1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
|
/*
** 2015-06-06
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.
**
** This file was split off from where.c on 2015-06-06 in order to reduce the
** size of where.c and make it easier to edit. This file contains the routines
** that actually generate the bulk of the WHERE loop code. The original where.c
** file retains the code that does query planning and analysis.
*/
#include "sqliteInt.h"
#include "whereInt.h"
#ifndef SQLITE_OMIT_EXPLAIN
/*
** Return the name of the i-th column of the pIdx index.
*/
static const char *explainIndexColumnName(Index *pIdx, int i){
i = pIdx->aiColumn[i];
if( i==XN_EXPR ) return "<expr>";
if( i==XN_ROWID ) return "rowid";
return pIdx->pTable->aCol[i].zCnName;
}
/*
** This routine is a helper for explainIndexRange() below
**
** pStr holds the text of an expression that we are building up one term
** at a time. This routine adds a new term to the end of the expression.
** Terms are separated by AND so add the "AND" text for second and subsequent
** terms only.
*/
static void explainAppendTerm(
StrAccum *pStr, /* The text expression being built */
Index *pIdx, /* Index to read column names from */
int nTerm, /* Number of terms */
int iTerm, /* Zero-based index of first term. */
int bAnd, /* Non-zero to append " AND " */
const char *zOp /* Name of the operator */
){
int i;
assert( nTerm>=1 );
if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
for(i=0; i<nTerm; i++){
if( i ) sqlite3_str_append(pStr, ",", 1);
sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
}
if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
sqlite3_str_append(pStr, zOp, 1);
if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
for(i=0; i<nTerm; i++){
if( i ) sqlite3_str_append(pStr, ",", 1);
sqlite3_str_append(pStr, "?", 1);
}
if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
}
/*
** Argument pLevel describes a strategy for scanning table pTab. This
** function appends text to pStr that describes the subset of table
** rows scanned by the strategy in the form of an SQL expression.
**
** For example, if the query:
**
** SELECT * FROM t1 WHERE a=1 AND b>2;
**
** is run and there is an index on (a, b), then this function returns a
** string similar to:
**
** "a=? AND b>?"
*/
static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
Index *pIndex = pLoop->u.btree.pIndex;
u16 nEq = pLoop->u.btree.nEq;
u16 nSkip = pLoop->nSkip;
int i, j;
if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
sqlite3_str_append(pStr, " (", 2);
for(i=0; i<nEq; i++){
const char *z = explainIndexColumnName(pIndex, i);
if( i ) sqlite3_str_append(pStr, " AND ", 5);
sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
}
j = i;
if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
i = 1;
}
if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
}
sqlite3_str_append(pStr, ")", 1);
