite3_bind_int64(pStmt, 2,
getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
);
}
}else{
/* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */
rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel));
}
}
*ppStmt = pStmt;
return rc;
}
/*
** Append a single varint to a PendingList buffer. SQLITE_OK is returned
** if successful, or an SQLite error code otherwise.
**
** This function also serves to allocate the PendingList structure itself.
** For example, to create a new PendingList structure containing two
** varints:
**
** PendingList *p = 0;
** fts3PendingListAppendVarint(&p, 1);
** fts3PendingListAppendVarint(&p, 2);
*/
static int fts3PendingListAppendVarint(
PendingList **pp, /* IN/OUT: Pointer to PendingList struct */
sqlite3_int64 i /* Value to append to data */
){
PendingList *p = *pp;
/* Allocate or grow the PendingList as required. */
if( !p ){
p = sqlite3_malloc64(sizeof(*p) + 100);
if( !p ){
return SQLITE_NOMEM;
}
p->nSpace = 100;
p->aData = (char *)&p[1];
p->nData = 0;
}
else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){
i64 nNew = p->nSpace * 2;
p = sqlite3_realloc64(p, sizeof(*p) + nNew);
if( !p ){
sqlite3_free(*pp);
*pp = 0;
return SQLITE_NOMEM;
}
p->nSpace = (int)nNew;
p->aData = (char *)&p[1];
}
/* Append the new serialized varint to the end of the list. */
p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i);
p->aData[p->nData] = '\0';
*pp = p;
return SQLITE_OK;
}
/*
** Add a docid/column/position entry to a PendingList structure. Non-zero
** is returned if the structure is sqlite3_realloced as part of adding
** the entry. Otherwise, zero.
**
** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning.
** Zero is always returned in this case. Otherwise, if no OOM error occurs,
** it is set to SQLITE_OK.
*/
static int fts3PendingListAppend(
PendingList **pp, /* IN/OUT: PendingList structure */
sqlite3_int64 iDocid, /* Docid for entry to add */
sqlite3_int64 iCol, /* Column for entry to add */
sqlite3_int64 iPos, /* Position of term for entry to add */
int *pRc /* OUT: Return code */
){
PendingList *p = *pp;
int rc = SQLITE_OK;
assert( !p || p->iLastDocid<=iDocid );
if( !p || p->iLastDocid!=iDocid ){
u64 iDelta = (u64)iDocid - (u64)(p ? p->iLastDocid : 0);
if( p ){
assert( p->nData<p->nSpace );
assert( p->aData[p->nData]==0 );
p->nData++;
}
if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){
goto pendinglistappend_out;
}
p->iLastCol = -1;
p->iLastPos = 0;
p->iLastDocid = iDocid;
}
if( iCol>0 && p->iLastCol!=iCol ){
if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1))
|| SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol))
){
goto pendinglistappend_out;
}
p->iLastCol = iCol;
p->iLastPos = 0;
}
if( iCol>=0 ){
assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) );
rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos);
if( rc==SQLITE_OK ){
p->iLastPos = iPos;
}
}
pendinglistappend_out:
*pRc = rc;
if( p!=*pp ){
*pp = p;
return 1;
}
return 0;
}
/*
** Free a PendingList object allocated by fts3PendingListAppend().
*/
static void fts3PendingListDelete(PendingList *pList){
sqlite3_free(pList);
}
/*
** Add an entry to one of the pending-terms hash tables.
*/
static int fts3PendingTermsAddOne(
Fts3Table *p,
int iCol,
int iPos,
Fts3Hash *pHash, /* Pending terms hash table to add entry to */
const char *zToken,
int nToken
){
PendingList *pList;
int rc = SQLITE_OK;
pList = (PendingList *)fts3HashFind(pHash, zToken, nToken);
if( pList ){
p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem));
}
if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){
if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){
/* Malloc failed while inserting the new entry. This can only
** happen if there was no previous entry for this token.
*/
assert( 0==fts3HashFind(pHash, zToken, nToken) );
sqlite3_free(pList);
rc = SQLITE_NOMEM;
}
}
if( rc==SQLITE_OK ){
p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem));
}
return rc;
}
/*
** Tokenize the nul-terminated string zText and add all tokens to the
** pending-terms hash-table. The docid used is that currently stored in
** p->iPrevDocid, and the column is specified by argument iCol.
**
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
*/
static int fts3PendingTermsAdd(
Fts3Table *p, /* Table into which text will be inserted */
int iLangid, /* Language id to use */
const char *zText, /* Text of document to be inserted */
int iCol, /* Column into which text is being inserted */
u32 *pnWord /* IN/OUT: Incr. by number tokens inserted */
){
int rc;
int iStart = 0;
int iEnd = 0;
int iPos = 0;
int nWord = 0;
char const *zToken;
int nToken = 0;
sqlite3_tokenizer *pTokenizer = p->pTokenizer;
sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
sqlite3_tokenizer_cursor *pCsr;
int (*xNext)(sqlite3_tokenizer_cursor *pCursor,
const char**,int*,int*,int*,int*);
assert( pTokenizer && pModule );
/* If the user has inserted a NULL value, this function may be called with
** zText==0. In this case, add zero token entries to the hash table and
** return early. */
if( zText==0 ){
*pnWord = 0;
return SQLITE_OK;
}
rc = sqlite3Fts3OpenTokenizer(pTokenizer, iLangid, zText, -1, &pCsr);
if( rc!=SQLITE_OK ){
return rc;
}
xNext = pModule->xNext;
while( SQLITE_OK==rc
&& SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos))
){
int i;
if( iPos>=nWord ) nWord = iPos+1;
/* Positions cannot be negative; we use -1 as a terminator internally.
** Tokens must have a non-zero length.
*/
if( iPos<0 || !zToken || nToken<=0 ){
rc = SQLITE_ERROR;
break;
}
/* Add the term to the terms index */
rc = fts3PendingTermsAddOne(
p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken
);
/* Add the term to each of the prefix indexes that it is not too
** short for. */
for(i=1; rc==SQLITE_OK && i<p->nIndex; i++){
struct Fts3Index *pIndex = &p->aIndex[i];
if( nToken<pIndex->nPrefix ) continue;
rc = fts3PendingTermsAddOne(
p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix
);
}
}
pModule->xClose(pCsr);
*pnWord += nWord;
return (rc==SQLITE_DONE ? SQLITE_OK : rc);
}
/*
** Calling this function indicates that subsequent calls to
** fts3PendingTermsAdd() are to add term/position-list pairs for the
** contents of the document with docid iDocid.
*/
static int fts3PendingTermsDocid(
Fts3Table *p, /* Full-text table handle */
int bDelete, /* True if this op is a delete */
int iLangid, /* Language id of row being written */
sqlite_int64 iDocid /* Docid of row being written */
){
assert( iLangid>=0 );
assert( bDelete==1 || bDelete==0 );
/* TODO(shess) Explore whether partially flushing the buffer on
** forced-flush would provide better performance. I suspect that if
** we ordered the doclists by size and flushed the largest until the
** buffer was half empty, that would let the less frequent terms
** generate longer doclists.
*/
if( iDocid<p->iPrevDocid
|| (iDocid==p->iPrevDocid && p->bPrevDelete==0)
|| p->iPrevLangid!=iLangid
|| p->nPendingData>p->nMaxPendingData
){
int rc = sqlite3Fts3PendingTermsFlush(p);
if( rc!=SQLITE_OK ) return rc;
}
p->iPrevDocid = iDocid;
p->iPrevLangid = iLangid;
p->bPrevDelete = bDelete;
return SQLITE_OK;
}
/*
** Discard the contents of the pending-terms hash tables.
*/
void sqlite3Fts3PendingTermsClear(Fts3Table *p){
int i;
for(i=0; i<p->nIndex; i++){
Fts3HashElem *pElem;
Fts3Hash *pHash = &p->aIndex[i].hPending;
for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){
PendingList *pList = (PendingList *)fts3HashData(pElem);
fts3PendingListDelete(pList);
}
fts3HashClear(pHash);
}
p->nPendingData = 0;
}
/*
** This function is called by the xUpdate() method as part of an INSERT
** operation. It adds entries for each term in the new record to the
** pendingTerms hash table.
**
** Argument apVal is the same as the similarly named argument passed to
** fts3InsertData(). Parameter iDocid is the docid of the new row.
*/
static int fts3InsertTerms(
Fts3Table *p,
int iLangid,
sqlite3_value **apVal,
u32 *aSz
){
int i; /* Iterator variable */
for(i=2; i<p->nColumn+2; i++){
int iCol = i-2;
if( p->abNotindexed[iCol]==0 ){
const char *zText = (const char *)sqlite3_value_text(apVal[i]);
int rc = fts3PendingTermsAdd(p, iLangid, zText, iCol, &aSz[iCol]);
if( rc!=SQLITE_OK ){
return rc;
}
aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]);
}
}
return SQLITE_OK;
}
/*
** This function is called by the xUpdate() method for an INSERT operation.
** The apVal parameter is passed a copy of the apVal argument passed by
** SQLite to the xUpdate() method. i.e:
**
** apVal[0] Not used for INSERT.
** apVal[1] rowid
** apVal[2] Left-most user-defined column
** ...
** apVal[p->nColumn+1] Right-most user-defined column
** apVal[p->nColumn+2] Hidden column with same name as table
** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid)
** apVal[p->nColumn+4] Hidden languageid column
*/
static int fts3InsertData(
Fts3Table *p, /* Full-text table */
sqlite3_value **apVal, /* Array of values to insert */
sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */
){
int rc; /* Return code */
sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */
if( p->zContentTbl ){
sqlite3_value *pRowid = apVal[p->nColumn+3];
if( sqlite3_value_type(pRowid)==SQLITE_NULL ){
pRowid = apVal[1];
}
if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){
return SQLITE_CONSTRAINT;
}
*piDocid = sqlite3_value_int64(pRowid);
return SQLITE_OK;
}
/* Locate the statement handle used to insert data into the %_content
** table. The SQL for this statement is:
**
** INSERT INTO %_content VALUES(?, ?, ?, ...)
**
** The statement features N '?' variables, where N is the number of user
** defined columns in the FTS3 table, plus one for the docid field.
*/
rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]);
if( rc==SQLITE_OK && p->zLanguageid ){
rc = sqlite3_bind_int(
pContentInsert, p->nColumn+2,
sqlite3_value_int(apVal[p->nColumn+4])
);
}
if( rc!=SQLITE_OK ) return rc;
/* There is a quirk here. The users INSERT statement may have specified
** a value for the "rowid" field, for the "docid" field, or for both.
** Which is a problem, since "rowid" and "docid" are aliases for the
** same value. For example:
**
** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2);
**
** In FTS3, this is an error. It is an error to specify non-NULL values
** for both docid and some other rowid alias.
*/
if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){
if( SQLITE_NULL==sqlite3_value_type(apVal[0])
&& SQLITE_NULL!=sqlite3_value_type(apVal[1])
){
/* A rowid/docid conflict. */
return SQLITE_ERROR;
}
rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]);
if( rc!=SQLITE_OK ) return rc;
}
/* Execute the statement to insert the record. Set *piDocid to the
** new docid value.
*/
sqlite3_step(pContentInsert);
rc = sqlite3_reset(pContentInsert);
*piDocid = sqlite3_last_insert_rowid(p->db);
return rc;
}
/*
** Remove all data from the FTS3 table. Clear the hash table containing
** pending terms.
*/
static int fts3DeleteAll(Fts3Table *p, int bContent){
int rc = SQLITE_OK; /* Return code */
/* Discard the contents of the pending-terms hash table. */
sqlite3Fts3PendingTermsClear(p);
/* Delete everything from the shadow tables. Except, leave %_content as
** is if bContent is false. */
assert( p->zContentTbl==0 || bContent==0 );
if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0);
fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0);
fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0);
if( p->bHasDocsize ){
fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0);
}
if( p->bHasStat ){
fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0);
}
return rc;
}
/*
**
*/
static int langidFromSelect(Fts3Table *p, sqlite3_stmt *pSelect){
int iLangid = 0;
if( p->zLanguageid ) iLangid = sqlite3_column_int(pSelect, p->nColumn+1);
return iLangid;
}
/*
** The first element in the apVal[] array is assumed to contain the docid
** (an integer) of a row about to be deleted. Remove all terms from the
** full-text index.
*/
static void fts3DeleteTerms(
int *pRC, /* Result code */
Fts3Table *p, /* The FTS table to delete from */
sqlite3_value *pRowid, /* The docid to be deleted */
u32 *aSz, /* Sizes of deleted document written here */
int *pbFound /* OUT: Set to true if row really does exist */
){
int rc;
sqlite3_stmt *pSelect;
assert( *pbFound==0 );
if( *pRC ) return;
rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid);
if( rc==SQLITE_OK ){
if( SQLITE_ROW==sqlite3_step(pSelect) ){
int i;
int iLangid = langidFromSelect(p, pSelect);
i64 iDocid = sqlite3_column_int64(pSelect, 0);
rc = fts3PendingTermsDocid(p, 1, iLangid, iDocid);
for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){
int iCol = i-1;
if( p->abNotindexed[iCol]==0 ){
const char *zText = (const char *)sqlite3_column_text(pSelect, i);
rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[iCol]);
aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i);
}
}
if( rc!=SQLITE_OK ){
sqlite3_reset(pSelect);
*pRC = rc;
return;
}
*pbFound = 1;
}
rc = sqlite3_reset(pSelect);
}else{
sqlite3_reset(pSelect);
}
*pRC = rc;
}
/*
** Forward declaration to account for the circular dependency between
** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
*/
static int fts3SegmentMerge(Fts3Table *, int, int, int);
/*
** This function allocates a new level iLevel index in the segdir table.
** Usually, indexes are allocated within a level sequentially starting
** with 0, so the allocated index is one greater than the value returned
** by:
**
** SELECT max(idx) FROM %_segdir WHERE level = :iLevel
**
** However, if there are already FTS3_MERGE_COUNT indexes at the requested
** level, they are merged into a single level (iLevel+1) segment and the
** allocated index is 0.
**
** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
** returned. Otherwise, an SQLite error code is returned.
*/
static int fts3AllocateSegdirIdx(
Fts3Table *p,
int iLangid, /* Language id */
int iIndex, /* Index for p->aIndex */
int iLevel,
int *piIdx
){
int rc; /* Return Code */
sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */
int iNext = 0; /* Result of query pNextIdx */
assert( iLangid>=0 );
assert( p->nIndex>=1 );
/* Set variable iNext to the next available segdir index at level iLevel. */
rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int64(
pNextIdx, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel)
);
if( SQLITE_ROW==sqlite3_step(pNextIdx) ){
iNext = sqlite3_column_int(pNextIdx, 0);
}
rc = sqlite3_reset(pNextIdx);
}
if( rc==SQLITE_OK ){
/* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
** full, merge all segments in level iLevel into a single iLevel+1
** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
*/
if( iNext>=MergeCount(p) ){
fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel));
rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel);
*piIdx = 0;
}else{
*piIdx = iNext;
}
}
return rc;
}
/*
** The %_segments table is declared as follows:
**
** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)
**
** This function reads data from a single row of the %_segments table. The
** specific row is identified by the iBlockid parameter. If paBlob is not
** NULL, then a buffer is allocated using sqlite3_malloc() and populated
** with the contents of the blob stored in the "block" column of the
** identified table row is. Whether or not paBlob is NULL, *pnBlob is set
** to the size of the blob in bytes before returning.
**
** If an error occurs, or the table does not contain the specified row,
** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If
** paBlob is non-NULL, then it is the responsibility of the caller to
** eventually free the returned buffer.
**
** This function may leave an open sqlite3_blob* handle in the
** Fts3Table.pSegments variable. This handle is reused by subsequent calls
** to this function. The handle may be closed by calling the
** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy
** performance improvement, but the blob handle should always be closed
** before control is returned to the user (to prevent a lock being held
** on the database file for longer than necessary). Thus, any virtual table
** method (xFilter etc.) that may directly or indirectly call this function
** must call sqlite3Fts3SegmentsClose() before returning.
*/
int sqlite3Fts3ReadBlock(
Fts3Table *p, /* FTS3 table handle */
sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */
char **paBlob, /* OUT: Blob data in malloc'd buffer */
int *pnBlob, /* OUT: Size of blob data */
int *pnLoad /* OUT: Bytes actually loaded */
){
int rc; /* Return code */
/* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
assert( pnBlob );
if( p->pSegments ){
rc = sqlite3_blob_reopen(p->pSegments, iBlockid);
}else{
if( 0==p->zSegmentsTbl ){
p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName);
if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM;
}
rc = sqlite3_blob_open(
p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments
);
}
if( rc==SQLITE_OK ){
int nByte = sqlite3_blob_bytes(p->pSegments);
*pnBlob = nByte;
if( paBlob ){
char *aByte = sqlite3_malloc64((i64)nByte + FTS3_NODE_PADDING);
if( !aByte ){
rc = SQLITE_NOMEM;
}else{
if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){
nByte = FTS3_NODE_CHUNKSIZE;
*pnLoad = nByte;
}
rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0);
memset(&aByte[nByte], 0, FTS3_NODE_PADDING);
if( rc!=SQLITE_OK ){
sqlite3_free(aByte);
aByte = 0;
}
}
*paBlob = aByte;
}
}else if( rc==SQLITE_ERROR ){
rc = FTS_CORRUPT_VTAB;
}
return rc;
}
/*
** Close the blob handle at p->pSegments, if it is open. See comments above
** the sqlite3Fts3ReadBlock() function for details.
*/
void sqlite3Fts3SegmentsClose(Fts3Table *p){
sqlite3_blob_close(p->pSegments);
p->pSegments = 0;
}
static int fts3SegReaderIncrRead(Fts3SegReader *pReader){
int nRead; /* Number of bytes to read */
int rc; /* Return code */
nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE);
rc = sqlite3_blob_read(
pReader->pBlob,
&pReader->aNode[pReader->nPopulate],
nRead,
pReader->nPopulate
);
if( rc==SQLITE_OK ){
pReader->nPopulate += nRead;
memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING);
if( pReader->nPopulate==pReader->nNode ){
sqlite3_blob_close(pReader->pBlob);
pReader->pBlob = 0;
pReader->nPopulate = 0;
}
}
return rc;
}
static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){
int rc = SQLITE_OK;
assert( !pReader->pBlob
|| (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode])
);
while( pReader->pBlob && rc==SQLITE_OK
&& (pFrom - pReader->aNode + nByte)>pReader->nPopulate
){
rc = fts3SegReaderIncrRead(pReader);
}
return rc;
}
/*
** Set an Fts3SegReader cursor to point at EOF.
*/
static void fts3SegReaderSetEof(Fts3SegReader *pSeg){
if( !fts3SegReaderIsRootOnly(pSeg) ){
sqlite3_free(pSeg->aNode);
sqlite3_blob_close(pSeg->pBlob);
pSeg->pBlob = 0;
}
pSeg->aNode = 0;
