1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
|
/*
** 2011-08-14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** PAGE FORMAT:
**
** The maximum page size is 65536 bytes.
**
** Since all records are equal to or larger than 2 bytes in size, and
** some space within the page is consumed by the page footer, there must
** be less than 2^15 records on each page.
**
** Each page ends with a footer that describes the pages contents. This
** footer serves as similar purpose to the page header in an SQLite database.
** A footer is used instead of a header because it makes it easier to
** populate a new page based on a sorted list of key/value pairs.
**
** The footer consists of the following values (starting at the end of
** the page and continuing backwards towards the start). All values are
** stored as unsigned big-endian integers.
**
** * Number of records on page (2 bytes).
** * Flags field (2 bytes).
** * Left-hand pointer value (8 bytes).
** * The starting offset of each record (2 bytes per record).
**
** Records may span pages. Unless it happens to be an exact fit, the part
** of the final record that starts on page X that does not fit on page X
** is stored at the start of page (X+1). This means there may be pages where
** (N==0). And on most pages the first record that starts on the page will
** not start at byte offset 0. For example:
**
** aaaaa bbbbb ccc <footer> cc eeeee fffff g <footer> gggg....
**
** RECORD FORMAT:
**
** The first byte of the record is a flags byte. It is a combination
** of the following flags (defined in lsmInt.h):
**
** LSM_START_DELETE
** LSM_END_DELETE
** LSM_POINT_DELETE
** LSM_INSERT
** LSM_SEPARATOR
** LSM_SYSTEMKEY
**
** Immediately following the type byte is a pointer to the smallest key
** in the next file that is larger than the key in the current record. The
** pointer is encoded as a varint. When added to the 32-bit page number
** stored in the footer, it is the page number of the page that contains the
** smallest key in the next sorted file that is larger than this key.
**
** Next is the number of bytes in the key, encoded as a varint.
**
** If the LSM_INSERT flag is set, the number of bytes in the value, as
** a varint, is next.
**
** Finally, the blob of data containing the key, and for LSM_INSERT
** records, the value as well.
*/
#ifndef _LSM_INT_H
# include "lsmInt.h"
#endif
#define LSM_LOG_STRUCTURE 0
#define LSM_LOG_DATA 0
/*
** Macros to help decode record types.
*/
#define rtTopic(eType) ((eType) & LSM_SYSTEMKEY)
#define rtIsDelete(eType) (((eType) & 0x0F)==LSM_POINT_DELETE)
#define rtIsSeparator(eType) (((eType) & LSM_SEPARATOR)!=0)
#define rtIsWrite(eType) (((eType) & LSM_INSERT)!=0)
#define rtIsSystem(eType) (((eType) & LSM_SYSTEMKEY)!=0)
/*
** The following macros are used to access a page footer.
*/
#define SEGMENT_NRECORD_OFFSET(pgsz) ((pgsz) - 2)
#define SEGMENT_FLAGS_OFFSET(pgsz) ((pgsz) - 2 - 2)
#define SEGMENT_POINTER_OFFSET(pgsz) ((pgsz) - 2 - 2 - 8)
#define SEGMENT_CELLPTR_OFFSET(pgsz, iCell) ((pgsz) - 2 - 2 - 8 - 2 - (iCell)*2)
#define SEGMENT_EOF(pgsz, nEntry) SEGMENT_CELLPTR_OFFSET(pgsz, nEntry-1)
#define SEGMENT_BTREE_FLAG 0x0001
#define PGFTR_SKIP_NEXT_FLAG 0x0002
#define PGFTR_SKIP_THIS_FLAG 0x0004
#ifndef LSM_SEGMENTPTR_FREE_THRESHOLD
# define LSM_SEGMENTPTR_FREE_THRESHOLD 1024
#endif
typedef struct SegmentPtr SegmentPtr;
typedef struct LsmBlob LsmBlob;
struct LsmBlob {
lsm_env *pEnv;
void *pData;
int nData;
int nAlloc;
};
/*
** A SegmentPtr object may be used for one of two purposes:
**
** * To iterate and/or seek within a single Segment (the combination of a
** main run and an optional sorted run).
**
** * To iterate through the separators array of a segment.
*/
struct SegmentPtr {
Level *pLevel; /* Level object segment is part of */
Segment *pSeg; /* Segment to access */
/* Current page. See segmentPtrLoadPage(). */
Page *pPg; /* Current page */
u16 flags; /* Copy of page flags field */
int nCell; /* Number of cells on pPg */
LsmPgno iPtr; /* Base cascade pointer */
/* Current cell. See segmentPtrLoadCell() */
int iCell; /* Current record within page pPg */
int eType; /* Type of current record */
LsmPgno iPgPtr; /* Cascade pointer offset */
void *pKey; int nKey; /* Key associated with current record */
void *pVal; int nVal; /* Current record value (eType==WRITE only) */
/* Blobs used to allocate buffers for pKey and pVal as required */
LsmBlob blob1;
LsmBlob blob2;
};
/*
** Used to iterate through the keys stored in a b-tree hierarchy from start
** to finish. Only First() and Next() operations are required.
**
** btreeCursorNew()
** btreeCursorFirst()
** btreeCursorNext()
** btreeCursorFree()
** btreeCursorPosition()
** btreeCursorRestore()
*/
typedef struct BtreePg BtreePg;
typedef struct BtreeCursor BtreeCursor;
struct BtreePg {
Page *pPage;
int iCell;
};
struct BtreeCursor {
Segment *pSeg; /* Iterate through this segments btree */
FileSystem *pFS; /* File system to read pages from */
int nDepth; /* Allocated size of aPg[] */
int iPg; /* Current entry in aPg[]. -1 -> EOF. */
BtreePg *aPg; /* Pages from root to current location */
/* Cache of current entry. pKey==0 for EOF. */
void *pKey;
int nKey;
int eType;
LsmPgno iPtr;
/* Storage for key, if not local */
LsmBlob blob;
};
/*
** A cursor used for merged searches or iterations through up to one
** Tree structure and any number of sorted files.
**
** lsmMCursorNew()
** lsmMCursorSeek()
** lsmMCursorNext()
** lsmMCursorPrev()
** lsmMCursorFirst()
** lsmMCursorLast()
** lsmMCursorKey()
** lsmMCursorValue()
** lsmMCursorValid()
**
** iFree:
** This variable is only used by cursors providing input data for a
** new top-level segment. Such cursors only ever iterate forwards, not
** backwards.
*/
struct MultiCursor {
lsm_db *pDb; /* Connection that owns this cursor */
MultiCursor *pNext; /* Next cursor owned by connection pDb */
int flags; /* Mask of CURSOR_XXX flags */
int eType; /* Cache of current key type */
LsmBlob key; /* Cache of current key (or NULL) */
LsmBlob val; /* Cache of current value */
/* All the component cursors: */
TreeCursor *apTreeCsr[2]; /* Up to two tree cursors */
int iFree; /* Next element of free-list (-ve for eof) */
SegmentPtr *aPtr; /* Array of segment pointers */
int nPtr; /* Size of array aPtr[] */
BtreeCursor *pBtCsr; /* b-tree cursor (db writes only) */
/* Comparison results */
int nTree; /* Size of aTree[] array */
int *aTree; /* Array of comparison results */
/* Used by cursors flushing the in-memory tree only */
void *pSystemVal; /* Pointer to buffer to free */
/* Used by worker cursors only */
LsmPgno *pPrevMergePtr;
};
/*
** The following constants are used to assign integers to each component
** cursor of a multi-cursor.
*/
#define CURSOR_DATA_TREE0 0 /* Current tree cursor (apTreeCsr[0]) */
#define CURSOR_DATA_TREE1 1 /* The "old" tree, if any (apTreeCsr[1]) */
#define CURSOR_DATA_SYSTEM 2 /* Free-list entries (new-toplevel only) */
#define CURSOR_DATA_SEGMENT 3 /* First segment pointer (aPtr[0]) */
/*
** CURSOR_IGNORE_DELETE
** If set, this cursor will not visit SORTED_DELETE keys.
**
** CURSOR_FLUSH_FREELIST
** This cursor is being used to create a new toplevel. It should also
** iterate through the contents of the in-memory free block list.
**
** CURSOR_IGNORE_SYSTEM
** If set, this cursor ignores system keys.
**
** CURSOR_NEXT_OK
** Set if it is Ok to call lsm_csr_next().
**
** CURSOR_PREV_OK
** Set if it is Ok to call lsm_csr_prev().
**
** CURSOR_READ_SEPARATORS
** Set if this cursor should visit the separator keys in segment
** aPtr[nPtr-1].
**
** CURSOR_SEEK_EQ
** Cursor has undergone a successful lsm_csr_seek(LSM_SEEK_EQ) operation.
** The key and value are stored in MultiCursor.key and MultiCursor.val
** respectively.
*/
#define CURSOR_IGNORE_DELETE 0x00000001
#define CURSOR_FLUSH_FREELIST 0x00000002
#define CURSOR_IGNORE_SYSTEM 0x00000010
#define CURSOR_NEXT_OK 0x00000020
#define CURSOR_PREV_OK 0x00000040
#define CURSOR_READ_SEPARATORS 0x00000080
#define CURSOR_SEEK_EQ 0x00000100
typedef struct MergeWorker MergeWorker;
typedef struct Hierarchy Hierarchy;
struct Hierarchy {
Page **apHier;
int nHier;
};
/*
** aSave:
** When mergeWorkerNextPage() is called to advance to the next page in
** the output segment, if the bStore flag for an element of aSave[] is
** true, it is cleared and the corresponding iPgno value is set to the
** page number of the page just completed.
**
** aSave[0] is used to record the pointer value to be pushed into the
** b-tree hierarchy. aSave[1] is used to save the page number of the
** page containing the indirect key most recently written to the b-tree.
** see mergeWorkerPushHierarchy() for details.
*/
struct MergeWorker {
lsm_db *pDb; /* Database handle */
Level *pLevel; /* Worker snapshot Level being merged */
MultiCursor *pCsr; /* Cursor to read new segment contents from */
int bFlush; /* True if this is an in-memory tree flush */
Hierarchy hier; /* B-tree hierarchy under construction */
Page *pPage; /* Current output page */
int nWork; /* Number of calls to mergeWorkerNextPage() */
LsmPgno *aGobble; /* Gobble point for each input segment */
LsmPgno iIndirect;
struct SavedPgno {
LsmPgno iPgno;
int bStore;
} aSave[2];
};
#ifdef LSM_DEBUG_EXPENSIVE
static int assertPointersOk(lsm_db *, Segment *, Segment *, int);
static int assertBtreeOk(lsm_db *, Segment *);
static void assertRunInOrder(lsm_db *pDb, Segment *pSeg);
#else
#define assertRunInOrder(x,y)
#define assertBtreeOk(x,y)
#endif
struct FilePage { u8 *aData; int nData; };
static u8 *fsPageData(Page *pPg, int *pnData){
*pnData = ((struct FilePage *)(pPg))->nData;
return ((struct FilePage *)(pPg))->aData;
}
/*UNUSED static u8 *fsPageDataPtr(Page *pPg){
return ((struct FilePage *)(pPg))->aData;
}*/
/*
** Write nVal as a 16-bit unsigned big-endian integer into buffer aOut.
*/
void lsmPutU16(u8 *aOut, u16 nVal){
aOut[0] = (u8)((nVal>>8) & 0xFF);
aOut[1] = (u8)(nVal & 0xFF);
}
void lsmPutU32(u8 *aOut, u32 nVal){
aOut[0] = (u8)((nVal>>24) & 0xFF);
aOut[1] = (u8)((nVal>>16) & 0xFF);
aOut[2] = (u8)((nVal>> 8) & 0xFF);
aOut[3] = (u8)((nVal ) & 0xFF);
}
int lsmGetU16(u8 *aOut){
return (aOut[0] << 8) + aOut[1];
}
u32 lsmGetU32(u8 *aOut){
return ((u32)aOut[0] << 24)
+ ((u32)aOut[1] << 16)
+ ((u32)aOut[2] << 8)
+ ((u32)aOut[3]);
}
u64 lsmGetU64(u8 *aOut){
return ((u64)aOut[0] << 56)
+ ((u64)aOut[1] << 48)
+ ((u64)aOut[2] << 40)
+ ((u64)aOut[3] << 32)
+ ((u64)aOut[4] << 24)
+ ((u32)aOut[5] << 16)
+ ((u32)aOut[6] << 8)
+ ((u32)aOut[7]);
}
void lsmPutU64(u8 *aOut, u64 nVal){
aOut[0] = (u8)((nVal>>56) & 0xFF);
aOut[1] = (u8)((nVal>>48) & 0xFF);
aOut[2] = (u8)((nVal>>40) & 0xFF);
aOut[3] = (u8)((nVal>>32) & 0xFF);
aOut[4] = (u8)((nVal>>24) & 0xFF);
aOut[5] = (u8)((nVal>>16) & 0xFF);
aOut[6] = (u8)((nVal>> 8) & 0xFF);
aOut[7] = (u8)((nVal ) & 0xFF);
}
static int sortedBlobGrow(lsm_env *pEnv, LsmBlob *pBlob, int nData){
assert( pBlob->pEnv==pEnv || (pBlob->pEnv==0 && pBlob->pData==0) );
if( pBlob->nAlloc<nData ){
pBlob->pData = lsmReallocOrFree(pEnv, pBlob->pData, nData);
if( !pBlob->pData ) return LSM_NOMEM_BKPT;
pBlob->nAlloc = nData;
pBlob->pEnv = pEnv;
}
return LSM_OK;
}
static int sortedBlobSet(lsm_env *pEnv, LsmBlob *pBlob, void *pData, int nData){
if( sortedBlobGrow(pEnv, pBlob, nData) ) return LSM_NOMEM;
memcpy(pBlob->pData, pData, nData);
pBlob->nData = nData;
return LSM_OK;
}
#if 0
static int sortedBlobCopy(LsmBlob *pDest, LsmBlob *pSrc){
return sortedBlobSet(pDest, pSrc->pData, pSrc->nData);
}
#endif
static void sortedBlobFree(LsmBlob *pBlob){
assert( pBlob->pEnv || pBlob->pData==0 );
if( pBlob->pData ) lsmFree(pBlob->pEnv, pBlob->pData);
memset(pBlob, 0, sizeof(LsmBlob));
}
static int sortedReadData(
Segment *pSeg,
Page *pPg,
int iOff,
int nByte,
void **ppData,
LsmBlob *pBlob
){
int rc = LSM_OK;
int iEnd;
int nData;
int nCell;
u8 *aData;
aData = fsPageData(pPg, &nData);
nCell = lsmGetU16(&aData[SEGMENT_NRECORD_OFFSET(nData)]);
iEnd = SEGMENT_EOF(nData, nCell);
assert( iEnd>0 && iEnd<nData );
if( iOff+nByte<=iEnd ){
*ppData = (void *)&aData[iOff];
}else{
int nRem = nByte;
int i = iOff;
u8 *aDest;
/* Make sure the blob is big enough to store the value being loaded. */
rc = sortedBlobGrow(lsmPageEnv(pPg), pBlob, nByte);
if( rc!=LSM_OK ) return rc;
pBlob->nData = nByte;
aDest = (u8 *)pBlob->pData;
*ppData = pBlob->pData;
/* Increment the pointer pages ref-count. */
lsmFsPageRef(pPg);
while( rc==LSM_OK ){
Page *pNext;
int flags;
/* Copy data from pPg into the output buffer. */
int nCopy = LSM_MIN(nRem, iEnd-i);
if( nCopy>0 ){
memcpy(&aDest[nByte-nRem], &aData[i], nCopy);
nRem -= nCopy;
i += nCopy;
assert( nRem==0 || i==iEnd );
}
assert( nRem>=0 );
if( nRem==0 ) break;
i -= iEnd;
/* Grab the next page in the segment */
do {
rc = lsmFsDbPageNext(pSeg, pPg, 1, &pNext);
if( rc==LSM_OK && pNext==0 ){
rc = LSM_CORRUPT_BKPT;
}
if( rc ) break;
lsmFsPageRelease(pPg);
pPg = pNext;
aData = fsPageData(pPg, &nData);
flags = lsmGetU16(&aData[SEGMENT_FLAGS_OFFSET(nData)]);
}while( flags&SEGMENT_BTREE_FLAG );
iEnd = SEGMENT_EOF(nData, lsmGetU16(&aData[nData-2]));
assert( iEnd>0 && iEnd<nData );
}
lsmFsPageRelease(pPg);
}
return rc;
}
static int pageGetNRec(u8 *aData, int nData){
return (int)lsmGetU16(&aData[SEGMENT_NRECORD_OFFSET(nData)]);
}
static LsmPgno pageGetPtr(u8 *aData, int nData){
return (LsmPgno)lsmGetU64(&aData[SEGMENT_POINTER_OFFSET(nData)]);
}
static int pageGetFlags(u8 *aData, int nData){
return (int)lsmGetU16(&aData[SEGMENT_FLAGS_OFFSET(nData)]);
}
static u8 *pageGetCell(u8 *aData, int nData, int iCell){
return &aData[lsmGetU16(&aData[SEGMENT_CELLPTR_OFFSET(nData, iCell)])];
}
/*
** Return the number of cells on page pPg.
*/
static int pageObjGetNRec(Page *pPg){
int nData;
u8 *aData = lsmFsPageData(pPg, &nData);
return pageGetNRec(aData, nData);
}
/*
** Return the decoded (possibly relative) pointer value stored in cell
** iCell from page aData/nData.
*/
static LsmPgno pageGetRecordPtr(u8 *aData, int nData, int iCell){
LsmPgno iRet; /* Return value */
u8 *aCell; /* Pointer to cell iCell */
assert( iCell<pageGetNRec(aData, nData) && iCell>=0 );
aCell = pageGetCell(aData, nData, iCell);
lsmVarintGet64(&aCell[1], &iRet);
return iRet;
}
static u8 *pageGetKey(
Segment *pSeg, /* Segment pPg belongs to */
Page *pPg, /* Page to read from */
int iCell, /* Index of cell on page to read */
int *piTopic, /* OUT: Topic associated with this key */
int *pnKey, /* OUT: Size of key in bytes */
LsmBlob *pBlob /* If required, use this for dynamic memory */
){
u8 *pKey;
int nDummy;
int eType;
u8 *aData;
int nData;
aData = fsPageData(pPg, &nData);
assert( !(pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG) );
assert( iCell<pageGetNRec(aData, nData) );
pKey = pageGetCell(aData, nData, iCell);
eType = *pKey++;
pKey += lsmVarintGet32(pKey, &nDummy);
pKey += lsmVarintGet32(pKey, pnKey);
if( rtIsWrite(eType) ){
pKey += lsmVarintGet32(pKey, &nDummy);
}
*piTopic = rtTopic(eType);
sortedReadData(pSeg, pPg, pKey-aData, *pnKey, (void **)&pKey, pBlob);
return pKey;
}
static int pageGetKeyCopy(
lsm_env *pEnv, /* Environment handle */
Segment *pSeg, /* Segment pPg belongs to */
Page *pPg, /* Page to read from */
int iCell, /* Index of cell on page to read */
int *piTopic, /* OUT: Topic associated with this key */
LsmBlob *pBlob /* If required, use this for dynamic memory */
){
int rc = LSM_OK;
int nKey;
u8 *aKey;
aKey = pageGetKey(pSeg, pPg, iCell, piTopic, &nKey, pBlob);
assert( (void *)aKey!=pBlob->pData || nKey==pBlob->nData );
if( (void *)aKey!=pBlob->pData ){
rc = sortedBlobSet(pEnv, pBlob, aKey, nKey);
}
return rc;
}
static LsmPgno pageGetBtreeRef(Page *pPg, int iKey){
LsmPgno iRef;
u8 *aData;
int nData;
u8 *aCell;
aData = fsPageData(pPg, &nData);
aCell = pageGetCell(aData, nData, iKey);
assert( aCell[0]==0 );
aCell++;
aCell += lsmVarintGet64(aCell, &iRef);
lsmVarintGet64(aCell, &iRef);
assert( iRef>0 );
return iRef;
}
#define GETVARINT64(a, i) (((i)=((u8*)(a))[0])<=240?1:lsmVarintGet64((a), &(i)))
#define GETVARINT32(a, i) (((i)=((u8*)(a))[0])<=240?1:lsmVarintGet32((a), &(i)))
static int pageGetBtreeKey(
Segment *pSeg, /* Segment page pPg belongs to */
Page *pPg,
int iKey,
LsmPgno *piPtr,
int *piTopic,
void **ppKey,
int *pnKey,
LsmBlob *pBlob
){
u8 *aData;
int nData;
u8 *aCell;
int eType;
aData = fsPageData(pPg, &nData);
assert( SEGMENT_BTREE_FLAG & pageGetFlags(aData, nData) );
assert( iKey>=0 && iKey<pageGetNRec(aData, nData) );
aCell = pageGetCell(aData, nData, iKey);
eType = *aCell++;
aCell += GETVARINT64(aCell, *piPtr);
if( eType==0 ){
int rc;
LsmPgno iRef; /* Page number of referenced page */
Page *pRef;
aCell += GETVARINT64(aCell, iRef);
rc = lsmFsDbPageGet(lsmPageFS(pPg), pSeg, iRef, &pRef);
if( rc!=LSM_OK ) return rc;
pageGetKeyCopy(lsmPageEnv(pPg), pSeg, pRef, 0, &eType, pBlob);
lsmFsPageRelease(pRef);
*ppKey = pBlob->pData;
*pnKey = pBlob->nData;
}else{
aCell += GETVARINT32(aCell, *pnKey);
*ppKey = aCell;
}
if( piTopic ) *piTopic = rtTopic(eType);
return LSM_OK;
}
static int btreeCursorLoadKey(BtreeCursor *pCsr){
int rc = LSM_OK;
if( pCsr->iPg<0 ){
pCsr->pKey = 0;
pCsr->nKey = 0;
pCsr->eType = 0;
}else{
LsmPgno dummy;
int iPg = pCsr->iPg;
int iCell = pCsr->aPg[iPg].iCell;
while( iCell<0 && (--iPg)>=0 ){
iCell = pCsr->aPg[iPg].iCell-1;
}
if( iPg<0 || iCell<0 ) return LSM_CORRUPT_BKPT;
rc = pageGetBtreeKey(
pCsr->pSeg,
pCsr->aPg[iPg].pPage, iCell,
&dummy, &pCsr->eType, &pCsr->pKey, &pCsr->nKey, &pCsr->blob
);
pCsr->eType |= LSM_SEPARATOR;
}
return rc;
}
static int btreeCursorPtr(u8 *aData, int nData, int iCell){
int nCell;
nCell = pageGetNRec(aData, nData);
if( iCell>=nCell ){
return (int)pageGetPtr(aData, nData);
}
return (int)pageGetRecordPtr(aData, nData, iCell);
}
static int btreeCursorNext(BtreeCursor *pCsr){
int rc = LSM_OK;
BtreePg *pPg = &pCsr->aPg[pCsr->iPg];
int nCell;
u8 *aData;
int nData;
assert( pCsr->iPg>=0 );
assert( pCsr->iPg==pCsr->nDepth-1 );
aData = fsPageData(pPg->pPage, &nData);
nCell = pageGetNRec(aData, nData);
assert( pPg->iCell<=nCell );
pPg->iCell++;
if( pPg->iCell==nCell ){
LsmPgno iLoad;
/* Up to parent. */
lsmFsPageRelease(pPg->pPage);
pPg->pPage = 0;
pCsr->iPg--;
while( pCsr->iPg>=0 ){
pPg = &pCsr->aPg[pCsr->iPg];
aData = fsPageData(pPg->pPage, &nData);
if( pPg->iCell<pageGetNRec(aData, nData) ) break;
lsmFsPageRelease(pPg->pPage);
pCsr->iPg--;
}
/* Read the key */
rc = btreeCursorLoadKey(pCsr);
/* Unless the cursor is at EOF, descend to cell -1 (yes, negative one) of
** the left-most most descendent. */
if( pCsr->iPg>=0 ){
pCsr->aPg[pCsr->iPg].iCell++;
iLoad = btreeCursorPtr(aData, nData, pPg->iCell);
do {
Page *pLoad;
pCsr->iPg++;
rc = lsmFsDbPageGet(pCsr->pFS, pCsr->pSeg, iLoad, &pLoad);
pCsr->aPg[pCsr->iPg].pPage = pLoad;
pCsr->aPg[pCsr->iPg].iCell = 0;
if( rc==LSM_OK ){
if( pCsr->iPg==(pCsr->nDepth-1) ) break;
aData = fsPageData(pLoad, &nData);
iLoad = btreeCursorPtr(aData, nData, 0);
}
}while( rc==LSM_OK && pCsr->iPg<(pCsr->nDepth-1) );
pCsr->aPg[pCsr->iPg].iCell = -1;
}
}else{
rc = btreeCursorLoadKey(pCsr);
}
if( rc==LSM_OK && pCsr->iPg>=0 ){
aData = fsPageData(pCsr->aPg[pCsr->iPg].pPage, &nData);
pCsr->iPtr = btreeCursorPtr(aData, nData, pCsr->aPg[pCsr->iPg].iCell+1);
}
return rc;
}
static void btreeCursorFree(BtreeCursor *pCsr){
if( pCsr ){
int i;
lsm_env *pEnv = lsmFsEnv(pCsr->pFS);
for(i=0; i<=pCsr->iPg; i++){
lsmFsPageRelease(pCsr->aPg[i].pPage);
}
sortedBlobFree(&pCsr->blob);
lsmFree(pEnv, pCsr->aPg);
lsmFree(pEnv, pCsr);
}
}
static int btreeCursorFirst(BtreeCursor *pCsr){
int rc;
Page *pPg = 0;
FileSystem *pFS = pCsr->pFS;
int iPg = (int)pCsr->pSeg->iRoot;
do {
rc = lsmFsDbPageGet(pFS, pCsr->pSeg, iPg, &pPg);
assert( (rc==LSM_OK)==(pPg!=0) );
if( rc==LSM_OK ){
u8 *aData;
int nData;
int flags;
aData = fsPageData(pPg, &nData);
flags = pageGetFlags(aData, nData);
if( (flags & SEGMENT_BTREE_FLAG)==0 ) break;
if( (pCsr->nDepth % 8)==0 ){
int nNew = pCsr->nDepth + 8;
pCsr->aPg = (BtreePg *)lsmReallocOrFreeRc(
lsmFsEnv(pFS), pCsr->aPg, sizeof(BtreePg) * nNew, &rc
);
if( rc==LSM_OK ){
memset(&pCsr->aPg[pCsr->nDepth], 0, sizeof(BtreePg) * 8);
}
}
if( rc==LSM_OK ){
assert( pCsr->aPg[pCsr->nDepth].iCell==0 );
pCsr->aPg[pCsr->nDepth].pPage = pPg;
pCsr->nDepth++;
iPg = (int)pageGetRecordPtr(aData, nData, 0);
}
}
}while( rc==LSM_OK );
lsmFsPageRelease(pPg);
pCsr->iPg = pCsr->nDepth-1;
if( rc==LSM_OK && pCsr->nDepth ){
pCsr->aPg[pCsr->iPg].iCell = -1;
rc = btreeCursorNext(pCsr);
}
return rc;
}
static void btreeCursorPosition(BtreeCursor *pCsr, MergeInput *p){
if( pCsr->iPg>=0 ){
p->iPg = lsmFsPageNumber(pCsr->aPg[pCsr->iPg].pPage);
p->iCell = ((pCsr->aPg[pCsr->iPg].iCell + 1) << 8) + pCsr->nDepth;
}else{
p->iPg = 0;
p->iCell = 0;
}
}
static void btreeCursorSplitkey(BtreeCursor *pCsr, MergeInput *p){
int iCell = pCsr->aPg[pCsr->iPg].iCell;
if( iCell>=0 ){
p->iCell = iCell;
p->iPg = lsmFsPageNumber(pCsr->aPg[pCsr->iPg].pPage);
}else{
int i;
for(i=pCsr->iPg-1; i>=0; i--){
if( pCsr->aPg[i].iCell>0 ) break;
}
assert( i>=0 );
p->iCell = pCsr->aPg[i].iCell-1;
p->iPg = lsmFsPageNumber(pCsr->aPg[i].pPage);
}
}
static int sortedKeyCompare(
int (*xCmp)(void *, int, void *, int),
int iLhsTopic, void *pLhsKey, int nLhsKey,
int iRhsTopic, void *pRhsKey, int nRhsKey
){
int res = iLhsTopic - iRhsTopic;
if( res==0 ){
res = xCmp(pLhsKey, nLhsKey, pRhsKey, nRhsKey);
}
return res;
}
static int btreeCursorRestore(
BtreeCursor *pCsr,
int (*xCmp)(void *, int, void *, int),
MergeInput *p
){
int rc = LSM_OK;
if( p->iPg ){
lsm_env *pEnv = lsmFsEnv(pCsr->pFS);
int iCell; /* Current cell number on leaf page */
LsmPgno iLeaf; /* Page number of current leaf page */
int nDepth; /* Depth of b-tree structure */
Segment *pSeg = pCsr->pSeg;
/* Decode the MergeInput structure */
iLeaf = p->iPg;
nDepth = (p->iCell & 0x00FF);
iCell = (p->iCell >> 8) - 1;
/* Allocate the BtreeCursor.aPg[] array */
assert( pCsr->aPg==0 );
pCsr->aPg = (BtreePg *)lsmMallocZeroRc(pEnv, sizeof(BtreePg) * nDepth, &rc);
/* Populate the last entry of the aPg[] array */
if( rc==LSM_OK ){
Page **pp = &pCsr->aPg[nDepth-1].pPage;
pCsr->iPg = nDepth-1;
pCsr->nDepth = nDepth;
pCsr->aPg[pCsr->iPg].iCell = iCell;
rc = lsmFsDbPageGet(pCsr->pFS, pSeg, iLeaf, pp);
}
/* Populate any other aPg[] array entries */
if( rc==LSM_OK && nDepth>1 ){
LsmBlob blob = {0,0,0};
void *pSeek;
int nSeek;
int iTopicSeek;
int iPg = 0;
int iLoad = (int)pSeg->iRoot;
Page *pPg = pCsr->aPg[nDepth-1].pPage;
if( pageObjGetNRec(pPg)==0 ){
/* This can happen when pPg is the right-most leaf in the b-tree.