}
/*
** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
** is added to the output to describe the table scan strategy in pLevel.
**
** If an OP_Explain opcode is added to the VM, its address is returned.
** Otherwise, if no OP_Explain is coded, zero is returned.
*/
int sqlite3WhereExplainOneScan(
Parse *pParse, /* Parse context */
SrcList *pTabList, /* Table list this loop refers to */
WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
){
int ret = 0;
#if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
if( sqlite3ParseToplevel(pParse)->explain==2 )
#endif
{
SrcItem *pItem = &pTabList->a[pLevel->iFrom];
Vdbe *v = pParse->pVdbe; /* VM being constructed */
sqlite3 *db = pParse->db; /* Database handle */
int isSearch; /* True for a SEARCH. False for SCAN. */
WhereLoop *pLoop; /* The controlling WhereLoop object */
u32 flags; /* Flags that describe this loop */
char *zMsg; /* Text to add to EQP output */
StrAccum str; /* EQP output string */
char zBuf[100]; /* Initial space for EQP output string */
pLoop = pLevel->pWLoop;
flags = pLoop->wsFlags;
if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
|| ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
|| (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
str.printfFlags = SQLITE_PRINTF_INTERNAL;
sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem);
if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
const char *zFmt = 0;
Index *pIdx;
assert( pLoop->u.btree.pIndex!=0 );
pIdx = pLoop->u.btree.pIndex;
assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
if( isSearch ){
zFmt = "PRIMARY KEY";
}
}else if( flags & WHERE_PARTIALIDX ){
zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
}else if( flags & WHERE_AUTO_INDEX ){
zFmt = "AUTOMATIC COVERING INDEX";
}else if( flags & WHERE_IDX_ONLY ){
zFmt = "COVERING INDEX %s";
}else{
zFmt = "INDEX %s";
}
if( zFmt ){
sqlite3_str_append(&str, " USING ", 7);
sqlite3_str_appendf(&str, zFmt, pIdx->zName);
explainIndexRange(&str, pLoop);
}
}else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
char cRangeOp;
#if 0 /* Better output, but breaks many tests */
const Table *pTab = pItem->pTab;
const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName:
"rowid";
#else
const char *zRowid = "rowid";
#endif
sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid);
if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
cRangeOp = '=';
}else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
sqlite3_str_appendf(&str, ">? AND %s", zRowid);
cRangeOp = '<';
}else if( flags&WHERE_BTM_LIMIT ){
cRangeOp = '>';
}else{
assert( flags&WHERE_TOP_LIMIT);
cRangeOp = '<';
}
sqlite3_str_appendf(&str, "%c?)", cRangeOp);
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
}
#endif
if( pItem->fg.jointype & JT_LEFT ){
sqlite3_str_appendf(&str, " LEFT-JOIN");
}
#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
if( pLoop->nOut>=10 ){
sqlite3_str_appendf(&str, " (~%llu rows)",
sqlite3LogEstToInt(pLoop->nOut));
}else{
sqlite3_str_append(&str, " (~1 row)", 9);
}
#endif
zMsg = sqlite3StrAccumFinish(&str);
sqlite3ExplainBreakpoint("",zMsg);
ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
}
return ret;
}
/*
** Add a single OP_Explain opcode that describes a Bloom filter.
**
** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or
** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not
** required and this routine is a no-op.
**
** If an OP_Explain opcode is added to the VM, its address is returned.
** Otherwise, if no OP_Explain is coded, zero is returned.
*/
int sqlite3WhereExplainBloomFilter(
const Parse *pParse, /* Parse context */
const WhereInfo *pWInfo, /* WHERE clause */
const WhereLevel *pLevel /* Bloom filter on this level */
){
int ret = 0;
SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom];
Vdbe *v = pParse->pVdbe; /* VM being constructed */
sqlite3 *db = pParse->db; /* Database handle */
char *zMsg; /* Text to add to EQP output */
int i; /* Loop counter */
WhereLoop *pLoop; /* The where loop */
StrAccum str; /* EQP output string */
char zBuf[100]; /* Initial space for EQP output string */
sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
str.printfFlags = SQLITE_PRINTF_INTERNAL;
sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem);
pLoop = pLevel->pWLoop;
if( pLoop->wsFlags & WHERE_IPK ){
const Table *pTab = pItem->pTab;
if( pTab->iPKey>=0 ){
sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName);
}else{
sqlite3_str_appendf(&str, "rowid=?");
}
}else{
for(i=pLoop->nSkip; i<pLoop->u.btree.nEq; i++){
const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i);
if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5);
sqlite3_str_appendf(&str, "%s=?", z);
}
}
sqlite3_str_append(&str, ")", 1);
zMsg = sqlite3StrAccumFinish(&str);
ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
return ret;
}
#endif /* SQLITE_OMIT_EXPLAIN */
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
/*
** Configure the VM passed as the first argument with an
** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
** implement level pLvl. Argument pSrclist is a pointer to the FROM
** clause that the scan reads data from.
**
** If argument addrExplain is not 0, it must be the address of an
** OP_Explain instruction that describes the same loop.
*/
void sqlite3WhereAddScanStatus(
Vdbe *v, /* Vdbe to add scanstatus entry to */
SrcList *pSrclist, /* FROM clause pLvl reads data from */
WhereLevel *pLvl, /* Level to add scanstatus() entry for */
int addrExplain /* Address of OP_Explain (or 0) */
){
const char *zObj = 0;
WhereLoop *pLoop = pLvl->pWLoop;
if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
zObj = pLoop->u.btree.pIndex->zName;
}else{
zObj = pSrclist->a[pLvl->iFrom].zName;
}
sqlite3VdbeScanStatus(
v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
);