}
/*
** Move the iterator passed as the first argument to the next term in the
** segment. If successful, SQLITE_OK is returned. If there is no next term,
** SQLITE_DONE. Otherwise, an SQLite error code.
*/
static int fts3SegReaderNext(
Fts3Table *p,
Fts3SegReader *pReader,
int bIncr
){
int rc; /* Return code of various sub-routines */
char *pNext; /* Cursor variable */
int nPrefix; /* Number of bytes in term prefix */
int nSuffix; /* Number of bytes in term suffix */
if( !pReader->aDoclist ){
pNext = pReader->aNode;
}else{
pNext = &pReader->aDoclist[pReader->nDoclist];
}
if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){
if( fts3SegReaderIsPending(pReader) ){
Fts3HashElem *pElem = *(pReader->ppNextElem);
sqlite3_free(pReader->aNode);
pReader->aNode = 0;
if( pElem ){
char *aCopy;
PendingList *pList = (PendingList *)fts3HashData(pElem);
int nCopy = pList->nData+1;
int nTerm = fts3HashKeysize(pElem);
if( (nTerm+1)>pReader->nTermAlloc ){
sqlite3_free(pReader->zTerm);
pReader->zTerm = (char*)sqlite3_malloc64(((i64)nTerm+1)*2);
if( !pReader->zTerm ) return SQLITE_NOMEM;
pReader->nTermAlloc = (nTerm+1)*2;
}
memcpy(pReader->zTerm, fts3HashKey(pElem), nTerm);
pReader->zTerm[nTerm] = '\0';
pReader->nTerm = nTerm;
aCopy = (char*)sqlite3_malloc64(nCopy);
if( !aCopy ) return SQLITE_NOMEM;
memcpy(aCopy, pList->aData, nCopy);
pReader->nNode = pReader->nDoclist = nCopy;
pReader->aNode = pReader->aDoclist = aCopy;
pReader->ppNextElem++;
assert( pReader->aNode );
}
return SQLITE_OK;
}
fts3SegReaderSetEof(pReader);
/* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf
** blocks have already been traversed. */
#ifdef CORRUPT_DB
assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock || CORRUPT_DB );
#endif
if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
return SQLITE_OK;
}
rc = sqlite3Fts3ReadBlock(
p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode,
(bIncr ? &pReader->nPopulate : 0)
);
if( rc!=SQLITE_OK ) return rc;
assert( pReader->pBlob==0 );
if( bIncr && pReader->nPopulate<pReader->nNode ){
pReader->pBlob = p->pSegments;
p->pSegments = 0;
}
pNext = pReader->aNode;
}
assert( !fts3SegReaderIsPending(pReader) );
rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2);
if( rc!=SQLITE_OK ) return rc;
/* Because of the FTS3_NODE_PADDING bytes of padding, the following is
** safe (no risk of overread) even if the node data is corrupted. */
pNext += fts3GetVarint32(pNext, &nPrefix);
pNext += fts3GetVarint32(pNext, &nSuffix);
if( nSuffix<=0
|| (&pReader->aNode[pReader->nNode] - pNext)<nSuffix
|| nPrefix>pReader->nTerm
){
return FTS_CORRUPT_VTAB;
}
/* Both nPrefix and nSuffix were read by fts3GetVarint32() and so are
** between 0 and 0x7FFFFFFF. But the sum of the two may cause integer
** overflow - hence the (i64) casts. */
if( (i64)nPrefix+nSuffix>(i64)pReader->nTermAlloc ){
i64 nNew = ((i64)nPrefix+nSuffix)*2;
char *zNew = sqlite3_realloc64(pReader->zTerm, nNew);
if( !zNew ){
return SQLITE_NOMEM;
}
pReader->zTerm = zNew;
pReader->nTermAlloc = nNew;
}
rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX);
if( rc!=SQLITE_OK ) return rc;
memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix);
pReader->nTerm = nPrefix+nSuffix;
pNext += nSuffix;
pNext += fts3GetVarint32(pNext, &pReader->nDoclist);
pReader->aDoclist = pNext;
pReader->pOffsetList = 0;
/* Check that the doclist does not appear to extend past the end of the
** b-tree node. And that the final byte of the doclist is 0x00. If either
** of these statements is untrue, then the data structure is corrupt.
*/
if( pReader->nDoclist > pReader->nNode-(pReader->aDoclist-pReader->aNode)
|| (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1])
|| pReader->nDoclist==0
){
return FTS_CORRUPT_VTAB;
}
return SQLITE_OK;
}
/*
** Set the SegReader to point to the first docid in the doclist associated
** with the current term.
*/
static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){
int rc = SQLITE_OK;
assert( pReader->aDoclist );
assert( !pReader->pOffsetList );
if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
u8 bEof = 0;
pReader->iDocid = 0;
pReader->nOffsetList = 0;
sqlite3Fts3DoclistPrev(0,
pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList,
&pReader->iDocid, &pReader->nOffsetList, &bEof
);
}else{
rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX);
if( rc==SQLITE_OK ){
int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid);
pReader->pOffsetList = &pReader->aDoclist[n];
}
}
return rc;
}
/*
** Advance the SegReader to point to the next docid in the doclist
** associated with the current term.
**
** If arguments ppOffsetList and pnOffsetList are not NULL, then
** *ppOffsetList is set to point to the first column-offset list
** in the doclist entry (i.e. immediately past the docid varint).
** *pnOffsetList is set to the length of the set of column-offset
** lists, not including the nul-terminator byte. For example:
*/
static int fts3SegReaderNextDocid(
Fts3Table *pTab,
Fts3SegReader *pReader, /* Reader to advance to next docid */
char **ppOffsetList, /* OUT: Pointer to current position-list */
int *pnOffsetList /* OUT: Length of *ppOffsetList in bytes */
){
int rc = SQLITE_OK;
char *p = pReader->pOffsetList;
char c = 0;
assert( p );
if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
/* A pending-terms seg-reader for an FTS4 table that uses order=desc.
** Pending-terms doclists are always built up in ascending order, so
** we have to iterate through them backwards here. */
u8 bEof = 0;
if( ppOffsetList ){
*ppOffsetList = pReader->pOffsetList;
*pnOffsetList = pReader->nOffsetList - 1;
}
sqlite3Fts3DoclistPrev(0,
pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid,
&pReader->nOffsetList, &bEof
);
if( bEof ){
pReader->pOffsetList = 0;
}else{
pReader->pOffsetList = p;
}
}else{
char *pEnd = &pReader->aDoclist[pReader->nDoclist];
/* Pointer p currently points at the first byte of an offset list. The
** following block advances it to point one byte past the end of
** the same offset list. */
while( 1 ){
/* The following line of code (and the "p++" below the while() loop) is
** normally all that is required to move pointer p to the desired
** position. The exception is if this node is being loaded from disk
** incrementally and pointer "p" now points to the first byte past
** the populated part of pReader->aNode[].
*/
while( *p | c ) c = *p++ & 0x80;
assert( *p==0 );
if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break;
rc = fts3SegReaderIncrRead(pReader);
if( rc!=SQLITE_OK ) return rc;
}
p++;
/* If required, populate the output variables with a pointer to and the
** size of the previous offset-list.
*/
if( ppOffsetList ){
*ppOffsetList = pReader->pOffsetList;
*pnOffsetList = (int)(p - pReader->pOffsetList - 1);
}
/* List may have been edited in place by fts3EvalNearTrim() */
while( p<pEnd && *p==0 ) p++;
/* If there are no more entries in the doclist, set pOffsetList to
** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and
** Fts3SegReader.pOffsetList to point to the next offset list before
** returning.
*/
if( p>=pEnd ){
pReader->pOffsetList = 0;
}else{
rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX);
if( rc==SQLITE_OK ){
u64 iDelta;
pReader->pOffsetList = p + sqlite3Fts3GetVarintU(p, &iDelta);
if( pTab->bDescIdx ){
pReader->iDocid = (i64)((u64)pReader->iDocid - iDelta);
}else{
pReader->iDocid = (i64)((u64)pReader->iDocid + iDelta);
}
}
}
}
return rc;
}
int sqlite3Fts3MsrOvfl(
Fts3Cursor *pCsr,
Fts3MultiSegReader *pMsr,
int *pnOvfl
){
Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
int nOvfl = 0;
int ii;
int rc = SQLITE_OK;
int pgsz = p->nPgsz;
assert( p->bFts4 );
assert( pgsz>0 );
for(ii=0; rc==SQLITE_OK && ii<pMsr->nSegment; ii++){
Fts3SegReader *pReader = pMsr->apSegment[ii];
if( !fts3SegReaderIsPending(pReader)
&& !fts3SegReaderIsRootOnly(pReader)
){
sqlite3_int64 jj;
for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){
int nBlob;
rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0);
if( rc!=SQLITE_OK ) break;
if( (nBlob+35)>pgsz ){
nOvfl += (nBlob + 34)/pgsz;
}
}
}
}
*pnOvfl = nOvfl;
return rc;
}
/*
** Free all allocations associated with the iterator passed as the
** second argument.
*/
void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){
if( pReader ){
sqlite3_free(pReader->zTerm);
if( !fts3SegReaderIsRootOnly(pReader) ){
sqlite3_free(pReader->aNode);
}
sqlite3_blob_close(pReader->pBlob);
}
sqlite3_free(pReader);
}
/*
** Allocate a new SegReader object.
*/
int sqlite3Fts3SegReaderNew(
int iAge, /* Segment "age". */
int bLookup, /* True for a lookup only */
sqlite3_int64 iStartLeaf, /* First leaf to traverse */
sqlite3_int64 iEndLeaf, /* Final leaf to traverse */
sqlite3_int64 iEndBlock, /* Final block of segment */
const char *zRoot, /* Buffer containing root node */
int nRoot, /* Size of buffer containing root node */
Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */
){
Fts3SegReader *pReader; /* Newly allocated SegReader object */
int nExtra = 0; /* Bytes to allocate segment root node */
assert( zRoot!=0 || nRoot==0 );
#ifdef CORRUPT_DB
assert( zRoot!=0 || CORRUPT_DB );
#endif
if( iStartLeaf==0 ){
if( iEndLeaf!=0 ) return FTS_CORRUPT_VTAB;
nExtra = nRoot + FTS3_NODE_PADDING;
}
pReader = (Fts3SegReader *)sqlite3_malloc64(sizeof(Fts3SegReader) + nExtra);
if( !pReader ){
return SQLITE_NOMEM;
}
memset(pReader, 0, sizeof(Fts3SegReader));
pReader->iIdx = iAge;
pReader->bLookup = bLookup!=0;
pReader->iStartBlock = iStartLeaf;
pReader->iLeafEndBlock = iEndLeaf;
pReader->iEndBlock = iEndBlock;
if( nExtra ){
/* The entire segment is stored in the root node. */
pReader->aNode = (char *)&pReader[1];
pReader->rootOnly = 1;
pReader->nNode = nRoot;
if( nRoot ) memcpy(pReader->aNode, zRoot, nRoot);
memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING);
}else{
pReader->iCurrentBlock = iStartLeaf-1;
}
*ppReader = pReader;
return SQLITE_OK;
}
/*
** This is a comparison function used as a qsort() callback when sorting
** an array of pending terms by term. This occurs as part of flushing
** the contents of the pending-terms hash table to the database.
*/
static int SQLITE_CDECL fts3CompareElemByTerm(
const void *lhs,
const void *rhs
){
char *z1 = fts3HashKey(*(Fts3HashElem **)lhs);
char *z2 = fts3HashKey(*(Fts3HashElem **)rhs);
int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs);
int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs);
int n = (n1<n2 ? n1 : n2);
int c = memcmp(z1, z2, n);
if( c==0 ){
c = n1 - n2;
}
return c;
}
/*
** This function is used to allocate an Fts3SegReader that iterates through
** a subset of the terms stored in the Fts3Table.pendingTerms array.
**
** If the isPrefixIter parameter is zero, then the returned SegReader iterates
** through each term in the pending-terms table. Or, if isPrefixIter is
** non-zero, it iterates through each term and its prefixes. For example, if
** the pending terms hash table contains the terms "sqlite", "mysql" and
** "firebird", then the iterator visits the following 'terms' (in the order
** shown):
**
** f fi fir fire fireb firebi firebir firebird
** m my mys mysq mysql
** s sq sql sqli sqlit sqlite
**
** Whereas if isPrefixIter is zero, the terms visited are:
**
** firebird mysql sqlite
*/
int sqlite3Fts3SegReaderPending(
Fts3Table *p, /* Virtual table handle */
int iIndex, /* Index for p->aIndex */
const char *zTerm, /* Term to search for */
int nTerm, /* Size of buffer zTerm */
int bPrefix, /* True for a prefix iterator */
Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */
){
Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */
Fts3HashElem *pE; /* Iterator variable */
Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */
int nElem = 0; /* Size of array at aElem */
int rc = SQLITE_OK; /* Return Code */
Fts3Hash *pHash;
pHash = &p->aIndex[iIndex].hPending;
if( bPrefix ){
int nAlloc = 0; /* Size of allocated array at aElem */
for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){
char *zKey = (char *)fts3HashKey(pE);
int nKey = fts3HashKeysize(pE);
if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){
if( nElem==nAlloc ){
Fts3HashElem **aElem2;
nAlloc += 16;
aElem2 = (Fts3HashElem **)sqlite3_realloc64(
aElem, nAlloc*sizeof(Fts3HashElem *)
);
if( !aElem2 ){
rc = SQLITE_NOMEM;
nElem = 0;
break;
}
aElem = aElem2;
}
aElem[nElem++] = pE;
}
}
/* If more than one term matches the prefix, sort the Fts3HashElem
** objects in term order using qsort(). This uses the same comparison
** callback as is used when flushing terms to disk.
*/
if( nElem>1 ){
qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm);
}
}else{
/* The query is a simple term lookup that matches at most one term in
** the index. All that is required is a straight hash-lookup.
**
** Because the stack address of pE may be accessed via the aElem pointer
** below, the "Fts3HashElem *pE" must be declared so that it is valid
** within this entire function, not just this "else{...}" block.
*/
pE = fts3HashFindElem(pHash, zTerm, nTerm);
if( pE ){
aElem = &pE;
nElem = 1;
}
}
if( nElem>0 ){
sqlite3_int64 nByte;
nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *);
pReader = (Fts3SegReader *)sqlite3_malloc64(nByte);
if( !pReader ){
rc = SQLITE_NOMEM;
}else{
memset(pReader, 0, nByte);
pReader->iIdx = 0x7FFFFFFF;
pReader->ppNextElem = (Fts3HashElem **)&pReader[1];
memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *));
}
}
if( bPrefix ){
sqlite3_free(aElem);
}
*ppReader = pReader;
return rc;
}
/*
** Compare the entries pointed to by two Fts3SegReader structures.
** Comparison is as follows:
**
** 1) EOF is greater than not EOF.
**
** 2) The current terms (if any) are compared using memcmp(). If one
** term is a prefix of another, the longer term is considered the
** larger.
**
** 3) By segment age. An older segment is considered larger.
*/
static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
int rc;
if( pLhs->aNode && pRhs->aNode ){
int rc2 = pLhs->nTerm - pRhs->nTerm;
if( rc2<0 ){
rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm);
}else{
rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm);
}
if( rc==0 ){
rc = rc2;
}
}else{
rc = (pLhs->aNode==0) - (pRhs->aNode==0);
}
if( rc==0 ){
rc = pRhs->iIdx - pLhs->iIdx;
}
assert_fts3_nc( rc!=0 );
return rc;
}
/*
** A different comparison function for SegReader structures. In this
** version, it is assumed that each SegReader points to an entry in
** a doclist for identical terms. Comparison is made as follows:
**
** 1) EOF (end of doclist in this case) is greater than not EOF.
**
** 2) By current docid.
**
** 3) By segment age. An older segment is considered larger.
*/
static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
if( rc==0 ){
if( pLhs->iDocid==pRhs->iDocid ){
rc = pRhs->iIdx - pLhs->iIdx;
}else{
rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1;
}
}
assert( pLhs->aNode && pRhs->aNode );
return rc;
}
static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
if( rc==0 ){
if( pLhs->iDocid==pRhs->iDocid ){
rc = pRhs->iIdx - pLhs->iIdx;
}else{
rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1;
}
}
assert( pLhs->aNode && pRhs->aNode );
return rc;
}
/*
** Compare the term that the Fts3SegReader object passed as the first argument
** points to with the term specified by arguments zTerm and nTerm.
**
** If the pSeg iterator is already at EOF, return 0. Otherwise, return
** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are
** equal, or +ve if the pSeg term is greater than zTerm/nTerm.
*/
static int fts3SegReaderTermCmp(
Fts3SegReader *pSeg, /* Segment reader object */
const char *zTerm, /* Term to compare to */
int nTerm /* Size of term zTerm in bytes */
){
int res = 0;
if( pSeg->aNode ){
if( pSeg->nTerm>nTerm ){
res = memcmp(pSeg->zTerm, zTerm, nTerm);
}else{
res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm);
}
if( res==0 ){
res = pSeg->nTerm-nTerm;
}
}
return res;
}
/*
** Argument apSegment is an array of nSegment elements. It is known that
** the final (nSegment-nSuspect) members are already in sorted order
** (according to the comparison function provided). This function shuffles
** the array around until all entries are in sorted order.
*/
static void fts3SegReaderSort(
Fts3SegReader **apSegment, /* Array to sort entries of */
int nSegment, /* Size of apSegment array */
int nSuspect, /* Unsorted entry count */
int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */
){
int i; /* Iterator variable */
assert( nSuspect<=nSegment );
if( nSuspect==nSegment ) nSuspect--;
for(i=nSuspect-1; i>=0; i--){
int j;
for(j=i; j<(nSegment-1); j++){
Fts3SegReader *pTmp;
if( xCmp(apSegment[j], apSegment[j+1])<0 ) break;
pTmp = apSegment[j+1];
apSegment[j+1] = apSegment[j];
apSegment[j] = pTmp;
}
}
#ifndef NDEBUG
/* Check that the list really is sorted now. */
for(i=0; i<(nSuspect-1); i++){
assert( xCmp(apSegment[i], apSegment[i+1])<0 );
}
#endif
}
/*
** Insert a record into the %_segments table.
*/
static int fts3WriteSegment(
Fts3Table *p, /* Virtual table handle */
sqlite3_int64 iBlock, /* Block id for new block */
char *z, /* Pointer to buffer containing block data */
int n /* Size of buffer z in bytes */
){
sqlite3_stmt *pStmt;
int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pStmt, 1, iBlock);
sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC);
sqlite3_step(pStmt);
rc = sqlite3_reset(pStmt);
sqlite3_bind_null(pStmt, 2);
}
return rc;
}
/*
** Find the largest relative level number in the table. If successful, set
** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs,
** set *pnMax to zero and return an SQLite error code.
*/
int sqlite3Fts3MaxLevel(Fts3Table *p, int *pnMax){
int rc;
int mxLevel = 0;
sqlite3_stmt *pStmt = 0;
rc = fts3SqlStmt(p, SQL_SELECT_MXLEVEL, &pStmt, 0);
if( rc==SQLITE_OK ){
if( SQLITE_ROW==sqlite3_step(pStmt) ){
mxLevel = sqlite3_column_int(pStmt, 0);
}
rc = sqlite3_reset(pStmt);
}
*pnMax = mxLevel;
return rc;
}
/*
** Insert a record into the %_segdir table.
*/
static int fts3WriteSegdir(
Fts3Table *p, /* Virtual table handle */
sqlite3_int64 iLevel, /* Value for "level" field (absolute level) */
int iIdx, /* Value for "idx" field */
sqlite3_int64 iStartBlock, /* Value for "start_block" field */
sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */
sqlite3_int64 iEndBlock, /* Value for "end_block" field */
sqlite3_int64 nLeafData, /* Bytes of leaf data in segment */
char *zRoot, /* Blob value for "root" field */
int nRoot /* Number of bytes in buffer zRoot */
){
sqlite3_stmt *pStmt;
int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pStmt, 1, iLevel);
sqlite3_bind_int(pStmt, 2, iIdx);
sqlite3_bind_int64(pStmt, 3, iStartBlock);
sqlite3_bind_int64(pStmt, 4, iLeafEndBlock);
if( nLeafData==0 ){
sqlite3_bind_int64(pStmt, 5, iEndBlock);
}else{
char *zEnd = sqlite3_mprintf("%lld %lld", iEndBlock, nLeafData);
if( !zEnd ) return SQLITE_NOMEM;
sqlite3_bind_text(pStmt, 5, zEnd, -1, sqlite3_free);
}
sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);
sqlite3_step(pStmt);
rc = sqlite3_reset(pStmt);
sqlite3_bind_null(pStmt, 6);
}
return rc;
}
/*
** Return the size of the common prefix (if any) shared by zPrev and
** zNext, in bytes. For example,
**
** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3
** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2
** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0
*/
static int fts3PrefixCompress(
const char *zPrev, /* Buffer containing previous term */
int nPrev, /* Size of buffer zPrev in bytes */
const char *zNext, /* Buffer containing next term */
int nNext /* Size of buffer zNext in bytes */
){
int n;
for(n=0; n<nPrev && n<nNext && zPrev[n]==zNext[n]; n++);
assert_fts3_nc( n<nNext );
return n;