** In this case, set the iTopicSeek/pSeek/nSeek key to a value
** greater than any real key. */
assert( iCell==-1 );
iTopicSeek = 1000;
pSeek = 0;
nSeek = 0;
}else{
LsmPgno dummy;
rc = pageGetBtreeKey(pSeg, pPg,
0, &dummy, &iTopicSeek, &pSeek, &nSeek, &pCsr->blob
);
}
do {
Page *pPg2;
rc = lsmFsDbPageGet(pCsr->pFS, pSeg, iLoad, &pPg2);
assert( rc==LSM_OK || pPg2==0 );
if( rc==LSM_OK ){
u8 *aData; /* Buffer containing page data */
int nData; /* Size of aData[] in bytes */
int iMin;
int iMax;
int iCell2;
aData = fsPageData(pPg2, &nData);
assert( (pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG) );
iLoad = (int)pageGetPtr(aData, nData);
iCell2 = pageGetNRec(aData, nData);
iMax = iCell2-1;
iMin = 0;
while( iMax>=iMin ){
int iTry = (iMin+iMax)/2;
void *pKey; int nKey; /* Key for cell iTry */
int iTopic; /* Topic for key pKeyT/nKeyT */
LsmPgno iPtr; /* Pointer for cell iTry */
int res; /* (pSeek - pKeyT) */
rc = pageGetBtreeKey(
pSeg, pPg2, iTry, &iPtr, &iTopic, &pKey, &nKey, &blob
);
if( rc!=LSM_OK ) break;
res = sortedKeyCompare(
xCmp, iTopicSeek, pSeek, nSeek, iTopic, pKey, nKey
);
assert( res!=0 );
if( res<0 ){
iLoad = (int)iPtr;
iCell2 = iTry;
iMax = iTry-1;
}else{
iMin = iTry+1;
}
}
pCsr->aPg[iPg].pPage = pPg2;
pCsr->aPg[iPg].iCell = iCell2;
iPg++;
assert( iPg!=nDepth-1
|| lsmFsRedirectPage(pCsr->pFS, pSeg->pRedirect, iLoad)==iLeaf
);
}
}while( rc==LSM_OK && iPg<(nDepth-1) );
sortedBlobFree(&blob);
}
/* Load the current key and pointer */
if( rc==LSM_OK ){
BtreePg *pBtreePg;
u8 *aData;
int nData;
pBtreePg = &pCsr->aPg[pCsr->iPg];
aData = fsPageData(pBtreePg->pPage, &nData);
pCsr->iPtr = btreeCursorPtr(aData, nData, pBtreePg->iCell+1);
if( pBtreePg->iCell<0 ){
LsmPgno dummy;
int i;
for(i=pCsr->iPg-1; i>=0; i--){
if( pCsr->aPg[i].iCell>0 ) break;
}
assert( i>=0 );
rc = pageGetBtreeKey(pSeg,
pCsr->aPg[i].pPage, pCsr->aPg[i].iCell-1,
&dummy, &pCsr->eType, &pCsr->pKey, &pCsr->nKey, &pCsr->blob
);
pCsr->eType |= LSM_SEPARATOR;
}else{
rc = btreeCursorLoadKey(pCsr);
}
}
}
return rc;
}
static int btreeCursorNew(
lsm_db *pDb,
Segment *pSeg,
BtreeCursor **ppCsr
){
int rc = LSM_OK;
BtreeCursor *pCsr;
assert( pSeg->iRoot );
pCsr = lsmMallocZeroRc(pDb->pEnv, sizeof(BtreeCursor), &rc);
if( pCsr ){
pCsr->pFS = pDb->pFS;
pCsr->pSeg = pSeg;
pCsr->iPg = -1;
}
*ppCsr = pCsr;
return rc;
}
static void segmentPtrSetPage(SegmentPtr *pPtr, Page *pNext){
lsmFsPageRelease(pPtr->pPg);
if( pNext ){
int nData;
u8 *aData = fsPageData(pNext, &nData);
pPtr->nCell = pageGetNRec(aData, nData);
pPtr->flags = (u16)pageGetFlags(aData, nData);
pPtr->iPtr = pageGetPtr(aData, nData);
}
pPtr->pPg = pNext;
}
/*
** Load a new page into the SegmentPtr object pPtr.
*/
static int segmentPtrLoadPage(
FileSystem *pFS,
SegmentPtr *pPtr, /* Load page into this SegmentPtr object */
int iNew /* Page number of new page */
){
Page *pPg = 0; /* The new page */
int rc; /* Return Code */
rc = lsmFsDbPageGet(pFS, pPtr->pSeg, iNew, &pPg);
assert( rc==LSM_OK || pPg==0 );
segmentPtrSetPage(pPtr, pPg);
return rc;
}
static int segmentPtrReadData(
SegmentPtr *pPtr,
int iOff,
int nByte,
void **ppData,
LsmBlob *pBlob
){
return sortedReadData(pPtr->pSeg, pPtr->pPg, iOff, nByte, ppData, pBlob);
}
static int segmentPtrNextPage(
SegmentPtr *pPtr, /* Load page into this SegmentPtr object */
int eDir /* +1 for next(), -1 for prev() */
){
Page *pNext; /* New page to load */
int rc; /* Return code */
assert( eDir==1 || eDir==-1 );
assert( pPtr->pPg );
assert( pPtr->pSeg || eDir>0 );
rc = lsmFsDbPageNext(pPtr->pSeg, pPtr->pPg, eDir, &pNext);
assert( rc==LSM_OK || pNext==0 );
segmentPtrSetPage(pPtr, pNext);
return rc;
}
static int segmentPtrLoadCell(
SegmentPtr *pPtr, /* Load page into this SegmentPtr object */
int iNew /* Cell number of new cell */
){
int rc = LSM_OK;
if( pPtr->pPg ){
u8 *aData; /* Pointer to page data buffer */
int iOff; /* Offset in aData[] to read from */
int nPgsz; /* Size of page (aData[]) in bytes */
assert( iNew<pPtr->nCell );
pPtr->iCell = iNew;
aData = fsPageData(pPtr->pPg, &nPgsz);
iOff = lsmGetU16(&aData[SEGMENT_CELLPTR_OFFSET(nPgsz, pPtr->iCell)]);
pPtr->eType = aData[iOff];
iOff++;
iOff += GETVARINT64(&aData[iOff], pPtr->iPgPtr);
iOff += GETVARINT32(&aData[iOff], pPtr->nKey);
if( rtIsWrite(pPtr->eType) ){
iOff += GETVARINT32(&aData[iOff], pPtr->nVal);
}
assert( pPtr->nKey>=0 );
rc = segmentPtrReadData(
pPtr, iOff, pPtr->nKey, &pPtr->pKey, &pPtr->blob1
);
if( rc==LSM_OK && rtIsWrite(pPtr->eType) ){
rc = segmentPtrReadData(
pPtr, iOff+pPtr->nKey, pPtr->nVal, &pPtr->pVal, &pPtr->blob2
);
}else{
pPtr->nVal = 0;
pPtr->pVal = 0;
}
}
return rc;
}
static Segment *sortedSplitkeySegment(Level *pLevel){
Merge *pMerge = pLevel->pMerge;
MergeInput *p = &pMerge->splitkey;
Segment *pSeg;
int i;
for(i=0; i<pMerge->nInput; i++){
if( p->iPg==pMerge->aInput[i].iPg ) break;
}
if( pMerge->nInput==(pLevel->nRight+1) && i>=(pMerge->nInput-1) ){
pSeg = &pLevel->pNext->lhs;
}else{
pSeg = &pLevel->aRhs[i];
}
return pSeg;
}
static void sortedSplitkey(lsm_db *pDb, Level *pLevel, int *pRc){
Segment *pSeg;
Page *pPg = 0;
lsm_env *pEnv = pDb->pEnv; /* Environment handle */
int rc = *pRc;
Merge *pMerge = pLevel->pMerge;
pSeg = sortedSplitkeySegment(pLevel);
if( rc==LSM_OK ){
rc = lsmFsDbPageGet(pDb->pFS, pSeg, pMerge->splitkey.iPg, &pPg);
}
if( rc==LSM_OK ){
int iTopic;
LsmBlob blob = {0, 0, 0, 0};
u8 *aData;
int nData;
aData = lsmFsPageData(pPg, &nData);
if( pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG ){
void *pKey;
int nKey;
LsmPgno dummy;
rc = pageGetBtreeKey(pSeg,
pPg, pMerge->splitkey.iCell, &dummy, &iTopic, &pKey, &nKey, &blob
);
if( rc==LSM_OK && blob.pData!=pKey ){
rc = sortedBlobSet(pEnv, &blob, pKey, nKey);
}
}else{
rc = pageGetKeyCopy(
pEnv, pSeg, pPg, pMerge->splitkey.iCell, &iTopic, &blob
);
}
pLevel->iSplitTopic = iTopic;
pLevel->pSplitKey = blob.pData;
pLevel->nSplitKey = blob.nData;
lsmFsPageRelease(pPg);
}
*pRc = rc;
}
/*
** Reset a segment cursor. Also free its buffers if they are nThreshold
** bytes or larger in size.
*/
static void segmentPtrReset(SegmentPtr *pPtr, int nThreshold){
lsmFsPageRelease(pPtr->pPg);
pPtr->pPg = 0;
pPtr->nCell = 0;
pPtr->pKey = 0;
pPtr->nKey = 0;
pPtr->pVal = 0;
pPtr->nVal = 0;
pPtr->eType = 0;
pPtr->iCell = 0;
if( pPtr->blob1.nAlloc>=nThreshold ) sortedBlobFree(&pPtr->blob1);
if( pPtr->blob2.nAlloc>=nThreshold ) sortedBlobFree(&pPtr->blob2);
}
static int segmentPtrIgnoreSeparators(MultiCursor *pCsr, SegmentPtr *pPtr){
return (pCsr->flags & CURSOR_READ_SEPARATORS)==0
|| (pPtr!=&pCsr->aPtr[pCsr->nPtr-1]);
}
static int segmentPtrAdvance(
MultiCursor *pCsr,
SegmentPtr *pPtr,
int bReverse
){
int eDir = (bReverse ? -1 : 1);
Level *pLvl = pPtr->pLevel;
do {
int rc;
int iCell; /* Number of new cell in page */
int svFlags = 0; /* SegmentPtr.eType before advance */
iCell = pPtr->iCell + eDir;
assert( pPtr->pPg );
assert( iCell<=pPtr->nCell && iCell>=-1 );
if( bReverse && pPtr->pSeg!=&pPtr->pLevel->lhs ){
svFlags = pPtr->eType;
assert( svFlags );
}
if( iCell>=pPtr->nCell || iCell<0 ){
do {
rc = segmentPtrNextPage(pPtr, eDir);
}while( rc==LSM_OK
&& pPtr->pPg
&& (pPtr->nCell==0 || (pPtr->flags & SEGMENT_BTREE_FLAG) )
);
if( rc!=LSM_OK ) return rc;
iCell = bReverse ? (pPtr->nCell-1) : 0;
}
rc = segmentPtrLoadCell(pPtr, iCell);
if( rc!=LSM_OK ) return rc;
if( svFlags && pPtr->pPg ){
int res = sortedKeyCompare(pCsr->pDb->xCmp,
rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey,
pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey
);
if( res<0 ) segmentPtrReset(pPtr, LSM_SEGMENTPTR_FREE_THRESHOLD);
}
if( pPtr->pPg==0 && (svFlags & LSM_END_DELETE) ){
Segment *pSeg = pPtr->pSeg;
rc = lsmFsDbPageGet(pCsr->pDb->pFS, pSeg, pSeg->iFirst, &pPtr->pPg);
if( rc!=LSM_OK ) return rc;
pPtr->eType = LSM_START_DELETE | LSM_POINT_DELETE;
pPtr->eType |= (pLvl->iSplitTopic ? LSM_SYSTEMKEY : 0);
pPtr->pKey = pLvl->pSplitKey;
pPtr->nKey = pLvl->nSplitKey;
}
}while( pCsr
&& pPtr->pPg
&& segmentPtrIgnoreSeparators(pCsr, pPtr)
&& rtIsSeparator(pPtr->eType)
);
return LSM_OK;
}
static void segmentPtrEndPage(
FileSystem *pFS,
SegmentPtr *pPtr,
int bLast,
int *pRc
){
if( *pRc==LSM_OK ){
Segment *pSeg = pPtr->pSeg;
Page *pNew = 0;
if( bLast ){
*pRc = lsmFsDbPageLast(pFS, pSeg, &pNew);
}else{
*pRc = lsmFsDbPageGet(pFS, pSeg, pSeg->iFirst, &pNew);
}
segmentPtrSetPage(pPtr, pNew);
}
}
/*
** Try to move the segment pointer passed as the second argument so that it
** points at either the first (bLast==0) or last (bLast==1) cell in the valid
** region of the segment defined by pPtr->iFirst and pPtr->iLast.
**
** Return LSM_OK if successful or an lsm error code if something goes
** wrong (IO error, OOM etc.).
*/
static int segmentPtrEnd(MultiCursor *pCsr, SegmentPtr *pPtr, int bLast){
Level *pLvl = pPtr->pLevel;
int rc = LSM_OK;
FileSystem *pFS = pCsr->pDb->pFS;
int bIgnore;
segmentPtrEndPage(pFS, pPtr, bLast, &rc);
while( rc==LSM_OK && pPtr->pPg
&& (pPtr->nCell==0 || (pPtr->flags & SEGMENT_BTREE_FLAG))
){
rc = segmentPtrNextPage(pPtr, (bLast ? -1 : 1));
}
if( rc==LSM_OK && pPtr->pPg ){
rc = segmentPtrLoadCell(pPtr, bLast ? (pPtr->nCell-1) : 0);
if( rc==LSM_OK && bLast && pPtr->pSeg!=&pLvl->lhs ){
int res = sortedKeyCompare(pCsr->pDb->xCmp,
rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey,
pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey
);
if( res<0 ) segmentPtrReset(pPtr, LSM_SEGMENTPTR_FREE_THRESHOLD);
}
}
bIgnore = segmentPtrIgnoreSeparators(pCsr, pPtr);
if( rc==LSM_OK && pPtr->pPg && bIgnore && rtIsSeparator(pPtr->eType) ){
rc = segmentPtrAdvance(pCsr, pPtr, bLast);
}
#if 0
if( bLast && rc==LSM_OK && pPtr->pPg
&& pPtr->pSeg==&pLvl->lhs
&& pLvl->nRight && (pPtr->eType & LSM_START_DELETE)
){
pPtr->iCell++;
pPtr->eType = LSM_END_DELETE | (pLvl->iSplitTopic);
pPtr->pKey = pLvl->pSplitKey;
pPtr->nKey = pLvl->nSplitKey;
pPtr->pVal = 0;
pPtr->nVal = 0;
}
#endif
return rc;
}
static void segmentPtrKey(SegmentPtr *pPtr, void **ppKey, int *pnKey){
assert( pPtr->pPg );
*ppKey = pPtr->pKey;
*pnKey = pPtr->nKey;
}
#if 0 /* NOT USED */
static char *keyToString(lsm_env *pEnv, void *pKey, int nKey){
int i;
u8 *aKey = (u8 *)pKey;
char *zRet = (char *)lsmMalloc(pEnv, nKey+1);
for(i=0; i<nKey; i++){
zRet[i] = (char)(isalnum(aKey[i]) ? aKey[i] : '.');
}
zRet[nKey] = '\0';
return zRet;
}
#endif
#if 0 /* NOT USED */
/*
** Check that the page that pPtr currently has loaded is the correct page
** to search for key (pKey/nKey). If it is, return 1. Otherwise, an assert
** fails and this function does not return.
*/
static int assertKeyLocation(
MultiCursor *pCsr,
SegmentPtr *pPtr,
void *pKey, int nKey
){
lsm_env *pEnv = lsmFsEnv(pCsr->pDb->pFS);
LsmBlob blob = {0, 0, 0};
int eDir;
int iTopic = 0; /* TODO: Fix me */
for(eDir=-1; eDir<=1; eDir+=2){
Page *pTest = pPtr->pPg;
lsmFsPageRef(pTest);
while( pTest ){
Segment *pSeg = pPtr->pSeg;
Page *pNext;
int rc = lsmFsDbPageNext(pSeg, pTest, eDir, &pNext);
lsmFsPageRelease(pTest);
if( rc ) return 1;
pTest = pNext;
if( pTest ){
int nData;
u8 *aData = fsPageData(pTest, &nData);
int nCell = pageGetNRec(aData, nData);
int flags = pageGetFlags(aData, nData);
if( nCell && 0==(flags&SEGMENT_BTREE_FLAG) ){
int nPgKey;
int iPgTopic;
u8 *pPgKey;
int res;
int iCell;
iCell = ((eDir < 0) ? (nCell-1) : 0);
pPgKey = pageGetKey(pSeg, pTest, iCell, &iPgTopic, &nPgKey, &blob);
res = iTopic - iPgTopic;
if( res==0 ) res = pCsr->pDb->xCmp(pKey, nKey, pPgKey, nPgKey);
if( (eDir==1 && res>0) || (eDir==-1 && res<0) ){
/* Taking this branch means something has gone wrong. */
char *zMsg = lsmMallocPrintf(pEnv, "Key \"%s\" is not on page %d",
keyToString(pEnv, pKey, nKey), lsmFsPageNumber(pPtr->pPg)
);
fprintf(stderr, "%s\n", zMsg);
assert( !"assertKeyLocation() failed" );
}
lsmFsPageRelease(pTest);
pTest = 0;
}
}
}
}
sortedBlobFree(&blob);
return 1;
}
#endif
#ifndef NDEBUG
static int assertSeekResult(
MultiCursor *pCsr,
SegmentPtr *pPtr,
int iTopic,
void *pKey,
int nKey,
int eSeek
){
if( pPtr->pPg ){
int res;
res = sortedKeyCompare(pCsr->pDb->xCmp, iTopic, pKey, nKey,
rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey
);
if( eSeek==LSM_SEEK_EQ ) return (res==0);
if( eSeek==LSM_SEEK_LE ) return (res>=0);
if( eSeek==LSM_SEEK_GE ) return (res<=0);
}
return 1;
}
#endif
static int segmentPtrSearchOversized(
MultiCursor *pCsr, /* Cursor context */
SegmentPtr *pPtr, /* Pointer to seek */
int iTopic, /* Topic of key to search for */
void *pKey, int nKey /* Key to seek to */
){
int (*xCmp)(void *, int, void *, int) = pCsr->pDb->xCmp;
int rc = LSM_OK;
/* If the OVERSIZED flag is set, then there is no pointer in the
** upper level to the next page in the segment that contains at least
** one key. So compare the largest key on the current page with the
** key being sought (pKey/nKey). If (pKey/nKey) is larger, advance
** to the next page in the segment that contains at least one key.
*/
while( rc==LSM_OK && (pPtr->flags & PGFTR_SKIP_NEXT_FLAG) ){
u8 *pLastKey;
int nLastKey;
int iLastTopic;
int res; /* Result of comparison */
Page *pNext;
/* Load the last key on the current page. */
pLastKey = pageGetKey(pPtr->pSeg,
pPtr->pPg, pPtr->nCell-1, &iLastTopic, &nLastKey, &pPtr->blob1
);
/* If the loaded key is >= than (pKey/nKey), break out of the loop.
** If (pKey/nKey) is present in this array, it must be on the current
** page. */
res = sortedKeyCompare(
xCmp, iLastTopic, pLastKey, nLastKey, iTopic, pKey, nKey
);
if( res>=0 ) break;
/* Advance to the next page that contains at least one key. */
pNext = pPtr->pPg;
lsmFsPageRef(pNext);
while( 1 ){
Page *pLoad;
u8 *aData; int nData;
rc = lsmFsDbPageNext(pPtr->pSeg, pNext, 1, &pLoad);
lsmFsPageRelease(pNext);
pNext = pLoad;
if( pNext==0 ) break;
assert( rc==LSM_OK );
aData = lsmFsPageData(pNext, &nData);
if( (pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG)==0
&& pageGetNRec(aData, nData)>0
){
break;
}
}
if( pNext==0 ) break;
segmentPtrSetPage(pPtr, pNext);
/* This should probably be an LSM_CORRUPT error. */
assert( rc!=LSM_OK || (pPtr->flags & PGFTR_SKIP_THIS_FLAG) );
}
return rc;
}
static int ptrFwdPointer(
Page *pPage,
int iCell,
Segment *pSeg,
LsmPgno *piPtr,
int *pbFound
){
Page *pPg = pPage;
int iFirst = iCell;
int rc = LSM_OK;
do {
Page *pNext = 0;
u8 *aData;
int nData;
aData = lsmFsPageData(pPg, &nData);
if( (pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG)==0 ){
int i;
int nCell = pageGetNRec(aData, nData);
for(i=iFirst; i<nCell; i++){
u8 eType = *pageGetCell(aData, nData, i);
if( (eType & LSM_START_DELETE)==0 ){
*pbFound = 1;
*piPtr = pageGetRecordPtr(aData, nData, i) + pageGetPtr(aData, nData);
lsmFsPageRelease(pPg);
return LSM_OK;
}
}
}
rc = lsmFsDbPageNext(pSeg, pPg, 1, &pNext);
lsmFsPageRelease(pPg);
pPg = pNext;
iFirst = 0;
}while( pPg && rc==LSM_OK );
lsmFsPageRelease(pPg);
*pbFound = 0;
return rc;
}
static int sortedRhsFirst(MultiCursor *pCsr, Level *pLvl, SegmentPtr *pPtr){
int rc;
rc = segmentPtrEnd(pCsr, pPtr, 0);
while( pPtr->pPg && rc==LSM_OK ){
int res = sortedKeyCompare(pCsr->pDb->xCmp,
pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey,
rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey
);
if( res<=0 ) break;
rc = segmentPtrAdvance(pCsr, pPtr, 0);
}
return rc;