}
#endif
/*
** Disable a term in the WHERE clause. Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
** or USING clause of that join.
**
** Consider the term t2.z='ok' in the following queries:
**
** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
**
** The t2.z='ok' is disabled in the in (2) because it originates
** in the ON clause. The term is disabled in (3) because it is not part
** of a LEFT OUTER JOIN. In (1), the term is not disabled.
**
** Disabling a term causes that term to not be tested in the inner loop
** of the join. Disabling is an optimization. When terms are satisfied
** by indices, we disable them to prevent redundant tests in the inner
** loop. We would get the correct results if nothing were ever disabled,
** but joins might run a little slower. The trick is to disable as much
** as we can without disabling too much. If we disabled in (1), we'd get
** the wrong answer. See ticket #813.
**
** If all the children of a term are disabled, then that term is also
** automatically disabled. In this way, terms get disabled if derived
** virtual terms are tested first. For example:
**
** x GLOB 'abc*' AND x>='abc' AND x<'acd'
** \___________/ \______/ \_____/
** parent child1 child2
**
** Only the parent term was in the original WHERE clause. The child1
** and child2 terms were added by the LIKE optimization. If both of
** the virtual child terms are valid, then testing of the parent can be
** skipped.
**
** Usually the parent term is marked as TERM_CODED. But if the parent
** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
** The TERM_LIKECOND marking indicates that the term should be coded inside
** a conditional such that is only evaluated on the second pass of a
** LIKE-optimization loop, when scanning BLOBs instead of strings.
*/
static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
int nLoop = 0;
assert( pTerm!=0 );
while( (pTerm->wtFlags & TERM_CODED)==0
&& (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_OuterON))
&& (pLevel->notReady & pTerm->prereqAll)==0
){
if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
pTerm->wtFlags |= TERM_LIKECOND;
}else{
pTerm->wtFlags |= TERM_CODED;
}
#ifdef WHERETRACE_ENABLED
if( sqlite3WhereTrace & 0x20000 ){
sqlite3DebugPrintf("DISABLE-");
sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a)));
}
#endif
if( pTerm->iParent<0 ) break;
pTerm = &pTerm->pWC->a[pTerm->iParent];
assert( pTerm!=0 );
pTerm->nChild--;
if( pTerm->nChild!=0 ) break;
nLoop++;
}
}
/*
** Code an OP_Affinity opcode to apply the column affinity string zAff
** to the n registers starting at base.
**
** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
** are no-ops) at the beginning and end of zAff are ignored. If all entries
** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
**
** This routine makes its own copy of zAff so that the caller is free
** to modify zAff after this routine returns.
*/
static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
Vdbe *v = pParse->pVdbe;
if( zAff==0 ){
assert( pParse->db->mallocFailed );
return;
}
assert( v!=0 );
/* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
** entries at the beginning and end of the affinity string.
*/
assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
n--;
base++;
zAff++;
}
while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
n--;
}
/* Code the OP_Affinity opcode if there is anything left to do. */
if( n>0 ){
sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
}
}
/*
** Expression pRight, which is the RHS of a comparison operation, is
** either a vector of n elements or, if n==1, a scalar expression.
** Before the comparison operation, affinity zAff is to be applied
** to the pRight values. This function modifies characters within the
** affinity string to SQLITE_AFF_BLOB if either:
**
** * the comparison will be performed with no affinity, or
** * the affinity change in zAff is guaranteed not to change the value.
*/
static void updateRangeAffinityStr(
Expr *pRight, /* RHS of comparison */
int n, /* Number of vector elements in comparison */
char *zAff /* Affinity string to modify */
){
int i;
for(i=0; i<n; i++){
Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
|| sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
){
zAff[i] = SQLITE_AFF_BLOB;