}
/*
** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
** (according to memcmp) than the previous term.
*/
static int fts3NodeAddTerm(
Fts3Table *p, /* Virtual table handle */
SegmentNode **ppTree, /* IN/OUT: SegmentNode handle */
int isCopyTerm, /* True if zTerm/nTerm is transient */
const char *zTerm, /* Pointer to buffer containing term */
int nTerm /* Size of term in bytes */
){
SegmentNode *pTree = *ppTree;
int rc;
SegmentNode *pNew;
/* First try to append the term to the current node. Return early if
** this is possible.
*/
if( pTree ){
int nData = pTree->nData; /* Current size of node in bytes */
int nReq = nData; /* Required space after adding zTerm */
int nPrefix; /* Number of bytes of prefix compression */
int nSuffix; /* Suffix length */
nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm);
nSuffix = nTerm-nPrefix;
/* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of
** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when
** compared with BINARY collation. This indicates corruption. */
if( nSuffix<=0 ) return FTS_CORRUPT_VTAB;
nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix;
if( nReq<=p->nNodeSize || !pTree->zTerm ){
if( nReq>p->nNodeSize ){
/* An unusual case: this is the first term to be added to the node
** and the static node buffer (p->nNodeSize bytes) is not large
** enough. Use a separately malloced buffer instead This wastes
** p->nNodeSize bytes, but since this scenario only comes about when
** the database contain two terms that share a prefix of almost 2KB,
** this is not expected to be a serious problem.
*/
assert( pTree->aData==(char *)&pTree[1] );
pTree->aData = (char *)sqlite3_malloc64(nReq);
if( !pTree->aData ){
return SQLITE_NOMEM;
}
}
if( pTree->zTerm ){
/* There is no prefix-length field for first term in a node */
nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix);
}
nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix);
memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix);
pTree->nData = nData + nSuffix;
pTree->nEntry++;
if( isCopyTerm ){
if( pTree->nMalloc<nTerm ){
char *zNew = sqlite3_realloc64(pTree->zMalloc, (i64)nTerm*2);
if( !zNew ){
return SQLITE_NOMEM;
}
pTree->nMalloc = nTerm*2;
pTree->zMalloc = zNew;
}
pTree->zTerm = pTree->zMalloc;
memcpy(pTree->zTerm, zTerm, nTerm);
pTree->nTerm = nTerm;
}else{
pTree->zTerm = (char *)zTerm;
pTree->nTerm = nTerm;
}
return SQLITE_OK;
}
}
/* If control flows to here, it was not possible to append zTerm to the
** current node. Create a new node (a right-sibling of the current node).
** If this is the first node in the tree, the term is added to it.
**
** Otherwise, the term is not added to the new node, it is left empty for
** now. Instead, the term is inserted into the parent of pTree. If pTree
** has no parent, one is created here.
*/
pNew = (SegmentNode *)sqlite3_malloc64(sizeof(SegmentNode) + p->nNodeSize);
if( !pNew ){
return SQLITE_NOMEM;
}
memset(pNew, 0, sizeof(SegmentNode));
pNew->nData = 1 + FTS3_VARINT_MAX;
pNew->aData = (char *)&pNew[1];
if( pTree ){
SegmentNode *pParent = pTree->pParent;
rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm);
if( pTree->pParent==0 ){
pTree->pParent = pParent;
}
pTree->pRight = pNew;
pNew->pLeftmost = pTree->pLeftmost;
pNew->pParent = pParent;
pNew->zMalloc = pTree->zMalloc;
pNew->nMalloc = pTree->nMalloc;
pTree->zMalloc = 0;
}else{
pNew->pLeftmost = pNew;
rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm);
}
*ppTree = pNew;
return rc;
}
/*
** Helper function for fts3NodeWrite().
*/
static int fts3TreeFinishNode(
SegmentNode *pTree,
int iHeight,
sqlite3_int64 iLeftChild
){
int nStart;
assert( iHeight>=1 && iHeight<128 );
nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild);
pTree->aData[nStart] = (char)iHeight;
sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild);
return nStart;
}
/*
** Write the buffer for the segment node pTree and all of its peers to the
** database. Then call this function recursively to write the parent of
** pTree and its peers to the database.
**
** Except, if pTree is a root node, do not write it to the database. Instead,
** set output variables *paRoot and *pnRoot to contain the root node.
**
** If successful, SQLITE_OK is returned and output variable *piLast is
** set to the largest blockid written to the database (or zero if no
** blocks were written to the db). Otherwise, an SQLite error code is
** returned.
*/
static int fts3NodeWrite(
Fts3Table *p, /* Virtual table handle */
SegmentNode *pTree, /* SegmentNode handle */
int iHeight, /* Height of this node in tree */
sqlite3_int64 iLeaf, /* Block id of first leaf node */
sqlite3_int64 iFree, /* Block id of next free slot in %_segments */
sqlite3_int64 *piLast, /* OUT: Block id of last entry written */
char **paRoot, /* OUT: Data for root node */
int *pnRoot /* OUT: Size of root node in bytes */
){
int rc = SQLITE_OK;
if( !pTree->pParent ){
/* Root node of the tree. */
int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf);
*piLast = iFree-1;
*pnRoot = pTree->nData - nStart;
*paRoot = &pTree->aData[nStart];
}else{
SegmentNode *pIter;
sqlite3_int64 iNextFree = iFree;
sqlite3_int64 iNextLeaf = iLeaf;
for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){
int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf);
int nWrite = pIter->nData - nStart;
rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite);
iNextFree++;
iNextLeaf += (pIter->nEntry+1);
}
if( rc==SQLITE_OK ){
assert( iNextLeaf==iFree );
rc = fts3NodeWrite(
p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot
);
}
}
return rc;
}
/*
** Free all memory allocations associated with the tree pTree.
*/
static void fts3NodeFree(SegmentNode *pTree){
if( pTree ){
SegmentNode *p = pTree->pLeftmost;
fts3NodeFree(p->pParent);
while( p ){
SegmentNode *pRight = p->pRight;
if( p->aData!=(char *)&p[1] ){
sqlite3_free(p->aData);
}
assert( pRight==0 || p->zMalloc==0 );
sqlite3_free(p->zMalloc);
sqlite3_free(p);
p = pRight;
}
}
}
/*
** Add a term to the segment being constructed by the SegmentWriter object
** *ppWriter. When adding the first term to a segment, *ppWriter should
** be passed NULL. This function will allocate a new SegmentWriter object
** and return it via the input/output variable *ppWriter in this case.
**
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
*/
static int fts3SegWriterAdd(
Fts3Table *p, /* Virtual table handle */
SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */
int isCopyTerm, /* True if buffer zTerm must be copied */
const char *zTerm, /* Pointer to buffer containing term */
int nTerm, /* Size of term in bytes */
const char *aDoclist, /* Pointer to buffer containing doclist */
int nDoclist /* Size of doclist in bytes */
){
int nPrefix; /* Size of term prefix in bytes */
int nSuffix; /* Size of term suffix in bytes */
i64 nReq; /* Number of bytes required on leaf page */
int nData;
SegmentWriter *pWriter = *ppWriter;
if( !pWriter ){
int rc;
sqlite3_stmt *pStmt;
/* Allocate the SegmentWriter structure */
pWriter = (SegmentWriter *)sqlite3_malloc64(sizeof(SegmentWriter));
if( !pWriter ) return SQLITE_NOMEM;
memset(pWriter, 0, sizeof(SegmentWriter));
*ppWriter = pWriter;
/* Allocate a buffer in which to accumulate data */
pWriter->aData = (char *)sqlite3_malloc64(p->nNodeSize);
if( !pWriter->aData ) return SQLITE_NOMEM;
pWriter->nSize = p->nNodeSize;
/* Find the next free blockid in the %_segments table */
rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0);
if( rc!=SQLITE_OK ) return rc;
if( SQLITE_ROW==sqlite3_step(pStmt) ){
pWriter->iFree = sqlite3_column_int64(pStmt, 0);
pWriter->iFirst = pWriter->iFree;
}
rc = sqlite3_reset(pStmt);
if( rc!=SQLITE_OK ) return rc;
}
nData = pWriter->nData;
nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm);
nSuffix = nTerm-nPrefix;
/* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of
** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when
** compared with BINARY collation. This indicates corruption. */
if( nSuffix<=0 ) return FTS_CORRUPT_VTAB;
/* Figure out how many bytes are required by this new entry */
nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */
sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */
nSuffix + /* Term suffix */
sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
nDoclist; /* Doclist data */
if( nData>0 && nData+nReq>p->nNodeSize ){
int rc;
/* The current leaf node is full. Write it out to the database. */
if( pWriter->iFree==LARGEST_INT64 ) return FTS_CORRUPT_VTAB;
rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData);
if( rc!=SQLITE_OK ) return rc;
p->nLeafAdd++;
/* Add the current term to the interior node tree. The term added to
** the interior tree must:
**
** a) be greater than the largest term on the leaf node just written
** to the database (still available in pWriter->zTerm), and
**
** b) be less than or equal to the term about to be added to the new
** leaf node (zTerm/nTerm).
**
** In other words, it must be the prefix of zTerm 1 byte longer than
** the common prefix (if any) of zTerm and pWriter->zTerm.
*/
assert( nPrefix<nTerm );
rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1);
if( rc!=SQLITE_OK ) return rc;
nData = 0;
pWriter->nTerm = 0;
nPrefix = 0;
nSuffix = nTerm;
nReq = 1 + /* varint containing prefix size */
sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */
nTerm + /* Term suffix */
sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
nDoclist; /* Doclist data */
}
/* Increase the total number of bytes written to account for the new entry. */
pWriter->nLeafData += nReq;
/* If the buffer currently allocated is too small for this entry, realloc
** the buffer to make it large enough.
*/
if( nReq>pWriter->nSize ){
char *aNew = sqlite3_realloc64(pWriter->aData, nReq);
if( !aNew ) return SQLITE_NOMEM;
pWriter->aData = aNew;
pWriter->nSize = nReq;
}
assert( nData+nReq<=pWriter->nSize );
/* Append the prefix-compressed term and doclist to the buffer. */
nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix);
nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix);
assert( nSuffix>0 );
memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix);
nData += nSuffix;
nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist);
assert( nDoclist>0 );
memcpy(&pWriter->aData[nData], aDoclist, nDoclist);
pWriter->nData = nData + nDoclist;
/* Save the current term so that it can be used to prefix-compress the next.
** If the isCopyTerm parameter is true, then the buffer pointed to by
** zTerm is transient, so take a copy of the term data. Otherwise, just
** store a copy of the pointer.
*/
if( isCopyTerm ){
if( nTerm>pWriter->nMalloc ){
char *zNew = sqlite3_realloc64(pWriter->zMalloc, (i64)nTerm*2);
if( !zNew ){
return SQLITE_NOMEM;
}
pWriter->nMalloc = nTerm*2;
pWriter->zMalloc = zNew;
pWriter->zTerm = zNew;
}
assert( pWriter->zTerm==pWriter->zMalloc );
assert( nTerm>0 );
memcpy(pWriter->zTerm, zTerm, nTerm);
}else{
pWriter->zTerm = (char *)zTerm;
}
pWriter->nTerm = nTerm;
return SQLITE_OK;
}
/*
** Flush all data associated with the SegmentWriter object pWriter to the
** database. This function must be called after all terms have been added
** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
** returned. Otherwise, an SQLite error code.
*/
static int fts3SegWriterFlush(
Fts3Table *p, /* Virtual table handle */
SegmentWriter *pWriter, /* SegmentWriter to flush to the db */
sqlite3_int64 iLevel, /* Value for 'level' column of %_segdir */
int iIdx /* Value for 'idx' column of %_segdir */
){
int rc; /* Return code */
if( pWriter->pTree ){
sqlite3_int64 iLast = 0; /* Largest block id written to database */
sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */
char *zRoot = NULL; /* Pointer to buffer containing root node */
int nRoot = 0; /* Size of buffer zRoot */
iLastLeaf = pWriter->iFree;
rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData);
if( rc==SQLITE_OK ){
rc = fts3NodeWrite(p, pWriter->pTree, 1,
pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot);
}
if( rc==SQLITE_OK ){
rc = fts3WriteSegdir(p, iLevel, iIdx,
pWriter->iFirst, iLastLeaf, iLast, pWriter->nLeafData, zRoot, nRoot);
}
}else{
/* The entire tree fits on the root node. Write it to the segdir table. */
rc = fts3WriteSegdir(p, iLevel, iIdx,
0, 0, 0, pWriter->nLeafData, pWriter->aData, pWriter->nData);
}
p->nLeafAdd++;
return rc;
}
/*
** Release all memory held by the SegmentWriter object passed as the
** first argument.
*/
static void fts3SegWriterFree(SegmentWriter *pWriter){
if( pWriter ){
sqlite3_free(pWriter->aData);
sqlite3_free(pWriter->zMalloc);
fts3NodeFree(pWriter->pTree);
sqlite3_free(pWriter);
}
}
/*
** The first value in the apVal[] array is assumed to contain an integer.
** This function tests if there exist any documents with docid values that
** are different from that integer. i.e. if deleting the document with docid
** pRowid would mean the FTS3 table were empty.
**
** If successful, *pisEmpty is set to true if the table is empty except for
** document pRowid, or false otherwise, and SQLITE_OK is returned. If an
** error occurs, an SQLite error code is returned.
*/
static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){
sqlite3_stmt *pStmt;
int rc;
if( p->zContentTbl ){
/* If using the content=xxx option, assume the table is never empty */
*pisEmpty = 0;
rc = SQLITE_OK;
}else{
rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid);
if( rc==SQLITE_OK ){
if( SQLITE_ROW==sqlite3_step(pStmt) ){
*pisEmpty = sqlite3_column_int(pStmt, 0);
}
rc = sqlite3_reset(pStmt);
}
}
return rc;
}
/*
** Set *pnMax to the largest segment level in the database for the index
** iIndex.
**
** Segment levels are stored in the 'level' column of the %_segdir table.
**
** Return SQLITE_OK if successful, or an SQLite error code if not.
*/
static int fts3SegmentMaxLevel(
Fts3Table *p,
int iLangid,
int iIndex,
sqlite3_int64 *pnMax
){
sqlite3_stmt *pStmt;
int rc;
assert( iIndex>=0 && iIndex<p->nIndex );
/* Set pStmt to the compiled version of:
**
** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
**
** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
*/
rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
if( rc!=SQLITE_OK ) return rc;
sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
sqlite3_bind_int64(pStmt, 2,
getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
);
if( SQLITE_ROW==sqlite3_step(pStmt) ){
*pnMax = sqlite3_column_int64(pStmt, 0);
}
return sqlite3_reset(pStmt);
}
/*
** iAbsLevel is an absolute level that may be assumed to exist within
** the database. This function checks if it is the largest level number
** within its index. Assuming no error occurs, *pbMax is set to 1 if
** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK
** is returned. If an error occurs, an error code is returned and the
** final value of *pbMax is undefined.
*/
static int fts3SegmentIsMaxLevel(Fts3Table *p, i64 iAbsLevel, int *pbMax){
/* Set pStmt to the compiled version of:
**
** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
**
** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
*/
sqlite3_stmt *pStmt;
int rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
if( rc!=SQLITE_OK ) return rc;
sqlite3_bind_int64(pStmt, 1, iAbsLevel+1);
sqlite3_bind_int64(pStmt, 2,
(((u64)iAbsLevel/FTS3_SEGDIR_MAXLEVEL)+1) * FTS3_SEGDIR_MAXLEVEL
);
*pbMax = 0;
if( SQLITE_ROW==sqlite3_step(pStmt) ){
*pbMax = sqlite3_column_type(pStmt, 0)==SQLITE_NULL;
}
return sqlite3_reset(pStmt);
}
/*
** Delete all entries in the %_segments table associated with the segment
** opened with seg-reader pSeg. This function does not affect the contents
** of the %_segdir table.
*/
static int fts3DeleteSegment(
Fts3Table *p, /* FTS table handle */
Fts3SegReader *pSeg /* Segment to delete */
){
int rc = SQLITE_OK; /* Return code */
if( pSeg->iStartBlock ){
sqlite3_stmt *pDelete; /* SQL statement to delete rows */
rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pDelete, 1, pSeg->iStartBlock);
sqlite3_bind_int64(pDelete, 2, pSeg->iEndBlock);
sqlite3_step(pDelete);
rc = sqlite3_reset(pDelete);
}
}
return rc;
}
/*
** This function is used after merging multiple segments into a single large
** segment to delete the old, now redundant, segment b-trees. Specifically,
** it:
**
** 1) Deletes all %_segments entries for the segments associated with
** each of the SegReader objects in the array passed as the third
** argument, and
**
** 2) deletes all %_segdir entries with level iLevel, or all %_segdir
** entries regardless of level if (iLevel<0).
**
** SQLITE_OK is returned if successful, otherwise an SQLite error code.
*/
static int fts3DeleteSegdir(
Fts3Table *p, /* Virtual table handle */
int iLangid, /* Language id */
int iIndex, /* Index for p->aIndex */
int iLevel, /* Level of %_segdir entries to delete */
Fts3SegReader **apSegment, /* Array of SegReader objects */
int nReader /* Size of array apSegment */
){
int rc = SQLITE_OK; /* Return Code */
int i; /* Iterator variable */
sqlite3_stmt *pDelete = 0; /* SQL statement to delete rows */
for(i=0; rc==SQLITE_OK && i<nReader; i++){
rc = fts3DeleteSegment(p, apSegment[i]);
}
if( rc!=SQLITE_OK ){
return rc;
}
assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL );
if( iLevel==FTS3_SEGCURSOR_ALL ){
rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
sqlite3_bind_int64(pDelete, 2,
getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
);
}
}else{
rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int64(
pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel)
);
}
}
if( rc==SQLITE_OK ){
sqlite3_step(pDelete);
rc = sqlite3_reset(pDelete);
}
return rc;
}
/*
** When this function is called, buffer *ppList (size *pnList bytes) contains
** a position list that may (or may not) feature multiple columns. This
** function adjusts the pointer *ppList and the length *pnList so that they
** identify the subset of the position list that corresponds to column iCol.
**
** If there are no entries in the input position list for column iCol, then
** *pnList is set to zero before returning.
**
** If parameter bZero is non-zero, then any part of the input list following
** the end of the output list is zeroed before returning.
*/
static void fts3ColumnFilter(
int iCol, /* Column to filter on */
int bZero, /* Zero out anything following *ppList */
char **ppList, /* IN/OUT: Pointer to position list */
int *pnList /* IN/OUT: Size of buffer *ppList in bytes */
){
char *pList = *ppList;
int nList = *pnList;
char *pEnd = &pList[nList];
int iCurrent = 0;
char *p = pList;
assert( iCol>=0 );
while( 1 ){
char c = 0;
while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80;
if( iCol==iCurrent ){
nList = (int)(p - pList);
break;
}
nList -= (int)(p - pList);
pList = p;
if( nList<=0 ){
break;
}
p = &pList[1];
p += fts3GetVarint32(p, &iCurrent);
}
if( bZero && (pEnd - &pList[nList])>0){
memset(&pList[nList], 0, pEnd - &pList[nList]);
}
*ppList = pList;
*pnList = nList;