}
/*
** This function is called as part of a SEEK_GE op on a multi-cursor if the
** FC pointer read from segment *pPtr comes from an entry with the
** LSM_START_DELETE flag set. In this case the pointer value cannot be
** trusted. Instead, the pointer that should be followed is that associated
** with the next entry in *pPtr that does not have LSM_START_DELETE set.
**
** Why the pointers can't be trusted:
**
**
**
** TODO: This is a stop-gap solution:
**
** At the moment, this function is called from within segmentPtrSeek(),
** as part of the initial lsmMCursorSeek() call. However, consider a
** database where the following has occurred:
**
** 1. A range delete removes keys 1..9999 using a range delete.
** 2. Keys 1 through 9999 are reinserted.
** 3. The levels containing the ops in 1. and 2. above are merged. Call
** this level N. Level N contains FC pointers to level N+1.
**
** Then, if the user attempts to query for (key>=2 LIMIT 10), the
** lsmMCursorSeek() call will iterate through 9998 entries searching for a
** pointer down to the level N+1 that is never actually used. It would be
** much better if the multi-cursor could do this lazily - only seek to the
** level (N+1) page after the user has moved the cursor on level N passed
** the big range-delete.
*/
static int segmentPtrFwdPointer(
MultiCursor *pCsr, /* Multi-cursor pPtr belongs to */
SegmentPtr *pPtr, /* Segment-pointer to extract FC ptr from */
LsmPgno *piPtr /* OUT: FC pointer value */
){
Level *pLvl = pPtr->pLevel;
Level *pNext = pLvl->pNext;
Page *pPg = pPtr->pPg;
int rc;
int bFound;
LsmPgno iOut = 0;
if( pPtr->pSeg==&pLvl->lhs || pPtr->pSeg==&pLvl->aRhs[pLvl->nRight-1] ){
if( pNext==0
|| (pNext->nRight==0 && pNext->lhs.iRoot)
|| (pNext->nRight!=0 && pNext->aRhs[0].iRoot)
){
/* Do nothing. The pointer will not be used anyway. */
return LSM_OK;
}
}else{
if( pPtr[1].pSeg->iRoot ){
return LSM_OK;
}
}
/* Search for a pointer within the current segment. */
lsmFsPageRef(pPg);
rc = ptrFwdPointer(pPg, pPtr->iCell, pPtr->pSeg, &iOut, &bFound);
if( rc==LSM_OK && bFound==0 ){
/* This case happens when pPtr points to the left-hand-side of a segment
** currently undergoing an incremental merge. In this case, jump to the
** oldest segment in the right-hand-side of the same level and continue
** searching. But - do not consider any keys smaller than the levels
** split-key. */
SegmentPtr ptr;
if( pPtr->pLevel->nRight==0 || pPtr->pSeg!=&pPtr->pLevel->lhs ){
return LSM_CORRUPT_BKPT;
}
memset(&ptr, 0, sizeof(SegmentPtr));
ptr.pLevel = pPtr->pLevel;
ptr.pSeg = &ptr.pLevel->aRhs[ptr.pLevel->nRight-1];
rc = sortedRhsFirst(pCsr, ptr.pLevel, &ptr);
if( rc==LSM_OK ){
rc = ptrFwdPointer(ptr.pPg, ptr.iCell, ptr.pSeg, &iOut, &bFound);
ptr.pPg = 0;
}
segmentPtrReset(&ptr, 0);
}
*piPtr = iOut;
return rc;
}
static int segmentPtrSeek(
MultiCursor *pCsr, /* Cursor context */
SegmentPtr *pPtr, /* Pointer to seek */
int iTopic, /* Key topic to seek to */
void *pKey, int nKey, /* Key to seek to */
int eSeek, /* Search bias - see above */
int *piPtr, /* OUT: FC pointer */
int *pbStop
){
int (*xCmp)(void *, int, void *, int) = pCsr->pDb->xCmp;
int res = 0; /* Result of comparison operation */
int rc = LSM_OK;
int iMin;
int iMax;
LsmPgno iPtrOut = 0;
/* If the current page contains an oversized entry, then there are no
** pointers to one or more of the subsequent pages in the sorted run.
** The following call ensures that the segment-ptr points to the correct
** page in this case. */
rc = segmentPtrSearchOversized(pCsr, pPtr, iTopic, pKey, nKey);
iPtrOut = pPtr->iPtr;
/* Assert that this page is the right page of this segment for the key
** that we are searching for. Do this by loading page (iPg-1) and testing
** that pKey/nKey is greater than all keys on that page, and then by
** loading (iPg+1) and testing that pKey/nKey is smaller than all
** the keys it houses.
**
** TODO: With range-deletes in the tree, the test described above may fail.
*/
#if 0
assert( assertKeyLocation(pCsr, pPtr, pKey, nKey) );
#endif
assert( pPtr->nCell>0
|| pPtr->pSeg->nSize==1
|| lsmFsDbPageIsLast(pPtr->pSeg, pPtr->pPg)
);
if( pPtr->nCell==0 ){
segmentPtrReset(pPtr, LSM_SEGMENTPTR_FREE_THRESHOLD);
}else{
iMin = 0;
iMax = pPtr->nCell-1;
while( 1 ){
int iTry = (iMin+iMax)/2;
void *pKeyT; int nKeyT; /* Key for cell iTry */
int iTopicT;
assert( iTry<iMax || iMin==iMax );
rc = segmentPtrLoadCell(pPtr, iTry);
if( rc!=LSM_OK ) break;
segmentPtrKey(pPtr, &pKeyT, &nKeyT);
iTopicT = rtTopic(pPtr->eType);
res = sortedKeyCompare(xCmp, iTopicT, pKeyT, nKeyT, iTopic, pKey, nKey);
if( res<=0 ){
iPtrOut = pPtr->iPtr + pPtr->iPgPtr;
}
if( res==0 || iMin==iMax ){
break;
}else if( res>0 ){
iMax = LSM_MAX(iTry-1, iMin);
}else{
iMin = iTry+1;
}
}
if( rc==LSM_OK ){
assert( res==0 || (iMin==iMax && iMin>=0 && iMin<pPtr->nCell) );
if( res ){
rc = segmentPtrLoadCell(pPtr, iMin);
}
assert( rc!=LSM_OK || res>0 || iPtrOut==(pPtr->iPtr + pPtr->iPgPtr) );
if( rc==LSM_OK ){
switch( eSeek ){
case LSM_SEEK_EQ: {
int eType = pPtr->eType;
if( (res<0 && (eType & LSM_START_DELETE))
|| (res>0 && (eType & LSM_END_DELETE))
|| (res==0 && (eType & LSM_POINT_DELETE))
){
*pbStop = 1;
}else if( res==0 && (eType & LSM_INSERT) ){
lsm_env *pEnv = pCsr->pDb->pEnv;
*pbStop = 1;
pCsr->eType = pPtr->eType;
rc = sortedBlobSet(pEnv, &pCsr->key, pPtr->pKey, pPtr->nKey);
if( rc==LSM_OK ){
rc = sortedBlobSet(pEnv, &pCsr->val, pPtr->pVal, pPtr->nVal);
}
pCsr->flags |= CURSOR_SEEK_EQ;
}
segmentPtrReset(pPtr, LSM_SEGMENTPTR_FREE_THRESHOLD);
break;
}
case LSM_SEEK_LE:
if( res>0 ) rc = segmentPtrAdvance(pCsr, pPtr, 1);
break;
case LSM_SEEK_GE: {
/* Figure out if we need to 'skip' the pointer forward or not */
if( (res<=0 && (pPtr->eType & LSM_START_DELETE))
|| (res>0 && (pPtr->eType & LSM_END_DELETE))
){
rc = segmentPtrFwdPointer(pCsr, pPtr, &iPtrOut);
}
if( res<0 && rc==LSM_OK ){
rc = segmentPtrAdvance(pCsr, pPtr, 0);
}
break;
}
}
}
}
/* If the cursor seek has found a separator key, and this cursor is
** supposed to ignore separators keys, advance to the next entry. */
if( rc==LSM_OK && pPtr->pPg
&& segmentPtrIgnoreSeparators(pCsr, pPtr)
&& rtIsSeparator(pPtr->eType)
){
assert( eSeek!=LSM_SEEK_EQ );
rc = segmentPtrAdvance(pCsr, pPtr, eSeek==LSM_SEEK_LE);
}
}
assert( rc!=LSM_OK || assertSeekResult(pCsr,pPtr,iTopic,pKey,nKey,eSeek) );
*piPtr = (int)iPtrOut;
return rc;
}
static int seekInBtree(
MultiCursor *pCsr, /* Multi-cursor object */
Segment *pSeg, /* Seek within this segment */
int iTopic,
void *pKey, int nKey, /* Key to seek to */
LsmPgno *aPg, /* OUT: Page numbers */
Page **ppPg /* OUT: Leaf (sorted-run) page reference */
){
int i = 0;
int rc;
int iPg;
Page *pPg = 0;
LsmBlob blob = {0, 0, 0};
iPg = (int)pSeg->iRoot;
do {
LsmPgno *piFirst = 0;
if( aPg ){
aPg[i++] = iPg;
piFirst = &aPg[i];
}
rc = lsmFsDbPageGet(pCsr->pDb->pFS, pSeg, iPg, &pPg);
assert( rc==LSM_OK || pPg==0 );
if( rc==LSM_OK ){
u8 *aData; /* Buffer containing page data */
int nData; /* Size of aData[] in bytes */
int iMin;
int iMax;
int nRec;
int flags;
aData = fsPageData(pPg, &nData);
flags = pageGetFlags(aData, nData);
if( (flags & SEGMENT_BTREE_FLAG)==0 ) break;
iPg = (int)pageGetPtr(aData, nData);
nRec = pageGetNRec(aData, nData);
iMin = 0;
iMax = nRec-1;
while( iMax>=iMin ){
int iTry = (iMin+iMax)/2;
void *pKeyT; int nKeyT; /* Key for cell iTry */
int iTopicT; /* Topic for key pKeyT/nKeyT */
LsmPgno iPtr; /* Pointer associated with cell iTry */
int res; /* (pKey - pKeyT) */
rc = pageGetBtreeKey(
pSeg, pPg, iTry, &iPtr, &iTopicT, &pKeyT, &nKeyT, &blob
);
if( rc!=LSM_OK ) break;
if( piFirst && pKeyT==blob.pData ){
*piFirst = pageGetBtreeRef(pPg, iTry);
piFirst = 0;
i++;
}
res = sortedKeyCompare(
pCsr->pDb->xCmp, iTopic, pKey, nKey, iTopicT, pKeyT, nKeyT
);
if( res<0 ){
iPg = (int)iPtr;
iMax = iTry-1;
}else{
iMin = iTry+1;
}
}
lsmFsPageRelease(pPg);
pPg = 0;
}
}while( rc==LSM_OK );
sortedBlobFree(&blob);
assert( (rc==LSM_OK)==(pPg!=0) );
if( ppPg ){
*ppPg = pPg;
}else{
lsmFsPageRelease(pPg);
}
return rc;
}
static int seekInSegment(
MultiCursor *pCsr,
SegmentPtr *pPtr,
int iTopic,
void *pKey, int nKey,
int iPg, /* Page to search */
int eSeek, /* Search bias - see above */
int *piPtr, /* OUT: FC pointer */
int *pbStop /* OUT: Stop search flag */
){
int iPtr = iPg;
int rc = LSM_OK;
if( pPtr->pSeg->iRoot ){
Page *pPg;
assert( pPtr->pSeg->iRoot!=0 );
rc = seekInBtree(pCsr, pPtr->pSeg, iTopic, pKey, nKey, 0, &pPg);
if( rc==LSM_OK ) segmentPtrSetPage(pPtr, pPg);
}else{
if( iPtr==0 ){
iPtr = (int)pPtr->pSeg->iFirst;
}
if( rc==LSM_OK ){
rc = segmentPtrLoadPage(pCsr->pDb->pFS, pPtr, iPtr);
}
}
if( rc==LSM_OK ){
rc = segmentPtrSeek(pCsr, pPtr, iTopic, pKey, nKey, eSeek, piPtr, pbStop);
}
return rc;
}
/*
** Seek each segment pointer in the array of (pLvl->nRight+1) at aPtr[].
**
** pbStop:
** This parameter is only significant if parameter eSeek is set to
** LSM_SEEK_EQ. In this case, it is set to true before returning if
** the seek operation is finished. This can happen in two ways:
**
** a) A key matching (pKey/nKey) is found, or
** b) A point-delete or range-delete deleting the key is found.
**
** In case (a), the multi-cursor CURSOR_SEEK_EQ flag is set and the pCsr->key
** and pCsr->val blobs populated before returning.
*/
static int seekInLevel(
MultiCursor *pCsr, /* Sorted cursor object to seek */
SegmentPtr *aPtr, /* Pointer to array of (nRhs+1) SPs */
int eSeek, /* Search bias - see above */
int iTopic, /* Key topic to search for */
void *pKey, int nKey, /* Key to search for */
LsmPgno *piPgno, /* IN/OUT: fraction cascade pointer (or 0) */
int *pbStop /* OUT: See above */
){
Level *pLvl = aPtr[0].pLevel; /* Level to seek within */
int rc = LSM_OK; /* Return code */
int iOut = 0; /* Pointer to return to caller */
int res = -1; /* Result of xCmp(pKey, split) */
int nRhs = pLvl->nRight; /* Number of right-hand-side segments */
int bStop = 0;
/* If this is a composite level (one currently undergoing an incremental
** merge), figure out if the search key is larger or smaller than the
** levels split-key. */
if( nRhs ){
res = sortedKeyCompare(pCsr->pDb->xCmp, iTopic, pKey, nKey,
pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey
);
}
/* If (res<0), then key pKey/nKey is smaller than the split-key (or this
** is not a composite level and there is no split-key). Search the
** left-hand-side of the level in this case. */
if( res<0 ){
int i;
int iPtr = 0;
if( nRhs==0 ) iPtr = (int)*piPgno;
rc = seekInSegment(
pCsr, &aPtr[0], iTopic, pKey, nKey, iPtr, eSeek, &iOut, &bStop
);
if( rc==LSM_OK && nRhs>0 && eSeek==LSM_SEEK_GE && aPtr[0].pPg==0 ){
res = 0;
}
for(i=1; i<=nRhs; i++){
segmentPtrReset(&aPtr[i], LSM_SEGMENTPTR_FREE_THRESHOLD);
}
}
if( res>=0 ){
int bHit = 0; /* True if at least one rhs is not EOF */
int iPtr = (int)*piPgno;
int i;
segmentPtrReset(&aPtr[0], LSM_SEGMENTPTR_FREE_THRESHOLD);
for(i=1; rc==LSM_OK && i<=nRhs && bStop==0; i++){
SegmentPtr *pPtr = &aPtr[i];
iOut = 0;
rc = seekInSegment(
pCsr, pPtr, iTopic, pKey, nKey, iPtr, eSeek, &iOut, &bStop
);
iPtr = iOut;
/* If the segment-pointer has settled on a key that is smaller than
** the splitkey, invalidate the segment-pointer. */
if( pPtr->pPg ){
res = sortedKeyCompare(pCsr->pDb->xCmp,
rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey,
pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey
);
if( res<0 ){
if( pPtr->eType & LSM_START_DELETE ){
pPtr->eType &= ~LSM_INSERT;
pPtr->pKey = pLvl->pSplitKey;
pPtr->nKey = pLvl->nSplitKey;
pPtr->pVal = 0;
pPtr->nVal = 0;
}else{
segmentPtrReset(pPtr, LSM_SEGMENTPTR_FREE_THRESHOLD);
}
}
}
if( aPtr[i].pKey ) bHit = 1;
}
if( rc==LSM_OK && eSeek==LSM_SEEK_LE && bHit==0 ){
rc = segmentPtrEnd(pCsr, &aPtr[0], 1);
}
}
assert( eSeek==LSM_SEEK_EQ || bStop==0 );
*piPgno = iOut;
*pbStop = bStop;
return rc;
}
static void multiCursorGetKey(
MultiCursor *pCsr,
int iKey,
int *peType, /* OUT: Key type (SORTED_WRITE etc.) */
void **ppKey, /* OUT: Pointer to buffer containing key */
int *pnKey /* OUT: Size of *ppKey in bytes */
){
int nKey = 0;
void *pKey = 0;
int eType = 0;
switch( iKey ){
case CURSOR_DATA_TREE0:
case CURSOR_DATA_TREE1: {
TreeCursor *pTreeCsr = pCsr->apTreeCsr[iKey-CURSOR_DATA_TREE0];
if( lsmTreeCursorValid(pTreeCsr) ){
lsmTreeCursorKey(pTreeCsr, &eType, &pKey, &nKey);
}
break;
}
case CURSOR_DATA_SYSTEM: {
Snapshot *pWorker = pCsr->pDb->pWorker;
if( pWorker && (pCsr->flags & CURSOR_FLUSH_FREELIST) ){
int nEntry = pWorker->freelist.nEntry;
if( pCsr->iFree < (nEntry*2) ){
FreelistEntry *aEntry = pWorker->freelist.aEntry;
int i = nEntry - 1 - (pCsr->iFree / 2);
u32 iKey2 = 0;
if( (pCsr->iFree % 2) ){
eType = LSM_END_DELETE|LSM_SYSTEMKEY;
iKey2 = aEntry[i].iBlk-1;
}else if( aEntry[i].iId>=0 ){
eType = LSM_INSERT|LSM_SYSTEMKEY;
iKey2 = aEntry[i].iBlk;
/* If the in-memory entry immediately before this one was a
** DELETE, and the block number is one greater than the current
** block number, mark this entry as an "end-delete-range". */
if( i<(nEntry-1) && aEntry[i+1].iBlk==iKey2+1 && aEntry[i+1].iId<0 ){
eType |= LSM_END_DELETE;
}
}else{
eType = LSM_START_DELETE|LSM_SYSTEMKEY;
iKey2 = aEntry[i].iBlk + 1;
}
/* If the in-memory entry immediately after this one is a
** DELETE, and the block number is one less than the current
** key, mark this entry as an "start-delete-range". */
if( i>0 && aEntry[i-1].iBlk==iKey2-1 && aEntry[i-1].iId<0 ){
eType |= LSM_START_DELETE;
}
pKey = pCsr->pSystemVal;
nKey = 4;
lsmPutU32(pKey, ~iKey2);
}
}
break;
}
default: {
int iPtr = iKey - CURSOR_DATA_SEGMENT;
assert( iPtr>=0 );
if( iPtr==pCsr->nPtr ){
if( pCsr->pBtCsr ){
pKey = pCsr->pBtCsr->pKey;
nKey = pCsr->pBtCsr->nKey;
eType = pCsr->pBtCsr->eType;
}
}else if( iPtr<pCsr->nPtr ){
SegmentPtr *pPtr = &pCsr->aPtr[iPtr];
if( pPtr->pPg ){
pKey = pPtr->pKey;
nKey = pPtr->nKey;
eType = pPtr->eType;
}
}
break;
}
}
if( peType ) *peType = eType;
if( pnKey ) *pnKey = nKey;
if( ppKey ) *ppKey = pKey;
}
static int sortedDbKeyCompare(
MultiCursor *pCsr,
int iLhsFlags, void *pLhsKey, int nLhsKey,
int iRhsFlags, void *pRhsKey, int nRhsKey
){
int (*xCmp)(void *, int, void *, int) = pCsr->pDb->xCmp;
int res;
/* Compare the keys, including the system flag. */
res = sortedKeyCompare(xCmp,
rtTopic(iLhsFlags), pLhsKey, nLhsKey,
rtTopic(iRhsFlags), pRhsKey, nRhsKey
);
/* If a key has the LSM_START_DELETE flag set, but not the LSM_INSERT or
** LSM_POINT_DELETE flags, it is considered a delta larger. This prevents
** the beginning of an open-ended set from masking a database entry or
** delete at a lower level. */
if( res==0 && (pCsr->flags & CURSOR_IGNORE_DELETE) ){
const int m = LSM_POINT_DELETE|LSM_INSERT|LSM_END_DELETE |LSM_START_DELETE;
int iDel1 = 0;
int iDel2 = 0;
if( LSM_START_DELETE==(iLhsFlags & m) ) iDel1 = +1;
if( LSM_END_DELETE ==(iLhsFlags & m) ) iDel1 = -1;
if( LSM_START_DELETE==(iRhsFlags & m) ) iDel2 = +1;
if( LSM_END_DELETE ==(iRhsFlags & m) ) iDel2 = -1;
res = (iDel1 - iDel2);
}
return res;
}
static void multiCursorDoCompare(MultiCursor *pCsr, int iOut, int bReverse){
int i1;
int i2;
int iRes;
void *pKey1; int nKey1; int eType1;
void *pKey2; int nKey2; int eType2;
const int mul = (bReverse ? -1 : 1);
assert( pCsr->aTree && iOut<pCsr->nTree );
if( iOut>=(pCsr->nTree/2) ){
i1 = (iOut - pCsr->nTree/2) * 2;
i2 = i1 + 1;
}else{
i1 = pCsr->aTree[iOut*2];
i2 = pCsr->aTree[iOut*2+1];
}
multiCursorGetKey(pCsr, i1, &eType1, &pKey1, &nKey1);
multiCursorGetKey(pCsr, i2, &eType2, &pKey2, &nKey2);
if( pKey1==0 ){
iRes = i2;
}else if( pKey2==0 ){
iRes = i1;
}else{
int res;
/* Compare the keys */
res = sortedDbKeyCompare(pCsr,
eType1, pKey1, nKey1, eType2, pKey2, nKey2
);
res = res * mul;
if( res==0 ){
/* The two keys are identical. Normally, this means that the key from
** the newer run clobbers the old. However, if the newer key is a
** separator key, or a range-delete-boundary only, do not allow it
** to clobber an older entry. */
int nc1 = (eType1 & (LSM_INSERT|LSM_POINT_DELETE))==0;
int nc2 = (eType2 & (LSM_INSERT|LSM_POINT_DELETE))==0;
iRes = (nc1 > nc2) ? i2 : i1;
}else if( res<0 ){
iRes = i1;
}else{
iRes = i2;
}
}
pCsr->aTree[iOut] = iRes;
}
/*
** This function advances segment pointer iPtr belonging to multi-cursor
** pCsr forward (bReverse==0) or backward (bReverse!=0).
**
** If the segment pointer points to a segment that is part of a composite
** level, then the following special case is handled.
**
** * If iPtr is the lhs of a composite level, and the cursor is being
** advanced forwards, and segment iPtr is at EOF, move all pointers
** that correspond to rhs segments of the same level to the first
** key in their respective data.
*/
static int segmentCursorAdvance(
MultiCursor *pCsr,
int iPtr,
int bReverse
){
int rc;
SegmentPtr *pPtr = &pCsr->aPtr[iPtr];
Level *pLvl = pPtr->pLevel;
int bComposite; /* True if pPtr is part of composite level */
/* Advance the segment-pointer object. */
rc = segmentPtrAdvance(pCsr, pPtr, bReverse);
if( rc!=LSM_OK ) return rc;
bComposite = (pLvl->nRight>0 && pCsr->nPtr>pLvl->nRight);
if( bComposite && pPtr->pPg==0 ){
int bFix = 0;
if( (bReverse==0)==(pPtr->pSeg==&pLvl->lhs) ){
int i;
if( bReverse ){
SegmentPtr *pLhs = &pCsr->aPtr[iPtr - 1 - (pPtr->pSeg - pLvl->aRhs)];
for(i=0; i<pLvl->nRight; i++){
if( pLhs[i+1].pPg ) break;
}
if( i==pLvl->nRight ){
bFix = 1;
rc = segmentPtrEnd(pCsr, pLhs, 1);
}
}else{
bFix = 1;
for(i=0; rc==LSM_OK && i<pLvl->nRight; i++){
rc = sortedRhsFirst(pCsr, pLvl, &pCsr->aPtr[iPtr+1+i]);
}
}
}
if( bFix ){
int i;
for(i=pCsr->nTree-1; i>0; i--){
multiCursorDoCompare(pCsr, i, bReverse);
}
}
}
#if 0
if( bComposite && pPtr->pSeg==&pLvl->lhs /* lhs of composite level */
&& bReverse==0 /* csr advanced forwards */
&& pPtr->pPg==0 /* segment at EOF */
){
int i;
for(i=0; rc==LSM_OK && i<pLvl->nRight; i++){
rc = sortedRhsFirst(pCsr, pLvl, &pCsr->aPtr[iPtr+1+i]);
}
for(i=pCsr->nTree-1; i>0; i--){
multiCursorDoCompare(pCsr, i, 0);
}
}
#endif
return rc;
}
static void mcursorFreeComponents(MultiCursor *pCsr){
int i;
lsm_env *pEnv = pCsr->pDb->pEnv;
/* Close the tree cursor, if any. */
lsmTreeCursorDestroy(pCsr->apTreeCsr[0]);
lsmTreeCursorDestroy(pCsr->apTreeCsr[1]);
/* Reset the segment pointers */
for(i=0; i<pCsr->nPtr; i++){
segmentPtrReset(&pCsr->aPtr[i], 0);
}
/* And the b-tree cursor, if any */
btreeCursorFree(pCsr->pBtCsr);
/* Free allocations */
lsmFree(pEnv, pCsr->aPtr);
lsmFree(pEnv, pCsr->aTree);
lsmFree(pEnv, pCsr->pSystemVal);
/* Zero fields */
pCsr->nPtr = 0;
pCsr->aPtr = 0;
pCsr->nTree = 0;
pCsr->aTree = 0;
pCsr->pSystemVal = 0;
pCsr->apTreeCsr[0] = 0;
pCsr->apTreeCsr[1] = 0;
pCsr->pBtCsr = 0;
}
void lsmMCursorFreeCache(lsm_db *pDb){
MultiCursor *p;
MultiCursor *pNext;
for(p=pDb->pCsrCache; p; p=pNext){
pNext = p->pNext;
lsmMCursorClose(p, 0);
}
pDb->pCsrCache = 0;
}
/*
** Close the cursor passed as the first argument.
**
** If the bCache parameter is true, then shift the cursor to the pCsrCache
** list for possible reuse instead of actually deleting it.
*/
void lsmMCursorClose(MultiCursor *pCsr, int bCache){
if( pCsr ){
lsm_db *pDb = pCsr->pDb;
MultiCursor **pp; /* Iterator variable */
/* The cursor may or may not be currently part of the linked list
** starting at lsm_db.pCsr. If it is, extract it. */
for(pp=&pDb->pCsr; *pp; pp=&((*pp)->pNext)){
if( *pp==pCsr ){
*pp = pCsr->pNext;
break;
}
}
if( bCache ){
int i; /* Used to iterate through segment-pointers */
/* Release any page references held by this cursor. */
assert( !pCsr->pBtCsr );
for(i=0; i<pCsr->nPtr; i++){
SegmentPtr *pPtr = &pCsr->aPtr[i];
lsmFsPageRelease(pPtr->pPg);
pPtr->pPg = 0;
}
/* Reset the tree cursors */
lsmTreeCursorReset(pCsr->apTreeCsr[0]);
lsmTreeCursorReset(pCsr->apTreeCsr[1]);
/* Add the cursor to the pCsrCache list */
pCsr->pNext = pDb->pCsrCache;
pDb->pCsrCache = pCsr;
}else{
/* Free the allocation used to cache the current key, if any. */
sortedBlobFree(&pCsr->key);
sortedBlobFree(&pCsr->val);
/* Free the component cursors */
mcursorFreeComponents(pCsr);
/* Free the cursor structure itself */
lsmFree(pDb->pEnv, pCsr);