}
}
}
/*
** pX is an expression of the form: (vector) IN (SELECT ...)
** In other words, it is a vector IN operator with a SELECT clause on the
** LHS. But not all terms in the vector are indexable and the terms might
** not be in the correct order for indexing.
**
** This routine makes a copy of the input pX expression and then adjusts
** the vector on the LHS with corresponding changes to the SELECT so that
** the vector contains only index terms and those terms are in the correct
** order. The modified IN expression is returned. The caller is responsible
** for deleting the returned expression.
**
** Example:
**
** CREATE TABLE t1(a,b,c,d,e,f);
** CREATE INDEX t1x1 ON t1(e,c);
** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
** \_______________________________________/
** The pX expression
**
** Since only columns e and c can be used with the index, in that order,
** the modified IN expression that is returned will be:
**
** (e,c) IN (SELECT z,x FROM t2)
**
** The reduced pX is different from the original (obviously) and thus is
** only used for indexing, to improve performance. The original unaltered
** IN expression must also be run on each output row for correctness.
*/
static Expr *removeUnindexableInClauseTerms(
Parse *pParse, /* The parsing context */
int iEq, /* Look at loop terms starting here */
WhereLoop *pLoop, /* The current loop */
Expr *pX /* The IN expression to be reduced */
){
sqlite3 *db = pParse->db;
Expr *pNew;
pNew = sqlite3ExprDup(db, pX, 0);
if( db->mallocFailed==0 ){
ExprList *pOrigRhs; /* Original unmodified RHS */
ExprList *pOrigLhs; /* Original unmodified LHS */
ExprList *pRhs = 0; /* New RHS after modifications */
ExprList *pLhs = 0; /* New LHS after mods */
int i; /* Loop counter */
Select *pSelect; /* Pointer to the SELECT on the RHS */
assert( ExprUseXSelect(pNew) );
pOrigRhs = pNew->x.pSelect->pEList;
assert( pNew->pLeft!=0 );
assert( ExprUseXList(pNew->pLeft) );
pOrigLhs = pNew->pLeft->x.pList;
for(i=iEq; i<pLoop->nLTerm; i++){
if( pLoop->aLTerm[i]->pExpr==pX ){
int iField;
assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 );
iField = pLoop->aLTerm[i]->u.x.iField - 1;
if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
pOrigRhs->a[iField].pExpr = 0;
assert( pOrigLhs->a[iField].pExpr!=0 );
pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
pOrigLhs->a[iField].pExpr = 0;
}
}
sqlite3ExprListDelete(db, pOrigRhs);
sqlite3ExprListDelete(db, pOrigLhs);
pNew->pLeft->x.pList = pLhs;
pNew->x.pSelect->pEList = pRhs;
if( pLhs && pLhs->nExpr==1 ){
/* Take care here not to generate a TK_VECTOR containing only a
** single value. Since the parser never creates such a vector, some
** of the subroutines do not handle this case. */
Expr *p = pLhs->a[0].pExpr;
pLhs->a[0].pExpr = 0;
sqlite3ExprDelete(db, pNew->pLeft);
pNew->pLeft = p;
}
pSelect = pNew->x.pSelect;
if( pSelect->pOrderBy ){
/* If the SELECT statement has an ORDER BY clause, zero the
** iOrderByCol variables. These are set to non-zero when an
** ORDER BY term exactly matches one of the terms of the
** result-set. Since the result-set of the SELECT statement may
** have been modified or reordered, these variables are no longer
** set correctly. Since setting them is just an optimization,
** it's easiest just to zero them here. */
ExprList *pOrderBy = pSelect->pOrderBy;
for(i=0; i<pOrderBy->nExpr; i++){
pOrderBy->a[i].u.x.iOrderByCol = 0;
}
}
#if 0
printf("For indexing, change the IN expr:\n");
sqlite3TreeViewExpr(0, pX, 0);
printf("Into:\n");
sqlite3TreeViewExpr(0, pNew, 0);
#endif
}
return pNew;