}
/*
** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any
** existing data). Grow the buffer if required.
**
** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered
** trying to resize the buffer, return SQLITE_NOMEM.
*/
static int fts3MsrBufferData(
Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */
char *pList,
i64 nList
){
if( nList>pMsr->nBuffer ){
char *pNew;
pMsr->nBuffer = nList*2;
pNew = (char *)sqlite3_realloc64(pMsr->aBuffer, pMsr->nBuffer);
if( !pNew ) return SQLITE_NOMEM;
pMsr->aBuffer = pNew;
}
assert( nList>0 );
memcpy(pMsr->aBuffer, pList, nList);
return SQLITE_OK;
}
int sqlite3Fts3MsrIncrNext(
Fts3Table *p, /* Virtual table handle */
Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */
sqlite3_int64 *piDocid, /* OUT: Docid value */
char **paPoslist, /* OUT: Pointer to position list */
int *pnPoslist /* OUT: Size of position list in bytes */
){
int nMerge = pMsr->nAdvance;
Fts3SegReader **apSegment = pMsr->apSegment;
int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
);
if( nMerge==0 ){
*paPoslist = 0;
return SQLITE_OK;
}
while( 1 ){
Fts3SegReader *pSeg;
pSeg = pMsr->apSegment[0];
if( pSeg->pOffsetList==0 ){
*paPoslist = 0;
break;
}else{
int rc;
char *pList;
int nList;
int j;
sqlite3_int64 iDocid = apSegment[0]->iDocid;
rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
j = 1;
while( rc==SQLITE_OK
&& j<nMerge
&& apSegment[j]->pOffsetList
&& apSegment[j]->iDocid==iDocid
){
rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
j++;
}
if( rc!=SQLITE_OK ) return rc;
fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp);
if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){
rc = fts3MsrBufferData(pMsr, pList, (i64)nList+1);
if( rc!=SQLITE_OK ) return rc;
assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 );
pList = pMsr->aBuffer;
}
if( pMsr->iColFilter>=0 ){
fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList);
}
if( nList>0 ){
*paPoslist = pList;
*piDocid = iDocid;
*pnPoslist = nList;
break;
}
}
}
return SQLITE_OK;
}
static int fts3SegReaderStart(
Fts3Table *p, /* Virtual table handle */
Fts3MultiSegReader *pCsr, /* Cursor object */
const char *zTerm, /* Term searched for (or NULL) */
int nTerm /* Length of zTerm in bytes */
){
int i;
int nSeg = pCsr->nSegment;
/* If the Fts3SegFilter defines a specific term (or term prefix) to search
** for, then advance each segment iterator until it points to a term of
** equal or greater value than the specified term. This prevents many
** unnecessary merge/sort operations for the case where single segment
** b-tree leaf nodes contain more than one term.
*/
for(i=0; pCsr->bRestart==0 && i<pCsr->nSegment; i++){
int res = 0;
Fts3SegReader *pSeg = pCsr->apSegment[i];
do {
int rc = fts3SegReaderNext(p, pSeg, 0);
if( rc!=SQLITE_OK ) return rc;
}while( zTerm && (res = fts3SegReaderTermCmp(pSeg, zTerm, nTerm))<0 );
if( pSeg->bLookup && res!=0 ){
fts3SegReaderSetEof(pSeg);
}
}
fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp);
return SQLITE_OK;
}
int sqlite3Fts3SegReaderStart(
Fts3Table *p, /* Virtual table handle */
Fts3MultiSegReader *pCsr, /* Cursor object */
Fts3SegFilter *pFilter /* Restrictions on range of iteration */
){
pCsr->pFilter = pFilter;
return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm);
}
int sqlite3Fts3MsrIncrStart(
Fts3Table *p, /* Virtual table handle */
Fts3MultiSegReader *pCsr, /* Cursor object */
int iCol, /* Column to match on. */
const char *zTerm, /* Term to iterate through a doclist for */
int nTerm /* Number of bytes in zTerm */
){
int i;
int rc;
int nSegment = pCsr->nSegment;
int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
);
assert( pCsr->pFilter==0 );
assert( zTerm && nTerm>0 );
/* Advance each segment iterator until it points to the term zTerm/nTerm. */
rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm);
if( rc!=SQLITE_OK ) return rc;
/* Determine how many of the segments actually point to zTerm/nTerm. */
for(i=0; i<nSegment; i++){
Fts3SegReader *pSeg = pCsr->apSegment[i];
if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){
break;
}
}
pCsr->nAdvance = i;
/* Advance each of the segments to point to the first docid. */
for(i=0; i<pCsr->nAdvance; i++){
rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]);
if( rc!=SQLITE_OK ) return rc;
}
fts3SegReaderSort(pCsr->apSegment, i, i, xCmp);
assert( iCol<0 || iCol<p->nColumn );
pCsr->iColFilter = iCol;
return SQLITE_OK;
}
/*
** This function is called on a MultiSegReader that has been started using
** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also
** have been made. Calling this function puts the MultiSegReader in such
** a state that if the next two calls are:
**
** sqlite3Fts3SegReaderStart()
** sqlite3Fts3SegReaderStep()
**
** then the entire doclist for the term is available in
** MultiSegReader.aDoclist/nDoclist.
*/
int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){
int i; /* Used to iterate through segment-readers */
assert( pCsr->zTerm==0 );
assert( pCsr->nTerm==0 );
assert( pCsr->aDoclist==0 );
assert( pCsr->nDoclist==0 );
pCsr->nAdvance = 0;
pCsr->bRestart = 1;
for(i=0; i<pCsr->nSegment; i++){
pCsr->apSegment[i]->pOffsetList = 0;
pCsr->apSegment[i]->nOffsetList = 0;
pCsr->apSegment[i]->iDocid = 0;
}
return SQLITE_OK;
}
static int fts3GrowSegReaderBuffer(Fts3MultiSegReader *pCsr, i64 nReq){
if( nReq>pCsr->nBuffer ){
char *aNew;
pCsr->nBuffer = nReq*2;
aNew = sqlite3_realloc64(pCsr->aBuffer, pCsr->nBuffer);
if( !aNew ){
return SQLITE_NOMEM;
}
pCsr->aBuffer = aNew;
}
return SQLITE_OK;
}
int sqlite3Fts3SegReaderStep(
Fts3Table *p, /* Virtual table handle */
Fts3MultiSegReader *pCsr /* Cursor object */
){
int rc = SQLITE_OK;
int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY);
int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS);
int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER);
int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX);
int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN);
int isFirst = (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST);
Fts3SegReader **apSegment = pCsr->apSegment;
int nSegment = pCsr->nSegment;
Fts3SegFilter *pFilter = pCsr->pFilter;
int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
);
if( pCsr->nSegment==0 ) return SQLITE_OK;
do {
int nMerge;
int i;
/* Advance the first pCsr->nAdvance entries in the apSegment[] array
** forward. Then sort the list in order of current term again.
*/
for(i=0; i<pCsr->nAdvance; i++){
Fts3SegReader *pSeg = apSegment[i];
if( pSeg->bLookup ){
fts3SegReaderSetEof(pSeg);
}else{
rc = fts3SegReaderNext(p, pSeg, 0);
}
if( rc!=SQLITE_OK ) return rc;
}
fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp);
pCsr->nAdvance = 0;
/* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */
assert( rc==SQLITE_OK );
if( apSegment[0]->aNode==0 ) break;
pCsr->nTerm = apSegment[0]->nTerm;
pCsr->zTerm = apSegment[0]->zTerm;
/* If this is a prefix-search, and if the term that apSegment[0] points
** to does not share a suffix with pFilter->zTerm/nTerm, then all
** required callbacks have been made. In this case exit early.
**
** Similarly, if this is a search for an exact match, and the first term
** of segment apSegment[0] is not a match, exit early.
*/
if( pFilter->zTerm && !isScan ){
if( pCsr->nTerm<pFilter->nTerm
|| (!isPrefix && pCsr->nTerm>pFilter->nTerm)
|| memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm)
){
break;
}
}
nMerge = 1;
while( nMerge<nSegment
&& apSegment[nMerge]->aNode
&& apSegment[nMerge]->nTerm==pCsr->nTerm
&& 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm)
){
nMerge++;
}
assert( isIgnoreEmpty || (isRequirePos && !isColFilter) );
if( nMerge==1
&& !isIgnoreEmpty
&& !isFirst
&& (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0)
){
pCsr->nDoclist = apSegment[0]->nDoclist;
if( fts3SegReaderIsPending(apSegment[0]) ){
rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist,
(i64)pCsr->nDoclist);
pCsr->aDoclist = pCsr->aBuffer;
}else{
pCsr->aDoclist = apSegment[0]->aDoclist;
}
if( rc==SQLITE_OK ) rc = SQLITE_ROW;
}else{
int nDoclist = 0; /* Size of doclist */
sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */
/* The current term of the first nMerge entries in the array
** of Fts3SegReader objects is the same. The doclists must be merged
** and a single term returned with the merged doclist.
*/
for(i=0; i<nMerge; i++){
fts3SegReaderFirstDocid(p, apSegment[i]);
}
fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp);
while( apSegment[0]->pOffsetList ){
int j; /* Number of segments that share a docid */
char *pList = 0;
int nList = 0;
int nByte;
sqlite3_int64 iDocid = apSegment[0]->iDocid;
fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
j = 1;
while( j<nMerge
&& apSegment[j]->pOffsetList
&& apSegment[j]->iDocid==iDocid
){
fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
j++;
}
if( isColFilter ){
fts3ColumnFilter(pFilter->iCol, 0, &pList, &nList);
}
if( !isIgnoreEmpty || nList>0 ){
/* Calculate the 'docid' delta value to write into the merged
** doclist. */
sqlite3_int64 iDelta;
if( p->bDescIdx && nDoclist>0 ){
if( iPrev<=iDocid ) return FTS_CORRUPT_VTAB;
iDelta = (i64)((u64)iPrev - (u64)iDocid);
}else{
if( nDoclist>0 && iPrev>=iDocid ) return FTS_CORRUPT_VTAB;
iDelta = (i64)((u64)iDocid - (u64)iPrev);
}
nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0);
rc = fts3GrowSegReaderBuffer(pCsr,
(i64)nByte+nDoclist+FTS3_NODE_PADDING);
if( rc ) return rc;
if( isFirst ){
char *a = &pCsr->aBuffer[nDoclist];
int nWrite;
nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a);
if( nWrite ){
iPrev = iDocid;
nDoclist += nWrite;
}
}else{
nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta);
iPrev = iDocid;
if( isRequirePos ){
memcpy(&pCsr->aBuffer[nDoclist], pList, nList);
nDoclist += nList;
pCsr->aBuffer[nDoclist++] = '\0';
}
}
}
fts3SegReaderSort(apSegment, nMerge, j, xCmp);
}
if( nDoclist>0 ){
rc = fts3GrowSegReaderBuffer(pCsr, (i64)nDoclist+FTS3_NODE_PADDING);
if( rc ) return rc;
memset(&pCsr->aBuffer[nDoclist], 0, FTS3_NODE_PADDING);
pCsr->aDoclist = pCsr->aBuffer;
pCsr->nDoclist = nDoclist;
rc = SQLITE_ROW;
}
}
pCsr->nAdvance = nMerge;
}while( rc==SQLITE_OK );
return rc;
}
void sqlite3Fts3SegReaderFinish(
Fts3MultiSegReader *pCsr /* Cursor object */
){
if( pCsr ){
int i;
for(i=0; i<pCsr->nSegment; i++){
sqlite3Fts3SegReaderFree(pCsr->apSegment[i]);
}
sqlite3_free(pCsr->apSegment);
sqlite3_free(pCsr->aBuffer);
pCsr->nSegment = 0;
pCsr->apSegment = 0;
pCsr->aBuffer = 0;
}
}
/*
** Decode the "end_block" field, selected by column iCol of the SELECT
** statement passed as the first argument.
**
** The "end_block" field may contain either an integer, or a text field
** containing the text representation of two non-negative integers separated
** by one or more space (0x20) characters. In the first case, set *piEndBlock
** to the integer value and *pnByte to zero before returning. In the second,
** set *piEndBlock to the first value and *pnByte to the second.
*/
static void fts3ReadEndBlockField(
sqlite3_stmt *pStmt,
int iCol,
i64 *piEndBlock,
i64 *pnByte
){
const unsigned char *zText = sqlite3_column_text(pStmt, iCol);
if( zText ){
int i;
int iMul = 1;
u64 iVal = 0;
for(i=0; zText[i]>='0' && zText[i]<='9'; i++){
iVal = iVal*10 + (zText[i] - '0');
}
*piEndBlock = (i64)iVal;
while( zText[i]==' ' ) i++;
iVal = 0;
if( zText[i]=='-' ){
i++;
iMul = -1;
}
for(/* no-op */; zText[i]>='0' && zText[i]<='9'; i++){
iVal = iVal*10 + (zText[i] - '0');
}
*pnByte = ((i64)iVal * (i64)iMul);
}
}
/*
** A segment of size nByte bytes has just been written to absolute level
** iAbsLevel. Promote any segments that should be promoted as a result.
*/
static int fts3PromoteSegments(
Fts3Table *p, /* FTS table handle */
sqlite3_int64 iAbsLevel, /* Absolute level just updated */
sqlite3_int64 nByte /* Size of new segment at iAbsLevel */
){
int rc = SQLITE_OK;
sqlite3_stmt *pRange;
rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE2, &pRange, 0);
if( rc==SQLITE_OK ){
int bOk = 0;
i64 iLast = (iAbsLevel/FTS3_SEGDIR_MAXLEVEL + 1) * FTS3_SEGDIR_MAXLEVEL - 1;
i64 nLimit = (nByte*3)/2;
/* Loop through all entries in the %_segdir table corresponding to
** segments in this index on levels greater than iAbsLevel. If there is
** at least one such segment, and it is possible to determine that all
** such segments are smaller than nLimit bytes in size, they will be
** promoted to level iAbsLevel. */
sqlite3_bind_int64(pRange, 1, iAbsLevel+1);
sqlite3_bind_int64(pRange, 2, iLast);
while( SQLITE_ROW==sqlite3_step(pRange) ){
i64 nSize = 0, dummy;
fts3ReadEndBlockField(pRange, 2, &dummy, &nSize);
if( nSize<=0 || nSize>nLimit ){
/* If nSize==0, then the %_segdir.end_block field does not not
** contain a size value. This happens if it was written by an
** old version of FTS. In this case it is not possible to determine
** the size of the segment, and so segment promotion does not
** take place. */
bOk = 0;
break;
}
bOk = 1;
}
rc = sqlite3_reset(pRange);
if( bOk ){
int iIdx = 0;
sqlite3_stmt *pUpdate1 = 0;
sqlite3_stmt *pUpdate2 = 0;
if( rc==SQLITE_OK ){
rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL_IDX, &pUpdate1, 0);
}
if( rc==SQLITE_OK ){
rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL, &pUpdate2, 0);
}
if( rc==SQLITE_OK ){
/* Loop through all %_segdir entries for segments in this index with
** levels equal to or greater than iAbsLevel. As each entry is visited,
** updated it to set (level = -1) and (idx = N), where N is 0 for the
** oldest segment in the range, 1 for the next oldest, and so on.
**
** In other words, move all segments being promoted to level -1,
** setting the "idx" fields as appropriate to keep them in the same
** order. The contents of level -1 (which is never used, except
** transiently here), will be moved back to level iAbsLevel below. */
sqlite3_bind_int64(pRange, 1, iAbsLevel);
while( SQLITE_ROW==sqlite3_step(pRange) ){
sqlite3_bind_int(pUpdate1, 1, iIdx++);
sqlite3_bind_int(pUpdate1, 2, sqlite3_column_int(pRange, 0));
sqlite3_bind_int(pUpdate1, 3, sqlite3_column_int(pRange, 1));
sqlite3_step(pUpdate1);
rc = sqlite3_reset(pUpdate1);
if( rc!=SQLITE_OK ){
sqlite3_reset(pRange);
break;
}
}
}
if( rc==SQLITE_OK ){
rc = sqlite3_reset(pRange);
}
/* Move level -1 to level iAbsLevel */
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pUpdate2, 1, iAbsLevel);
sqlite3_step(pUpdate2);
rc = sqlite3_reset(pUpdate2);
}
}
}
return rc;
}
/*
** Merge all level iLevel segments in the database into a single
** iLevel+1 segment. Or, if iLevel<0, merge all segments into a
** single segment with a level equal to the numerically largest level
** currently present in the database.
**
** If this function is called with iLevel<0, but there is only one
** segment in the database, SQLITE_DONE is returned immediately.
** Otherwise, if successful, SQLITE_OK is returned. If an error occurs,
** an SQLite error code is returned.
*/
static int fts3SegmentMerge(
Fts3Table *p,
int iLangid, /* Language id to merge */
int iIndex, /* Index in p->aIndex[] to merge */
int iLevel /* Level to merge */
){
int rc; /* Return code */
int iIdx = 0; /* Index of new segment */
sqlite3_int64 iNewLevel = 0; /* Level/index to create new segment at */
SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */
Fts3SegFilter filter; /* Segment term filter condition */
Fts3MultiSegReader csr; /* Cursor to iterate through level(s) */
int bIgnoreEmpty = 0; /* True to ignore empty segments */
i64 iMaxLevel = 0; /* Max level number for this index/langid */
assert( iLevel==FTS3_SEGCURSOR_ALL
|| iLevel==FTS3_SEGCURSOR_PENDING
|| iLevel>=0
);
assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
assert( iIndex>=0 && iIndex<p->nIndex );
rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr);
if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished;
if( iLevel!=FTS3_SEGCURSOR_PENDING ){
rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iMaxLevel);
if( rc!=SQLITE_OK ) goto finished;
}
if( iLevel==FTS3_SEGCURSOR_ALL ){
/* This call is to merge all segments in the database to a single
** segment. The level of the new segment is equal to the numerically
** greatest segment level currently present in the database for this
** index. The idx of the new segment is always 0. */
if( csr.nSegment==1 && 0==fts3SegReaderIsPending(csr.apSegment[0]) ){
rc = SQLITE_DONE;
goto finished;
}
iNewLevel = iMaxLevel;
bIgnoreEmpty = 1;
}else{
/* This call is to merge all segments at level iLevel. find the next
** available segment index at level iLevel+1. The call to
** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to
** a single iLevel+2 segment if necessary. */
assert( FTS3_SEGCURSOR_PENDING==-1 );
iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1);
rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx);
bIgnoreEmpty = (iLevel!=FTS3_SEGCURSOR_PENDING) && (iNewLevel>iMaxLevel);
}
if( rc!=SQLITE_OK ) goto finished;
assert( csr.nSegment>0 );
assert_fts3_nc( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) );
assert_fts3_nc(
iNewLevel<getAbsoluteLevel(p, iLangid, iIndex,FTS3_SEGDIR_MAXLEVEL)
);
memset(&filter, 0, sizeof(Fts3SegFilter));
filter.flags = FTS3_SEGMENT_REQUIRE_POS;
filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0);
rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
while( SQLITE_OK==rc ){
rc = sqlite3Fts3SegReaderStep(p, &csr);
if( rc!=SQLITE_ROW ) break;
rc = fts3SegWriterAdd(p, &pWriter, 1,
csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist);
}
if( rc!=SQLITE_OK ) goto finished;
assert_fts3_nc( pWriter || bIgnoreEmpty );
if( iLevel!=FTS3_SEGCURSOR_PENDING ){
rc = fts3DeleteSegdir(
p, iLangid, iIndex, iLevel, csr.apSegment, csr.nSegment
);
if( rc!=SQLITE_OK ) goto finished;
}
if( pWriter ){
rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx);
if( rc==SQLITE_OK ){
if( iLevel==FTS3_SEGCURSOR_PENDING || iNewLevel<iMaxLevel ){
rc = fts3PromoteSegments(p, iNewLevel, pWriter->nLeafData);
}
}
}
finished:
fts3SegWriterFree(pWriter);
sqlite3Fts3SegReaderFinish(&csr);
return rc;