}
}
}
#define TREE_NONE 0
#define TREE_OLD 1
#define TREE_BOTH 2
/*
** Parameter eTree is one of TREE_OLD or TREE_BOTH.
*/
static int multiCursorAddTree(MultiCursor *pCsr, Snapshot *pSnap, int eTree){
int rc = LSM_OK;
lsm_db *db = pCsr->pDb;
/* Add a tree cursor on the 'old' tree, if it exists. */
if( eTree!=TREE_NONE
&& lsmTreeHasOld(db)
&& db->treehdr.iOldLog!=pSnap->iLogOff
){
rc = lsmTreeCursorNew(db, 1, &pCsr->apTreeCsr[1]);
}
/* Add a tree cursor on the 'current' tree, if required. */
if( rc==LSM_OK && eTree==TREE_BOTH ){
rc = lsmTreeCursorNew(db, 0, &pCsr->apTreeCsr[0]);
}
return rc;
}
static int multiCursorAddRhs(MultiCursor *pCsr, Level *pLvl){
int i;
int nRhs = pLvl->nRight;
assert( pLvl->nRight>0 );
assert( pCsr->aPtr==0 );
pCsr->aPtr = lsmMallocZero(pCsr->pDb->pEnv, sizeof(SegmentPtr) * nRhs);
if( !pCsr->aPtr ) return LSM_NOMEM_BKPT;
pCsr->nPtr = nRhs;
for(i=0; i<nRhs; i++){
pCsr->aPtr[i].pSeg = &pLvl->aRhs[i];
pCsr->aPtr[i].pLevel = pLvl;
}
return LSM_OK;
}
static void multiCursorAddOne(MultiCursor *pCsr, Level *pLvl, int *pRc){
if( *pRc==LSM_OK ){
int iPtr = pCsr->nPtr;
int i;
pCsr->aPtr[iPtr].pLevel = pLvl;
pCsr->aPtr[iPtr].pSeg = &pLvl->lhs;
iPtr++;
for(i=0; i<pLvl->nRight; i++){
pCsr->aPtr[iPtr].pLevel = pLvl;
pCsr->aPtr[iPtr].pSeg = &pLvl->aRhs[i];
iPtr++;
}
if( pLvl->nRight && pLvl->pSplitKey==0 ){
sortedSplitkey(pCsr->pDb, pLvl, pRc);
}
pCsr->nPtr = iPtr;
}
}
static int multiCursorAddAll(MultiCursor *pCsr, Snapshot *pSnap){
Level *pLvl;
int nPtr = 0;
int rc = LSM_OK;
for(pLvl=pSnap->pLevel; pLvl; pLvl=pLvl->pNext){
/* If the LEVEL_INCOMPLETE flag is set, then this function is being
** called (indirectly) from within a sortedNewToplevel() call to
** construct pLvl. In this case ignore pLvl - this cursor is going to
** be used to retrieve a freelist entry from the LSM, and the partially
** complete level may confuse it. */
if( pLvl->flags & LEVEL_INCOMPLETE ) continue;
nPtr += (1 + pLvl->nRight);
}
assert( pCsr->aPtr==0 );
pCsr->aPtr = lsmMallocZeroRc(pCsr->pDb->pEnv, sizeof(SegmentPtr) * nPtr, &rc);
for(pLvl=pSnap->pLevel; pLvl; pLvl=pLvl->pNext){
if( (pLvl->flags & LEVEL_INCOMPLETE)==0 ){
multiCursorAddOne(pCsr, pLvl, &rc);
}
}
return rc;
}
static int multiCursorInit(MultiCursor *pCsr, Snapshot *pSnap){
int rc;
rc = multiCursorAddAll(pCsr, pSnap);
if( rc==LSM_OK ){
rc = multiCursorAddTree(pCsr, pSnap, TREE_BOTH);
}
pCsr->flags |= (CURSOR_IGNORE_SYSTEM | CURSOR_IGNORE_DELETE);
return rc;
}
static MultiCursor *multiCursorNew(lsm_db *db, int *pRc){
MultiCursor *pCsr;
pCsr = (MultiCursor *)lsmMallocZeroRc(db->pEnv, sizeof(MultiCursor), pRc);
if( pCsr ){
pCsr->pNext = db->pCsr;
db->pCsr = pCsr;
pCsr->pDb = db;
}
return pCsr;
}
void lsmSortedRemap(lsm_db *pDb){
MultiCursor *pCsr;
for(pCsr=pDb->pCsr; pCsr; pCsr=pCsr->pNext){
int iPtr;
if( pCsr->pBtCsr ){
btreeCursorLoadKey(pCsr->pBtCsr);
}
for(iPtr=0; iPtr<pCsr->nPtr; iPtr++){
segmentPtrLoadCell(&pCsr->aPtr[iPtr], pCsr->aPtr[iPtr].iCell);
}
}
}
static void multiCursorReadSeparators(MultiCursor *pCsr){
if( pCsr->nPtr>0 ){
pCsr->flags |= CURSOR_READ_SEPARATORS;
}
}
/*
** Have this cursor skip over SORTED_DELETE entries.
*/
static void multiCursorIgnoreDelete(MultiCursor *pCsr){
if( pCsr ) pCsr->flags |= CURSOR_IGNORE_DELETE;
}
/*
** If the free-block list is not empty, then have this cursor visit a key
** with (a) the system bit set, and (b) the key "FREELIST" and (c) a value
** blob containing the serialized free-block list.
*/
static int multiCursorVisitFreelist(MultiCursor *pCsr){
int rc = LSM_OK;
pCsr->flags |= CURSOR_FLUSH_FREELIST;
pCsr->pSystemVal = lsmMallocRc(pCsr->pDb->pEnv, 4 + 8, &rc);
return rc;
}
/*
** Allocate and return a new database cursor.
**
** This method should only be called to allocate user cursors. As it may
** recycle a cursor from lsm_db.pCsrCache.
*/
int lsmMCursorNew(
lsm_db *pDb, /* Database handle */
MultiCursor **ppCsr /* OUT: Allocated cursor */
){
MultiCursor *pCsr = 0;
int rc = LSM_OK;
if( pDb->pCsrCache ){
int bOld; /* True if there is an old in-memory tree */
/* Remove a cursor from the pCsrCache list and add it to the open list. */
pCsr = pDb->pCsrCache;
pDb->pCsrCache = pCsr->pNext;
pCsr->pNext = pDb->pCsr;
pDb->pCsr = pCsr;
/* The cursor can almost be used as is, except that the old in-memory
** tree cursor may be present and not required, or required and not
** present. Fix this if required. */
bOld = (lsmTreeHasOld(pDb) && pDb->treehdr.iOldLog!=pDb->pClient->iLogOff);
if( !bOld && pCsr->apTreeCsr[1] ){
lsmTreeCursorDestroy(pCsr->apTreeCsr[1]);
pCsr->apTreeCsr[1] = 0;
}else if( bOld && !pCsr->apTreeCsr[1] ){
rc = lsmTreeCursorNew(pDb, 1, &pCsr->apTreeCsr[1]);
}
pCsr->flags = (CURSOR_IGNORE_SYSTEM | CURSOR_IGNORE_DELETE);
}else{
pCsr = multiCursorNew(pDb, &rc);
if( rc==LSM_OK ) rc = multiCursorInit(pCsr, pDb->pClient);
}
if( rc!=LSM_OK ){
lsmMCursorClose(pCsr, 0);
pCsr = 0;
}
assert( (rc==LSM_OK)==(pCsr!=0) );
*ppCsr = pCsr;
return rc;
}
static int multiCursorGetVal(
MultiCursor *pCsr,
int iVal,
void **ppVal,
int *pnVal
){
int rc = LSM_OK;
*ppVal = 0;
*pnVal = 0;
switch( iVal ){
case CURSOR_DATA_TREE0:
case CURSOR_DATA_TREE1: {
TreeCursor *pTreeCsr = pCsr->apTreeCsr[iVal-CURSOR_DATA_TREE0];
if( lsmTreeCursorValid(pTreeCsr) ){
lsmTreeCursorValue(pTreeCsr, ppVal, pnVal);
}else{
*ppVal = 0;
*pnVal = 0;
}
break;
}
case CURSOR_DATA_SYSTEM: {
Snapshot *pWorker = pCsr->pDb->pWorker;
if( pWorker
&& (pCsr->iFree % 2)==0
&& pCsr->iFree < (pWorker->freelist.nEntry*2)
){
int iEntry = pWorker->freelist.nEntry - 1 - (pCsr->iFree / 2);
u8 *aVal = &((u8 *)(pCsr->pSystemVal))[4];
lsmPutU64(aVal, pWorker->freelist.aEntry[iEntry].iId);
*ppVal = aVal;
*pnVal = 8;
}
break;
}
default: {
int iPtr = iVal-CURSOR_DATA_SEGMENT;
if( iPtr<pCsr->nPtr ){
SegmentPtr *pPtr = &pCsr->aPtr[iPtr];
if( pPtr->pPg ){
*ppVal = pPtr->pVal;
*pnVal = pPtr->nVal;
}
}
}
}
assert( rc==LSM_OK || (*ppVal==0 && *pnVal==0) );
return rc;
}
static int multiCursorAdvance(MultiCursor *pCsr, int bReverse);
/*
** This function is called by worker connections to walk the part of the
** free-list stored within the LSM data structure.
*/
int lsmSortedWalkFreelist(
lsm_db *pDb, /* Database handle */
int bReverse, /* True to iterate from largest to smallest */
int (*x)(void *, int, i64), /* Callback function */
void *pCtx /* First argument to pass to callback */
){
MultiCursor *pCsr; /* Cursor used to read db */
int rc = LSM_OK; /* Return Code */
Snapshot *pSnap = 0;
assert( pDb->pWorker );
if( pDb->bIncrMerge ){
rc = lsmCheckpointDeserialize(pDb, 0, pDb->pShmhdr->aSnap1, &pSnap);
if( rc!=LSM_OK ) return rc;
}else{
pSnap = pDb->pWorker;
}
pCsr = multiCursorNew(pDb, &rc);
if( pCsr ){
rc = multiCursorAddAll(pCsr, pSnap);
pCsr->flags |= CURSOR_IGNORE_DELETE;
}
if( rc==LSM_OK ){
if( bReverse==0 ){
rc = lsmMCursorLast(pCsr);
}else{
rc = lsmMCursorSeek(pCsr, 1, "", 0, LSM_SEEK_GE);
}
while( rc==LSM_OK && lsmMCursorValid(pCsr) && rtIsSystem(pCsr->eType) ){
void *pKey; int nKey;
void *pVal = 0; int nVal = 0;
rc = lsmMCursorKey(pCsr, &pKey, &nKey);
if( rc==LSM_OK ) rc = lsmMCursorValue(pCsr, &pVal, &nVal);
if( rc==LSM_OK && (nKey!=4 || nVal!=8) ) rc = LSM_CORRUPT_BKPT;
if( rc==LSM_OK ){
int iBlk;
i64 iSnap;
iBlk = (int)(~(lsmGetU32((u8 *)pKey)));
iSnap = (i64)lsmGetU64((u8 *)pVal);
if( x(pCtx, iBlk, iSnap) ) break;
rc = multiCursorAdvance(pCsr, !bReverse);
}
}
}
lsmMCursorClose(pCsr, 0);
if( pSnap!=pDb->pWorker ){
lsmFreeSnapshot(pDb->pEnv, pSnap);
}
return rc;
}
int lsmSortedLoadFreelist(
lsm_db *pDb, /* Database handle (must be worker) */
void **ppVal, /* OUT: Blob containing LSM free-list */
int *pnVal /* OUT: Size of *ppVal blob in bytes */
){
MultiCursor *pCsr; /* Cursor used to retreive free-list */
int rc = LSM_OK; /* Return Code */
assert( pDb->pWorker );
assert( *ppVal==0 && *pnVal==0 );
pCsr = multiCursorNew(pDb, &rc);
if( pCsr ){
rc = multiCursorAddAll(pCsr, pDb->pWorker);
pCsr->flags |= CURSOR_IGNORE_DELETE;
}
if( rc==LSM_OK ){
rc = lsmMCursorLast(pCsr);
if( rc==LSM_OK
&& rtIsWrite(pCsr->eType) && rtIsSystem(pCsr->eType)
&& pCsr->key.nData==8
&& 0==memcmp(pCsr->key.pData, "FREELIST", 8)
){
void *pVal; int nVal; /* Value read from database */
rc = lsmMCursorValue(pCsr, &pVal, &nVal);
if( rc==LSM_OK ){
*ppVal = lsmMallocRc(pDb->pEnv, nVal, &rc);
if( *ppVal ){
memcpy(*ppVal, pVal, nVal);
*pnVal = nVal;
}
}
}
lsmMCursorClose(pCsr, 0);
}
return rc;
}
static int multiCursorAllocTree(MultiCursor *pCsr){
int rc = LSM_OK;
if( pCsr->aTree==0 ){
int nByte; /* Bytes of space to allocate */
int nMin; /* Total number of cursors being merged */
nMin = CURSOR_DATA_SEGMENT + pCsr->nPtr + (pCsr->pBtCsr!=0);
pCsr->nTree = 2;
while( pCsr->nTree<nMin ){
pCsr->nTree = pCsr->nTree*2;
}
nByte = sizeof(int)*pCsr->nTree*2;
pCsr->aTree = (int *)lsmMallocZeroRc(pCsr->pDb->pEnv, nByte, &rc);
}
return rc;
}
static void multiCursorCacheKey(MultiCursor *pCsr, int *pRc){
if( *pRc==LSM_OK ){
void *pKey;
int nKey;
multiCursorGetKey(pCsr, pCsr->aTree[1], &pCsr->eType, &pKey, &nKey);
*pRc = sortedBlobSet(pCsr->pDb->pEnv, &pCsr->key, pKey, nKey);
}
}
#ifdef LSM_DEBUG_EXPENSIVE
static void assertCursorTree(MultiCursor *pCsr){
int bRev = !!(pCsr->flags & CURSOR_PREV_OK);
int *aSave = pCsr->aTree;
int nSave = pCsr->nTree;
int rc;
pCsr->aTree = 0;
pCsr->nTree = 0;
rc = multiCursorAllocTree(pCsr);
if( rc==LSM_OK ){
int i;
for(i=pCsr->nTree-1; i>0; i--){
multiCursorDoCompare(pCsr, i, bRev);
}
assert( nSave==pCsr->nTree
&& 0==memcmp(aSave, pCsr->aTree, sizeof(int)*nSave)
);
lsmFree(pCsr->pDb->pEnv, pCsr->aTree);
}
pCsr->aTree = aSave;
pCsr->nTree = nSave;
}
#else
# define assertCursorTree(x)
#endif
static int mcursorLocationOk(MultiCursor *pCsr, int bDeleteOk){
int eType = pCsr->eType;
int iKey;
int i;
int rdmask;
assert( pCsr->flags & (CURSOR_NEXT_OK|CURSOR_PREV_OK) );
assertCursorTree(pCsr);
rdmask = (pCsr->flags & CURSOR_NEXT_OK) ? LSM_END_DELETE : LSM_START_DELETE;
/* If the cursor does not currently point to an actual database key (i.e.
** it points to a delete key, or the start or end of a range-delete), and
** the CURSOR_IGNORE_DELETE flag is set, skip past this entry. */
if( (pCsr->flags & CURSOR_IGNORE_DELETE) && bDeleteOk==0 ){
if( (eType & LSM_INSERT)==0 ) return 0;
}
/* If the cursor points to a system key (free-list entry), and the
** CURSOR_IGNORE_SYSTEM flag is set, skip thie entry. */
if( (pCsr->flags & CURSOR_IGNORE_SYSTEM) && rtTopic(eType)!=0 ){
return 0;
}
#ifndef NDEBUG
/* This block fires assert() statements to check one of the assumptions
** in the comment below - that if the lhs sub-cursor of a level undergoing
** a merge is valid, then all the rhs sub-cursors must be at EOF.
**
** Also assert that all rhs sub-cursors are either at EOF or point to
** a key that is not less than the level split-key. */
for(i=0; i<pCsr->nPtr; i++){
SegmentPtr *pPtr = &pCsr->aPtr[i];
Level *pLvl = pPtr->pLevel;
if( pLvl->nRight && pPtr->pPg ){
if( pPtr->pSeg==&pLvl->lhs ){
int j;
for(j=0; j<pLvl->nRight; j++) assert( pPtr[j+1].pPg==0 );
}else{
int res = sortedKeyCompare(pCsr->pDb->xCmp,
rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey,
pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey
);
assert( res>=0 );
}
}
}
#endif
/* Now check if this key has already been deleted by a range-delete. If
** so, skip past it.
**
** Assume, for the moment, that the tree contains no levels currently
** undergoing incremental merge, and that this cursor is iterating forwards
** through the database keys. The cursor currently points to a key in
** level L. This key has already been deleted if any of the sub-cursors
** that point to levels newer than L (or to the in-memory tree) point to
** a key greater than the current key with the LSM_END_DELETE flag set.
**
** Or, if the cursor is iterating backwards through data keys, if any
** such sub-cursor points to a key smaller than the current key with the
** LSM_START_DELETE flag set.
**
** Why it works with levels undergoing a merge too:
**
** When a cursor iterates forwards, the sub-cursors for the rhs of a
** level are only activated once the lhs reaches EOF. So when iterating
** forwards, the keys visited are the same as if the level was completely
** merged.
**
** If the cursor is iterating backwards, then the lhs sub-cursor is not
** initialized until the last of the rhs sub-cursors has reached EOF.
** Additionally, if the START_DELETE flag is set on the last entry (in
** reverse order - so the entry with the smallest key) of a rhs sub-cursor,
** then a pseudo-key equal to the levels split-key with the END_DELETE
** flag set is visited by the sub-cursor.
*/
iKey = pCsr->aTree[1];
for(i=0; i<iKey; i++){
int csrflags;
multiCursorGetKey(pCsr, i, &csrflags, 0, 0);
if( (rdmask & csrflags) ){
const int SD_ED = (LSM_START_DELETE|LSM_END_DELETE);
if( (csrflags & SD_ED)==SD_ED
|| (pCsr->flags & CURSOR_IGNORE_DELETE)==0
){
void *pKey; int nKey;
multiCursorGetKey(pCsr, i, 0, &pKey, &nKey);
if( 0==sortedKeyCompare(pCsr->pDb->xCmp,
rtTopic(eType), pCsr->key.pData, pCsr->key.nData,
rtTopic(csrflags), pKey, nKey
)){
continue;
}
}
return 0;
}
}
/* The current cursor position is one this cursor should visit. Return 1. */
return 1;
}
static int multiCursorSetupTree(MultiCursor *pCsr, int bRev){
int rc;
rc = multiCursorAllocTree(pCsr);
if( rc==LSM_OK ){
int i;
for(i=pCsr->nTree-1; i>0; i--){
multiCursorDoCompare(pCsr, i, bRev);
}
}
assertCursorTree(pCsr);
multiCursorCacheKey(pCsr, &rc);
if( rc==LSM_OK && mcursorLocationOk(pCsr, 0)==0 ){
rc = multiCursorAdvance(pCsr, bRev);
}
return rc;
}
static int multiCursorEnd(MultiCursor *pCsr, int bLast){
int rc = LSM_OK;
int i;
pCsr->flags &= ~(CURSOR_NEXT_OK | CURSOR_PREV_OK | CURSOR_SEEK_EQ);
pCsr->flags |= (bLast ? CURSOR_PREV_OK : CURSOR_NEXT_OK);
pCsr->iFree = 0;
/* Position the two in-memory tree cursors */
for(i=0; rc==LSM_OK && i<2; i++){
if( pCsr->apTreeCsr[i] ){
rc = lsmTreeCursorEnd(pCsr->apTreeCsr[i], bLast);
}
}
for(i=0; rc==LSM_OK && i<pCsr->nPtr; i++){
SegmentPtr *pPtr = &pCsr->aPtr[i];
Level *pLvl = pPtr->pLevel;
int iRhs;
int bHit = 0;
if( bLast ){
for(iRhs=0; iRhs<pLvl->nRight && rc==LSM_OK; iRhs++){
rc = segmentPtrEnd(pCsr, &pPtr[iRhs+1], 1);
if( pPtr[iRhs+1].pPg ) bHit = 1;
}
if( bHit==0 && rc==LSM_OK ){
rc = segmentPtrEnd(pCsr, pPtr, 1);
}else{
segmentPtrReset(pPtr, LSM_SEGMENTPTR_FREE_THRESHOLD);
}
}else{
int bLhs = (pPtr->pSeg==&pLvl->lhs);
assert( pPtr->pSeg==&pLvl->lhs || pPtr->pSeg==&pLvl->aRhs[0] );
if( bLhs ){
rc = segmentPtrEnd(pCsr, pPtr, 0);
if( pPtr->pKey ) bHit = 1;
}
for(iRhs=0; iRhs<pLvl->nRight && rc==LSM_OK; iRhs++){
if( bHit ){
segmentPtrReset(&pPtr[iRhs+1], LSM_SEGMENTPTR_FREE_THRESHOLD);
}else{
rc = sortedRhsFirst(pCsr, pLvl, &pPtr[iRhs+bLhs]);
}
}
}
i += pLvl->nRight;
}
/* And the b-tree cursor, if applicable */
if( rc==LSM_OK && pCsr->pBtCsr ){
assert( bLast==0 );
rc = btreeCursorFirst(pCsr->pBtCsr);
}
if( rc==LSM_OK ){
rc = multiCursorSetupTree(pCsr, bLast);
}
return rc;
}
int mcursorSave(MultiCursor *pCsr){
int rc = LSM_OK;
if( pCsr->aTree ){
int iTree = pCsr->aTree[1];
if( iTree==CURSOR_DATA_TREE0 || iTree==CURSOR_DATA_TREE1 ){
multiCursorCacheKey(pCsr, &rc);
}
}
mcursorFreeComponents(pCsr);
return rc;
}
int mcursorRestore(lsm_db *pDb, MultiCursor *pCsr){
int rc;
rc = multiCursorInit(pCsr, pDb->pClient);
if( rc==LSM_OK && pCsr->key.pData ){
rc = lsmMCursorSeek(pCsr,
rtTopic(pCsr->eType), pCsr->key.pData, pCsr->key.nData, +1
);
}
return rc;
}
int lsmSaveCursors(lsm_db *pDb){
int rc = LSM_OK;
MultiCursor *pCsr;
for(pCsr=pDb->pCsr; rc==LSM_OK && pCsr; pCsr=pCsr->pNext){
rc = mcursorSave(pCsr);
}
return rc;
}
int lsmRestoreCursors(lsm_db *pDb){
int rc = LSM_OK;
MultiCursor *pCsr;
for(pCsr=pDb->pCsr; rc==LSM_OK && pCsr; pCsr=pCsr->pNext){
rc = mcursorRestore(pDb, pCsr);
}
return rc;
}
int lsmMCursorFirst(MultiCursor *pCsr){
return multiCursorEnd(pCsr, 0);
}
int lsmMCursorLast(MultiCursor *pCsr){
return multiCursorEnd(pCsr, 1);
}
lsm_db *lsmMCursorDb(MultiCursor *pCsr){
return pCsr->pDb;
}
void lsmMCursorReset(MultiCursor *pCsr){
int i;
lsmTreeCursorReset(pCsr->apTreeCsr[0]);
lsmTreeCursorReset(pCsr->apTreeCsr[1]);
for(i=0; i<pCsr->nPtr; i++){
segmentPtrReset(&pCsr->aPtr[i], LSM_SEGMENTPTR_FREE_THRESHOLD);
}
pCsr->key.nData = 0;
}
static int treeCursorSeek(
MultiCursor *pCsr,
TreeCursor *pTreeCsr,
void *pKey, int nKey,
int eSeek,
int *pbStop
){
int rc = LSM_OK;
if( pTreeCsr ){
int res = 0;
lsmTreeCursorSeek(pTreeCsr, pKey, nKey, &res);
switch( eSeek ){
case LSM_SEEK_EQ: {
int eType = lsmTreeCursorFlags(pTreeCsr);
if( (res<0 && (eType & LSM_START_DELETE))
|| (res>0 && (eType & LSM_END_DELETE))
|| (res==0 && (eType & LSM_POINT_DELETE))
){
*pbStop = 1;
}else if( res==0 && (eType & LSM_INSERT) ){
lsm_env *pEnv = pCsr->pDb->pEnv;
void *p; int n; /* Key/value from tree-cursor */
*pbStop = 1;
pCsr->flags |= CURSOR_SEEK_EQ;
rc = lsmTreeCursorKey(pTreeCsr, &pCsr->eType, &p, &n);
if( rc==LSM_OK ) rc = sortedBlobSet(pEnv, &pCsr->key, p, n);
if( rc==LSM_OK ) rc = lsmTreeCursorValue(pTreeCsr, &p, &n);
if( rc==LSM_OK ) rc = sortedBlobSet(pEnv, &pCsr->val, p, n);
}
lsmTreeCursorReset(pTreeCsr);
break;
}
case LSM_SEEK_GE:
if( res<0 && lsmTreeCursorValid(pTreeCsr) ){
lsmTreeCursorNext(pTreeCsr);
}
break;
default:
if( res>0 ){
assert( lsmTreeCursorValid(pTreeCsr) );
lsmTreeCursorPrev(pTreeCsr);
}
break;
}
}
return rc;
}
/*
** Seek the cursor.
*/
int lsmMCursorSeek(
MultiCursor *pCsr,
int iTopic,
void *pKey, int nKey,
int eSeek
){
int eESeek = eSeek; /* Effective eSeek parameter */
int bStop = 0; /* Set to true to halt search operation */
int rc = LSM_OK; /* Return code */
int iPtr = 0; /* Used to iterate through pCsr->aPtr[] */
LsmPgno iPgno = 0; /* FC pointer value */
assert( pCsr->apTreeCsr[0]==0 || iTopic==0 );
assert( pCsr->apTreeCsr[1]==0 || iTopic==0 );
if( eESeek==LSM_SEEK_LEFAST ) eESeek = LSM_SEEK_LE;
assert( eESeek==LSM_SEEK_EQ || eESeek==LSM_SEEK_LE || eESeek==LSM_SEEK_GE );
assert( (pCsr->flags & CURSOR_FLUSH_FREELIST)==0 );
assert( pCsr->nPtr==0 || pCsr->aPtr[0].pLevel );
pCsr->flags &= ~(CURSOR_NEXT_OK | CURSOR_PREV_OK | CURSOR_SEEK_EQ);
rc = treeCursorSeek(pCsr, pCsr->apTreeCsr[0], pKey, nKey, eESeek, &bStop);
if( rc==LSM_OK && bStop==0 ){
rc = treeCursorSeek(pCsr, pCsr->apTreeCsr[1], pKey, nKey, eESeek, &bStop);
}
/* Seek all segment pointers. */
for(iPtr=0; iPtr<pCsr->nPtr && rc==LSM_OK && bStop==0; iPtr++){
SegmentPtr *pPtr = &pCsr->aPtr[iPtr];
assert( pPtr->pSeg==&pPtr->pLevel->lhs );
rc = seekInLevel(pCsr, pPtr, eESeek, iTopic, pKey, nKey, &iPgno, &bStop);
iPtr += pPtr->pLevel->nRight;
}
if( eSeek!=LSM_SEEK_EQ ){
if( rc==LSM_OK ){
rc = multiCursorAllocTree(pCsr);
}
if( rc==LSM_OK ){
int i;
for(i=pCsr->nTree-1; i>0; i--){
multiCursorDoCompare(pCsr, i, eESeek==LSM_SEEK_LE);
}
if( eSeek==LSM_SEEK_GE ) pCsr->flags |= CURSOR_NEXT_OK;
if( eSeek==LSM_SEEK_LE ) pCsr->flags |= CURSOR_PREV_OK;
}
multiCursorCacheKey(pCsr, &rc);
if( rc==LSM_OK && eSeek!=LSM_SEEK_LEFAST && 0==mcursorLocationOk(pCsr, 0) ){
switch( eESeek ){
case LSM_SEEK_EQ:
lsmMCursorReset(pCsr);
break;
case LSM_SEEK_GE:
rc = lsmMCursorNext(pCsr);
break;
default:
rc = lsmMCursorPrev(pCsr);
break;
}
}
}
return rc;
}
int lsmMCursorValid(MultiCursor *pCsr){
int res = 0;
if( pCsr->flags & CURSOR_SEEK_EQ ){
res = 1;
}else if( pCsr->aTree ){
int iKey = pCsr->aTree[1];
if( iKey==CURSOR_DATA_TREE0 || iKey==CURSOR_DATA_TREE1 ){
res = lsmTreeCursorValid(pCsr->apTreeCsr[iKey-CURSOR_DATA_TREE0]);
}else{
void *pKey;
multiCursorGetKey(pCsr, iKey, 0, &pKey, 0);
res = pKey!=0;
}
}
return res;
}
static int mcursorAdvanceOk(
MultiCursor *pCsr,
int bReverse,
int *pRc
){
void *pNew; /* Pointer to buffer containing new key */
int nNew; /* Size of buffer pNew in bytes */
int eNewType; /* Type of new record */
if( *pRc ) return 1;
/* Check the current key value. If it is not greater than (if bReverse==0)