}
/*
** Generate code for a single equality term of the WHERE clause. An equality
** term can be either X=expr or X IN (...). pTerm is the term to be
** coded.
**
** The current value for the constraint is left in a register, the index
** of which is returned. An attempt is made store the result in iTarget but
** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the
** constraint is a TK_EQ or TK_IS, then the current value might be left in
** some other register and it is the caller's responsibility to compensate.
**
** For a constraint of the form X=expr, the expression is evaluated in
** straight-line code. For constraints of the form X IN (...)
** this routine sets up a loop that will iterate over all values of X.
*/
static int codeEqualityTerm(
Parse *pParse, /* The parsing context */
WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
WhereLevel *pLevel, /* The level of the FROM clause we are working on */
int iEq, /* Index of the equality term within this level */
int bRev, /* True for reverse-order IN operations */
int iTarget /* Attempt to leave results in this register */
){
Expr *pX = pTerm->pExpr;
Vdbe *v = pParse->pVdbe;
int iReg; /* Register holding results */
assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
assert( iTarget>0 );
if( pX->op==TK_EQ || pX->op==TK_IS ){
iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
}else if( pX->op==TK_ISNULL ){
iReg = iTarget;
sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
#ifndef SQLITE_OMIT_SUBQUERY
}else{
int eType = IN_INDEX_NOOP;
int iTab;
struct InLoop *pIn;
WhereLoop *pLoop = pLevel->pWLoop;
int i;
int nEq = 0;
int *aiMap = 0;
if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
&& pLoop->u.btree.pIndex!=0
&& pLoop->u.btree.pIndex->aSortOrder[iEq]
){
testcase( iEq==0 );
testcase( bRev );
bRev = !bRev;
}
assert( pX->op==TK_IN );
iReg = iTarget;
for(i=0; i<iEq; i++){
if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
disableTerm(pLevel, pTerm);
return iTarget;
}
}
for(i=iEq;i<pLoop->nLTerm; i++){
assert( pLoop->aLTerm[i]!=0 );
if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
}
iTab = 0;
if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){
eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
}else{
Expr *pExpr = pTerm->pExpr;
if( pExpr->iTable==0 || !ExprHasProperty(pExpr, EP_Subrtn) ){
sqlite3 *db = pParse->db;
pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
if( !db->mallocFailed ){
aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap,&iTab);
pExpr->iTable = iTab;
}
sqlite3ExprDelete(db, pX);
}else{
int n = sqlite3ExprVectorSize(pX->pLeft);
aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*MAX(nEq,n));
eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
}
pX = pExpr;
}
if( eType==IN_INDEX_INDEX_DESC ){
testcase( bRev );
bRev = !bRev;
}
sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
VdbeCoverageIf(v, bRev);
VdbeCoverageIf(v, !bRev);
assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
pLoop->wsFlags |= WHERE_IN_ABLE;
if( pLevel->u.in.nIn==0 ){
pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
}
if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
pLoop->wsFlags |= WHERE_IN_EARLYOUT;
}
i = pLevel->u.in.nIn;
pLevel->u.in.nIn += nEq;
pLevel->u.in.aInLoop =
sqlite3WhereRealloc(pTerm->pWC->pWInfo,
pLevel->u.in.aInLoop,
sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
pIn = pLevel->u.in.aInLoop;
if( pIn ){
int iMap = 0; /* Index in aiMap[] */
pIn += i;
for(i=iEq;i<pLoop->nLTerm; i++){
if( pLoop->aLTerm[i]->pExpr==pX ){
int iOut = iReg + i - iEq;
if( eType==IN_INDEX_ROWID ){
pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
}else{
int iCol = aiMap ? aiMap[iMap++] : 0;
pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
}
sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
if( i==iEq ){
pIn->iCur = iTab;
pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
if( iEq>0 ){
pIn->iBase = iReg - i;
pIn->nPrefix = i;
}else{
pIn->nPrefix = 0;
}
}else{
pIn->eEndLoopOp = OP_Noop;
}
pIn++;
}
}
testcase( iEq>0
&& (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
&& (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
if( iEq>0
&& (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
){
sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
}
}else{
pLevel->u.in.nIn = 0;
}
sqlite3DbFree(pParse->db, aiMap);