}
/*
** Flush the contents of pendingTerms to level 0 segments.
*/
int sqlite3Fts3PendingTermsFlush(Fts3Table *p){
int rc = SQLITE_OK;
int i;
for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
rc = fts3SegmentMerge(p, p->iPrevLangid, i, FTS3_SEGCURSOR_PENDING);
if( rc==SQLITE_DONE ) rc = SQLITE_OK;
}
sqlite3Fts3PendingTermsClear(p);
/* Determine the auto-incr-merge setting if unknown. If enabled,
** estimate the number of leaf blocks of content to be written
*/
if( rc==SQLITE_OK && p->bHasStat
&& p->nAutoincrmerge==0xff && p->nLeafAdd>0
){
sqlite3_stmt *pStmt = 0;
rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE);
rc = sqlite3_step(pStmt);
if( rc==SQLITE_ROW ){
p->nAutoincrmerge = sqlite3_column_int(pStmt, 0);
if( p->nAutoincrmerge==1 ) p->nAutoincrmerge = 8;
}else if( rc==SQLITE_DONE ){
p->nAutoincrmerge = 0;
}
rc = sqlite3_reset(pStmt);
}
}
return rc;
}
/*
** Encode N integers as varints into a blob.
*/
static void fts3EncodeIntArray(
int N, /* The number of integers to encode */
u32 *a, /* The integer values */
char *zBuf, /* Write the BLOB here */
int *pNBuf /* Write number of bytes if zBuf[] used here */
){
int i, j;
for(i=j=0; i<N; i++){
j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]);
}
*pNBuf = j;
}
/*
** Decode a blob of varints into N integers
*/
static void fts3DecodeIntArray(
int N, /* The number of integers to decode */
u32 *a, /* Write the integer values */
const char *zBuf, /* The BLOB containing the varints */
int nBuf /* size of the BLOB */
){
int i = 0;
if( nBuf && (zBuf[nBuf-1]&0x80)==0 ){
int j;
for(i=j=0; i<N && j<nBuf; i++){
sqlite3_int64 x;
j += sqlite3Fts3GetVarint(&zBuf[j], &x);
a[i] = (u32)(x & 0xffffffff);
}
}
while( i<N ) a[i++] = 0;
}
/*
** Insert the sizes (in tokens) for each column of the document
** with docid equal to p->iPrevDocid. The sizes are encoded as
** a blob of varints.
*/
static void fts3InsertDocsize(
int *pRC, /* Result code */
Fts3Table *p, /* Table into which to insert */
u32 *aSz /* Sizes of each column, in tokens */
){
char *pBlob; /* The BLOB encoding of the document size */
int nBlob; /* Number of bytes in the BLOB */
sqlite3_stmt *pStmt; /* Statement used to insert the encoding */
int rc; /* Result code from subfunctions */
if( *pRC ) return;
pBlob = sqlite3_malloc64( 10*(sqlite3_int64)p->nColumn );
if( pBlob==0 ){
*pRC = SQLITE_NOMEM;
return;
}
fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob);
rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0);
if( rc ){
sqlite3_free(pBlob);
*pRC = rc;
return;
}
sqlite3_bind_int64(pStmt, 1, p->iPrevDocid);
sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free);
sqlite3_step(pStmt);
*pRC = sqlite3_reset(pStmt);
}
/*
** Record 0 of the %_stat table contains a blob consisting of N varints,
** where N is the number of user defined columns in the fts3 table plus
** two. If nCol is the number of user defined columns, then values of the
** varints are set as follows:
**
** Varint 0: Total number of rows in the table.
**
** Varint 1..nCol: For each column, the total number of tokens stored in
** the column for all rows of the table.
**
** Varint 1+nCol: The total size, in bytes, of all text values in all
** columns of all rows of the table.
**
*/
static void fts3UpdateDocTotals(
int *pRC, /* The result code */
Fts3Table *p, /* Table being updated */
u32 *aSzIns, /* Size increases */
u32 *aSzDel, /* Size decreases */
int nChng /* Change in the number of documents */
){
char *pBlob; /* Storage for BLOB written into %_stat */
int nBlob; /* Size of BLOB written into %_stat */
u32 *a; /* Array of integers that becomes the BLOB */
sqlite3_stmt *pStmt; /* Statement for reading and writing */
int i; /* Loop counter */
int rc; /* Result code from subfunctions */
const int nStat = p->nColumn+2;
if( *pRC ) return;
a = sqlite3_malloc64( (sizeof(u32)+10)*(sqlite3_int64)nStat );
if( a==0 ){
*pRC = SQLITE_NOMEM;
return;
}
pBlob = (char*)&a[nStat];
rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0);
if( rc ){
sqlite3_free(a);
*pRC = rc;
return;
}
sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
if( sqlite3_step(pStmt)==SQLITE_ROW ){
fts3DecodeIntArray(nStat, a,
sqlite3_column_blob(pStmt, 0),
sqlite3_column_bytes(pStmt, 0));
}else{
memset(a, 0, sizeof(u32)*(nStat) );
}
rc = sqlite3_reset(pStmt);
if( rc!=SQLITE_OK ){
sqlite3_free(a);
*pRC = rc;
return;
}
if( nChng<0 && a[0]<(u32)(-nChng) ){
a[0] = 0;
}else{
a[0] += nChng;
}
for(i=0; i<p->nColumn+1; i++){
u32 x = a[i+1];
if( x+aSzIns[i] < aSzDel[i] ){
x = 0;
}else{
x = x + aSzIns[i] - aSzDel[i];
}
a[i+1] = x;
}
fts3EncodeIntArray(nStat, a, pBlob, &nBlob);
rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0);
if( rc ){
sqlite3_free(a);
*pRC = rc;
return;
}
sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC);
sqlite3_step(pStmt);
*pRC = sqlite3_reset(pStmt);
sqlite3_bind_null(pStmt, 2);
sqlite3_free(a);
}
/*
** Merge the entire database so that there is one segment for each
** iIndex/iLangid combination.
*/
static int fts3DoOptimize(Fts3Table *p, int bReturnDone){
int bSeenDone = 0;
int rc;
sqlite3_stmt *pAllLangid = 0;
rc = sqlite3Fts3PendingTermsFlush(p);
if( rc==SQLITE_OK ){
rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
}
if( rc==SQLITE_OK ){
int rc2;
sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid);
sqlite3_bind_int(pAllLangid, 2, p->nIndex);
while( sqlite3_step(pAllLangid)==SQLITE_ROW ){
int i;
int iLangid = sqlite3_column_int(pAllLangid, 0);
for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL);
if( rc==SQLITE_DONE ){
bSeenDone = 1;
rc = SQLITE_OK;
}
}
}
rc2 = sqlite3_reset(pAllLangid);
if( rc==SQLITE_OK ) rc = rc2;
}
sqlite3Fts3SegmentsClose(p);
return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc;
}
/*
** This function is called when the user executes the following statement:
**
** INSERT INTO <tbl>(<tbl>) VALUES('rebuild');
**
** The entire FTS index is discarded and rebuilt. If the table is one
** created using the content=xxx option, then the new index is based on
** the current contents of the xxx table. Otherwise, it is rebuilt based
** on the contents of the %_content table.
*/
static int fts3DoRebuild(Fts3Table *p){
int rc; /* Return Code */
rc = fts3DeleteAll(p, 0);
if( rc==SQLITE_OK ){
u32 *aSz = 0;
u32 *aSzIns = 0;
u32 *aSzDel = 0;
sqlite3_stmt *pStmt = 0;
int nEntry = 0;
/* Compose and prepare an SQL statement to loop through the content table */
char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist);
if( !zSql ){
rc = SQLITE_NOMEM;
}else{
rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
}
if( rc==SQLITE_OK ){
sqlite3_int64 nByte = sizeof(u32) * ((sqlite3_int64)p->nColumn+1)*3;
aSz = (u32 *)sqlite3_malloc64(nByte);
if( aSz==0 ){
rc = SQLITE_NOMEM;
}else{
memset(aSz, 0, nByte);
aSzIns = &aSz[p->nColumn+1];
aSzDel = &aSzIns[p->nColumn+1];
}
}
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
int iCol;
int iLangid = langidFromSelect(p, pStmt);
rc = fts3PendingTermsDocid(p, 0, iLangid, sqlite3_column_int64(pStmt, 0));
memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1));
for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
if( p->abNotindexed[iCol]==0 ){
const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1);
rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]);
aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1);
}
}
if( p->bHasDocsize ){
fts3InsertDocsize(&rc, p, aSz);
}
if( rc!=SQLITE_OK ){
sqlite3_finalize(pStmt);
pStmt = 0;
}else{
nEntry++;
for(iCol=0; iCol<=p->nColumn; iCol++){
aSzIns[iCol] += aSz[iCol];
}
}
}
if( p->bFts4 ){
fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry);
}
sqlite3_free(aSz);
if( pStmt ){
int rc2 = sqlite3_finalize(pStmt);
if( rc==SQLITE_OK ){
rc = rc2;
}
}
}
return rc;
}
/*
** This function opens a cursor used to read the input data for an
** incremental merge operation. Specifically, it opens a cursor to scan
** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute
** level iAbsLevel.
*/
static int fts3IncrmergeCsr(
Fts3Table *p, /* FTS3 table handle */
sqlite3_int64 iAbsLevel, /* Absolute level to open */
int nSeg, /* Number of segments to merge */
Fts3MultiSegReader *pCsr /* Cursor object to populate */
){
int rc; /* Return Code */
sqlite3_stmt *pStmt = 0; /* Statement used to read %_segdir entry */
sqlite3_int64 nByte; /* Bytes allocated at pCsr->apSegment[] */
/* Allocate space for the Fts3MultiSegReader.aCsr[] array */
memset(pCsr, 0, sizeof(*pCsr));
nByte = sizeof(Fts3SegReader *) * nSeg;
pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc64(nByte);
if( pCsr->apSegment==0 ){
rc = SQLITE_NOMEM;
}else{
memset(pCsr->apSegment, 0, nByte);
rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
}
if( rc==SQLITE_OK ){
int i;
int rc2;
sqlite3_bind_int64(pStmt, 1, iAbsLevel);
assert( pCsr->nSegment==0 );
for(i=0; rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW && i<nSeg; i++){
rc = sqlite3Fts3SegReaderNew(i, 0,
sqlite3_column_int64(pStmt, 1), /* segdir.start_block */
sqlite3_column_int64(pStmt, 2), /* segdir.leaves_end_block */
sqlite3_column_int64(pStmt, 3), /* segdir.end_block */
sqlite3_column_blob(pStmt, 4), /* segdir.root */
sqlite3_column_bytes(pStmt, 4), /* segdir.root */
&pCsr->apSegment[i]
);
pCsr->nSegment++;
}
rc2 = sqlite3_reset(pStmt);
if( rc==SQLITE_OK ) rc = rc2;
}
return rc;
}
typedef struct IncrmergeWriter IncrmergeWriter;
typedef struct NodeWriter NodeWriter;
typedef struct Blob Blob;
typedef struct NodeReader NodeReader;
/*
** An instance of the following structure is used as a dynamic buffer
** to build up nodes or other blobs of data in.
**
** The function blobGrowBuffer() is used to extend the allocation.
*/
struct Blob {
char *a; /* Pointer to allocation */
int n; /* Number of valid bytes of data in a[] */
int nAlloc; /* Allocated size of a[] (nAlloc>=n) */
};
/*
** This structure is used to build up buffers containing segment b-tree
** nodes (blocks).
*/
struct NodeWriter {
sqlite3_int64 iBlock; /* Current block id */
Blob key; /* Last key written to the current block */
Blob block; /* Current block image */
};
/*
** An object of this type contains the state required to create or append
** to an appendable b-tree segment.
*/
struct IncrmergeWriter {
int nLeafEst; /* Space allocated for leaf blocks */
int nWork; /* Number of leaf pages flushed */
sqlite3_int64 iAbsLevel; /* Absolute level of input segments */
int iIdx; /* Index of *output* segment in iAbsLevel+1 */
sqlite3_int64 iStart; /* Block number of first allocated block */
sqlite3_int64 iEnd; /* Block number of last allocated block */
sqlite3_int64 nLeafData; /* Bytes of leaf page data so far */
u8 bNoLeafData; /* If true, store 0 for segment size */
NodeWriter aNodeWriter[FTS_MAX_APPENDABLE_HEIGHT];
};
/*
** An object of the following type is used to read data from a single
** FTS segment node. See the following functions:
**
** nodeReaderInit()
** nodeReaderNext()
** nodeReaderRelease()
*/
struct NodeReader {
const char *aNode;
int nNode;
int iOff; /* Current offset within aNode[] */
/* Output variables. Containing the current node entry. */
sqlite3_int64 iChild; /* Pointer to child node */
Blob term; /* Current term */
const char *aDoclist; /* Pointer to doclist */
int nDoclist; /* Size of doclist in bytes */
};
/*
** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
** Otherwise, if the allocation at pBlob->a is not already at least nMin
** bytes in size, extend (realloc) it to be so.
**
** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a
** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc
** to reflect the new size of the pBlob->a[] buffer.
*/
static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){
if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){
int nAlloc = nMin;
char *a = (char *)sqlite3_realloc64(pBlob->a, nAlloc);
if( a ){
pBlob->nAlloc = nAlloc;
pBlob->a = a;
}else{
*pRc = SQLITE_NOMEM;
}
}
}
/*
** Attempt to advance the node-reader object passed as the first argument to
** the next entry on the node.
**
** Return an error code if an error occurs (SQLITE_NOMEM is possible).
** Otherwise return SQLITE_OK. If there is no next entry on the node
** (e.g. because the current entry is the last) set NodeReader->aNode to
** NULL to indicate EOF. Otherwise, populate the NodeReader structure output
** variables for the new entry.
*/
static int nodeReaderNext(NodeReader *p){
int bFirst = (p->term.n==0); /* True for first term on the node */
int nPrefix = 0; /* Bytes to copy from previous term */
int nSuffix = 0; /* Bytes to append to the prefix */
int rc = SQLITE_OK; /* Return code */
assert( p->aNode );
if( p->iChild && bFirst==0 ) p->iChild++;
if( p->iOff>=p->nNode ){
/* EOF */
p->aNode = 0;
}else{
if( bFirst==0 ){
p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix);
}
p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix);
if( nPrefix>p->term.n || nSuffix>p->nNode-p->iOff || nSuffix==0 ){
return FTS_CORRUPT_VTAB;
}
blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc);
if( rc==SQLITE_OK && ALWAYS(p->term.a!=0) ){
memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix);
p->term.n = nPrefix+nSuffix;
p->iOff += nSuffix;
if( p->iChild==0 ){
p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist);
if( (p->nNode-p->iOff)<p->nDoclist ){
return FTS_CORRUPT_VTAB;
}
p->aDoclist = &p->aNode[p->iOff];
p->iOff += p->nDoclist;
}
}
}
assert_fts3_nc( p->iOff<=p->nNode );
return rc;
}
/*
** Release all dynamic resources held by node-reader object *p.
*/
static void nodeReaderRelease(NodeReader *p){
sqlite3_free(p->term.a);
}
/*
** Initialize a node-reader object to read the node in buffer aNode/nNode.
**
** If successful, SQLITE_OK is returned and the NodeReader object set to
** point to the first entry on the node (if any). Otherwise, an SQLite
** error code is returned.
*/
static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){
memset(p, 0, sizeof(NodeReader));
p->aNode = aNode;
p->nNode = nNode;
/* Figure out if this is a leaf or an internal node. */
if( aNode && aNode[0] ){
/* An internal node. */
p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild);
}else{
p->iOff = 1;
}
return aNode ? nodeReaderNext(p) : SQLITE_OK;
}
/*
** This function is called while writing an FTS segment each time a leaf o
** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed
** to be greater than the largest key on the node just written, but smaller
** than or equal to the first key that will be written to the next leaf
** node.
**
** The block id of the leaf node just written to disk may be found in
** (pWriter->aNodeWriter[0].iBlock) when this function is called.
*/
static int fts3IncrmergePush(
Fts3Table *p, /* Fts3 table handle */
IncrmergeWriter *pWriter, /* Writer object */
const char *zTerm, /* Term to write to internal node */
int nTerm /* Bytes at zTerm */
){
sqlite3_int64 iPtr = pWriter->aNodeWriter[0].iBlock;
int iLayer;
assert( nTerm>0 );
for(iLayer=1; ALWAYS(iLayer<FTS_MAX_APPENDABLE_HEIGHT); iLayer++){
sqlite3_int64 iNextPtr = 0;
NodeWriter *pNode = &pWriter->aNodeWriter[iLayer];
int rc = SQLITE_OK;
int nPrefix;
int nSuffix;
int nSpace;
/* Figure out how much space the key will consume if it is written to
** the current node of layer iLayer. Due to the prefix compression,
** the space required changes depending on which node the key is to
** be added to. */
nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm);
nSuffix = nTerm - nPrefix;
if(nSuffix<=0 ) return FTS_CORRUPT_VTAB;
nSpace = sqlite3Fts3VarintLen(nPrefix);
nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){
/* If the current node of layer iLayer contains zero keys, or if adding
** the key to it will not cause it to grow to larger than nNodeSize
** bytes in size, write the key here. */
Blob *pBlk = &pNode->block;
if( pBlk->n==0 ){
blobGrowBuffer(pBlk, p->nNodeSize, &rc);
if( rc==SQLITE_OK ){
pBlk->a[0] = (char)iLayer;
pBlk->n = 1 + sqlite3Fts3PutVarint(&pBlk->a[1], iPtr);
}
}
blobGrowBuffer(pBlk, pBlk->n + nSpace, &rc);
blobGrowBuffer(&pNode->key, nTerm, &rc);
if( rc==SQLITE_OK ){
if( pNode->key.n ){
pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nPrefix);
}
pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nSuffix);
assert( nPrefix+nSuffix<=nTerm );
assert( nPrefix>=0 );
memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix);
pBlk->n += nSuffix;
memcpy(pNode->key.a, zTerm, nTerm);
pNode->key.n = nTerm;
}
}else{
/* Otherwise, flush the current node of layer iLayer to disk.