** or less than (if bReverse!=0) the key currently cached in pCsr->key,
** then the cursor has not yet been successfully advanced.
*/
multiCursorGetKey(pCsr, pCsr->aTree[1], &eNewType, &pNew, &nNew);
if( pNew ){
int typemask = (pCsr->flags & CURSOR_IGNORE_DELETE) ? ~(0) : LSM_SYSTEMKEY;
int res = sortedDbKeyCompare(pCsr,
eNewType & typemask, pNew, nNew,
pCsr->eType & typemask, pCsr->key.pData, pCsr->key.nData
);
if( (bReverse==0 && res<=0) || (bReverse!=0 && res>=0) ){
return 0;
}
multiCursorCacheKey(pCsr, pRc);
assert( pCsr->eType==eNewType );
/* If this cursor is configured to skip deleted keys, and the current
** cursor points to a SORTED_DELETE entry, then the cursor has not been
** successfully advanced.
**
** Similarly, if the cursor is configured to skip system keys and the
** current cursor points to a system key, it has not yet been advanced.
*/
if( *pRc==LSM_OK && 0==mcursorLocationOk(pCsr, 0) ) return 0;
}
return 1;
}
static void flCsrAdvance(MultiCursor *pCsr){
assert( pCsr->flags & CURSOR_FLUSH_FREELIST );
if( pCsr->iFree % 2 ){
pCsr->iFree++;
}else{
int nEntry = pCsr->pDb->pWorker->freelist.nEntry;
FreelistEntry *aEntry = pCsr->pDb->pWorker->freelist.aEntry;
int i = nEntry - 1 - (pCsr->iFree / 2);
/* If the current entry is a delete and the "end-delete" key will not
** be attached to the next entry, increment iFree by 1 only. */
if( aEntry[i].iId<0 ){
while( 1 ){
if( i==0 || aEntry[i-1].iBlk!=aEntry[i].iBlk-1 ){
pCsr->iFree--;
break;
}
if( aEntry[i-1].iId>=0 ) break;
pCsr->iFree += 2;
i--;
}
}
pCsr->iFree += 2;
}
}
static int multiCursorAdvance(MultiCursor *pCsr, int bReverse){
int rc = LSM_OK; /* Return Code */
if( lsmMCursorValid(pCsr) ){
do {
int iKey = pCsr->aTree[1];
assertCursorTree(pCsr);
/* If this multi-cursor is advancing forwards, and the sub-cursor
** being advanced is the one that separator keys may be being read
** from, record the current absolute pointer value. */
if( pCsr->pPrevMergePtr ){
if( iKey==(CURSOR_DATA_SEGMENT+pCsr->nPtr) ){
assert( pCsr->pBtCsr );
*pCsr->pPrevMergePtr = pCsr->pBtCsr->iPtr;
}else if( pCsr->pBtCsr==0 && pCsr->nPtr>0
&& iKey==(CURSOR_DATA_SEGMENT+pCsr->nPtr-1)
){
SegmentPtr *pPtr = &pCsr->aPtr[iKey-CURSOR_DATA_SEGMENT];
*pCsr->pPrevMergePtr = pPtr->iPtr+pPtr->iPgPtr;
}
}
if( iKey==CURSOR_DATA_TREE0 || iKey==CURSOR_DATA_TREE1 ){
TreeCursor *pTreeCsr = pCsr->apTreeCsr[iKey-CURSOR_DATA_TREE0];
if( bReverse ){
rc = lsmTreeCursorPrev(pTreeCsr);
}else{
rc = lsmTreeCursorNext(pTreeCsr);
}
}else if( iKey==CURSOR_DATA_SYSTEM ){
assert( pCsr->flags & CURSOR_FLUSH_FREELIST );
assert( bReverse==0 );
flCsrAdvance(pCsr);
}else if( iKey==(CURSOR_DATA_SEGMENT+pCsr->nPtr) ){
assert( bReverse==0 && pCsr->pBtCsr );
rc = btreeCursorNext(pCsr->pBtCsr);
}else{
rc = segmentCursorAdvance(pCsr, iKey-CURSOR_DATA_SEGMENT, bReverse);
}
if( rc==LSM_OK ){
int i;
for(i=(iKey+pCsr->nTree)/2; i>0; i=i/2){
multiCursorDoCompare(pCsr, i, bReverse);
}
assertCursorTree(pCsr);
}
}while( mcursorAdvanceOk(pCsr, bReverse, &rc)==0 );
}
return rc;
}
int lsmMCursorNext(MultiCursor *pCsr){
if( (pCsr->flags & CURSOR_NEXT_OK)==0 ) return LSM_MISUSE_BKPT;
return multiCursorAdvance(pCsr, 0);
}
int lsmMCursorPrev(MultiCursor *pCsr){
if( (pCsr->flags & CURSOR_PREV_OK)==0 ) return LSM_MISUSE_BKPT;
return multiCursorAdvance(pCsr, 1);
}
int lsmMCursorKey(MultiCursor *pCsr, void **ppKey, int *pnKey){
if( (pCsr->flags & CURSOR_SEEK_EQ) || pCsr->aTree==0 ){
*pnKey = pCsr->key.nData;
*ppKey = pCsr->key.pData;
}else{
int iKey = pCsr->aTree[1];
if( iKey==CURSOR_DATA_TREE0 || iKey==CURSOR_DATA_TREE1 ){
TreeCursor *pTreeCsr = pCsr->apTreeCsr[iKey-CURSOR_DATA_TREE0];
lsmTreeCursorKey(pTreeCsr, 0, ppKey, pnKey);
}else{
int nKey;
#ifndef NDEBUG
void *pKey;
int eType;
multiCursorGetKey(pCsr, iKey, &eType, &pKey, &nKey);
assert( eType==pCsr->eType );
assert( nKey==pCsr->key.nData );
assert( memcmp(pKey, pCsr->key.pData, nKey)==0 );
#endif
nKey = pCsr->key.nData;
if( nKey==0 ){
*ppKey = 0;
}else{
*ppKey = pCsr->key.pData;
}
*pnKey = nKey;
}
}
return LSM_OK;
}
/*
** Compare the current key that cursor csr points to with pKey/nKey. Set
** *piRes to the result and return LSM_OK.
*/
int lsm_csr_cmp(lsm_cursor *csr, const void *pKey, int nKey, int *piRes){
MultiCursor *pCsr = (MultiCursor *)csr;
void *pCsrkey; int nCsrkey;
int rc;
rc = lsmMCursorKey(pCsr, &pCsrkey, &nCsrkey);
if( rc==LSM_OK ){
int (*xCmp)(void *, int, void *, int) = pCsr->pDb->xCmp;
*piRes = sortedKeyCompare(xCmp, 0, pCsrkey, nCsrkey, 0, (void *)pKey, nKey);
}
return rc;
}
int lsmMCursorValue(MultiCursor *pCsr, void **ppVal, int *pnVal){
void *pVal;
int nVal;
int rc;
if( (pCsr->flags & CURSOR_SEEK_EQ) || pCsr->aTree==0 ){
rc = LSM_OK;
nVal = pCsr->val.nData;
pVal = pCsr->val.pData;
}else{
assert( pCsr->aTree );
assert( mcursorLocationOk(pCsr, (pCsr->flags & CURSOR_IGNORE_DELETE)) );
rc = multiCursorGetVal(pCsr, pCsr->aTree[1], &pVal, &nVal);
if( pVal && rc==LSM_OK ){
rc = sortedBlobSet(pCsr->pDb->pEnv, &pCsr->val, pVal, nVal);
pVal = pCsr->val.pData;
}
if( rc!=LSM_OK ){
pVal = 0;
nVal = 0;
}
}
*ppVal = pVal;
*pnVal = nVal;
return rc;
}
int lsmMCursorType(MultiCursor *pCsr, int *peType){
assert( pCsr->aTree );
multiCursorGetKey(pCsr, pCsr->aTree[1], peType, 0, 0);
return LSM_OK;
}
/*
** Buffer aData[], size nData, is assumed to contain a valid b-tree
** hierarchy page image. Return the offset in aData[] of the next free
** byte in the data area (where a new cell may be written if there is
** space).
*/
static int mergeWorkerPageOffset(u8 *aData, int nData){
int nRec;
int iOff;
int nKey;
int eType;
nRec = lsmGetU16(&aData[SEGMENT_NRECORD_OFFSET(nData)]);
iOff = lsmGetU16(&aData[SEGMENT_CELLPTR_OFFSET(nData, nRec-1)]);
eType = aData[iOff++];
assert( eType==0
|| eType==(LSM_SYSTEMKEY|LSM_SEPARATOR)
|| eType==(LSM_SEPARATOR)
);
iOff += lsmVarintGet32(&aData[iOff], &nKey);
iOff += lsmVarintGet32(&aData[iOff], &nKey);
return iOff + (eType ? nKey : 0);
}
/*
** Following a checkpoint operation, database pages that are part of the
** checkpointed state of the LSM are deemed read-only. This includes the
** right-most page of the b-tree hierarchy of any separators array under
** construction, and all pages between it and the b-tree root, inclusive.
** This is a problem, as when further pages are appended to the separators
** array, entries must be added to the indicated b-tree hierarchy pages.
**
** This function copies all such b-tree pages to new locations, so that
** they can be modified as required.
**
** The complication is that not all database pages are the same size - due
** to the way the file.c module works some (the first and last in each block)
** are 4 bytes smaller than the others.
*/
static int mergeWorkerMoveHierarchy(
MergeWorker *pMW, /* Merge worker */
int bSep /* True for separators run */
){
lsm_db *pDb = pMW->pDb; /* Database handle */
int rc = LSM_OK; /* Return code */
int i;
Page **apHier = pMW->hier.apHier;
int nHier = pMW->hier.nHier;
for(i=0; rc==LSM_OK && i<nHier; i++){
Page *pNew = 0;
rc = lsmFsSortedAppend(pDb->pFS, pDb->pWorker, pMW->pLevel, 1, &pNew);
assert( rc==LSM_OK );
if( rc==LSM_OK ){
u8 *a1; int n1;
u8 *a2; int n2;
a1 = fsPageData(pNew, &n1);
a2 = fsPageData(apHier[i], &n2);
assert( n1==n2 || n1+4==n2 );
if( n1==n2 ){
memcpy(a1, a2, n2);
}else{
int nEntry = pageGetNRec(a2, n2);
int iEof1 = SEGMENT_EOF(n1, nEntry);
int iEof2 = SEGMENT_EOF(n2, nEntry);
memcpy(a1, a2, iEof2 - 4);
memcpy(&a1[iEof1], &a2[iEof2], n2 - iEof2);
}
lsmFsPageRelease(apHier[i]);
apHier[i] = pNew;
#if 0
assert( n1==n2 || n1+4==n2 || n2+4==n1 );
if( n1>=n2 ){
/* If n1 (size of the new page) is equal to or greater than n2 (the
** size of the old page), then copy the data into the new page. If
** n1==n2, this could be done with a single memcpy(). However,
** since sometimes n1>n2, the page content and footer must be copied
** separately. */
int nEntry = pageGetNRec(a2, n2);
int iEof1 = SEGMENT_EOF(n1, nEntry);
int iEof2 = SEGMENT_EOF(n2, nEntry);
memcpy(a1, a2, iEof2);
memcpy(&a1[iEof1], &a2[iEof2], n2 - iEof2);
lsmFsPageRelease(apHier[i]);
apHier[i] = pNew;
}else{
lsmPutU16(&a1[SEGMENT_FLAGS_OFFSET(n1)], SEGMENT_BTREE_FLAG);
lsmPutU16(&a1[SEGMENT_NRECORD_OFFSET(n1)], 0);
lsmPutU64(&a1[SEGMENT_POINTER_OFFSET(n1)], 0);
i = i - 1;
lsmFsPageRelease(pNew);
}
#endif
}
}
#ifdef LSM_DEBUG
if( rc==LSM_OK ){
for(i=0; i<nHier; i++) assert( lsmFsPageWritable(apHier[i]) );
}
#endif
return rc;
}
/*
** Allocate and populate the MergeWorker.apHier[] array.
*/
static int mergeWorkerLoadHierarchy(MergeWorker *pMW){
int rc = LSM_OK;
Segment *pSeg;
Hierarchy *p;
pSeg = &pMW->pLevel->lhs;
p = &pMW->hier;
if( p->apHier==0 && pSeg->iRoot!=0 ){
FileSystem *pFS = pMW->pDb->pFS;
lsm_env *pEnv = pMW->pDb->pEnv;
Page **apHier = 0;
int nHier = 0;
int iPg = (int)pSeg->iRoot;
do {
Page *pPg = 0;
u8 *aData;
int nData;
int flags;
rc = lsmFsDbPageGet(pFS, pSeg, iPg, &pPg);
if( rc!=LSM_OK ) break;
aData = fsPageData(pPg, &nData);
flags = pageGetFlags(aData, nData);
if( flags&SEGMENT_BTREE_FLAG ){
Page **apNew = (Page **)lsmRealloc(
pEnv, apHier, sizeof(Page *)*(nHier+1)
);
if( apNew==0 ){
rc = LSM_NOMEM_BKPT;
break;
}
apHier = apNew;
memmove(&apHier[1], &apHier[0], sizeof(Page *) * nHier);
nHier++;
apHier[0] = pPg;
iPg = (int)pageGetPtr(aData, nData);
}else{
lsmFsPageRelease(pPg);
break;
}
}while( 1 );
if( rc==LSM_OK ){
u8 *aData;
int nData;
aData = fsPageData(apHier[0], &nData);
pMW->aSave[0].iPgno = pageGetPtr(aData, nData);
p->nHier = nHier;
p->apHier = apHier;
rc = mergeWorkerMoveHierarchy(pMW, 0);
}else{
int i;
for(i=0; i<nHier; i++){
lsmFsPageRelease(apHier[i]);
}
lsmFree(pEnv, apHier);
}
}
return rc;
}
/*
** B-tree pages use almost the same format as regular pages. The
** differences are:
**
** 1. The record format is (usually, see below) as follows:
**
** + Type byte (always SORTED_SEPARATOR or SORTED_SYSTEM_SEPARATOR),
** + Absolute pointer value (varint),
** + Number of bytes in key (varint),
** + LsmBlob containing key data.
**
** 2. All pointer values are stored as absolute values (not offsets
** relative to the footer pointer value).
**
** 3. Each pointer that is part of a record points to a page that
** contains keys smaller than the records key (note: not "equal to or
** smaller than - smaller than").
**
** 4. The pointer in the page footer of a b-tree page points to a page
** that contains keys equal to or larger than the largest key on the
** b-tree page.
**
** The reason for having the page footer pointer point to the right-child
** (instead of the left) is that doing things this way makes the
** mergeWorkerMoveHierarchy() operation less complicated (since the pointers
** that need to be updated are all stored as fixed-size integers within the
** page footer, not varints in page records).
**
** Records may not span b-tree pages. If this function is called to add a
** record larger than (page-size / 4) bytes, then a pointer to the indexed
** array page that contains the main record is added to the b-tree instead.
** In this case the record format is:
**
** + 0x00 byte (1 byte)
** + Absolute pointer value (varint),
** + Absolute page number of page containing key (varint).
**
** See function seekInBtree() for the code that traverses b-tree pages.
*/
static int mergeWorkerBtreeWrite(
MergeWorker *pMW,
u8 eType,
LsmPgno iPtr,
LsmPgno iKeyPg,
void *pKey,
int nKey
){
Hierarchy *p = &pMW->hier;
lsm_db *pDb = pMW->pDb; /* Database handle */
int rc = LSM_OK; /* Return Code */
int iLevel; /* Level of b-tree hierachy to write to */
int nData; /* Size of aData[] in bytes */
u8 *aData; /* Page data for level iLevel */
int iOff; /* Offset on b-tree page to write record to */
int nRec; /* Initial number of records on b-tree page */
/* iKeyPg should be zero for an ordinary b-tree key, or non-zero for an
** indirect key. The flags byte for an indirect key is 0x00. */
assert( (eType==0)==(iKeyPg!=0) );
/* The MergeWorker.apHier[] array contains the right-most leaf of the b-tree
** hierarchy, the root node, and all nodes that lie on the path between.
** apHier[0] is the right-most leaf and apHier[pMW->nHier-1] is the current
** root page.
**
** This loop searches for a node with enough space to store the key on,
** starting with the leaf and iterating up towards the root. When the loop
** exits, the key may be written to apHier[iLevel]. */
for(iLevel=0; iLevel<=p->nHier; iLevel++){
int nByte; /* Number of free bytes required */
if( iLevel==p->nHier ){
/* Extend the array and allocate a new root page. */
Page **aNew;
aNew = (Page **)lsmRealloc(
pMW->pDb->pEnv, p->apHier, sizeof(Page *)*(p->nHier+1)
);
if( !aNew ){
return LSM_NOMEM_BKPT;
}
p->apHier = aNew;
}else{
Page *pOld;
int nFree;
/* If the key will fit on this page, break out of the loop here.
** The new entry will be written to page apHier[iLevel]. */
pOld = p->apHier[iLevel];
assert( lsmFsPageWritable(pOld) );
aData = fsPageData(pOld, &nData);
if( eType==0 ){
nByte = 2 + 1 + lsmVarintLen32((int)iPtr) + lsmVarintLen32((int)iKeyPg);
}else{
nByte = 2 + 1 + lsmVarintLen32((int)iPtr) + lsmVarintLen32(nKey) + nKey;
}
nRec = pageGetNRec(aData, nData);
nFree = SEGMENT_EOF(nData, nRec) - mergeWorkerPageOffset(aData, nData);
if( nByte<=nFree ) break;
/* Otherwise, this page is full. Set the right-hand-child pointer
** to iPtr and release it. */
lsmPutU64(&aData[SEGMENT_POINTER_OFFSET(nData)], iPtr);
assert( lsmFsPageNumber(pOld)==0 );
rc = lsmFsPagePersist(pOld);
if( rc==LSM_OK ){
iPtr = lsmFsPageNumber(pOld);
lsmFsPageRelease(pOld);
}
}
/* Allocate a new page for apHier[iLevel]. */
p->apHier[iLevel] = 0;
if( rc==LSM_OK ){
rc = lsmFsSortedAppend(
pDb->pFS, pDb->pWorker, pMW->pLevel, 1, &p->apHier[iLevel]
);
}
if( rc!=LSM_OK ) return rc;
aData = fsPageData(p->apHier[iLevel], &nData);
memset(aData, 0, nData);
lsmPutU16(&aData[SEGMENT_FLAGS_OFFSET(nData)], SEGMENT_BTREE_FLAG);
lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], 0);
if( iLevel==p->nHier ){
p->nHier++;
break;
}
}
/* Write the key into page apHier[iLevel]. */
aData = fsPageData(p->apHier[iLevel], &nData);
iOff = mergeWorkerPageOffset(aData, nData);
nRec = pageGetNRec(aData, nData);
lsmPutU16(&aData[SEGMENT_CELLPTR_OFFSET(nData, nRec)], (u16)iOff);
lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], (u16)(nRec+1));
if( eType==0 ){
aData[iOff++] = 0x00;
iOff += lsmVarintPut32(&aData[iOff], (int)iPtr);
iOff += lsmVarintPut32(&aData[iOff], (int)iKeyPg);
}else{
aData[iOff++] = eType;
iOff += lsmVarintPut32(&aData[iOff], (int)iPtr);
iOff += lsmVarintPut32(&aData[iOff], nKey);
memcpy(&aData[iOff], pKey, nKey);
}
return rc;
}
static int mergeWorkerBtreeIndirect(MergeWorker *pMW){
int rc = LSM_OK;
if( pMW->iIndirect ){
LsmPgno iKeyPg = pMW->aSave[1].iPgno;
rc = mergeWorkerBtreeWrite(pMW, 0, pMW->iIndirect, iKeyPg, 0, 0);
pMW->iIndirect = 0;
}
return rc;
}
/*
** Append the database key (iTopic/pKey/nKey) to the b-tree under
** construction. This key has not yet been written to a segment page.
** The pointer that will accompany the new key in the b-tree - that
** points to the completed segment page that contains keys smaller than
** (pKey/nKey) is currently stored in pMW->aSave[0].iPgno.
*/
static int mergeWorkerPushHierarchy(
MergeWorker *pMW, /* Merge worker object */
int iTopic, /* Topic value for this key */
void *pKey, /* Pointer to key buffer */
int nKey /* Size of pKey buffer in bytes */
){
int rc = LSM_OK; /* Return Code */
LsmPgno iPtr; /* Pointer value to accompany pKey/nKey */
assert( pMW->aSave[0].bStore==0 );
assert( pMW->aSave[1].bStore==0 );
rc = mergeWorkerBtreeIndirect(pMW);
/* Obtain the absolute pointer value to store along with the key in the
** page body. This pointer points to a page that contains keys that are
** smaller than pKey/nKey. */
iPtr = pMW->aSave[0].iPgno;
assert( iPtr!=0 );
/* Determine if the indirect format should be used. */
if( (nKey*4 > lsmFsPageSize(pMW->pDb->pFS)) ){
pMW->iIndirect = iPtr;
pMW->aSave[1].bStore = 1;
}else{
rc = mergeWorkerBtreeWrite(
pMW, (u8)(iTopic | LSM_SEPARATOR), iPtr, 0, pKey, nKey
);
}
/* Ensure that the SortedRun.iRoot field is correct. */
return rc;
}
static int mergeWorkerFinishHierarchy(
MergeWorker *pMW /* Merge worker object */
){
int i; /* Used to loop through apHier[] */
int rc = LSM_OK; /* Return code */
LsmPgno iPtr; /* New right-hand-child pointer value */
iPtr = pMW->aSave[0].iPgno;
for(i=0; i<pMW->hier.nHier && rc==LSM_OK; i++){
Page *pPg = pMW->hier.apHier[i];
int nData; /* Size of aData[] in bytes */
u8 *aData; /* Page data for pPg */
aData = fsPageData(pPg, &nData);
lsmPutU64(&aData[SEGMENT_POINTER_OFFSET(nData)], iPtr);
rc = lsmFsPagePersist(pPg);
iPtr = lsmFsPageNumber(pPg);
lsmFsPageRelease(pPg);
}
if( pMW->hier.nHier ){
pMW->pLevel->lhs.iRoot = iPtr;
lsmFree(pMW->pDb->pEnv, pMW->hier.apHier);
pMW->hier.apHier = 0;
pMW->hier.nHier = 0;
}
return rc;
}
static int mergeWorkerAddPadding(
MergeWorker *pMW /* Merge worker object */
){
FileSystem *pFS = pMW->pDb->pFS;
return lsmFsSortedPadding(pFS, pMW->pDb->pWorker, &pMW->pLevel->lhs);
}
/*
** Release all page references currently held by the merge-worker passed
** as the only argument. Unless an error has occurred, all pages have
** already been released.
*/
static void mergeWorkerReleaseAll(MergeWorker *pMW){
int i;
lsmFsPageRelease(pMW->pPage);
pMW->pPage = 0;
for(i=0; i<pMW->hier.nHier; i++){
lsmFsPageRelease(pMW->hier.apHier[i]);
pMW->hier.apHier[i] = 0;
}
lsmFree(pMW->pDb->pEnv, pMW->hier.apHier);
pMW->hier.apHier = 0;
pMW->hier.nHier = 0;
}
static int keyszToSkip(FileSystem *pFS, int nKey){
int nPgsz; /* Nominal database page size */
nPgsz = lsmFsPageSize(pFS);
return LSM_MIN(((nKey * 4) / nPgsz), 3);
}
/*
** Release the reference to the current output page of merge-worker *pMW
** (reference pMW->pPage). Set the page number values in aSave[] as
** required (see comments above struct MergeWorker for details).
*/
static int mergeWorkerPersistAndRelease(MergeWorker *pMW){
int rc;
int i;
assert( pMW->pPage || (pMW->aSave[0].bStore==0 && pMW->aSave[1].bStore==0) );
/* Persist the page */
rc = lsmFsPagePersist(pMW->pPage);
/* If required, save the page number. */
for(i=0; i<2; i++){
if( pMW->aSave[i].bStore ){
pMW->aSave[i].iPgno = lsmFsPageNumber(pMW->pPage);
pMW->aSave[i].bStore = 0;
}
}
/* Release the completed output page. */
lsmFsPageRelease(pMW->pPage);
pMW->pPage = 0;
return rc;
}
/*
** Advance to the next page of an output run being populated by merge-worker
** pMW. The footer of the new page is initialized to indicate that it contains
** zero records. The flags field is cleared. The page footer pointer field
** is set to iFPtr.
**
** If successful, LSM_OK is returned. Otherwise, an error code.
*/
static int mergeWorkerNextPage(
MergeWorker *pMW, /* Merge worker object to append page to */
LsmPgno iFPtr /* Pointer value for footer of new page */
){
int rc = LSM_OK; /* Return code */
Page *pNext = 0; /* New page appended to run */
lsm_db *pDb = pMW->pDb; /* Database handle */
rc = lsmFsSortedAppend(pDb->pFS, pDb->pWorker, pMW->pLevel, 0, &pNext);
assert( rc || pMW->pLevel->lhs.iFirst>0 || pMW->pDb->compress.xCompress );
if( rc==LSM_OK ){
u8 *aData; /* Data buffer belonging to page pNext */
int nData; /* Size of aData[] in bytes */
rc = mergeWorkerPersistAndRelease(pMW);
pMW->pPage = pNext;
pMW->pLevel->pMerge->iOutputOff = 0;
aData = fsPageData(pNext, &nData);
lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], 0);
lsmPutU16(&aData[SEGMENT_FLAGS_OFFSET(nData)], 0);
lsmPutU64(&aData[SEGMENT_POINTER_OFFSET(nData)], iFPtr);
pMW->nWork++;
}
return rc;
}
/*
** Write a blob of data into an output segment being populated by a
** merge-worker object. If argument bSep is true, write into the separators
** array. Otherwise, the main array.
**
** This function is used to write the blobs of data for keys and values.
*/
static int mergeWorkerData(
MergeWorker *pMW, /* Merge worker object */
int bSep, /* True to write to separators run */
int iFPtr, /* Footer ptr for new pages */
u8 *aWrite, /* Write data from this buffer */
int nWrite /* Size of aWrite[] in bytes */
){
int rc = LSM_OK; /* Return code */
int nRem = nWrite; /* Number of bytes still to write */
while( rc==LSM_OK && nRem>0 ){
Merge *pMerge = pMW->pLevel->pMerge;
int nCopy; /* Number of bytes to copy */
u8 *aData; /* Pointer to buffer of current output page */
int nData; /* Size of aData[] in bytes */
int nRec; /* Number of records on current output page */
int iOff; /* Offset in aData[] to write to */
assert( lsmFsPageWritable(pMW->pPage) );
aData = fsPageData(pMW->pPage, &nData);
nRec = pageGetNRec(aData, nData);
iOff = pMerge->iOutputOff;
nCopy = LSM_MIN(nRem, SEGMENT_EOF(nData, nRec) - iOff);
memcpy(&aData[iOff], &aWrite[nWrite-nRem], nCopy);
nRem -= nCopy;
if( nRem>0 ){
rc = mergeWorkerNextPage(pMW, iFPtr);
}else{
pMerge->iOutputOff = iOff + nCopy;
}
}
return rc;