** Then allocate a new, empty sibling node. The key will be written
** into the parent of this node. */
rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);
assert( pNode->block.nAlloc>=p->nNodeSize );
pNode->block.a[0] = (char)iLayer;
pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1);
iNextPtr = pNode->iBlock;
pNode->iBlock++;
pNode->key.n = 0;
}
if( rc!=SQLITE_OK || iNextPtr==0 ) return rc;
iPtr = iNextPtr;
}
assert( 0 );
return 0;
}
/*
** Append a term and (optionally) doclist to the FTS segment node currently
** stored in blob *pNode. The node need not contain any terms, but the
** header must be written before this function is called.
**
** A node header is a single 0x00 byte for a leaf node, or a height varint
** followed by the left-hand-child varint for an internal node.
**
** The term to be appended is passed via arguments zTerm/nTerm. For a
** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal
** node, both aDoclist and nDoclist must be passed 0.
**
** If the size of the value in blob pPrev is zero, then this is the first
** term written to the node. Otherwise, pPrev contains a copy of the
** previous term. Before this function returns, it is updated to contain a
** copy of zTerm/nTerm.
**
** It is assumed that the buffer associated with pNode is already large
** enough to accommodate the new entry. The buffer associated with pPrev
** is extended by this function if requrired.
**
** If an error (i.e. OOM condition) occurs, an SQLite error code is
** returned. Otherwise, SQLITE_OK.
*/
static int fts3AppendToNode(
Blob *pNode, /* Current node image to append to */
Blob *pPrev, /* Buffer containing previous term written */
const char *zTerm, /* New term to write */
int nTerm, /* Size of zTerm in bytes */
const char *aDoclist, /* Doclist (or NULL) to write */
int nDoclist /* Size of aDoclist in bytes */
){
int rc = SQLITE_OK; /* Return code */
int bFirst = (pPrev->n==0); /* True if this is the first term written */
int nPrefix; /* Size of term prefix in bytes */
int nSuffix; /* Size of term suffix in bytes */
/* Node must have already been started. There must be a doclist for a
** leaf node, and there must not be a doclist for an internal node. */
assert( pNode->n>0 );
assert_fts3_nc( (pNode->a[0]=='\0')==(aDoclist!=0) );
blobGrowBuffer(pPrev, nTerm, &rc);
if( rc!=SQLITE_OK ) return rc;
nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm);
nSuffix = nTerm - nPrefix;
if( nSuffix<=0 ) return FTS_CORRUPT_VTAB;
memcpy(pPrev->a, zTerm, nTerm);
pPrev->n = nTerm;
if( bFirst==0 ){
pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix);
}
pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix);
memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix);
pNode->n += nSuffix;
if( aDoclist ){
pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist);
memcpy(&pNode->a[pNode->n], aDoclist, nDoclist);
pNode->n += nDoclist;
}
assert( pNode->n<=pNode->nAlloc );
return SQLITE_OK;
}
/*
** Append the current term and doclist pointed to by cursor pCsr to the
** appendable b-tree segment opened for writing by pWriter.
**
** Return SQLITE_OK if successful, or an SQLite error code otherwise.
*/
static int fts3IncrmergeAppend(
Fts3Table *p, /* Fts3 table handle */
IncrmergeWriter *pWriter, /* Writer object */
Fts3MultiSegReader *pCsr /* Cursor containing term and doclist */
){
const char *zTerm = pCsr->zTerm;
int nTerm = pCsr->nTerm;
const char *aDoclist = pCsr->aDoclist;
int nDoclist = pCsr->nDoclist;
int rc = SQLITE_OK; /* Return code */
int nSpace; /* Total space in bytes required on leaf */
int nPrefix; /* Size of prefix shared with previous term */
int nSuffix; /* Size of suffix (nTerm - nPrefix) */
NodeWriter *pLeaf; /* Object used to write leaf nodes */
pLeaf = &pWriter->aNodeWriter[0];
nPrefix = fts3PrefixCompress(pLeaf->key.a, pLeaf->key.n, zTerm, nTerm);
nSuffix = nTerm - nPrefix;
if(nSuffix<=0 ) return FTS_CORRUPT_VTAB;
nSpace = sqlite3Fts3VarintLen(nPrefix);
nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
/* If the current block is not empty, and if adding this term/doclist
** to the current block would make it larger than Fts3Table.nNodeSize
** bytes, write this block out to the database. */
if( pLeaf->block.n>0 && (pLeaf->block.n + nSpace)>p->nNodeSize ){
rc = fts3WriteSegment(p, pLeaf->iBlock, pLeaf->block.a, pLeaf->block.n);
pWriter->nWork++;
/* Add the current term to the parent node. The term added to the
** parent must:
**
** a) be greater than the largest term on the leaf node just written
** to the database (still available in pLeaf->key), and
**
** b) be less than or equal to the term about to be added to the new
** leaf node (zTerm/nTerm).
**
** In other words, it must be the prefix of zTerm 1 byte longer than
** the common prefix (if any) of zTerm and pWriter->zTerm.
*/
if( rc==SQLITE_OK ){
rc = fts3IncrmergePush(p, pWriter, zTerm, nPrefix+1);
}
/* Advance to the next output block */
pLeaf->iBlock++;
pLeaf->key.n = 0;
pLeaf->block.n = 0;
nSuffix = nTerm;
nSpace = 1;
nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
}
pWriter->nLeafData += nSpace;
blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc);
if( rc==SQLITE_OK ){
if( pLeaf->block.n==0 ){
pLeaf->block.n = 1;
pLeaf->block.a[0] = '\0';
}
rc = fts3AppendToNode(
&pLeaf->block, &pLeaf->key, zTerm, nTerm, aDoclist, nDoclist
);
}
return rc;
}
/*
** This function is called to release all dynamic resources held by the
** merge-writer object pWriter, and if no error has occurred, to flush
** all outstanding node buffers held by pWriter to disk.
**
** If *pRc is not SQLITE_OK when this function is called, then no attempt
** is made to write any data to disk. Instead, this function serves only
** to release outstanding resources.
**
** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while
** flushing buffers to disk, *pRc is set to an SQLite error code before
** returning.
*/
static void fts3IncrmergeRelease(
Fts3Table *p, /* FTS3 table handle */
IncrmergeWriter *pWriter, /* Merge-writer object */
int *pRc /* IN/OUT: Error code */
){
int i; /* Used to iterate through non-root layers */
int iRoot; /* Index of root in pWriter->aNodeWriter */
NodeWriter *pRoot; /* NodeWriter for root node */
int rc = *pRc; /* Error code */
/* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment
** root node. If the segment fits entirely on a single leaf node, iRoot
** will be set to 0. If the root node is the parent of the leaves, iRoot
** will be 1. And so on. */
for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){
NodeWriter *pNode = &pWriter->aNodeWriter[iRoot];
if( pNode->block.n>0 ) break;
assert( *pRc || pNode->block.nAlloc==0 );
assert( *pRc || pNode->key.nAlloc==0 );
sqlite3_free(pNode->block.a);
sqlite3_free(pNode->key.a);
}
/* Empty output segment. This is a no-op. */
if( iRoot<0 ) return;
/* The entire output segment fits on a single node. Normally, this means
** the node would be stored as a blob in the "root" column of the %_segdir
** table. However, this is not permitted in this case. The problem is that
** space has already been reserved in the %_segments table, and so the
** start_block and end_block fields of the %_segdir table must be populated.
** And, by design or by accident, released versions of FTS cannot handle
** segments that fit entirely on the root node with start_block!=0.
**
** Instead, create a synthetic root node that contains nothing but a
** pointer to the single content node. So that the segment consists of a
** single leaf and a single interior (root) node.
**
** Todo: Better might be to defer allocating space in the %_segments
** table until we are sure it is needed.
*/
if( iRoot==0 ){
Blob *pBlock = &pWriter->aNodeWriter[1].block;
blobGrowBuffer(pBlock, 1 + FTS3_VARINT_MAX, &rc);
if( rc==SQLITE_OK ){
pBlock->a[0] = 0x01;
pBlock->n = 1 + sqlite3Fts3PutVarint(
&pBlock->a[1], pWriter->aNodeWriter[0].iBlock
);
}
iRoot = 1;
}
pRoot = &pWriter->aNodeWriter[iRoot];
/* Flush all currently outstanding nodes to disk. */
for(i=0; i<iRoot; i++){
NodeWriter *pNode = &pWriter->aNodeWriter[i];
if( pNode->block.n>0 && rc==SQLITE_OK ){
rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);
}
sqlite3_free(pNode->block.a);
sqlite3_free(pNode->key.a);
}
/* Write the %_segdir record. */
if( rc==SQLITE_OK ){
rc = fts3WriteSegdir(p,
pWriter->iAbsLevel+1, /* level */
pWriter->iIdx, /* idx */
pWriter->iStart, /* start_block */
pWriter->aNodeWriter[0].iBlock, /* leaves_end_block */
pWriter->iEnd, /* end_block */
(pWriter->bNoLeafData==0 ? pWriter->nLeafData : 0), /* end_block */
pRoot->block.a, pRoot->block.n /* root */
);
}
sqlite3_free(pRoot->block.a);
sqlite3_free(pRoot->key.a);
*pRc = rc;
}
/*
** Compare the term in buffer zLhs (size in bytes nLhs) with that in
** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of
** the other, it is considered to be smaller than the other.
**
** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve
** if it is greater.
*/
static int fts3TermCmp(
const char *zLhs, int nLhs, /* LHS of comparison */
const char *zRhs, int nRhs /* RHS of comparison */
){
int nCmp = MIN(nLhs, nRhs);
int res;
if( nCmp && ALWAYS(zLhs) && ALWAYS(zRhs) ){
res = memcmp(zLhs, zRhs, nCmp);
}else{
res = 0;
}
if( res==0 ) res = nLhs - nRhs;
return res;
}
/*
** Query to see if the entry in the %_segments table with blockid iEnd is
** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before
** returning. Otherwise, set *pbRes to 0.
**
** Or, if an error occurs while querying the database, return an SQLite
** error code. The final value of *pbRes is undefined in this case.
**
** This is used to test if a segment is an "appendable" segment. If it
** is, then a NULL entry has been inserted into the %_segments table
** with blockid %_segdir.end_block.
*/
static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){
int bRes = 0; /* Result to set *pbRes to */
sqlite3_stmt *pCheck = 0; /* Statement to query database with */
int rc; /* Return code */
rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pCheck, 1, iEnd);
if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1;
rc = sqlite3_reset(pCheck);
}
*pbRes = bRes;
return rc;
}
/*
** This function is called when initializing an incremental-merge operation.
** It checks if the existing segment with index value iIdx at absolute level
** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the
** merge-writer object *pWriter is initialized to write to it.
**
** An existing segment can be appended to by an incremental merge if:
**
** * It was initially created as an appendable segment (with all required
** space pre-allocated), and
**
** * The first key read from the input (arguments zKey and nKey) is
** greater than the largest key currently stored in the potential
** output segment.
*/
static int fts3IncrmergeLoad(
Fts3Table *p, /* Fts3 table handle */
sqlite3_int64 iAbsLevel, /* Absolute level of input segments */
int iIdx, /* Index of candidate output segment */
const char *zKey, /* First key to write */
int nKey, /* Number of bytes in nKey */
IncrmergeWriter *pWriter /* Populate this object */
){
int rc; /* Return code */
sqlite3_stmt *pSelect = 0; /* SELECT to read %_segdir entry */
rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pSelect, 0);
if( rc==SQLITE_OK ){
sqlite3_int64 iStart = 0; /* Value of %_segdir.start_block */
sqlite3_int64 iLeafEnd = 0; /* Value of %_segdir.leaves_end_block */
sqlite3_int64 iEnd = 0; /* Value of %_segdir.end_block */
const char *aRoot = 0; /* Pointer to %_segdir.root buffer */
int nRoot = 0; /* Size of aRoot[] in bytes */
int rc2; /* Return code from sqlite3_reset() */
int bAppendable = 0; /* Set to true if segment is appendable */
/* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */
sqlite3_bind_int64(pSelect, 1, iAbsLevel+1);
sqlite3_bind_int(pSelect, 2, iIdx);
if( sqlite3_step(pSelect)==SQLITE_ROW ){
iStart = sqlite3_column_int64(pSelect, 1);
iLeafEnd = sqlite3_column_int64(pSelect, 2);
fts3ReadEndBlockField(pSelect, 3, &iEnd, &pWriter->nLeafData);
if( pWriter->nLeafData<0 ){
pWriter->nLeafData = pWriter->nLeafData * -1;
}
pWriter->bNoLeafData = (pWriter->nLeafData==0);
nRoot = sqlite3_column_bytes(pSelect, 4);
aRoot = sqlite3_column_blob(pSelect, 4);
if( aRoot==0 ){
sqlite3_reset(pSelect);
return nRoot ? SQLITE_NOMEM : FTS_CORRUPT_VTAB;
}
}else{
return sqlite3_reset(pSelect);
}
/* Check for the zero-length marker in the %_segments table */
rc = fts3IsAppendable(p, iEnd, &bAppendable);
/* Check that zKey/nKey is larger than the largest key the candidate */
if( rc==SQLITE_OK && bAppendable ){
char *aLeaf = 0;
int nLeaf = 0;
rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0);
if( rc==SQLITE_OK ){
NodeReader reader;
for(rc = nodeReaderInit(&reader, aLeaf, nLeaf);
rc==SQLITE_OK && reader.aNode;
rc = nodeReaderNext(&reader)
){
assert( reader.aNode );
}
if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){
bAppendable = 0;
}
nodeReaderRelease(&reader);
}
sqlite3_free(aLeaf);
}
if( rc==SQLITE_OK && bAppendable ){
/* It is possible to append to this segment. Set up the IncrmergeWriter
** object to do so. */
int i;
int nHeight = (int)aRoot[0];
NodeWriter *pNode;
if( nHeight<1 || nHeight>=FTS_MAX_APPENDABLE_HEIGHT ){
sqlite3_reset(pSelect);
return FTS_CORRUPT_VTAB;
}
pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT;
pWriter->iStart = iStart;
pWriter->iEnd = iEnd;
pWriter->iAbsLevel = iAbsLevel;
pWriter->iIdx = iIdx;
for(i=nHeight+1; i<FTS_MAX_APPENDABLE_HEIGHT; i++){
pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst;
}
pNode = &pWriter->aNodeWriter[nHeight];
pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight;
blobGrowBuffer(&pNode->block,
MAX(nRoot, p->nNodeSize)+FTS3_NODE_PADDING, &rc
);
if( rc==SQLITE_OK ){
memcpy(pNode->block.a, aRoot, nRoot);
pNode->block.n = nRoot;
memset(&pNode->block.a[nRoot], 0, FTS3_NODE_PADDING);
}
for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){
NodeReader reader;
pNode = &pWriter->aNodeWriter[i];
if( pNode->block.a){
rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n);
while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader);
blobGrowBuffer(&pNode->key, reader.term.n, &rc);
if( rc==SQLITE_OK ){
assert_fts3_nc( reader.term.n>0 || reader.aNode==0 );
if( reader.term.n>0 ){
memcpy(pNode->key.a, reader.term.a, reader.term.n);
}
pNode->key.n = reader.term.n;
if( i>0 ){
char *aBlock = 0;
int nBlock = 0;
pNode = &pWriter->aNodeWriter[i-1];
pNode->iBlock = reader.iChild;
rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock,0);
blobGrowBuffer(&pNode->block,
MAX(nBlock, p->nNodeSize)+FTS3_NODE_PADDING, &rc
);
if( rc==SQLITE_OK ){
memcpy(pNode->block.a, aBlock, nBlock);
pNode->block.n = nBlock;
memset(&pNode->block.a[nBlock], 0, FTS3_NODE_PADDING);
}
sqlite3_free(aBlock);
}
}
}
nodeReaderRelease(&reader);
}
}
rc2 = sqlite3_reset(pSelect);
if( rc==SQLITE_OK ) rc = rc2;
}
return rc;
}
/*
** Determine the largest segment index value that exists within absolute
** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus
** one before returning SQLITE_OK. Or, if there are no segments at all
** within level iAbsLevel, set *piIdx to zero.
**
** If an error occurs, return an SQLite error code. The final value of
** *piIdx is undefined in this case.
*/
static int fts3IncrmergeOutputIdx(
Fts3Table *p, /* FTS Table handle */
sqlite3_int64 iAbsLevel, /* Absolute index of input segments */
int *piIdx /* OUT: Next free index at iAbsLevel+1 */
){
int rc;
sqlite3_stmt *pOutputIdx = 0; /* SQL used to find output index */
rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pOutputIdx, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pOutputIdx, 1, iAbsLevel+1);
sqlite3_step(pOutputIdx);
*piIdx = sqlite3_column_int(pOutputIdx, 0);
rc = sqlite3_reset(pOutputIdx);
}
return rc;
}
/*
** Allocate an appendable output segment on absolute level iAbsLevel+1
** with idx value iIdx.
**
** In the %_segdir table, a segment is defined by the values in three
** columns:
**
** start_block
** leaves_end_block
** end_block
**
** When an appendable segment is allocated, it is estimated that the
** maximum number of leaf blocks that may be required is the sum of the
** number of leaf blocks consumed by the input segments, plus the number
** of input segments, multiplied by two. This value is stored in stack
** variable nLeafEst.
**
** A total of 16*nLeafEst blocks are allocated when an appendable segment
** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous
** array of leaf nodes starts at the first block allocated. The array
** of interior nodes that are parents of the leaf nodes start at block
** (start_block + (1 + end_block - start_block) / 16). And so on.
**
** In the actual code below, the value "16" is replaced with the
** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT.
*/
static int fts3IncrmergeWriter(
Fts3Table *p, /* Fts3 table handle */
sqlite3_int64 iAbsLevel, /* Absolute level of input segments */
int iIdx, /* Index of new output segment */
Fts3MultiSegReader *pCsr, /* Cursor that data will be read from */
IncrmergeWriter *pWriter /* Populate this object */
){
int rc; /* Return Code */
int i; /* Iterator variable */
int nLeafEst = 0; /* Blocks allocated for leaf nodes */
sqlite3_stmt *pLeafEst = 0; /* SQL used to determine nLeafEst */
sqlite3_stmt *pFirstBlock = 0; /* SQL used to determine first block */
/* Calculate nLeafEst. */
rc = fts3SqlStmt(p, SQL_MAX_LEAF_NODE_ESTIMATE, &pLeafEst, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pLeafEst, 1, iAbsLevel);
sqlite3_bind_int64(pLeafEst, 2, pCsr->nSegment);
if( SQLITE_ROW==sqlite3_step(pLeafEst) ){
nLeafEst = sqlite3_column_int(pLeafEst, 0);
}
rc = sqlite3_reset(pLeafEst);
}
if( rc!=SQLITE_OK ) return rc;
/* Calculate the first block to use in the output segment */
rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pFirstBlock, 0);
if( rc==SQLITE_OK ){
if( SQLITE_ROW==sqlite3_step(pFirstBlock) ){
pWriter->iStart = sqlite3_column_int64(pFirstBlock, 0);
pWriter->iEnd = pWriter->iStart - 1;
pWriter->iEnd += nLeafEst * FTS_MAX_APPENDABLE_HEIGHT;
}
rc = sqlite3_reset(pFirstBlock);
}
if( rc!=SQLITE_OK ) return rc;
/* Insert the marker in the %_segments table to make sure nobody tries
** to steal the space just allocated. This is also used to identify
** appendable segments. */
rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0);
if( rc!=SQLITE_OK ) return rc;
pWriter->iAbsLevel = iAbsLevel;
pWriter->nLeafEst = nLeafEst;
pWriter->iIdx = iIdx;
/* Set up the array of NodeWriter objects */
for(i=0; i<FTS_MAX_APPENDABLE_HEIGHT; i++){
pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst;
}
return SQLITE_OK;
}
/*
** Remove an entry from the %_segdir table. This involves running the
** following two statements:
**
** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx
** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx
**
** The DELETE statement removes the specific %_segdir level. The UPDATE
** statement ensures that the remaining segments have contiguously allocated
** idx values.
*/
static int fts3RemoveSegdirEntry(
Fts3Table *p, /* FTS3 table handle */
sqlite3_int64 iAbsLevel, /* Absolute level to delete from */
int iIdx /* Index of %_segdir entry to delete */
){
int rc; /* Return code */
sqlite3_stmt *pDelete = 0; /* DELETE statement */
rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_ENTRY, &pDelete, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pDelete, 1, iAbsLevel);
sqlite3_bind_int(pDelete, 2, iIdx);
sqlite3_step(pDelete);
rc = sqlite3_reset(pDelete);
}
return rc;