}
/*
** The MergeWorker passed as the only argument is working to merge two or
** more existing segments together (not to flush an in-memory tree). It
** has not yet written the first key to the first page of the output.
*/
static int mergeWorkerFirstPage(MergeWorker *pMW){
int rc = LSM_OK; /* Return code */
Page *pPg = 0; /* First page of run pSeg */
int iFPtr = 0; /* Pointer value read from footer of pPg */
MultiCursor *pCsr = pMW->pCsr;
assert( pMW->pPage==0 );
if( pCsr->pBtCsr ){
rc = LSM_OK;
iFPtr = (int)pMW->pLevel->pNext->lhs.iFirst;
}else if( pCsr->nPtr>0 ){
Segment *pSeg;
pSeg = pCsr->aPtr[pCsr->nPtr-1].pSeg;
rc = lsmFsDbPageGet(pMW->pDb->pFS, pSeg, pSeg->iFirst, &pPg);
if( rc==LSM_OK ){
u8 *aData; /* Buffer for page pPg */
int nData; /* Size of aData[] in bytes */
aData = fsPageData(pPg, &nData);
iFPtr = (int)pageGetPtr(aData, nData);
lsmFsPageRelease(pPg);
}
}
if( rc==LSM_OK ){
rc = mergeWorkerNextPage(pMW, iFPtr);
if( pCsr->pPrevMergePtr ) *pCsr->pPrevMergePtr = iFPtr;
pMW->aSave[0].bStore = 1;
}
return rc;
}
static int mergeWorkerWrite(
MergeWorker *pMW, /* Merge worker object to write into */
int eType, /* One of SORTED_SEPARATOR, WRITE or DELETE */
void *pKey, int nKey, /* Key value */
void *pVal, int nVal, /* Value value */
int iPtr /* Absolute value of page pointer, or 0 */
){
int rc = LSM_OK; /* Return code */
Merge *pMerge; /* Persistent part of level merge state */
int nHdr; /* Space required for this record header */
Page *pPg; /* Page to write to */
u8 *aData; /* Data buffer for page pWriter->pPage */
int nData = 0; /* Size of buffer aData[] in bytes */
int nRec = 0; /* Number of records on page pPg */
int iFPtr = 0; /* Value of pointer in footer of pPg */
int iRPtr = 0; /* Value of pointer written into record */
int iOff = 0; /* Current write offset within page pPg */
Segment *pSeg; /* Segment being written */
int flags = 0; /* If != 0, flags value for page footer */
int bFirst = 0; /* True for first key of output run */
pMerge = pMW->pLevel->pMerge;
pSeg = &pMW->pLevel->lhs;
if( pSeg->iFirst==0 && pMW->pPage==0 ){
rc = mergeWorkerFirstPage(pMW);
bFirst = 1;
}
pPg = pMW->pPage;
if( pPg ){
aData = fsPageData(pPg, &nData);
nRec = pageGetNRec(aData, nData);
iFPtr = (int)pageGetPtr(aData, nData);
iRPtr = iPtr - iFPtr;
}
/* Figure out how much space is required by the new record. The space
** required is divided into two sections: the header and the body. The
** header consists of the intial varint fields. The body are the blobs
** of data that correspond to the key and value data. The entire header
** must be stored on the page. The body may overflow onto the next and
** subsequent pages.
**
** The header space is:
**
** 1) record type - 1 byte.
** 2) Page-pointer-offset - 1 varint
** 3) Key size - 1 varint
** 4) Value size - 1 varint (only if LSM_INSERT flag is set)
*/
if( rc==LSM_OK ){
nHdr = 1 + lsmVarintLen32(iRPtr) + lsmVarintLen32(nKey);
if( rtIsWrite(eType) ) nHdr += lsmVarintLen32(nVal);
/* If the entire header will not fit on page pPg, or if page pPg is
** marked read-only, advance to the next page of the output run. */
iOff = pMerge->iOutputOff;
if( iOff<0 || pPg==0 || iOff+nHdr > SEGMENT_EOF(nData, nRec+1) ){
if( iOff>=0 && pPg ){
/* Zero any free space on the page */
assert( aData );
memset(&aData[iOff], 0, SEGMENT_EOF(nData, nRec)-iOff);
}
iFPtr = (int)*pMW->pCsr->pPrevMergePtr;
iRPtr = iPtr - iFPtr;
iOff = 0;
nRec = 0;
rc = mergeWorkerNextPage(pMW, iFPtr);
pPg = pMW->pPage;
}
}
/* If this record header will be the first on the page, and the page is
** not the very first in the entire run, add a copy of the key to the
** b-tree hierarchy.
*/
if( rc==LSM_OK && nRec==0 && bFirst==0 ){
assert( pMerge->nSkip>=0 );
if( pMerge->nSkip==0 ){
rc = mergeWorkerPushHierarchy(pMW, rtTopic(eType), pKey, nKey);
assert( pMW->aSave[0].bStore==0 );
pMW->aSave[0].bStore = 1;
pMerge->nSkip = keyszToSkip(pMW->pDb->pFS, nKey);
}else{
pMerge->nSkip--;
flags = PGFTR_SKIP_THIS_FLAG;
}
if( pMerge->nSkip ) flags |= PGFTR_SKIP_NEXT_FLAG;
}
/* Update the output segment */
if( rc==LSM_OK ){
aData = fsPageData(pPg, &nData);
/* Update the page footer. */
lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], (u16)(nRec+1));
lsmPutU16(&aData[SEGMENT_CELLPTR_OFFSET(nData, nRec)], (u16)iOff);
if( flags ) lsmPutU16(&aData[SEGMENT_FLAGS_OFFSET(nData)], (u16)flags);
/* Write the entry header into the current page. */
aData[iOff++] = (u8)eType; /* 1 */
iOff += lsmVarintPut32(&aData[iOff], iRPtr); /* 2 */
iOff += lsmVarintPut32(&aData[iOff], nKey); /* 3 */
if( rtIsWrite(eType) ) iOff += lsmVarintPut32(&aData[iOff], nVal); /* 4 */
pMerge->iOutputOff = iOff;
/* Write the key and data into the segment. */
assert( iFPtr==pageGetPtr(aData, nData) );
rc = mergeWorkerData(pMW, 0, iFPtr+iRPtr, pKey, nKey);
if( rc==LSM_OK && rtIsWrite(eType) ){
if( rc==LSM_OK ){
rc = mergeWorkerData(pMW, 0, iFPtr+iRPtr, pVal, nVal);
}
}
}
return rc;
}
/*
** Free all resources allocated by mergeWorkerInit().
*/
static void mergeWorkerShutdown(MergeWorker *pMW, int *pRc){
int i; /* Iterator variable */
int rc = *pRc;
MultiCursor *pCsr = pMW->pCsr;
/* Unless the merge has finished, save the cursor position in the
** Merge.aInput[] array. See function mergeWorkerInit() for the
** code to restore a cursor position based on aInput[]. */
if( rc==LSM_OK && pCsr ){
Merge *pMerge = pMW->pLevel->pMerge;
if( lsmMCursorValid(pCsr) ){
int bBtree = (pCsr->pBtCsr!=0);
int iPtr;
/* pMerge->nInput==0 indicates that this is a FlushTree() operation. */
assert( pMerge->nInput==0 || pMW->pLevel->nRight>0 );
assert( pMerge->nInput==0 || pMerge->nInput==(pCsr->nPtr+bBtree) );
for(i=0; i<(pMerge->nInput-bBtree); i++){
SegmentPtr *pPtr = &pCsr->aPtr[i];
if( pPtr->pPg ){
pMerge->aInput[i].iPg = lsmFsPageNumber(pPtr->pPg);
pMerge->aInput[i].iCell = pPtr->iCell;
}else{
pMerge->aInput[i].iPg = 0;
pMerge->aInput[i].iCell = 0;
}
}
if( bBtree && pMerge->nInput ){
assert( i==pCsr->nPtr );
btreeCursorPosition(pCsr->pBtCsr, &pMerge->aInput[i]);
}
/* Store the location of the split-key */
iPtr = pCsr->aTree[1] - CURSOR_DATA_SEGMENT;
if( iPtr<pCsr->nPtr ){
pMerge->splitkey = pMerge->aInput[iPtr];
}else{
btreeCursorSplitkey(pCsr->pBtCsr, &pMerge->splitkey);
}
}
/* Zero any free space left on the final page. This helps with
** compression if using a compression hook. And prevents valgrind
** from complaining about uninitialized byte passed to write(). */
if( pMW->pPage ){
int nData;
u8 *aData = fsPageData(pMW->pPage, &nData);
int iOff = pMerge->iOutputOff;
int iEof = SEGMENT_EOF(nData, pageGetNRec(aData, nData));
memset(&aData[iOff], 0, iEof - iOff);
}
pMerge->iOutputOff = -1;
}
lsmMCursorClose(pCsr, 0);
/* Persist and release the output page. */
if( rc==LSM_OK ) rc = mergeWorkerPersistAndRelease(pMW);
if( rc==LSM_OK ) rc = mergeWorkerBtreeIndirect(pMW);
if( rc==LSM_OK ) rc = mergeWorkerFinishHierarchy(pMW);
if( rc==LSM_OK ) rc = mergeWorkerAddPadding(pMW);
lsmFsFlushWaiting(pMW->pDb->pFS, &rc);
mergeWorkerReleaseAll(pMW);
lsmFree(pMW->pDb->pEnv, pMW->aGobble);
pMW->aGobble = 0;
pMW->pCsr = 0;
*pRc = rc;
}
/*
** The cursor passed as the first argument is being used as the input for
** a merge operation. When this function is called, *piFlags contains the
** database entry flags for the current entry. The entry about to be written
** to the output.
**
** Note that this function only has to work for cursors configured to
** iterate forwards (not backwards).
*/
static void mergeRangeDeletes(MultiCursor *pCsr, int *piVal, int *piFlags){
int f = *piFlags;
int iKey = pCsr->aTree[1];
int i;
assert( pCsr->flags & CURSOR_NEXT_OK );
if( pCsr->flags & CURSOR_IGNORE_DELETE ){
/* The ignore-delete flag is set when the output of the merge will form
** the oldest level in the database. In this case there is no point in
** retaining any range-delete flags. */
assert( (f & LSM_POINT_DELETE)==0 );
f &= ~(LSM_START_DELETE|LSM_END_DELETE);
}else{
for(i=0; i<(CURSOR_DATA_SEGMENT + pCsr->nPtr); i++){
if( i!=iKey ){
int eType;
void *pKey;
int nKey;
int res;
multiCursorGetKey(pCsr, i, &eType, &pKey, &nKey);
if( pKey ){
res = sortedKeyCompare(pCsr->pDb->xCmp,
rtTopic(pCsr->eType), pCsr->key.pData, pCsr->key.nData,
rtTopic(eType), pKey, nKey
);
assert( res<=0 );
if( res==0 ){
if( (f & (LSM_INSERT|LSM_POINT_DELETE))==0 ){
if( eType & LSM_INSERT ){
f |= LSM_INSERT;
*piVal = i;
}
else if( eType & LSM_POINT_DELETE ){
f |= LSM_POINT_DELETE;
}
}
f |= (eType & (LSM_END_DELETE|LSM_START_DELETE));
}
if( i>iKey && (eType & LSM_END_DELETE) && res<0 ){
if( f & (LSM_INSERT|LSM_POINT_DELETE) ){
f |= (LSM_END_DELETE|LSM_START_DELETE);
}else{
f = 0;
}
break;
}
}
}
}
assert( (f & LSM_INSERT)==0 || (f & LSM_POINT_DELETE)==0 );
if( (f & LSM_START_DELETE)
&& (f & LSM_END_DELETE)
&& (f & LSM_POINT_DELETE )
){
f = 0;
}
}
*piFlags = f;
}
static int mergeWorkerStep(MergeWorker *pMW){
lsm_db *pDb = pMW->pDb; /* Database handle */
MultiCursor *pCsr; /* Cursor to read input data from */
int rc = LSM_OK; /* Return code */
int eType; /* SORTED_SEPARATOR, WRITE or DELETE */
void *pKey; int nKey; /* Key */
LsmPgno iPtr;
int iVal;
pCsr = pMW->pCsr;
/* Pull the next record out of the source cursor. */
lsmMCursorKey(pCsr, &pKey, &nKey);
eType = pCsr->eType;
/* Figure out if the output record may have a different pointer value
** than the previous. This is the case if the current key is identical to
** a key that appears in the lowest level run being merged. If so, set
** iPtr to the absolute pointer value. If not, leave iPtr set to zero,
** indicating that the output pointer value should be a copy of the pointer
** value written with the previous key. */
iPtr = (pCsr->pPrevMergePtr ? *pCsr->pPrevMergePtr : 0);
if( pCsr->pBtCsr ){
BtreeCursor *pBtCsr = pCsr->pBtCsr;
if( pBtCsr->pKey ){
int res = rtTopic(pBtCsr->eType) - rtTopic(eType);
if( res==0 ) res = pDb->xCmp(pBtCsr->pKey, pBtCsr->nKey, pKey, nKey);
if( 0==res ) iPtr = pBtCsr->iPtr;
assert( res>=0 );
}
}else if( pCsr->nPtr ){
SegmentPtr *pPtr = &pCsr->aPtr[pCsr->nPtr-1];
if( pPtr->pPg
&& 0==pDb->xCmp(pPtr->pKey, pPtr->nKey, pKey, nKey)
){
iPtr = pPtr->iPtr+pPtr->iPgPtr;
}
}
iVal = pCsr->aTree[1];
mergeRangeDeletes(pCsr, &iVal, &eType);
if( eType!=0 ){
if( pMW->aGobble ){
int iGobble = pCsr->aTree[1] - CURSOR_DATA_SEGMENT;
if( iGobble<pCsr->nPtr && iGobble>=0 ){
SegmentPtr *pGobble = &pCsr->aPtr[iGobble];
if( (pGobble->flags & PGFTR_SKIP_THIS_FLAG)==0 ){
pMW->aGobble[iGobble] = lsmFsPageNumber(pGobble->pPg);
}
}
}
/* If this is a separator key and we know that the output pointer has not
** changed, there is no point in writing an output record. Otherwise,
** proceed. */
if( rc==LSM_OK && (rtIsSeparator(eType)==0 || iPtr!=0) ){
/* Write the record into the main run. */
void *pVal; int nVal;
rc = multiCursorGetVal(pCsr, iVal, &pVal, &nVal);
if( pVal && rc==LSM_OK ){
assert( nVal>=0 );
rc = sortedBlobSet(pDb->pEnv, &pCsr->val, pVal, nVal);
pVal = pCsr->val.pData;
}
if( rc==LSM_OK ){
rc = mergeWorkerWrite(pMW, eType, pKey, nKey, pVal, nVal, (int)iPtr);
}
}
}
/* Advance the cursor to the next input record (assuming one exists). */
assert( lsmMCursorValid(pMW->pCsr) );
if( rc==LSM_OK ) rc = lsmMCursorNext(pMW->pCsr);
return rc;
}
static int mergeWorkerDone(MergeWorker *pMW){
return pMW->pCsr==0 || !lsmMCursorValid(pMW->pCsr);
}
static void sortedFreeLevel(lsm_env *pEnv, Level *p){
if( p ){
lsmFree(pEnv, p->pSplitKey);
lsmFree(pEnv, p->pMerge);
lsmFree(pEnv, p->aRhs);
lsmFree(pEnv, p);
}
}
static void sortedInvokeWorkHook(lsm_db *pDb){
if( pDb->xWork ){
pDb->xWork(pDb, pDb->pWorkCtx);
}
}
static int sortedNewToplevel(
lsm_db *pDb, /* Connection handle */
int eTree, /* One of the TREE_XXX constants */
int *pnWrite /* OUT: Number of database pages written */
){
int rc = LSM_OK; /* Return Code */
MultiCursor *pCsr = 0;
Level *pNext = 0; /* The current top level */
Level *pNew; /* The new level itself */
Segment *pLinked = 0; /* Delete separators from this segment */
Level *pDel = 0; /* Delete this entire level */
int nWrite = 0; /* Number of database pages written */
Freelist freelist;
if( eTree!=TREE_NONE ){
rc = lsmShmCacheChunks(pDb, pDb->treehdr.nChunk);
}
assert( pDb->bUseFreelist==0 );
pDb->pFreelist = &freelist;
pDb->bUseFreelist = 1;
memset(&freelist, 0, sizeof(freelist));
/* Allocate the new level structure to write to. */
pNext = lsmDbSnapshotLevel(pDb->pWorker);
pNew = (Level *)lsmMallocZeroRc(pDb->pEnv, sizeof(Level), &rc);
if( pNew ){
pNew->pNext = pNext;
lsmDbSnapshotSetLevel(pDb->pWorker, pNew);
}
/* Create a cursor to gather the data required by the new segment. The new
** segment contains everything in the tree and pointers to the next segment
** in the database (if any). */
pCsr = multiCursorNew(pDb, &rc);
if( pCsr ){
pCsr->pDb = pDb;
rc = multiCursorVisitFreelist(pCsr);
if( rc==LSM_OK ){
rc = multiCursorAddTree(pCsr, pDb->pWorker, eTree);
}
if( rc==LSM_OK && pNext && pNext->pMerge==0 ){
if( (pNext->flags & LEVEL_FREELIST_ONLY) ){
pDel = pNext;
pCsr->aPtr = lsmMallocZeroRc(pDb->pEnv, sizeof(SegmentPtr), &rc);
multiCursorAddOne(pCsr, pNext, &rc);
}else if( eTree!=TREE_NONE && pNext->lhs.iRoot ){
pLinked = &pNext->lhs;
rc = btreeCursorNew(pDb, pLinked, &pCsr->pBtCsr);
}
}
/* If this will be the only segment in the database, discard any delete
** markers present in the in-memory tree. */
if( pNext==0 ){
multiCursorIgnoreDelete(pCsr);
}
}
if( rc!=LSM_OK ){
lsmMCursorClose(pCsr, 0);
}else{
LsmPgno iLeftPtr = 0;
Merge merge; /* Merge object used to create new level */
MergeWorker mergeworker; /* MergeWorker object for the same purpose */
memset(&merge, 0, sizeof(Merge));
memset(&mergeworker, 0, sizeof(MergeWorker));
pNew->pMerge = &merge;
pNew->flags |= LEVEL_INCOMPLETE;
mergeworker.pDb = pDb;
mergeworker.pLevel = pNew;
mergeworker.pCsr = pCsr;
pCsr->pPrevMergePtr = &iLeftPtr;
/* Mark the separators array for the new level as a "phantom". */
mergeworker.bFlush = 1;
/* Do the work to create the new merged segment on disk */
if( rc==LSM_OK ) rc = lsmMCursorFirst(pCsr);
while( rc==LSM_OK && mergeWorkerDone(&mergeworker)==0 ){
rc = mergeWorkerStep(&mergeworker);
}
mergeWorkerShutdown(&mergeworker, &rc);
assert( rc!=LSM_OK || mergeworker.nWork==0 || pNew->lhs.iFirst );
if( rc==LSM_OK && pNew->lhs.iFirst ){
rc = lsmFsSortedFinish(pDb->pFS, &pNew->lhs);
}
nWrite = mergeworker.nWork;
pNew->flags &= ~LEVEL_INCOMPLETE;
if( eTree==TREE_NONE ){
pNew->flags |= LEVEL_FREELIST_ONLY;
}
pNew->pMerge = 0;
}
if( rc!=LSM_OK || pNew->lhs.iFirst==0 ){
assert( rc!=LSM_OK || pDb->pWorker->freelist.nEntry==0 );
lsmDbSnapshotSetLevel(pDb->pWorker, pNext);
sortedFreeLevel(pDb->pEnv, pNew);
}else{
if( pLinked ){
pLinked->iRoot = 0;
}else if( pDel ){
assert( pNew->pNext==pDel );
pNew->pNext = pDel->pNext;
lsmFsSortedDelete(pDb->pFS, pDb->pWorker, 1, &pDel->lhs);
sortedFreeLevel(pDb->pEnv, pDel);
}
#if LSM_LOG_STRUCTURE
lsmSortedDumpStructure(pDb, pDb->pWorker, LSM_LOG_DATA, 0, "new-toplevel");
#endif
if( freelist.nEntry ){
Freelist *p = &pDb->pWorker->freelist;
lsmFree(pDb->pEnv, p->aEntry);
memcpy(p, &freelist, sizeof(freelist));
freelist.aEntry = 0;
}else{
pDb->pWorker->freelist.nEntry = 0;
}
assertBtreeOk(pDb, &pNew->lhs);
sortedInvokeWorkHook(pDb);
}
if( pnWrite ) *pnWrite = nWrite;
pDb->pWorker->nWrite += nWrite;
pDb->pFreelist = 0;
pDb->bUseFreelist = 0;
lsmFree(pDb->pEnv, freelist.aEntry);
return rc;
}
/*
** The nMerge levels in the LSM beginning with pLevel consist of a
** left-hand-side segment only. Replace these levels with a single new
** level consisting of a new empty segment on the left-hand-side and the
** nMerge segments from the replaced levels on the right-hand-side.
**
** Also, allocate and populate a Merge object and set Level.pMerge to
** point to it.
*/
static int sortedMergeSetup(
lsm_db *pDb, /* Database handle */
Level *pLevel, /* First level to merge */
int nMerge, /* Merge this many levels together */
Level **ppNew /* New, merged, level */
){
int rc = LSM_OK; /* Return Code */
Level *pNew; /* New Level object */
int bUseNext = 0; /* True to link in next separators */
Merge *pMerge; /* New Merge object */
int nByte; /* Bytes of space allocated at pMerge */
#ifdef LSM_DEBUG
int iLevel;
Level *pX = pLevel;
for(iLevel=0; iLevel<nMerge; iLevel++){
assert( pX->nRight==0 );
pX = pX->pNext;
}
#endif
/* Allocate the new Level object */
pNew = (Level *)lsmMallocZeroRc(pDb->pEnv, sizeof(Level), &rc);
if( pNew ){
pNew->aRhs = (Segment *)lsmMallocZeroRc(pDb->pEnv,
nMerge * sizeof(Segment), &rc);
}
/* Populate the new Level object */
if( rc==LSM_OK ){
Level *pNext = 0; /* Level following pNew */
int i;
int bFreeOnly = 1;
Level *pTopLevel;
Level *p = pLevel;
Level **pp;
pNew->nRight = nMerge;
pNew->iAge = pLevel->iAge+1;
for(i=0; i<nMerge; i++){
assert( p->nRight==0 );
pNext = p->pNext;
pNew->aRhs[i] = p->lhs;
if( (p->flags & LEVEL_FREELIST_ONLY)==0 ) bFreeOnly = 0;
sortedFreeLevel(pDb->pEnv, p);
p = pNext;
}
if( bFreeOnly ) pNew->flags |= LEVEL_FREELIST_ONLY;
/* Replace the old levels with the new. */
pTopLevel = lsmDbSnapshotLevel(pDb->pWorker);
pNew->pNext = p;
for(pp=&pTopLevel; *pp!=pLevel; pp=&((*pp)->pNext));
*pp = pNew;
lsmDbSnapshotSetLevel(pDb->pWorker, pTopLevel);
/* Determine whether or not the next separators will be linked in */
if( pNext && pNext->pMerge==0 && pNext->lhs.iRoot && pNext
&& (bFreeOnly==0 || (pNext->flags & LEVEL_FREELIST_ONLY))
){
bUseNext = 1;
}
}
/* Allocate the merge object */
nByte = sizeof(Merge) + sizeof(MergeInput) * (nMerge + bUseNext);
pMerge = (Merge *)lsmMallocZeroRc(pDb->pEnv, nByte, &rc);
if( pMerge ){
pMerge->aInput = (MergeInput *)&pMerge[1];
pMerge->nInput = nMerge + bUseNext;
pNew->pMerge = pMerge;
}
*ppNew = pNew;
return rc;
}
static int mergeWorkerInit(
lsm_db *pDb, /* Db connection to do merge work */
Level *pLevel, /* Level to work on merging */
MergeWorker *pMW /* Object to initialize */
){
int rc = LSM_OK; /* Return code */
Merge *pMerge = pLevel->pMerge; /* Persistent part of merge state */
MultiCursor *pCsr = 0; /* Cursor opened for pMW */
Level *pNext = pLevel->pNext; /* Next level in LSM */
assert( pDb->pWorker );
assert( pLevel->pMerge );
assert( pLevel->nRight>0 );
memset(pMW, 0, sizeof(MergeWorker));
pMW->pDb = pDb;
pMW->pLevel = pLevel;
pMW->aGobble = lsmMallocZeroRc(pDb->pEnv, sizeof(LsmPgno)*pLevel->nRight,&rc);
/* Create a multi-cursor to read the data to write to the new
** segment. The new segment contains:
**
** 1. Records from LHS of each of the nMerge levels being merged.
** 2. Separators from either the last level being merged, or the
** separators attached to the LHS of the following level, or neither.
**
** If the new level is the lowest (oldest) in the db, discard any
** delete keys. Key annihilation.
*/
pCsr = multiCursorNew(pDb, &rc);
if( pCsr ){
pCsr->flags |= CURSOR_NEXT_OK;
rc = multiCursorAddRhs(pCsr, pLevel);
}
if( rc==LSM_OK && pMerge->nInput > pLevel->nRight ){
rc = btreeCursorNew(pDb, &pNext->lhs, &pCsr->pBtCsr);
}else if( pNext ){
multiCursorReadSeparators(pCsr);
}else{
multiCursorIgnoreDelete(pCsr);
}
assert( rc!=LSM_OK || pMerge->nInput==(pCsr->nPtr+(pCsr->pBtCsr!=0)) );
pMW->pCsr = pCsr;
/* Load the b-tree hierarchy into memory. */
if( rc==LSM_OK ) rc = mergeWorkerLoadHierarchy(pMW);
if( rc==LSM_OK && pMW->hier.nHier==0 ){
pMW->aSave[0].iPgno = pLevel->lhs.iFirst;
}
/* Position the cursor. */
if( rc==LSM_OK ){
pCsr->pPrevMergePtr = &pMerge->iCurrentPtr;
if( pLevel->lhs.iFirst==0 ){
/* The output array is still empty. So position the cursor at the very
** start of the input. */
rc = multiCursorEnd(pCsr, 0);
}else{
/* The output array is non-empty. Position the cursor based on the
** page/cell data saved in the Merge.aInput[] array. */
int i;
for(i=0; rc==LSM_OK && i<pCsr->nPtr; i++){
MergeInput *pInput = &pMerge->aInput[i];
if( pInput->iPg ){
SegmentPtr *pPtr;
assert( pCsr->aPtr[i].pPg==0 );
pPtr = &pCsr->aPtr[i];
rc = segmentPtrLoadPage(pDb->pFS, pPtr, (int)pInput->iPg);
if( rc==LSM_OK && pPtr->nCell>0 ){
rc = segmentPtrLoadCell(pPtr, pInput->iCell);
}
}
}
if( rc==LSM_OK && pCsr->pBtCsr ){
int (*xCmp)(void *, int, void *, int) = pCsr->pDb->xCmp;
assert( i==pCsr->nPtr );
rc = btreeCursorRestore(pCsr->pBtCsr, xCmp, &pMerge->aInput[i]);
}
if( rc==LSM_OK ){
rc = multiCursorSetupTree(pCsr, 0);
}
}
pCsr->flags |= CURSOR_NEXT_OK;
}
return rc;
}
static int sortedBtreeGobble(
lsm_db *pDb, /* Worker connection */
MultiCursor *pCsr, /* Multi-cursor being used for a merge */
int iGobble /* pCsr->aPtr[] entry to operate on */
){
int rc = LSM_OK;
if( rtTopic(pCsr->eType)==0 ){
Segment *pSeg = pCsr->aPtr[iGobble].pSeg;
LsmPgno *aPg;
int nPg;