}
/*
** One or more segments have just been removed from absolute level iAbsLevel.
** Update the 'idx' values of the remaining segments in the level so that
** the idx values are a contiguous sequence starting from 0.
*/
static int fts3RepackSegdirLevel(
Fts3Table *p, /* FTS3 table handle */
sqlite3_int64 iAbsLevel /* Absolute level to repack */
){
int rc; /* Return code */
int *aIdx = 0; /* Array of remaining idx values */
int nIdx = 0; /* Valid entries in aIdx[] */
int nAlloc = 0; /* Allocated size of aIdx[] */
int i; /* Iterator variable */
sqlite3_stmt *pSelect = 0; /* Select statement to read idx values */
sqlite3_stmt *pUpdate = 0; /* Update statement to modify idx values */
rc = fts3SqlStmt(p, SQL_SELECT_INDEXES, &pSelect, 0);
if( rc==SQLITE_OK ){
int rc2;
sqlite3_bind_int64(pSelect, 1, iAbsLevel);
while( SQLITE_ROW==sqlite3_step(pSelect) ){
if( nIdx>=nAlloc ){
int *aNew;
nAlloc += 16;
aNew = sqlite3_realloc64(aIdx, nAlloc*sizeof(int));
if( !aNew ){
rc = SQLITE_NOMEM;
break;
}
aIdx = aNew;
}
aIdx[nIdx++] = sqlite3_column_int(pSelect, 0);
}
rc2 = sqlite3_reset(pSelect);
if( rc==SQLITE_OK ) rc = rc2;
}
if( rc==SQLITE_OK ){
rc = fts3SqlStmt(p, SQL_SHIFT_SEGDIR_ENTRY, &pUpdate, 0);
}
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pUpdate, 2, iAbsLevel);
}
assert( p->bIgnoreSavepoint==0 );
p->bIgnoreSavepoint = 1;
for(i=0; rc==SQLITE_OK && i<nIdx; i++){
if( aIdx[i]!=i ){
sqlite3_bind_int(pUpdate, 3, aIdx[i]);
sqlite3_bind_int(pUpdate, 1, i);
sqlite3_step(pUpdate);
rc = sqlite3_reset(pUpdate);
}
}
p->bIgnoreSavepoint = 0;
sqlite3_free(aIdx);
return rc;
}
static void fts3StartNode(Blob *pNode, int iHeight, sqlite3_int64 iChild){
pNode->a[0] = (char)iHeight;
if( iChild ){
assert( pNode->nAlloc>=1+sqlite3Fts3VarintLen(iChild) );
pNode->n = 1 + sqlite3Fts3PutVarint(&pNode->a[1], iChild);
}else{
assert( pNode->nAlloc>=1 );
pNode->n = 1;
}
}
/*
** The first two arguments are a pointer to and the size of a segment b-tree
** node. The node may be a leaf or an internal node.
**
** This function creates a new node image in blob object *pNew by copying
** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes)
** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode.
*/
static int fts3TruncateNode(
const char *aNode, /* Current node image */
int nNode, /* Size of aNode in bytes */
Blob *pNew, /* OUT: Write new node image here */
const char *zTerm, /* Omit all terms smaller than this */
int nTerm, /* Size of zTerm in bytes */
sqlite3_int64 *piBlock /* OUT: Block number in next layer down */
){
NodeReader reader; /* Reader object */
Blob prev = {0, 0, 0}; /* Previous term written to new node */
int rc = SQLITE_OK; /* Return code */
int bLeaf; /* True for a leaf node */
if( nNode<1 ) return FTS_CORRUPT_VTAB;
bLeaf = aNode[0]=='\0';
/* Allocate required output space */
blobGrowBuffer(pNew, nNode, &rc);
if( rc!=SQLITE_OK ) return rc;
pNew->n = 0;
/* Populate new node buffer */
for(rc = nodeReaderInit(&reader, aNode, nNode);
rc==SQLITE_OK && reader.aNode;
rc = nodeReaderNext(&reader)
){
if( pNew->n==0 ){
int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm);
if( res<0 || (bLeaf==0 && res==0) ) continue;
fts3StartNode(pNew, (int)aNode[0], reader.iChild);
*piBlock = reader.iChild;
}
rc = fts3AppendToNode(
pNew, &prev, reader.term.a, reader.term.n,
reader.aDoclist, reader.nDoclist
);
if( rc!=SQLITE_OK ) break;
}
if( pNew->n==0 ){
fts3StartNode(pNew, (int)aNode[0], reader.iChild);
*piBlock = reader.iChild;
}
assert( pNew->n<=pNew->nAlloc );
nodeReaderRelease(&reader);
sqlite3_free(prev.a);
return rc;
}
/*
** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute
** level iAbsLevel. This may involve deleting entries from the %_segments
** table, and modifying existing entries in both the %_segments and %_segdir
** tables.
**
** SQLITE_OK is returned if the segment is updated successfully. Or an
** SQLite error code otherwise.
*/
static int fts3TruncateSegment(
Fts3Table *p, /* FTS3 table handle */
sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */
int iIdx, /* Index within level of segment to modify */
const char *zTerm, /* Remove terms smaller than this */
int nTerm /* Number of bytes in buffer zTerm */
){
int rc = SQLITE_OK; /* Return code */
Blob root = {0,0,0}; /* New root page image */
Blob block = {0,0,0}; /* Buffer used for any other block */
sqlite3_int64 iBlock = 0; /* Block id */
sqlite3_int64 iNewStart = 0; /* New value for iStartBlock */
sqlite3_int64 iOldStart = 0; /* Old value for iStartBlock */
sqlite3_stmt *pFetch = 0; /* Statement used to fetch segdir */
rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pFetch, 0);
if( rc==SQLITE_OK ){
int rc2; /* sqlite3_reset() return code */
sqlite3_bind_int64(pFetch, 1, iAbsLevel);
sqlite3_bind_int(pFetch, 2, iIdx);
if( SQLITE_ROW==sqlite3_step(pFetch) ){
const char *aRoot = sqlite3_column_blob(pFetch, 4);
int nRoot = sqlite3_column_bytes(pFetch, 4);
iOldStart = sqlite3_column_int64(pFetch, 1);
rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock);
}
rc2 = sqlite3_reset(pFetch);
if( rc==SQLITE_OK ) rc = rc2;
}
while( rc==SQLITE_OK && iBlock ){
char *aBlock = 0;
int nBlock = 0;
iNewStart = iBlock;
rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0);
if( rc==SQLITE_OK ){
rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock);
}
if( rc==SQLITE_OK ){
rc = fts3WriteSegment(p, iNewStart, block.a, block.n);
}
sqlite3_free(aBlock);
}
/* Variable iNewStart now contains the first valid leaf node. */
if( rc==SQLITE_OK && iNewStart ){
sqlite3_stmt *pDel = 0;
rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pDel, 1, iOldStart);
sqlite3_bind_int64(pDel, 2, iNewStart-1);
sqlite3_step(pDel);
rc = sqlite3_reset(pDel);
}
}
if( rc==SQLITE_OK ){
sqlite3_stmt *pChomp = 0;
rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pChomp, 1, iNewStart);
sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC);
sqlite3_bind_int64(pChomp, 3, iAbsLevel);
sqlite3_bind_int(pChomp, 4, iIdx);
sqlite3_step(pChomp);
rc = sqlite3_reset(pChomp);
sqlite3_bind_null(pChomp, 2);
}
}
sqlite3_free(root.a);
sqlite3_free(block.a);
return rc;
}
/*
** This function is called after an incrmental-merge operation has run to
** merge (or partially merge) two or more segments from absolute level
** iAbsLevel.
**
** Each input segment is either removed from the db completely (if all of
** its data was copied to the output segment by the incrmerge operation)
** or modified in place so that it no longer contains those entries that
** have been duplicated in the output segment.
*/
static int fts3IncrmergeChomp(
Fts3Table *p, /* FTS table handle */
sqlite3_int64 iAbsLevel, /* Absolute level containing segments */
Fts3MultiSegReader *pCsr, /* Chomp all segments opened by this cursor */
int *pnRem /* Number of segments not deleted */
){
int i;
int nRem = 0;
int rc = SQLITE_OK;
for(i=pCsr->nSegment-1; i>=0 && rc==SQLITE_OK; i--){
Fts3SegReader *pSeg = 0;
int j;
/* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding
** somewhere in the pCsr->apSegment[] array. */
for(j=0; ALWAYS(j<pCsr->nSegment); j++){
pSeg = pCsr->apSegment[j];
if( pSeg->iIdx==i ) break;
}
assert( j<pCsr->nSegment && pSeg->iIdx==i );
if( pSeg->aNode==0 ){
/* Seg-reader is at EOF. Remove the entire input segment. */
rc = fts3DeleteSegment(p, pSeg);
if( rc==SQLITE_OK ){
rc = fts3RemoveSegdirEntry(p, iAbsLevel, pSeg->iIdx);
}
*pnRem = 0;
}else{
/* The incremental merge did not copy all the data from this
** segment to the upper level. The segment is modified in place
** so that it contains no keys smaller than zTerm/nTerm. */
const char *zTerm = pSeg->zTerm;
int nTerm = pSeg->nTerm;
rc = fts3TruncateSegment(p, iAbsLevel, pSeg->iIdx, zTerm, nTerm);
nRem++;
}
}
if( rc==SQLITE_OK && nRem!=pCsr->nSegment ){
rc = fts3RepackSegdirLevel(p, iAbsLevel);
}
*pnRem = nRem;
return rc;
}
/*
** Store an incr-merge hint in the database.
*/
static int fts3IncrmergeHintStore(Fts3Table *p, Blob *pHint){
sqlite3_stmt *pReplace = 0;
int rc; /* Return code */
rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT);
sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC);
sqlite3_step(pReplace);
rc = sqlite3_reset(pReplace);
sqlite3_bind_null(pReplace, 2);
}
return rc;
}
/*
** Load an incr-merge hint from the database. The incr-merge hint, if one
** exists, is stored in the rowid==1 row of the %_stat table.
**
** If successful, populate blob *pHint with the value read from the %_stat
** table and return SQLITE_OK. Otherwise, if an error occurs, return an
** SQLite error code.
*/
static int fts3IncrmergeHintLoad(Fts3Table *p, Blob *pHint){
sqlite3_stmt *pSelect = 0;
int rc;
pHint->n = 0;
rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pSelect, 0);
if( rc==SQLITE_OK ){
int rc2;
sqlite3_bind_int(pSelect, 1, FTS_STAT_INCRMERGEHINT);
if( SQLITE_ROW==sqlite3_step(pSelect) ){
const char *aHint = sqlite3_column_blob(pSelect, 0);
int nHint = sqlite3_column_bytes(pSelect, 0);
if( aHint ){
blobGrowBuffer(pHint, nHint, &rc);
if( rc==SQLITE_OK ){
if( ALWAYS(pHint->a!=0) ) memcpy(pHint->a, aHint, nHint);
pHint->n = nHint;
}
}
}
rc2 = sqlite3_reset(pSelect);
if( rc==SQLITE_OK ) rc = rc2;
}
return rc;
}
/*
** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
** Otherwise, append an entry to the hint stored in blob *pHint. Each entry
** consists of two varints, the absolute level number of the input segments
** and the number of input segments.
**
** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs,
** set *pRc to an SQLite error code before returning.
*/
static void fts3IncrmergeHintPush(
Blob *pHint, /* Hint blob to append to */
i64 iAbsLevel, /* First varint to store in hint */
int nInput, /* Second varint to store in hint */
int *pRc /* IN/OUT: Error code */
){
blobGrowBuffer(pHint, pHint->n + 2*FTS3_VARINT_MAX, pRc);
if( *pRc==SQLITE_OK ){
pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], iAbsLevel);
pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], (i64)nInput);
}
}
/*
** Read the last entry (most recently pushed) from the hint blob *pHint
** and then remove the entry. Write the two values read to *piAbsLevel and
** *pnInput before returning.
**
** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does
** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB.
*/
static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){
const int nHint = pHint->n;
int i;
i = pHint->n-1;
if( (pHint->a[i] & 0x80) ) return FTS_CORRUPT_VTAB;
while( i>0 && (pHint->a[i-1] & 0x80) ) i--;
if( i==0 ) return FTS_CORRUPT_VTAB;
i--;
while( i>0 && (pHint->a[i-1] & 0x80) ) i--;
pHint->n = i;
i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel);
i += fts3GetVarint32(&pHint->a[i], pnInput);
assert( i<=nHint );
if( i!=nHint ) return FTS_CORRUPT_VTAB;
return SQLITE_OK;
}
/*
** Attempt an incremental merge that writes nMerge leaf blocks.
**
** Incremental merges happen nMin segments at a time. The segments
** to be merged are the nMin oldest segments (the ones with the smallest
** values for the _segdir.idx field) in the highest level that contains
** at least nMin segments. Multiple merges might occur in an attempt to
** write the quota of nMerge leaf blocks.
*/
int sqlite3Fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){
int rc; /* Return code */
int nRem = nMerge; /* Number of leaf pages yet to be written */
Fts3MultiSegReader *pCsr; /* Cursor used to read input data */
Fts3SegFilter *pFilter; /* Filter used with cursor pCsr */
IncrmergeWriter *pWriter; /* Writer object */
int nSeg = 0; /* Number of input segments */
sqlite3_int64 iAbsLevel = 0; /* Absolute level number to work on */
Blob hint = {0, 0, 0}; /* Hint read from %_stat table */
int bDirtyHint = 0; /* True if blob 'hint' has been modified */
/* Allocate space for the cursor, filter and writer objects */
const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter);
pWriter = (IncrmergeWriter *)sqlite3_malloc64(nAlloc);
if( !pWriter ) return SQLITE_NOMEM;
pFilter = (Fts3SegFilter *)&pWriter[1];
pCsr = (Fts3MultiSegReader *)&pFilter[1];
rc = fts3IncrmergeHintLoad(p, &hint);
while( rc==SQLITE_OK && nRem>0 ){
const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex;
sqlite3_stmt *pFindLevel = 0; /* SQL used to determine iAbsLevel */
int bUseHint = 0; /* True if attempting to append */
int iIdx = 0; /* Largest idx in level (iAbsLevel+1) */
/* Search the %_segdir table for the absolute level with the smallest
** relative level number that contains at least nMin segments, if any.
** If one is found, set iAbsLevel to the absolute level number and
** nSeg to nMin. If no level with at least nMin segments can be found,
** set nSeg to -1.
*/
rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0);
sqlite3_bind_int(pFindLevel, 1, MAX(2, nMin));
if( sqlite3_step(pFindLevel)==SQLITE_ROW ){
iAbsLevel = sqlite3_column_int64(pFindLevel, 0);
nSeg = sqlite3_column_int(pFindLevel, 1);
assert( nSeg>=2 );
}else{
nSeg = -1;
}
rc = sqlite3_reset(pFindLevel);
/* If the hint read from the %_stat table is not empty, check if the
** last entry in it specifies a relative level smaller than or equal
** to the level identified by the block above (if any). If so, this
** iteration of the loop will work on merging at the hinted level.
*/
if( rc==SQLITE_OK && hint.n ){
int nHint = hint.n;
sqlite3_int64 iHintAbsLevel = 0; /* Hint level */
int nHintSeg = 0; /* Hint number of segments */
rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg);
if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){
/* Based on the scan in the block above, it is known that there
** are no levels with a relative level smaller than that of
** iAbsLevel with more than nSeg segments, or if nSeg is -1,
** no levels with more than nMin segments. Use this to limit the
** value of nHintSeg to avoid a large memory allocation in case the
** merge-hint is corrupt*/
iAbsLevel = iHintAbsLevel;
nSeg = MIN(MAX(nMin,nSeg), nHintSeg);
bUseHint = 1;
bDirtyHint = 1;
}else{
/* This undoes the effect of the HintPop() above - so that no entry
** is removed from the hint blob. */
hint.n = nHint;
}
}
/* If nSeg is less that zero, then there is no level with at least
** nMin segments and no hint in the %_stat table. No work to do.
** Exit early in this case. */
if( nSeg<=0 ) break;
assert( nMod<=0x7FFFFFFF );
if( iAbsLevel<0 || iAbsLevel>(nMod<<32) ){
rc = FTS_CORRUPT_VTAB;
break;
}
/* Open a cursor to iterate through the contents of the oldest nSeg
** indexes of absolute level iAbsLevel. If this cursor is opened using
** the 'hint' parameters, it is possible that there are less than nSeg
** segments available in level iAbsLevel. In this case, no work is
** done on iAbsLevel - fall through to the next iteration of the loop
** to start work on some other level. */
memset(pWriter, 0, nAlloc);
pFilter->flags = FTS3_SEGMENT_REQUIRE_POS;
if( rc==SQLITE_OK ){
rc = fts3IncrmergeOutputIdx(p, iAbsLevel, &iIdx);
assert( bUseHint==1 || bUseHint==0 );
if( iIdx==0 || (bUseHint && iIdx==1) ){
int bIgnore = 0;
rc = fts3SegmentIsMaxLevel(p, iAbsLevel+1, &bIgnore);
if( bIgnore ){
pFilter->flags |= FTS3_SEGMENT_IGNORE_EMPTY;
}
}
}
if( rc==SQLITE_OK ){
rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr);
}
if( SQLITE_OK==rc && pCsr->nSegment==nSeg
&& SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter))
){
int bEmpty = 0;
rc = sqlite3Fts3SegReaderStep(p, pCsr);
if( rc==SQLITE_OK ){
bEmpty = 1;
}else if( rc!=SQLITE_ROW ){
sqlite3Fts3SegReaderFinish(pCsr);
break;
}
if( bUseHint && iIdx>0 ){
const char *zKey = pCsr->zTerm;
int nKey = pCsr->nTerm;
rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter);
}else{
rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter);
}
if( rc==SQLITE_OK && pWriter->nLeafEst ){
fts3LogMerge(nSeg, iAbsLevel);
if( bEmpty==0 ){
do {
rc = fts3IncrmergeAppend(p, pWriter, pCsr);
if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr);
if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK;
}while( rc==SQLITE_ROW );
}
/* Update or delete the input segments */
if( rc==SQLITE_OK ){
nRem -= (1 + pWriter->nWork);
rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg);
if( nSeg!=0 ){
bDirtyHint = 1;
fts3IncrmergeHintPush(&hint, iAbsLevel, nSeg, &rc);
}
}
}
if( nSeg!=0 ){
pWriter->nLeafData = pWriter->nLeafData * -1;
}
fts3IncrmergeRelease(p, pWriter, &rc);
if( nSeg==0 && pWriter->bNoLeafData==0 ){
fts3PromoteSegments(p, iAbsLevel+1, pWriter->nLeafData);
}
}
sqlite3Fts3SegReaderFinish(pCsr);
}
/* Write the hint values into the %_stat table for the next incr-merger */
if( bDirtyHint && rc==SQLITE_OK ){
rc = fts3IncrmergeHintStore(p, &hint);
}
sqlite3_free(pWriter);
sqlite3_free(hint.a);
return rc;
}
/*
** Convert the text beginning at *pz into an integer and return
** its value. Advance *pz to point to the first character past
** the integer.
**
** This function used for parameters to merge= and incrmerge=
** commands.
*/
static int fts3Getint(const char **pz){
const char *z = *pz;
int i = 0;
while( (*z)>='0' && (*z)<='9' && i<214748363 ) i = 10*i + *(z++) - '0';
*pz = z;
return i;
}
/*
** Process statements of the form:
**
** INSERT INTO table(table) VALUES('merge=A,B');
**
** A and B are integers that decode to be the number of leaf pages
** written for the merge, and the minimum number of segments on a level
** before it will be selected for a merge, respectively.
*/
static int fts3DoIncrmerge(
Fts3Table *p, /* FTS3 table handle */
const char *zParam /* Nul-terminated string containing "A,B" */
){
int rc;
int nMin = (MergeCount(p) / 2);
int nMerge = 0;
const char *z = zParam;
/* Read the first integer value */
nMerge = fts3Getint(&z);
/* If the first integer value is followed by a ',', read the second
** integer value. */
if( z[0]==',' && z[1]!='\0' ){
z++;
nMin = fts3Getint(&z);
}
if( z[0]!='\0' || nMin<2 ){
rc = SQLITE_ERROR;
}else{
rc = SQLITE_OK;
if( !p->bHasStat ){
assert( p->bFts4==0 );
sqlite3Fts3CreateStatTable(&rc, p);
}
if( rc==SQLITE_OK ){
rc = sqlite3Fts3Incrmerge(p, nMerge, nMin);
}
sqlite3Fts3SegmentsClose(p);
}
return rc;