/* Seek from the root of the b-tree to the segment leaf that may contain
** a key equal to the one multi-cursor currently points to. Record the
** page number of each b-tree page and the leaf. The segment may be
** gobbled up to (but not including) the first of these page numbers.
*/
assert( pSeg->iRoot>0 );
aPg = lsmMallocZeroRc(pDb->pEnv, sizeof(LsmPgno)*32, &rc);
if( rc==LSM_OK ){
rc = seekInBtree(pCsr, pSeg,
rtTopic(pCsr->eType), pCsr->key.pData, pCsr->key.nData, aPg, 0
);
}
if( rc==LSM_OK ){
for(nPg=0; aPg[nPg]; nPg++);
lsmFsGobble(pDb, pSeg, aPg, nPg);
}
lsmFree(pDb->pEnv, aPg);
}
return rc;
}
/*
** Argument p points to a level of age N. Return the number of levels in
** the linked list starting at p that have age=N (always at least 1).
*/
static int sortedCountLevels(Level *p){
int iAge = p->iAge;
int nRet = 0;
do {
nRet++;
p = p->pNext;
}while( p && p->iAge==iAge );
return nRet;
}
static int sortedSelectLevel(lsm_db *pDb, int nMerge, Level **ppOut){
Level *pTopLevel = lsmDbSnapshotLevel(pDb->pWorker);
int rc = LSM_OK;
Level *pLevel = 0; /* Output value */
Level *pBest = 0; /* Best level to work on found so far */
int nBest; /* Number of segments merged at pBest */
Level *pThis = 0; /* First in run of levels with age=iAge */
int nThis = 0; /* Number of levels starting at pThis */
assert( nMerge>=1 );
nBest = LSM_MAX(1, nMerge-1);
/* Find the longest contiguous run of levels not currently undergoing a
** merge with the same age in the structure. Or the level being merged
** with the largest number of right-hand segments. Work on it. */
for(pLevel=pTopLevel; pLevel; pLevel=pLevel->pNext){
if( pLevel->nRight==0 && pThis && pLevel->iAge==pThis->iAge ){
nThis++;
}else{
if( nThis>nBest ){
if( (pLevel->iAge!=pThis->iAge+1)
|| (pLevel->nRight==0 && sortedCountLevels(pLevel)<=pDb->nMerge)
){
pBest = pThis;
nBest = nThis;
}
}
if( pLevel->nRight ){
if( pLevel->nRight>nBest ){
nBest = pLevel->nRight;
pBest = pLevel;
}
nThis = 0;
pThis = 0;
}else{
pThis = pLevel;
nThis = 1;
}
}
}
if( nThis>nBest ){
assert( pThis );
pBest = pThis;
nBest = nThis;
}
if( pBest==0 && nMerge==1 ){
int nFree = 0;
int nUsr = 0;
for(pLevel=pTopLevel; pLevel; pLevel=pLevel->pNext){
assert( !pLevel->nRight );
if( pLevel->flags & LEVEL_FREELIST_ONLY ){
nFree++;
}else{
nUsr++;
}
}
if( nUsr>1 ){
pBest = pTopLevel;
nBest = nFree + nUsr;
}
}
if( pBest ){
if( pBest->nRight==0 ){
rc = sortedMergeSetup(pDb, pBest, nBest, ppOut);
}else{
*ppOut = pBest;
}
}
return rc;
}
static int sortedDbIsFull(lsm_db *pDb){
Level *pTop = lsmDbSnapshotLevel(pDb->pWorker);
if( lsmDatabaseFull(pDb) ) return 1;
if( pTop && pTop->iAge==0
&& (pTop->nRight || sortedCountLevels(pTop)>=pDb->nMerge)
){
return 1;
}
return 0;
}
typedef struct MoveBlockCtx MoveBlockCtx;
struct MoveBlockCtx {
int iSeen; /* Previous free block on list */
int iFrom; /* Total number of blocks in file */
};
static int moveBlockCb(void *pCtx, int iBlk, i64 iSnapshot){
MoveBlockCtx *p = (MoveBlockCtx *)pCtx;
assert( p->iFrom==0 );
if( iBlk==(p->iSeen-1) ){
p->iSeen = iBlk;
return 0;
}
p->iFrom = p->iSeen-1;
return 1;
}
/*
** This function is called to further compact a database for which all
** of the content has already been merged into a single segment. If
** possible, it moves the contents of a single block from the end of the
** file to a free-block that lies closer to the start of the file (allowing
** the file to be eventually truncated).
*/
static int sortedMoveBlock(lsm_db *pDb, int *pnWrite){
Snapshot *p = pDb->pWorker;
Level *pLvl = lsmDbSnapshotLevel(p);
int iFrom; /* Block to move */
int iTo; /* Destination to move block to */
int rc; /* Return code */
MoveBlockCtx sCtx;
assert( pLvl->pNext==0 && pLvl->nRight==0 );
assert( p->redirect.n<=LSM_MAX_BLOCK_REDIRECTS );
*pnWrite = 0;
/* Check that the redirect array is not already full. If it is, return
** without moving any database content. */
if( p->redirect.n>=LSM_MAX_BLOCK_REDIRECTS ) return LSM_OK;
/* Find the last block of content in the database file. Do this by
** traversing the free-list in reverse (descending block number) order.
** The first block not on the free list is the one that will be moved.
** Since the db consists of a single segment, there is no ambiguity as
** to which segment the block belongs to. */
sCtx.iSeen = p->nBlock+1;
sCtx.iFrom = 0;
rc = lsmWalkFreelist(pDb, 1, moveBlockCb, &sCtx);
if( rc!=LSM_OK || sCtx.iFrom==0 ) return rc;
iFrom = sCtx.iFrom;
/* Find the first free block in the database, ignoring block 1. Block
** 1 is tricky as it is smaller than the other blocks. */
rc = lsmBlockAllocate(pDb, iFrom, &iTo);
if( rc!=LSM_OK || iTo==0 ) return rc;
assert( iTo!=1 && iTo<iFrom );
rc = lsmFsMoveBlock(pDb->pFS, &pLvl->lhs, iTo, iFrom);
if( rc==LSM_OK ){
if( p->redirect.a==0 ){
int nByte = sizeof(struct RedirectEntry) * LSM_MAX_BLOCK_REDIRECTS;
p->redirect.a = lsmMallocZeroRc(pDb->pEnv, nByte, &rc);
}
if( rc==LSM_OK ){
/* Check if the block just moved was already redirected. */
int i;
for(i=0; i<p->redirect.n; i++){
if( p->redirect.a[i].iTo==iFrom ) break;
}
if( i==p->redirect.n ){
/* Block iFrom was not already redirected. Add a new array entry. */
memmove(&p->redirect.a[1], &p->redirect.a[0],
sizeof(struct RedirectEntry) * p->redirect.n
);
p->redirect.a[0].iFrom = iFrom;
p->redirect.a[0].iTo = iTo;
p->redirect.n++;
}else{
/* Block iFrom was already redirected. Overwrite existing entry. */
p->redirect.a[i].iTo = iTo;
}
rc = lsmBlockFree(pDb, iFrom);
*pnWrite = lsmFsBlockSize(pDb->pFS) / lsmFsPageSize(pDb->pFS);
pLvl->lhs.pRedirect = &p->redirect;
}
}
#if LSM_LOG_STRUCTURE
if( rc==LSM_OK ){
char aBuf[64];
sprintf(aBuf, "move-block %d/%d", p->redirect.n-1, LSM_MAX_BLOCK_REDIRECTS);
lsmSortedDumpStructure(pDb, pDb->pWorker, LSM_LOG_DATA, 0, aBuf);
}
#endif
return rc;
}
/*
*/
static int mergeInsertFreelistSegments(
lsm_db *pDb,
int nFree,
MergeWorker *pMW
){
int rc = LSM_OK;
if( nFree>0 ){
MultiCursor *pCsr = pMW->pCsr;
Level *pLvl = pMW->pLevel;
SegmentPtr *aNew1;
Segment *aNew2;
Level *pIter;
Level *pNext;
int i = 0;
aNew1 = (SegmentPtr *)lsmMallocZeroRc(
pDb->pEnv, sizeof(SegmentPtr) * (pCsr->nPtr+nFree), &rc
);
if( rc ) return rc;
memcpy(&aNew1[nFree], pCsr->aPtr, sizeof(SegmentPtr)*pCsr->nPtr);
pCsr->nPtr += nFree;
lsmFree(pDb->pEnv, pCsr->aTree);
lsmFree(pDb->pEnv, pCsr->aPtr);
pCsr->aTree = 0;
pCsr->aPtr = aNew1;
aNew2 = (Segment *)lsmMallocZeroRc(
pDb->pEnv, sizeof(Segment) * (pLvl->nRight+nFree), &rc
);
if( rc ) return rc;
memcpy(&aNew2[nFree], pLvl->aRhs, sizeof(Segment)*pLvl->nRight);
pLvl->nRight += nFree;
lsmFree(pDb->pEnv, pLvl->aRhs);
pLvl->aRhs = aNew2;
for(pIter=pDb->pWorker->pLevel; rc==LSM_OK && pIter!=pLvl; pIter=pNext){
Segment *pSeg = &pLvl->aRhs[i];
memcpy(pSeg, &pIter->lhs, sizeof(Segment));
pCsr->aPtr[i].pSeg = pSeg;
pCsr->aPtr[i].pLevel = pLvl;
rc = segmentPtrEnd(pCsr, &pCsr->aPtr[i], 0);
pDb->pWorker->pLevel = pNext = pIter->pNext;
sortedFreeLevel(pDb->pEnv, pIter);
i++;
}
assert( i==nFree );
assert( rc!=LSM_OK || pDb->pWorker->pLevel==pLvl );
for(i=nFree; i<pCsr->nPtr; i++){
pCsr->aPtr[i].pSeg = &pLvl->aRhs[i];
}
lsmFree(pDb->pEnv, pMW->aGobble);
pMW->aGobble = 0;
}
return rc;
}
static int sortedWork(
lsm_db *pDb, /* Database handle. Must be worker. */
int nWork, /* Number of pages of work to do */
int nMerge, /* Try to merge this many levels at once */
int bFlush, /* Set if call is to make room for a flush */
int *pnWrite /* OUT: Actual number of pages written */
){
int rc = LSM_OK; /* Return Code */
int nRemaining = nWork; /* Units of work to do before returning */
Snapshot *pWorker = pDb->pWorker;
assert( pWorker );
if( lsmDbSnapshotLevel(pWorker)==0 ) return LSM_OK;
while( nRemaining>0 ){
Level *pLevel = 0;
/* Find a level to work on. */
rc = sortedSelectLevel(pDb, nMerge, &pLevel);
assert( rc==LSM_OK || pLevel==0 );
if( pLevel==0 ){
int nDone = 0;
Level *pTopLevel = lsmDbSnapshotLevel(pDb->pWorker);
if( bFlush==0 && nMerge==1 && pTopLevel && pTopLevel->pNext==0 ){
rc = sortedMoveBlock(pDb, &nDone);
}
nRemaining -= nDone;
/* Could not find any work to do. Finished. */
if( nDone==0 ) break;
}else{
int bSave = 0;
Freelist freelist = {0, 0, 0};
MergeWorker mergeworker; /* State used to work on the level merge */
assert( pDb->bIncrMerge==0 );
assert( pDb->pFreelist==0 && pDb->bUseFreelist==0 );
pDb->bIncrMerge = 1;
rc = mergeWorkerInit(pDb, pLevel, &mergeworker);
assert( mergeworker.nWork==0 );
while( rc==LSM_OK
&& 0==mergeWorkerDone(&mergeworker)
&& (mergeworker.nWork<nRemaining || pDb->bUseFreelist)
){
int eType = rtTopic(mergeworker.pCsr->eType);
rc = mergeWorkerStep(&mergeworker);
/* If the cursor now points at the first entry past the end of the
** user data (i.e. either to EOF or to the first free-list entry
** that will be added to the run), then check if it is possible to
** merge in any free-list entries that are either in-memory or in
** free-list-only blocks. */
if( rc==LSM_OK && nMerge==1 && eType==0
&& (rtTopic(mergeworker.pCsr->eType) || mergeWorkerDone(&mergeworker))
){
int nFree = 0; /* Number of free-list-only levels to merge */
Level *pLvl;
assert( pDb->pFreelist==0 && pDb->bUseFreelist==0 );
/* Now check if all levels containing data newer than this one
** are single-segment free-list only levels. If so, they will be
** merged in now. */
for(pLvl=pDb->pWorker->pLevel;
pLvl!=mergeworker.pLevel && (pLvl->flags & LEVEL_FREELIST_ONLY);
pLvl=pLvl->pNext
){
assert( pLvl->nRight==0 );
nFree++;
}
if( pLvl==mergeworker.pLevel ){
rc = mergeInsertFreelistSegments(pDb, nFree, &mergeworker);
if( rc==LSM_OK ){
rc = multiCursorVisitFreelist(mergeworker.pCsr);
}
if( rc==LSM_OK ){
rc = multiCursorSetupTree(mergeworker.pCsr, 0);
pDb->pFreelist = &freelist;
pDb->bUseFreelist = 1;
}
}
}
}
nRemaining -= LSM_MAX(mergeworker.nWork, 1);
if( rc==LSM_OK ){
/* Check if the merge operation is completely finished. If not,
** gobble up (declare eligible for recycling) any pages from rhs
** segments for which the content has been completely merged into
** the lhs of the level. */
if( mergeWorkerDone(&mergeworker)==0 ){
int i;
for(i=0; i<pLevel->nRight; i++){
SegmentPtr *pGobble = &mergeworker.pCsr->aPtr[i];
if( pGobble->pSeg->iRoot ){
rc = sortedBtreeGobble(pDb, mergeworker.pCsr, i);
}else if( mergeworker.aGobble[i] ){
lsmFsGobble(pDb, pGobble->pSeg, &mergeworker.aGobble[i], 1);
}
}
}else{
int i;
int bEmpty;
mergeWorkerShutdown(&mergeworker, &rc);
bEmpty = (pLevel->lhs.iFirst==0);
if( bEmpty==0 && rc==LSM_OK ){
rc = lsmFsSortedFinish(pDb->pFS, &pLevel->lhs);
}
if( pDb->bUseFreelist ){
Freelist *p = &pDb->pWorker->freelist;
lsmFree(pDb->pEnv, p->aEntry);
memcpy(p, &freelist, sizeof(freelist));
pDb->bUseFreelist = 0;
pDb->pFreelist = 0;
bSave = 1;
}
for(i=0; i<pLevel->nRight; i++){
lsmFsSortedDelete(pDb->pFS, pWorker, 1, &pLevel->aRhs[i]);
}
if( bEmpty ){
/* If the new level is completely empty, remove it from the
** database snapshot. This can only happen if all input keys were
** annihilated. Since keys are only annihilated if the new level
** is the last in the linked list (contains the most ancient of
** database content), this guarantees that pLevel->pNext==0. */
Level *pTop; /* Top level of worker snapshot */
Level **pp; /* Read/write iterator for Level.pNext list */
assert( pLevel->pNext==0 );
/* Remove the level from the worker snapshot. */
pTop = lsmDbSnapshotLevel(pWorker);
for(pp=&pTop; *pp!=pLevel; pp=&((*pp)->pNext));
*pp = pLevel->pNext;
lsmDbSnapshotSetLevel(pWorker, pTop);
/* Free the Level structure. */
sortedFreeLevel(pDb->pEnv, pLevel);
}else{
/* Free the separators of the next level, if required. */
if( pLevel->pMerge->nInput > pLevel->nRight ){
assert( pLevel->pNext->lhs.iRoot );
pLevel->pNext->lhs.iRoot = 0;
}
/* Zero the right-hand-side of pLevel */
lsmFree(pDb->pEnv, pLevel->aRhs);
pLevel->nRight = 0;
pLevel->aRhs = 0;
/* Free the Merge object */
lsmFree(pDb->pEnv, pLevel->pMerge);
pLevel->pMerge = 0;
}
if( bSave && rc==LSM_OK ){
pDb->bIncrMerge = 0;
rc = lsmSaveWorker(pDb, 0);
}
}
}
/* Clean up the MergeWorker object initialized above. If no error
** has occurred, invoke the work-hook to inform the application that
** the database structure has changed. */
mergeWorkerShutdown(&mergeworker, &rc);
pDb->bIncrMerge = 0;
if( rc==LSM_OK ) sortedInvokeWorkHook(pDb);
#if LSM_LOG_STRUCTURE
lsmSortedDumpStructure(pDb, pDb->pWorker, LSM_LOG_DATA, 0, "work");
#endif
assertBtreeOk(pDb, &pLevel->lhs);
assertRunInOrder(pDb, &pLevel->lhs);
/* If bFlush is true and the database is no longer considered "full",
** break out of the loop even if nRemaining is still greater than
** zero. The caller has an in-memory tree to flush to disk. */
if( bFlush && sortedDbIsFull(pDb)==0 ) break;
}
}
if( pnWrite ) *pnWrite = (nWork - nRemaining);
pWorker->nWrite += (nWork - nRemaining);
#ifdef LSM_LOG_WORK
lsmLogMessage(pDb, rc, "sortedWork(): %d pages", (nWork-nRemaining));
#endif
return rc;
}
/*
** The database connection passed as the first argument must be a worker
** connection. This function checks if there exists an "old" in-memory tree
** ready to be flushed to disk. If so, true is returned. Otherwise false.
**
** If an error occurs, *pRc is set to an LSM error code before returning.
** It is assumed that *pRc is set to LSM_OK when this function is called.
*/
static int sortedTreeHasOld(lsm_db *pDb, int *pRc){
int rc = LSM_OK;
int bRet = 0;
assert( pDb->pWorker );
if( *pRc==LSM_OK ){
if( rc==LSM_OK
&& pDb->treehdr.iOldShmid
&& pDb->treehdr.iOldLog!=pDb->pWorker->iLogOff
){
bRet = 1;
}else{
bRet = 0;
}
*pRc = rc;
}
assert( *pRc==LSM_OK || bRet==0 );
return bRet;
}
/*
** Create a new free-list only top-level segment. Return LSM_OK if successful
** or an LSM error code if some error occurs.
*/
static int sortedNewFreelistOnly(lsm_db *pDb){
return sortedNewToplevel(pDb, TREE_NONE, 0);
}
int lsmSaveWorker(lsm_db *pDb, int bFlush){
Snapshot *p = pDb->pWorker;
if( p->freelist.nEntry>pDb->nMaxFreelist ){
int rc = sortedNewFreelistOnly(pDb);
if( rc!=LSM_OK ) return rc;
}
return lsmCheckpointSaveWorker(pDb, bFlush);
}
static int doLsmSingleWork(
lsm_db *pDb,
int bShutdown,
int nMerge, /* Minimum segments to merge together */
int nPage, /* Number of pages to write to disk */
int *pnWrite, /* OUT: Pages actually written to disk */
int *pbCkpt /* OUT: True if an auto-checkpoint is req. */
){
Snapshot *pWorker; /* Worker snapshot */
int rc = LSM_OK; /* Return code */
int bDirty = 0;
int nMax = nPage; /* Maximum pages to write to disk */
int nRem = nPage;
int bCkpt = 0;
assert( nPage>0 );
/* Open the worker 'transaction'. It will be closed before this function
** returns. */
assert( pDb->pWorker==0 );
rc = lsmBeginWork(pDb);
if( rc!=LSM_OK ) return rc;
pWorker = pDb->pWorker;
/* If this connection is doing auto-checkpoints, set nMax (and nRem) so
** that this call stops writing when the auto-checkpoint is due. The
** caller will do the checkpoint, then possibly call this function again. */
if( bShutdown==0 && pDb->nAutockpt ){
u32 nSync;
u32 nUnsync;
int nPgsz;
lsmCheckpointSynced(pDb, 0, 0, &nSync);
nUnsync = lsmCheckpointNWrite(pDb->pShmhdr->aSnap1, 0);
nPgsz = lsmCheckpointPgsz(pDb->pShmhdr->aSnap1);
nMax = (int)LSM_MIN(nMax, (pDb->nAutockpt/nPgsz) - (int)(nUnsync-nSync));
if( nMax<nRem ){
bCkpt = 1;
nRem = LSM_MAX(nMax, 0);
}
}
/* If there exists in-memory data ready to be flushed to disk, attempt
** to flush it now. */
if( pDb->nTransOpen==0 ){
rc = lsmTreeLoadHeader(pDb, 0);
}
if( sortedTreeHasOld(pDb, &rc) ){
/* sortedDbIsFull() returns non-zero if either (a) there are too many
** levels in total in the db, or (b) there are too many levels with the
** the same age in the db. Either way, call sortedWork() to merge
** existing segments together until this condition is cleared. */
if( sortedDbIsFull(pDb) ){
int nPg = 0;
rc = sortedWork(pDb, nRem, nMerge, 1, &nPg);
nRem -= nPg;
assert( rc!=LSM_OK || nRem<=0 || !sortedDbIsFull(pDb) );
bDirty = 1;
}
if( rc==LSM_OK && nRem>0 ){
int nPg = 0;
rc = sortedNewToplevel(pDb, TREE_OLD, &nPg);
nRem -= nPg;
if( rc==LSM_OK ){
if( pDb->nTransOpen>0 ){
lsmTreeDiscardOld(pDb);
}
rc = lsmSaveWorker(pDb, 1);
bDirty = 0;
}
}
}
/* If nPage is still greater than zero, do some merging. */
if( rc==LSM_OK && nRem>0 && bShutdown==0 ){
int nPg = 0;
rc = sortedWork(pDb, nRem, nMerge, 0, &nPg);
nRem -= nPg;
if( nPg ) bDirty = 1;
}
/* If the in-memory part of the free-list is too large, write a new
** top-level containing just the in-memory free-list entries to disk. */
if( rc==LSM_OK && pDb->pWorker->freelist.nEntry > pDb->nMaxFreelist ){
while( rc==LSM_OK && lsmDatabaseFull(pDb) ){
int nPg = 0;
rc = sortedWork(pDb, 16, nMerge, 1, &nPg);
nRem -= nPg;
}
if( rc==LSM_OK ){
rc = sortedNewFreelistOnly(pDb);
}
bDirty = 1;
}
if( rc==LSM_OK ){
*pnWrite = (nMax - nRem);
*pbCkpt = (bCkpt && nRem<=0);
if( nMerge==1 && pDb->nAutockpt>0 && *pnWrite>0
&& pWorker->pLevel
&& pWorker->pLevel->nRight==0
&& pWorker->pLevel->pNext==0
){
*pbCkpt = 1;
}
}
if( rc==LSM_OK && bDirty ){
lsmFinishWork(pDb, 0, &rc);
}else{
int rcdummy = LSM_BUSY;
lsmFinishWork(pDb, 0, &rcdummy);
*pnWrite = 0;
}
assert( pDb->pWorker==0 );
return rc;
}
static int doLsmWork(lsm_db *pDb, int nMerge, int nPage, int *pnWrite){
int rc = LSM_OK; /* Return code */
int nWrite = 0; /* Number of pages written */
assert( nMerge>=1 );
if( nPage!=0 ){
int bCkpt = 0;
do {
int nThis = 0;
int nReq = (nPage>=0) ? (nPage-nWrite) : ((int)0x7FFFFFFF);
bCkpt = 0;
rc = doLsmSingleWork(pDb, 0, nMerge, nReq, &nThis, &bCkpt);
nWrite += nThis;
if( rc==LSM_OK && bCkpt ){
rc = lsm_checkpoint(pDb, 0);
}
}while( rc==LSM_OK && bCkpt && (nWrite<nPage || nPage<0) );
}
if( pnWrite ){
if( rc==LSM_OK ){
*pnWrite = nWrite;
}else{
*pnWrite = 0;
}
}
return rc;
}
/*
** Perform work to merge database segments together.
*/
int lsm_work(lsm_db *pDb, int nMerge, int nKB, int *pnWrite){
int rc; /* Return code */
int nPgsz; /* Nominal page size in bytes */
int nPage; /* Equivalent of nKB in pages */
int nWrite = 0; /* Number of pages written */
/* This function may not be called if pDb has an open read or write
** transaction. Return LSM_MISUSE if an application attempts this. */
if( pDb->nTransOpen || pDb->pCsr ) return LSM_MISUSE_BKPT;
if( nMerge<=0 ) nMerge = pDb->nMerge;
lsmFsPurgeCache(pDb->pFS);
/* Convert from KB to pages */
nPgsz = lsmFsPageSize(pDb->pFS);
if( nKB>=0 ){
nPage = ((i64)nKB * 1024 + nPgsz - 1) / nPgsz;
}else{
nPage = -1;
}
rc = doLsmWork(pDb, nMerge, nPage, &nWrite);
if( pnWrite ){
/* Convert back from pages to KB */
*pnWrite = (int)(((i64)nWrite * 1024 + nPgsz - 1) / nPgsz);
}
return rc;
}
int lsm_flush(lsm_db *db){
int rc;
if( db->nTransOpen>0 || db->pCsr ){
rc = LSM_MISUSE_BKPT;
}else{
rc = lsmBeginWriteTrans(db);
if( rc==LSM_OK ){
lsmFlushTreeToDisk(db);
lsmTreeDiscardOld(db);
lsmTreeMakeOld(db);
lsmTreeDiscardOld(db);
}
if( rc==LSM_OK ){
rc = lsmFinishWriteTrans(db, 1);
}else{
lsmFinishWriteTrans(db, 0);
}
lsmFinishReadTrans(db);
}
return rc;