}
/*
** Process statements of the form:
**
** INSERT INTO table(table) VALUES('automerge=X');
**
** where X is an integer. X==0 means to turn automerge off. X!=0 means
** turn it on. The setting is persistent.
*/
static int fts3DoAutoincrmerge(
Fts3Table *p, /* FTS3 table handle */
const char *zParam /* Nul-terminated string containing boolean */
){
int rc = SQLITE_OK;
sqlite3_stmt *pStmt = 0;
p->nAutoincrmerge = fts3Getint(&zParam);
if( p->nAutoincrmerge==1 || p->nAutoincrmerge>MergeCount(p) ){
p->nAutoincrmerge = 8;
}
if( !p->bHasStat ){
assert( p->bFts4==0 );
sqlite3Fts3CreateStatTable(&rc, p);
if( rc ) return rc;
}
rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0);
if( rc ) return rc;
sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE);
sqlite3_bind_int(pStmt, 2, p->nAutoincrmerge);
sqlite3_step(pStmt);
rc = sqlite3_reset(pStmt);
return rc;
}
/*
** Return a 64-bit checksum for the FTS index entry specified by the
** arguments to this function.
*/
static u64 fts3ChecksumEntry(
const char *zTerm, /* Pointer to buffer containing term */
int nTerm, /* Size of zTerm in bytes */
int iLangid, /* Language id for current row */
int iIndex, /* Index (0..Fts3Table.nIndex-1) */
i64 iDocid, /* Docid for current row. */
int iCol, /* Column number */
int iPos /* Position */
){
int i;
u64 ret = (u64)iDocid;
ret += (ret<<3) + iLangid;
ret += (ret<<3) + iIndex;
ret += (ret<<3) + iCol;
ret += (ret<<3) + iPos;
for(i=0; i<nTerm; i++) ret += (ret<<3) + zTerm[i];
return ret;
}
/*
** Return a checksum of all entries in the FTS index that correspond to
** language id iLangid. The checksum is calculated by XORing the checksums
** of each individual entry (see fts3ChecksumEntry()) together.
**
** If successful, the checksum value is returned and *pRc set to SQLITE_OK.
** Otherwise, if an error occurs, *pRc is set to an SQLite error code. The
** return value is undefined in this case.
*/
static u64 fts3ChecksumIndex(
Fts3Table *p, /* FTS3 table handle */
int iLangid, /* Language id to return cksum for */
int iIndex, /* Index to cksum (0..p->nIndex-1) */
int *pRc /* OUT: Return code */
){
Fts3SegFilter filter;
Fts3MultiSegReader csr;
int rc;
u64 cksum = 0;
assert( *pRc==SQLITE_OK );
memset(&filter, 0, sizeof(filter));
memset(&csr, 0, sizeof(csr));
filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY;
filter.flags |= FTS3_SEGMENT_SCAN;
rc = sqlite3Fts3SegReaderCursor(
p, iLangid, iIndex, FTS3_SEGCURSOR_ALL, 0, 0, 0, 1,&csr
);
if( rc==SQLITE_OK ){
rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
}
if( rc==SQLITE_OK ){
while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){
char *pCsr = csr.aDoclist;
char *pEnd = &pCsr[csr.nDoclist];
i64 iDocid = 0;
i64 iCol = 0;
u64 iPos = 0;
pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid);
while( pCsr<pEnd ){
u64 iVal = 0;
pCsr += sqlite3Fts3GetVarintU(pCsr, &iVal);
if( pCsr<pEnd ){
if( iVal==0 || iVal==1 ){
iCol = 0;
iPos = 0;
if( iVal ){
pCsr += sqlite3Fts3GetVarint(pCsr, &iCol);
}else{
pCsr += sqlite3Fts3GetVarintU(pCsr, &iVal);
if( p->bDescIdx ){
iDocid = (i64)((u64)iDocid - iVal);
}else{
iDocid = (i64)((u64)iDocid + iVal);
}
}
}else{
iPos += (iVal - 2);
cksum = cksum ^ fts3ChecksumEntry(
csr.zTerm, csr.nTerm, iLangid, iIndex, iDocid,
(int)iCol, (int)iPos
);
}
}
}
}
}
sqlite3Fts3SegReaderFinish(&csr);
*pRc = rc;
return cksum;
}
/*
** Check if the contents of the FTS index match the current contents of the
** content table. If no error occurs and the contents do match, set *pbOk
** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk
** to false before returning.
**
** If an error occurs (e.g. an OOM or IO error), return an SQLite error
** code. The final value of *pbOk is undefined in this case.
*/
static int fts3IntegrityCheck(Fts3Table *p, int *pbOk){
int rc = SQLITE_OK; /* Return code */
u64 cksum1 = 0; /* Checksum based on FTS index contents */
u64 cksum2 = 0; /* Checksum based on %_content contents */
sqlite3_stmt *pAllLangid = 0; /* Statement to return all language-ids */
/* This block calculates the checksum according to the FTS index. */
rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
if( rc==SQLITE_OK ){
int rc2;
sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid);
sqlite3_bind_int(pAllLangid, 2, p->nIndex);
while( rc==SQLITE_OK && sqlite3_step(pAllLangid)==SQLITE_ROW ){
int iLangid = sqlite3_column_int(pAllLangid, 0);
int i;
for(i=0; i<p->nIndex; i++){
cksum1 = cksum1 ^ fts3ChecksumIndex(p, iLangid, i, &rc);
}
}
rc2 = sqlite3_reset(pAllLangid);
if( rc==SQLITE_OK ) rc = rc2;
}
/* This block calculates the checksum according to the %_content table */
if( rc==SQLITE_OK ){
sqlite3_tokenizer_module const *pModule = p->pTokenizer->pModule;
sqlite3_stmt *pStmt = 0;
char *zSql;
zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist);
if( !zSql ){
rc = SQLITE_NOMEM;
}else{
rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
}
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
i64 iDocid = sqlite3_column_int64(pStmt, 0);
int iLang = langidFromSelect(p, pStmt);
int iCol;
for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
if( p->abNotindexed[iCol]==0 ){
const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1);
sqlite3_tokenizer_cursor *pT = 0;
rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, -1, &pT);
while( rc==SQLITE_OK ){
char const *zToken; /* Buffer containing token */
int nToken = 0; /* Number of bytes in token */
int iDum1 = 0, iDum2 = 0; /* Dummy variables */
int iPos = 0; /* Position of token in zText */
rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos);
if( rc==SQLITE_OK ){
int i;
cksum2 = cksum2 ^ fts3ChecksumEntry(
zToken, nToken, iLang, 0, iDocid, iCol, iPos
);
for(i=1; i<p->nIndex; i++){
if( p->aIndex[i].nPrefix<=nToken ){
cksum2 = cksum2 ^ fts3ChecksumEntry(
zToken, p->aIndex[i].nPrefix, iLang, i, iDocid, iCol, iPos
);
}
}
}
}
if( pT ) pModule->xClose(pT);
if( rc==SQLITE_DONE ) rc = SQLITE_OK;
}
}
}
sqlite3_finalize(pStmt);
}
*pbOk = (cksum1==cksum2);
return rc;
}
/*
** Run the integrity-check. If no error occurs and the current contents of
** the FTS index are correct, return SQLITE_OK. Or, if the contents of the
** FTS index are incorrect, return SQLITE_CORRUPT_VTAB.
**
** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite
** error code.
**
** The integrity-check works as follows. For each token and indexed token
** prefix in the document set, a 64-bit checksum is calculated (by code
** in fts3ChecksumEntry()) based on the following:
**
** + The index number (0 for the main index, 1 for the first prefix
** index etc.),
** + The token (or token prefix) text itself,
** + The language-id of the row it appears in,
** + The docid of the row it appears in,
** + The column it appears in, and
** + The tokens position within that column.
**
** The checksums for all entries in the index are XORed together to create
** a single checksum for the entire index.
**
** The integrity-check code calculates the same checksum in two ways:
**
** 1. By scanning the contents of the FTS index, and
** 2. By scanning and tokenizing the content table.
**
** If the two checksums are identical, the integrity-check is deemed to have
** passed.
*/
static int fts3DoIntegrityCheck(
Fts3Table *p /* FTS3 table handle */
){
int rc;
int bOk = 0;
rc = fts3IntegrityCheck(p, &bOk);
if( rc==SQLITE_OK && bOk==0 ) rc = FTS_CORRUPT_VTAB;
return rc;
}
/*
** Handle a 'special' INSERT of the form:
**
** "INSERT INTO tbl(tbl) VALUES(<expr>)"
**
** Argument pVal contains the result of <expr>. Currently the only
** meaningful value to insert is the text 'optimize'.
*/
static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){
int rc = SQLITE_ERROR; /* Return Code */
const char *zVal = (const char *)sqlite3_value_text(pVal);
int nVal = sqlite3_value_bytes(pVal);
if( !zVal ){
return SQLITE_NOMEM;
}else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){
rc = fts3DoOptimize(p, 0);
}else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){
rc = fts3DoRebuild(p);
}else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){
rc = fts3DoIntegrityCheck(p);
}else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){
rc = fts3DoIncrmerge(p, &zVal[6]);
}else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){
rc = fts3DoAutoincrmerge(p, &zVal[10]);
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
}else{
int v;
if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){
v = atoi(&zVal[9]);
if( v>=24 && v<=p->nPgsz-35 ) p->nNodeSize = v;
rc = SQLITE_OK;
}else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){
v = atoi(&zVal[11]);
if( v>=64 && v<=FTS3_MAX_PENDING_DATA ) p->nMaxPendingData = v;
rc = SQLITE_OK;
}else if( nVal>21 && 0==sqlite3_strnicmp(zVal,"test-no-incr-doclist=",21) ){
p->bNoIncrDoclist = atoi(&zVal[21]);
rc = SQLITE_OK;
}else if( nVal>11 && 0==sqlite3_strnicmp(zVal,"mergecount=",11) ){
v = atoi(&zVal[11]);
if( v>=4 && v<=FTS3_MERGE_COUNT && (v&1)==0 ) p->nMergeCount = v;
rc = SQLITE_OK;
}
#endif
}
return rc;
}
#ifndef SQLITE_DISABLE_FTS4_DEFERRED
/*
** Delete all cached deferred doclists. Deferred doclists are cached
** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
*/
void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){
Fts3DeferredToken *pDef;
for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){
fts3PendingListDelete(pDef->pList);
pDef->pList = 0;
}
}
/*
** Free all entries in the pCsr->pDeffered list. Entries are added to
** this list using sqlite3Fts3DeferToken().
*/
void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){
Fts3DeferredToken *pDef;
Fts3DeferredToken *pNext;
for(pDef=pCsr->pDeferred; pDef; pDef=pNext){
pNext = pDef->pNext;
fts3PendingListDelete(pDef->pList);
sqlite3_free(pDef);
}
pCsr->pDeferred = 0;
}
/*
** Generate deferred-doclists for all tokens in the pCsr->pDeferred list
** based on the row that pCsr currently points to.
**
** A deferred-doclist is like any other doclist with position information
** included, except that it only contains entries for a single row of the
** table, not for all rows.
*/
int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){
int rc = SQLITE_OK; /* Return code */
if( pCsr->pDeferred ){
int i; /* Used to iterate through table columns */
sqlite3_int64 iDocid; /* Docid of the row pCsr points to */
Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */
Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
sqlite3_tokenizer *pT = p->pTokenizer;
sqlite3_tokenizer_module const *pModule = pT->pModule;
assert( pCsr->isRequireSeek==0 );
iDocid = sqlite3_column_int64(pCsr->pStmt, 0);
for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){
if( p->abNotindexed[i]==0 ){
const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1);
sqlite3_tokenizer_cursor *pTC = 0;
rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC);
while( rc==SQLITE_OK ){
char const *zToken; /* Buffer containing token */
int nToken = 0; /* Number of bytes in token */
int iDum1 = 0, iDum2 = 0; /* Dummy variables */
int iPos = 0; /* Position of token in zText */
rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos);
for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
Fts3PhraseToken *pPT = pDef->pToken;
if( (pDef->iCol>=p->nColumn || pDef->iCol==i)
&& (pPT->bFirst==0 || iPos==0)
&& (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken))
&& (0==memcmp(zToken, pPT->z, pPT->n))
){
fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc);
}
}
}
if( pTC ) pModule->xClose(pTC);
if( rc==SQLITE_DONE ) rc = SQLITE_OK;
}
}
for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
if( pDef->pList ){
rc = fts3PendingListAppendVarint(&pDef->pList, 0);
}
}
}
return rc;
}
int sqlite3Fts3DeferredTokenList(
Fts3DeferredToken *p,
char **ppData,
int *pnData
){
char *pRet;
int nSkip;
sqlite3_int64 dummy;
*ppData = 0;
*pnData = 0;
if( p->pList==0 ){
return SQLITE_OK;
}
pRet = (char *)sqlite3_malloc64(p->pList->nData);
if( !pRet ) return SQLITE_NOMEM;
nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy);
*pnData = p->pList->nData - nSkip;
*ppData = pRet;
memcpy(pRet, &p->pList->aData[nSkip], *pnData);
return SQLITE_OK;
}
/*
** Add an entry for token pToken to the pCsr->pDeferred list.
*/
int sqlite3Fts3DeferToken(
Fts3Cursor *pCsr, /* Fts3 table cursor */
Fts3PhraseToken *pToken, /* Token to defer */
int iCol /* Column that token must appear in (or -1) */
){
Fts3DeferredToken *pDeferred;
pDeferred = sqlite3_malloc64(sizeof(*pDeferred));
if( !pDeferred ){
return SQLITE_NOMEM;
}
memset(pDeferred, 0, sizeof(*pDeferred));
pDeferred->pToken = pToken;
pDeferred->pNext = pCsr->pDeferred;
pDeferred->iCol = iCol;
pCsr->pDeferred = pDeferred;
assert( pToken->pDeferred==0 );
pToken->pDeferred = pDeferred;
return SQLITE_OK;
}
#endif
/*
** SQLite value pRowid contains the rowid of a row that may or may not be
** present in the FTS3 table. If it is, delete it and adjust the contents
** of subsiduary data structures accordingly.
*/
static int fts3DeleteByRowid(
Fts3Table *p,
sqlite3_value *pRowid,
int *pnChng, /* IN/OUT: Decrement if row is deleted */
u32 *aSzDel
){
int rc = SQLITE_OK; /* Return code */
int bFound = 0; /* True if *pRowid really is in the table */
fts3DeleteTerms(&rc, p, pRowid, aSzDel, &bFound);
if( bFound && rc==SQLITE_OK ){
int isEmpty = 0; /* Deleting *pRowid leaves the table empty */
rc = fts3IsEmpty(p, pRowid, &isEmpty);
if( rc==SQLITE_OK ){
if( isEmpty ){
/* Deleting this row means the whole table is empty. In this case
** delete the contents of all three tables and throw away any
** data in the pendingTerms hash table. */
rc = fts3DeleteAll(p, 1);
*pnChng = 0;
memset(aSzDel, 0, sizeof(u32) * (p->nColumn+1) * 2);
}else{
*pnChng = *pnChng - 1;
if( p->zContentTbl==0 ){
fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid);
}
if( p->bHasDocsize ){
fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid);
}
}
}
}
return rc;
}
/*
** This function does the work for the xUpdate method of FTS3 virtual
** tables. The schema of the virtual table being:
**
** CREATE TABLE <table name>(
** <user columns>,
** <table name> HIDDEN,
** docid HIDDEN,
** <langid> HIDDEN
** );
**
**
*/
int sqlite3Fts3UpdateMethod(
sqlite3_vtab *pVtab, /* FTS3 vtab object */
int nArg, /* Size of argument array */
sqlite3_value **apVal, /* Array of arguments */
sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
){
Fts3Table *p = (Fts3Table *)pVtab;
int rc = SQLITE_OK; /* Return Code */
u32 *aSzIns = 0; /* Sizes of inserted documents */
u32 *aSzDel = 0; /* Sizes of deleted documents */
int nChng = 0; /* Net change in number of documents */
int bInsertDone = 0;
/* At this point it must be known if the %_stat table exists or not.
** So bHasStat may not be 2. */
assert( p->bHasStat==0 || p->bHasStat==1 );
assert( p->pSegments==0 );
assert(
nArg==1 /* DELETE operations */
|| nArg==(2 + p->nColumn + 3) /* INSERT or UPDATE operations */
);
/* Check for a "special" INSERT operation. One of the form:
**
** INSERT INTO xyz(xyz) VALUES('command');
*/
if( nArg>1
&& sqlite3_value_type(apVal[0])==SQLITE_NULL
&& sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL
){
rc = fts3SpecialInsert(p, apVal[p->nColumn+2]);
goto update_out;
}
if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){
rc = SQLITE_CONSTRAINT;
goto update_out;
}
/* Allocate space to hold the change in document sizes */
aSzDel = sqlite3_malloc64(sizeof(aSzDel[0])*((sqlite3_int64)p->nColumn+1)*2);
if( aSzDel==0 ){
rc = SQLITE_NOMEM;
goto update_out;
}
aSzIns = &aSzDel[p->nColumn+1];
memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2);
rc = fts3Writelock(p);
if( rc!=SQLITE_OK ) goto update_out;
/* If this is an INSERT operation, or an UPDATE that modifies the rowid
** value, then this operation requires constraint handling.
**
** If the on-conflict mode is REPLACE, this means that the existing row
** should be deleted from the database before inserting the new row. Or,
** if the on-conflict mode is other than REPLACE, then this method must
** detect the conflict and return SQLITE_CONSTRAINT before beginning to
** modify the database file.
*/
if( nArg>1 && p->zContentTbl==0 ){
/* Find the value object that holds the new rowid value. */
sqlite3_value *pNewRowid = apVal[3+p->nColumn];
if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){
pNewRowid = apVal[1];
}
if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && (
sqlite3_value_type(apVal[0])==SQLITE_NULL
|| sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid)
)){
/* The new rowid is not NULL (in this case the rowid will be
** automatically assigned and there is no chance of a conflict), and
** the statement is either an INSERT or an UPDATE that modifies the
** rowid column. So if the conflict mode is REPLACE, then delete any
** existing row with rowid=pNewRowid.
**
** Or, if the conflict mode is not REPLACE, insert the new record into
** the %_content table. If we hit the duplicate rowid constraint (or any
** other error) while doing so, return immediately.
**
** This branch may also run if pNewRowid contains a value that cannot
** be losslessly converted to an integer. In this case, the eventual
** call to fts3InsertData() (either just below or further on in this
** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is
** invoked, it will delete zero rows (since no row will have
** docid=$pNewRowid if $pNewRowid is not an integer value).
*/
if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){
rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel);
}else{
rc = fts3InsertData(p, apVal, pRowid);
bInsertDone = 1;
}
}
}
if( rc!=SQLITE_OK ){
goto update_out;
}
/* If this is a DELETE or UPDATE operation, remove the old record. */
if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER );
rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel);
}
/* If this is an INSERT or UPDATE operation, insert the new record. */
if( nArg>1 && rc==SQLITE_OK ){
int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]);
if( bInsertDone==0 ){
rc = fts3InsertData(p, apVal, pRowid);
if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){
rc = FTS_CORRUPT_VTAB;
}
}
if( rc==SQLITE_OK ){
rc = fts3PendingTermsDocid(p, 0, iLangid, *pRowid);
}
if( rc==SQLITE_OK ){
assert( p->iPrevDocid==*pRowid );
rc = fts3InsertTerms(p, iLangid, apVal, aSzIns);
}
if( p->bHasDocsize ){
fts3InsertDocsize(&rc, p, aSzIns);
}
nChng++;
}
if( p->bFts4 ){
fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng);
}
update_out:
sqlite3_free(aSzDel);
sqlite3Fts3SegmentsClose(p);
return rc;
}
/*
** Flush any data in the pending-terms hash table to disk. If successful,
** merge all segments in the database (including the new segment, if
** there was any data to flush) into a single segment.
*/
int sqlite3Fts3Optimize(Fts3Table *p){
int rc;
rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0);
if( rc==SQLITE_OK ){
rc = fts3DoOptimize(p, 1);
if( rc==SQLITE_OK || rc==SQLITE_DONE ){
int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
if( rc2!=SQLITE_OK ) rc = rc2;
}else{
sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0);
sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
}
}
sqlite3Fts3SegmentsClose(p);
return rc;
}
#endif
|