}
/*
** This function is called in auto-work mode to perform merging work on
** the data structure. It performs enough merging work to prevent the
** height of the tree from growing indefinitely assuming that roughly
** nUnit database pages worth of data have been written to the database
** (i.e. the in-memory tree) since the last call.
*/
int lsmSortedAutoWork(
lsm_db *pDb, /* Database handle */
int nUnit /* Pages of data written to in-memory tree */
){
int rc = LSM_OK; /* Return code */
int nDepth = 0; /* Current height of tree (longest path) */
Level *pLevel; /* Used to iterate through levels */
int bRestore = 0;
assert( pDb->pWorker==0 );
assert( pDb->nTransOpen>0 );
/* Determine how many units of work to do before returning. One unit of
** work is achieved by writing one page (~4KB) of merged data. */
for(pLevel=lsmDbSnapshotLevel(pDb->pClient); pLevel; pLevel=pLevel->pNext){
/* nDepth += LSM_MAX(1, pLevel->nRight); */
nDepth += 1;
}
if( lsmTreeHasOld(pDb) ){
nDepth += 1;
bRestore = 1;
rc = lsmSaveCursors(pDb);
if( rc!=LSM_OK ) return rc;
}
if( nDepth>0 ){
int nRemaining; /* Units of work to do before returning */
nRemaining = nUnit * nDepth;
#ifdef LSM_LOG_WORK
lsmLogMessage(pDb, rc, "lsmSortedAutoWork(): %d*%d = %d pages",
nUnit, nDepth, nRemaining);
#endif
assert( nRemaining>=0 );
rc = doLsmWork(pDb, pDb->nMerge, nRemaining, 0);
if( rc==LSM_BUSY ) rc = LSM_OK;
if( bRestore && pDb->pCsr ){
lsmMCursorFreeCache(pDb);
lsmFreeSnapshot(pDb->pEnv, pDb->pClient);
pDb->pClient = 0;
if( rc==LSM_OK ){
rc = lsmCheckpointLoad(pDb, 0);
}
if( rc==LSM_OK ){
rc = lsmCheckpointDeserialize(pDb, 0, pDb->aSnapshot, &pDb->pClient);
}
if( rc==LSM_OK ){
rc = lsmRestoreCursors(pDb);
}
}
}
return rc;
}
/*
** This function is only called during system shutdown. The contents of
** any in-memory trees present (old or current) are written out to disk.
*/
int lsmFlushTreeToDisk(lsm_db *pDb){
int rc;
rc = lsmBeginWork(pDb);
while( rc==LSM_OK && sortedDbIsFull(pDb) ){
rc = sortedWork(pDb, 256, pDb->nMerge, 1, 0);
}
if( rc==LSM_OK ){
rc = sortedNewToplevel(pDb, TREE_BOTH, 0);
}
lsmFinishWork(pDb, 1, &rc);
return rc;
}
/*
** Return a string representation of the segment passed as the only argument.
** Space for the returned string is allocated using lsmMalloc(), and should
** be freed by the caller using lsmFree().
*/
static char *segToString(lsm_env *pEnv, Segment *pSeg, int nMin){
int nSize = pSeg->nSize;
LsmPgno iRoot = pSeg->iRoot;
LsmPgno iFirst = pSeg->iFirst;
LsmPgno iLast = pSeg->iLastPg;
char *z;
char *z1;
char *z2;
int nPad;
z1 = lsmMallocPrintf(pEnv, "%d.%d", iFirst, iLast);
if( iRoot ){
z2 = lsmMallocPrintf(pEnv, "root=%d", iRoot);
}else{
z2 = lsmMallocPrintf(pEnv, "size=%d", nSize);
}
nPad = nMin - 2 - strlen(z1) - 1 - strlen(z2);
nPad = LSM_MAX(0, nPad);
if( iRoot ){
z = lsmMallocPrintf(pEnv, "/%s %*s%s\\", z1, nPad, "", z2);
}else{
z = lsmMallocPrintf(pEnv, "|%s %*s%s|", z1, nPad, "", z2);
}
lsmFree(pEnv, z1);
lsmFree(pEnv, z2);
return z;
}
static int fileToString(
lsm_db *pDb, /* For xMalloc() */
char *aBuf,
int nBuf,
int nMin,
Segment *pSeg
){
int i = 0;
if( pSeg ){
char *zSeg;
zSeg = segToString(pDb->pEnv, pSeg, nMin);
snprintf(&aBuf[i], nBuf-i, "%s", zSeg);
i += strlen(&aBuf[i]);
lsmFree(pDb->pEnv, zSeg);
#ifdef LSM_LOG_FREELIST
lsmInfoArrayStructure(pDb, 1, pSeg->iFirst, &zSeg);
snprintf(&aBuf[i], nBuf-1, " (%s)", zSeg);
i += strlen(&aBuf[i]);
lsmFree(pDb->pEnv, zSeg);
#endif
aBuf[nBuf] = 0;
}else{
aBuf[0] = '\0';
}
return i;
}
void sortedDumpPage(lsm_db *pDb, Segment *pRun, Page *pPg, int bVals){
LsmBlob blob = {0, 0, 0}; /* LsmBlob used for keys */
LsmString s;
int i;
int nRec;
int iPtr;
int flags;
u8 *aData;
int nData;
aData = fsPageData(pPg, &nData);
nRec = pageGetNRec(aData, nData);
iPtr = (int)pageGetPtr(aData, nData);
flags = pageGetFlags(aData, nData);
lsmStringInit(&s, pDb->pEnv);
lsmStringAppendf(&s,"nCell=%d iPtr=%d flags=%d {", nRec, iPtr, flags);
if( flags&SEGMENT_BTREE_FLAG ) iPtr = 0;
for(i=0; i<nRec; i++){
Page *pRef = 0; /* Pointer to page iRef */
int iChar;
u8 *aKey; int nKey = 0; /* Key */
u8 *aVal = 0; int nVal = 0; /* Value */
int iTopic;
u8 *aCell;
int iPgPtr;
int eType;
aCell = pageGetCell(aData, nData, i);
eType = *aCell++;
assert( (flags & SEGMENT_BTREE_FLAG) || eType!=0 );
aCell += lsmVarintGet32(aCell, &iPgPtr);
if( eType==0 ){
LsmPgno iRef; /* Page number of referenced page */
aCell += lsmVarintGet64(aCell, &iRef);
lsmFsDbPageGet(pDb->pFS, pRun, iRef, &pRef);
aKey = pageGetKey(pRun, pRef, 0, &iTopic, &nKey, &blob);
}else{
aCell += lsmVarintGet32(aCell, &nKey);
if( rtIsWrite(eType) ) aCell += lsmVarintGet32(aCell, &nVal);
sortedReadData(0, pPg, (aCell-aData), nKey+nVal, (void **)&aKey, &blob);
aVal = &aKey[nKey];
iTopic = eType;
}
lsmStringAppendf(&s, "%s%2X:", (i==0?"":" "), iTopic);
for(iChar=0; iChar<nKey; iChar++){
lsmStringAppendf(&s, "%c", isalnum(aKey[iChar]) ? aKey[iChar] : '.');
}
if( nVal>0 && bVals ){
lsmStringAppendf(&s, "##");
for(iChar=0; iChar<nVal; iChar++){
lsmStringAppendf(&s, "%c", isalnum(aVal[iChar]) ? aVal[iChar] : '.');
}
}
lsmStringAppendf(&s, " %d", iPgPtr+iPtr);
lsmFsPageRelease(pRef);
}
lsmStringAppend(&s, "}", 1);
lsmLogMessage(pDb, LSM_OK, " Page %d: %s", lsmFsPageNumber(pPg), s.z);
lsmStringClear(&s);
sortedBlobFree(&blob);
}
static void infoCellDump(
lsm_db *pDb, /* Database handle */
Segment *pSeg, /* Segment page belongs to */
int bIndirect, /* True to follow indirect refs */
Page *pPg,
int iCell,
int *peType,
int *piPgPtr,
u8 **paKey, int *pnKey,
u8 **paVal, int *pnVal,
LsmBlob *pBlob
){
u8 *aData; int nData; /* Page data */
u8 *aKey; int nKey = 0; /* Key */
u8 *aVal = 0; int nVal = 0; /* Value */
int eType;
int iPgPtr;
Page *pRef = 0; /* Pointer to page iRef */
u8 *aCell;
aData = fsPageData(pPg, &nData);
aCell = pageGetCell(aData, nData, iCell);
eType = *aCell++;
aCell += lsmVarintGet32(aCell, &iPgPtr);
if( eType==0 ){
int dummy;
LsmPgno iRef; /* Page number of referenced page */
aCell += lsmVarintGet64(aCell, &iRef);
if( bIndirect ){
lsmFsDbPageGet(pDb->pFS, pSeg, iRef, &pRef);
pageGetKeyCopy(pDb->pEnv, pSeg, pRef, 0, &dummy, pBlob);
aKey = (u8 *)pBlob->pData;
nKey = pBlob->nData;
lsmFsPageRelease(pRef);
}else{
aKey = (u8 *)"<indirect>";
nKey = 11;
}
}else{
aCell += lsmVarintGet32(aCell, &nKey);
if( rtIsWrite(eType) ) aCell += lsmVarintGet32(aCell, &nVal);
sortedReadData(pSeg, pPg, (aCell-aData), nKey+nVal, (void **)&aKey, pBlob);
aVal = &aKey[nKey];
}
if( peType ) *peType = eType;
if( piPgPtr ) *piPgPtr = iPgPtr;
if( paKey ) *paKey = aKey;
if( paVal ) *paVal = aVal;
if( pnKey ) *pnKey = nKey;
if( pnVal ) *pnVal = nVal;
}
static int infoAppendBlob(LsmString *pStr, int bHex, u8 *z, int n){
int iChar;
for(iChar=0; iChar<n; iChar++){
if( bHex ){
lsmStringAppendf(pStr, "%02X", z[iChar]);
}else{
lsmStringAppendf(pStr, "%c", isalnum(z[iChar]) ?z[iChar] : '.');
}
}
return LSM_OK;
}
#define INFO_PAGE_DUMP_DATA 0x01
#define INFO_PAGE_DUMP_VALUES 0x02
#define INFO_PAGE_DUMP_HEX 0x04
#define INFO_PAGE_DUMP_INDIRECT 0x08
static int infoPageDump(
lsm_db *pDb, /* Database handle */
LsmPgno iPg, /* Page number of page to dump */
int flags,
char **pzOut /* OUT: lsmMalloc'd string */
){
int rc = LSM_OK; /* Return code */
Page *pPg = 0; /* Handle for page iPg */
int i, j; /* Loop counters */
const int perLine = 16; /* Bytes per line in the raw hex dump */
Segment *pSeg = 0;
Snapshot *pSnap;
int bValues = (flags & INFO_PAGE_DUMP_VALUES);
int bHex = (flags & INFO_PAGE_DUMP_HEX);
int bData = (flags & INFO_PAGE_DUMP_DATA);
int bIndirect = (flags & INFO_PAGE_DUMP_INDIRECT);
*pzOut = 0;
if( iPg==0 ) return LSM_ERROR;
assert( pDb->pClient || pDb->pWorker );
pSnap = pDb->pClient;
if( pSnap==0 ) pSnap = pDb->pWorker;
if( pSnap->redirect.n>0 ){
Level *pLvl;
int bUse = 0;
for(pLvl=pSnap->pLevel; pLvl->pNext; pLvl=pLvl->pNext);
pSeg = (pLvl->nRight==0 ? &pLvl->lhs : &pLvl->aRhs[pLvl->nRight-1]);
rc = lsmFsSegmentContainsPg(pDb->pFS, pSeg, iPg, &bUse);
if( bUse==0 ){
pSeg = 0;
}
}
/* iPg is a real page number (not subject to redirection). So it is safe
** to pass a NULL in place of the segment pointer as the second argument
** to lsmFsDbPageGet() here. */
if( rc==LSM_OK ){
rc = lsmFsDbPageGet(pDb->pFS, 0, iPg, &pPg);
}
if( rc==LSM_OK ){
LsmBlob blob = {0, 0, 0, 0};
int nKeyWidth = 0;
LsmString str;
int nRec;
int iPtr;
int flags2;
int iCell;
u8 *aData; int nData; /* Page data and size thereof */
aData = fsPageData(pPg, &nData);
nRec = pageGetNRec(aData, nData);
iPtr = (int)pageGetPtr(aData, nData);
flags2 = pageGetFlags(aData, nData);
lsmStringInit(&str, pDb->pEnv);
lsmStringAppendf(&str, "Page : %lld (%d bytes)\n", iPg, nData);
lsmStringAppendf(&str, "nRec : %d\n", nRec);
lsmStringAppendf(&str, "iPtr : %d\n", iPtr);
lsmStringAppendf(&str, "flags: %04x\n", flags2);
lsmStringAppendf(&str, "\n");
for(iCell=0; iCell<nRec; iCell++){
int nKey;
infoCellDump(
pDb, pSeg, bIndirect, pPg, iCell, 0, 0, 0, &nKey, 0, 0, &blob
);
if( nKey>nKeyWidth ) nKeyWidth = nKey;
}
if( bHex ) nKeyWidth = nKeyWidth * 2;
for(iCell=0; iCell<nRec; iCell++){
u8 *aKey; int nKey = 0; /* Key */
u8 *aVal; int nVal = 0; /* Value */
int iPgPtr;
int eType;
LsmPgno iAbsPtr;
char zFlags[8];
infoCellDump(pDb, pSeg, bIndirect, pPg, iCell, &eType, &iPgPtr,
&aKey, &nKey, &aVal, &nVal, &blob
);
iAbsPtr = iPgPtr + ((flags2 & SEGMENT_BTREE_FLAG) ? 0 : iPtr);
lsmFlagsToString(eType, zFlags);
lsmStringAppendf(&str, "%s %d (%s) ",
zFlags, iAbsPtr, (rtTopic(eType) ? "sys" : "usr")
);
infoAppendBlob(&str, bHex, aKey, nKey);
if( nVal>0 && bValues ){
lsmStringAppendf(&str, "%*s", nKeyWidth - (nKey*(1+bHex)), "");
lsmStringAppendf(&str, " ");
infoAppendBlob(&str, bHex, aVal, nVal);
}
if( rtTopic(eType) ){
int iBlk = (int)~lsmGetU32(aKey);
lsmStringAppendf(&str, " (block=%d", iBlk);
if( nVal>0 ){
i64 iSnap = lsmGetU64(aVal);
lsmStringAppendf(&str, " snapshot=%lld", iSnap);
}
lsmStringAppendf(&str, ")");
}
lsmStringAppendf(&str, "\n");
}
if( bData ){
lsmStringAppendf(&str, "\n-------------------"
"-------------------------------------------------------------\n");
lsmStringAppendf(&str, "Page %d\n",
iPg, (iPg-1)*nData, iPg*nData - 1);
for(i=0; i<nData; i += perLine){
lsmStringAppendf(&str, "%04x: ", i);
for(j=0; j<perLine; j++){
if( i+j>nData ){
lsmStringAppendf(&str, " ");
}else{
lsmStringAppendf(&str, "%02x ", aData[i+j]);
}
}
lsmStringAppendf(&str, " ");
for(j=0; j<perLine; j++){
if( i+j>nData ){
lsmStringAppendf(&str, " ");
}else{
lsmStringAppendf(&str,"%c", isprint(aData[i+j]) ? aData[i+j] : '.');
}
}
lsmStringAppendf(&str,"\n");
}
}
*pzOut = str.z;
sortedBlobFree(&blob);
lsmFsPageRelease(pPg);
}
return rc;
}
int lsmInfoPageDump(
lsm_db *pDb, /* Database handle */
LsmPgno iPg, /* Page number of page to dump */
int bHex, /* True to output key/value in hex form */
char **pzOut /* OUT: lsmMalloc'd string */
){
int flags = INFO_PAGE_DUMP_DATA | INFO_PAGE_DUMP_VALUES;
if( bHex ) flags |= INFO_PAGE_DUMP_HEX;
return infoPageDump(pDb, iPg, flags, pzOut);
}
void sortedDumpSegment(lsm_db *pDb, Segment *pRun, int bVals){
assert( pDb->xLog );
if( pRun && pRun->iFirst ){
int flags = (bVals ? INFO_PAGE_DUMP_VALUES : 0);
char *zSeg;
Page *pPg;
zSeg = segToString(pDb->pEnv, pRun, 0);
lsmLogMessage(pDb, LSM_OK, "Segment: %s", zSeg);
lsmFree(pDb->pEnv, zSeg);
lsmFsDbPageGet(pDb->pFS, pRun, pRun->iFirst, &pPg);
while( pPg ){
Page *pNext;
char *z = 0;
infoPageDump(pDb, lsmFsPageNumber(pPg), flags, &z);
lsmLogMessage(pDb, LSM_OK, "%s", z);
lsmFree(pDb->pEnv, z);
#if 0
sortedDumpPage(pDb, pRun, pPg, bVals);
#endif
lsmFsDbPageNext(pRun, pPg, 1, &pNext);
lsmFsPageRelease(pPg);
pPg = pNext;
}
}
}
/*
** Invoke the log callback zero or more times with messages that describe
** the current database structure.
*/
void lsmSortedDumpStructure(
lsm_db *pDb, /* Database handle (used for xLog callback) */
Snapshot *pSnap, /* Snapshot to dump */
int bKeys, /* Output the keys from each segment */
int bVals, /* Output the values from each segment */
const char *zWhy /* Caption to print near top of dump */
){
Snapshot *pDump = pSnap;
Level *pTopLevel;
char *zFree = 0;
assert( pSnap );
pTopLevel = lsmDbSnapshotLevel(pDump);
if( pDb->xLog && pTopLevel ){
static int nCall = 0;
Level *pLevel;
int iLevel = 0;
nCall++;
lsmLogMessage(pDb, LSM_OK, "Database structure %d (%s)", nCall, zWhy);
#if 0
if( nCall==1031 || nCall==1032 ) bKeys=1;
#endif
for(pLevel=pTopLevel; pLevel; pLevel=pLevel->pNext){
char zLeft[1024];
char zRight[1024];
int i = 0;
Segment *aLeft[24];
Segment *aRight[24];
int nLeft = 0;
int nRight = 0;
Segment *pSeg = &pLevel->lhs;
aLeft[nLeft++] = pSeg;
for(i=0; i<pLevel->nRight; i++){
aRight[nRight++] = &pLevel->aRhs[i];
}
#ifdef LSM_LOG_FREELIST
if( nRight ){
memmove(&aRight[1], aRight, sizeof(aRight[0])*nRight);
aRight[0] = 0;
nRight++;
}
#endif
for(i=0; i<nLeft || i<nRight; i++){
int iPad = 0;
char zLevel[32];
zLeft[0] = '\0';
zRight[0] = '\0';
if( i<nLeft ){
fileToString(pDb, zLeft, sizeof(zLeft), 24, aLeft[i]);
}
if( i<nRight ){
fileToString(pDb, zRight, sizeof(zRight), 24, aRight[i]);
}
if( i==0 ){
snprintf(zLevel, sizeof(zLevel), "L%d: (age=%d) (flags=%.4x)",
iLevel, (int)pLevel->iAge, (int)pLevel->flags
);
}else{
zLevel[0] = '\0';
}
if( nRight==0 ){
iPad = 10;
}
lsmLogMessage(pDb, LSM_OK, "% 25s % *s% -35s %s",
zLevel, iPad, "", zLeft, zRight
);
}
iLevel++;
}
if( bKeys ){
for(pLevel=pTopLevel; pLevel; pLevel=pLevel->pNext){
int i;
sortedDumpSegment(pDb, &pLevel->lhs, bVals);
for(i=0; i<pLevel->nRight; i++){
sortedDumpSegment(pDb, &pLevel->aRhs[i], bVals);
}
}
}
}
lsmInfoFreelist(pDb, &zFree);
lsmLogMessage(pDb, LSM_OK, "Freelist: %s", zFree);
lsmFree(pDb->pEnv, zFree);
assert( lsmFsIntegrityCheck(pDb) );
}
void lsmSortedFreeLevel(lsm_env *pEnv, Level *pLevel){
Level *pNext;
Level *p;
for(p=pLevel; p; p=pNext){
pNext = p->pNext;
sortedFreeLevel(pEnv, p);
}
}
void lsmSortedSaveTreeCursors(lsm_db *pDb){
MultiCursor *pCsr;
for(pCsr=pDb->pCsr; pCsr; pCsr=pCsr->pNext){
lsmTreeCursorSave(pCsr->apTreeCsr[0]);
lsmTreeCursorSave(pCsr->apTreeCsr[1]);
}
}
void lsmSortedExpandBtreePage(Page *pPg, int nOrig){
u8 *aData;
int nData;
int nEntry;
int iHdr;
aData = lsmFsPageData(pPg, &nData);
nEntry = pageGetNRec(aData, nOrig);
iHdr = SEGMENT_EOF(nOrig, nEntry);
memmove(&aData[iHdr + (nData-nOrig)], &aData[iHdr], nOrig-iHdr);
}
#ifdef LSM_DEBUG_EXPENSIVE
static void assertRunInOrder(lsm_db *pDb, Segment *pSeg){
Page *pPg = 0;
LsmBlob blob1 = {0, 0, 0, 0};
LsmBlob blob2 = {0, 0, 0, 0};
lsmFsDbPageGet(pDb->pFS, pSeg, pSeg->iFirst, &pPg);
while( pPg ){
u8 *aData; int nData;
Page *pNext;
aData = lsmFsPageData(pPg, &nData);
if( 0==(pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG) ){
int i;
int nRec = pageGetNRec(aData, nData);
for(i=0; i<nRec; i++){
int iTopic1, iTopic2;
pageGetKeyCopy(pDb->pEnv, pSeg, pPg, i, &iTopic1, &blob1);
if( i==0 && blob2.nData ){
assert( sortedKeyCompare(
pDb->xCmp, iTopic2, blob2.pData, blob2.nData,
iTopic1, blob1.pData, blob1.nData
)<0 );
}
if( i<(nRec-1) ){
pageGetKeyCopy(pDb->pEnv, pSeg, pPg, i+1, &iTopic2, &blob2);
assert( sortedKeyCompare(
pDb->xCmp, iTopic1, blob1.pData, blob1.nData,
iTopic2, blob2.pData, blob2.nData
)<0 );
}
}
}
lsmFsDbPageNext(pSeg, pPg, 1, &pNext);
lsmFsPageRelease(pPg);
pPg = pNext;
}
sortedBlobFree(&blob1);
sortedBlobFree(&blob2);
}
#endif
#ifdef LSM_DEBUG_EXPENSIVE
/*
** This function is only included in the build if LSM_DEBUG_EXPENSIVE is
** defined. Its only purpose is to evaluate various assert() statements to
** verify that the database is well formed in certain respects.
**
** More specifically, it checks that the array pOne contains the required
** pointers to pTwo. Array pTwo must be a main array. pOne may be either a
** separators array or another main array. If pOne does not contain the
** correct set of pointers, an assert() statement fails.
*/
static int assertPointersOk(
lsm_db *pDb, /* Database handle */
Segment *pOne, /* Segment containing pointers */
Segment *pTwo, /* Segment containing pointer targets */
int bRhs /* True if pTwo may have been Gobble()d */
){
int rc = LSM_OK; /* Error code */
SegmentPtr ptr1; /* Iterates through pOne */
SegmentPtr ptr2; /* Iterates through pTwo */
LsmPgno iPrev;
assert( pOne && pTwo );
memset(&ptr1, 0, sizeof(ptr1));
memset(&ptr2, 0, sizeof(ptr1));
ptr1.pSeg = pOne;
ptr2.pSeg = pTwo;
segmentPtrEndPage(pDb->pFS, &ptr1, 0, &rc);
segmentPtrEndPage(pDb->pFS, &ptr2, 0, &rc);
/* Check that the footer pointer of the first page of pOne points to
** the first page of pTwo. */
iPrev = pTwo->iFirst;
if( ptr1.iPtr!=iPrev && !bRhs ){
assert( 0 );
}
if( rc==LSM_OK && ptr1.nCell>0 ){
rc = segmentPtrLoadCell(&ptr1, 0);
}
while( rc==LSM_OK && ptr2.pPg ){
LsmPgno iThis;
/* Advance to the next page of segment pTwo that contains at least
** one cell. Break out of the loop if the iterator reaches EOF. */
do{
rc = segmentPtrNextPage(&ptr2, 1);
assert( rc==LSM_OK );
}while( rc==LSM_OK && ptr2.pPg && ptr2.nCell==0 );
if( rc!=LSM_OK || ptr2.pPg==0 ) break;
iThis = lsmFsPageNumber(ptr2.pPg);
if( (ptr2.flags & (PGFTR_SKIP_THIS_FLAG|SEGMENT_BTREE_FLAG))==0 ){
/* Load the first cell in the array pTwo page. */
rc = segmentPtrLoadCell(&ptr2, 0);
/* Iterate forwards through pOne, searching for a key that matches the
** key ptr2.pKey/nKey. This key should have a pointer to the page that
** ptr2 currently points to. */
while( rc==LSM_OK ){
int res = rtTopic(ptr1.eType) - rtTopic(ptr2.eType);
if( res==0 ){
res = pDb->xCmp(ptr1.pKey, ptr1.nKey, ptr2.pKey, ptr2.nKey);
}
if( res<0 ){
assert( bRhs || ptr1.iPtr+ptr1.iPgPtr==iPrev );
}else if( res>0 ){
assert( 0 );
}else{
assert( ptr1.iPtr+ptr1.iPgPtr==iThis );
iPrev = iThis;
break;
}
rc = segmentPtrAdvance(0, &ptr1, 0);
if( ptr1.pPg==0 ){
assert( 0 );
}
}
}
}
segmentPtrReset(&ptr1, 0);
segmentPtrReset(&ptr2, 0);
return LSM_OK;
}
/*
** This function is only included in the build if LSM_DEBUG_EXPENSIVE is
** defined. Its only purpose is to evaluate various assert() statements to
** verify that the database is well formed in certain respects.
**
** More specifically, it checks that the b-tree embedded in array pRun
** contains the correct keys. If not, an assert() fails.
*/
static int assertBtreeOk(
lsm_db *pDb,
Segment *pSeg
){
int rc = LSM_OK; /* Return code */
if( pSeg->iRoot ){
LsmBlob blob = {0, 0, 0}; /* Buffer used to cache overflow keys */
FileSystem *pFS = pDb->pFS; /* File system to read from */
Page *pPg = 0; /* Main run page */
BtreeCursor *pCsr = 0; /* Btree cursor */
rc = btreeCursorNew(pDb, pSeg, &pCsr);
if( rc==LSM_OK ){
rc = btreeCursorFirst(pCsr);
}
if( rc==LSM_OK ){
rc = lsmFsDbPageGet(pFS, pSeg, pSeg->iFirst, &pPg);
}
while( rc==LSM_OK ){
Page *pNext;
u8 *aData;
int nData;
int flags;
rc = lsmFsDbPageNext(pSeg, pPg, 1, &pNext);
lsmFsPageRelease(pPg);
pPg = pNext;
if( pPg==0 ) break;
aData = fsPageData(pPg, &nData);
flags = pageGetFlags(aData, nData);
if( rc==LSM_OK
&& 0==((SEGMENT_BTREE_FLAG|PGFTR_SKIP_THIS_FLAG) & flags)
&& 0!=pageGetNRec(aData, nData)
){
u8 *pKey;
int nKey;
int iTopic;
pKey = pageGetKey(pSeg, pPg, 0, &iTopic, &nKey, &blob);
assert( nKey==pCsr->nKey && 0==memcmp(pKey, pCsr->pKey, nKey) );
assert( lsmFsPageNumber(pPg)==pCsr->iPtr );
rc = btreeCursorNext(pCsr);
}
}
assert( rc!=LSM_OK || pCsr->pKey==0 );
if( pPg ) lsmFsPageRelease(pPg);
btreeCursorFree(pCsr);
sortedBlobFree(&blob);
}
return rc;
}
#endif /* ifdef LSM_DEBUG_EXPENSIVE */
|