#endif
}
/* As an optimization, try to disable the WHERE clause term that is
** driving the index as it will always be true. The correct answer is
** obtained regardless, but we might get the answer with fewer CPU cycles
** by omitting the term.
**
** But do not disable the term unless we are certain that the term is
** not a transitive constraint. For an example of where that does not
** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04)
*/
if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0
|| (pTerm->eOperator & WO_EQUIV)==0
){
disableTerm(pLevel, pTerm);
}
return iReg;
}
/*
** Generate code that will evaluate all == and IN constraints for an
** index scan.
**
** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
** The index has as many as three equality constraints, but in this
** example, the third "c" value is an inequality. So only two
** constraints are coded. This routine will generate code to evaluate
** a==5 and b IN (1,2,3). The current values for a and b will be stored
** in consecutive registers and the index of the first register is returned.
**
** In the example above nEq==2. But this subroutine works for any value
** of nEq including 0. If nEq==0, this routine is nearly a no-op.
** The only thing it does is allocate the pLevel->iMem memory cell and
** compute the affinity string.
**
** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
** occurs after the nEq quality constraints.
**
** This routine allocates a range of nEq+nExtraReg memory cells and returns
** the index of the first memory cell in that range. The code that
** calls this routine will use that memory range to store keys for
** start and termination conditions of the loop.
** key value of the loop. If one or more IN operators appear, then
** this routine allocates an additional nEq memory cells for internal
** use.
**
** Before returning, *pzAff is set to point to a buffer containing a
** copy of the column affinity string of the index allocated using
** sqlite3DbMalloc(). Except, entries in the copy of the string associated
** with equality constraints that use BLOB or NONE affinity are set to
** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
**
** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
**
** In the example above, the index on t1(a) has TEXT affinity. But since
** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
** no conversion should be attempted before using a t2.b value as part of
** a key to search the index. Hence the first byte in the returned affinity
** string in this example would be set to SQLITE_AFF_BLOB.
*/
static int codeAllEqualityTerms(
Parse *pParse, /* Parsing context */
WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
int bRev, /* Reverse the order of IN operators */
int nExtraReg, /* Number of extra registers to allocate */
char **pzAff /* OUT: Set to point to affinity string */
){
u16 nEq; /* The number of == or IN constraints to code */
u16 nSkip; /* Number of left-most columns to skip */
Vdbe *v = pParse->pVdbe; /* The vm under construction */
Index *pIdx; /* The index being used for this loop */
WhereTerm *pTerm; /* A single constraint term */
WhereLoop *pLoop; /* The WhereLoop object */
int j; /* Loop counter */
int regBase; /* Base register */
int nReg; /* Number of registers to allocate */
char *zAff; /* Affinity string to return */
/* This module is only called on query plans that use an index. */
pLoop = pLevel->pWLoop;
assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
nEq = pLoop->u.btree.nEq;
nSkip = pLoop->nSkip;
pIdx = pLoop->u.btree.pIndex;
assert( pIdx!=0 );
/* Figure out how many memory cells we will need then allocate them.
*/
regBase = pParse->nMem + 1;
nReg = pLoop->u.btree.nEq + nExtraReg;
pParse->nMem += nReg;
zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
assert( zAff!=0 || pParse->db->mallocFailed );
if( nSkip ){
int iIdxCur = pLevel->iIdxCur;
sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1);
sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
VdbeCoverageIf(v, bRev==0);
VdbeCoverageIf(v, bRev!=0);
VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
j = sqlite3VdbeAddOp0(v, OP_Goto);
assert( pLevel->addrSkip==0 );
pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
iIdxCur, 0, regBase, nSkip);
VdbeCoverageIf(v, bRev==0);
VdbeCoverageIf(v, bRev!=0);
sqlite3VdbeJumpHere(v, j);
for(j=0; j<nSkip; j++){
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
testcase( pIdx->aiColumn[j]==XN_EXPR );
VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
}
}
/* Evaluate the equality constraints
*/
assert( zAff==0 || (int)strlen(zAff)>=nEq );
for(j=nSkip; j<nEq; j++){
int r1;
pTerm = pLoop->aLTerm[j];
assert( pTerm!=0 );
/* The following testcase is true for indices with redundant columns.
** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
testcase( pTerm->wtFlags & TERM_VIRTUAL );
r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
if( r1!=regBase+j ){
if( nReg==1 ){
sqlite3ReleaseTempReg(pParse, regBase);
regBase = r1;
}else{
sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j);
}
}
}
for(j=nSkip; j<nEq; j++){
pTerm = pLoop->aLTerm[j];
if( pTerm->eOperator & WO_IN ){
if( pTerm->pExpr->flags & EP_xIsSelect ){
/* No affinity ever needs to be (or should be) applied to a value
** from the RHS of an "? IN (SELECT ...)" expression. The
** sqlite3FindInIndex() routine has already ensured that the
** affinity of the comparison has been applied to the value. */
if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
}
}else if( (pTerm->eOperator & WO_ISNULL)==0 ){
Expr *pRight = pTerm->pExpr->pRight;
if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
VdbeCoverage(v);
}
if( pParse->nErr==0 ){
assert( pParse->db->mallocFailed==0 );
if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
zAff[j] = SQLITE_AFF_BLOB;
}
if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
zAff[j] = SQLITE_AFF_BLOB;
}
}
}
}
*pzAff = zAff;
return regBase;
}
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
/*
** If the most recently coded instruction is a constant range constraint
** (a string literal) that originated from the LIKE optimization, then
** set P3 and P5 on the OP_String opcode so that the string will be cast
** to a BLOB at appropriate times.
**
** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
** expression: "x>='ABC' AND x<'abd'". But this requires that the range
** scan loop run twice, once for strings and a second time for BLOBs.
** The OP_String opcodes on the second pass convert the upper and lower
** bound string constants to blobs. This routine makes the necessary changes
** to the OP_String opcodes for that to happen.
**
** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
** only the one pass through the string space is required, so this routine
** becomes a no-op.
*/
static void whereLikeOptimizationStringFixup(
Vdbe *v, /* prepared statement under construction */
WhereLevel *pLevel, /* The loop that contains the LIKE operator */
WhereTerm *pTerm /* The upper or lower bound just coded */
){
if( pTerm->wtFlags & TERM_LIKEOPT ){
VdbeOp *pOp;
assert( pLevel->iLikeRepCntr>0 );
pOp = sqlite3VdbeGetLastOp(v);
assert( pOp!=0 );
assert( pOp->opcode==OP_String8
|| pTerm->pWC->pWInfo->pParse->db->mallocFailed );
pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */
pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */
}
}
#else
# define whereLikeOptimizationStringFixup(A,B,C)
#endif
#ifdef SQLITE_ENABLE_CURSOR_HINTS
/*
** Information is passed from codeCursorHint() down to individual nodes of
** the expression tree (by sqlite3WalkExpr()) using an instance of this
** structure.
*/
struct CCurHint {
int iTabCur; /* Cursor for the main table */
int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */
Index *pIdx; /* The index used to access the table */
};
/*
** This function is called for every node of an expression that is a candidate
** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
** the table CCurHint.iTabCur, verify that the same column can be
** accessed through the index. If it cannot, then set pWalker->eCode to 1.
*/
static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
struct CCurHint *pHint = pWalker->u.pCCurHint;
assert( pHint->pIdx!=0 );
if( pExpr->op==TK_COLUMN
&& pExpr->iTable==pHint->iTabCur
&& sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
){
pWalker->eCode = 1;
}
return WRC_Continue;
}
/*
** Test whether or not expression pExpr, which was part of a WHERE clause,
** should be included in the cursor-hint for a table that is on the rhs
** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
** expression is not suitable.
**
** An expression is unsuitable if it might evaluate to non NULL even if
** a TK_COLUMN node that does affect the value of the expression is set
** to NULL. For example:
**
** col IS NULL
** col IS NOT NULL
** coalesce(col, 1)
** CASE WHEN col THEN 0 ELSE 1 END
*/
static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
if( pExpr->op==TK_IS
|| pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
|| pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
){
pWalker->eCode = 1;
}else if( pExpr->op==TK_FUNCTION ){
int d1;
char d2[4];
if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
pWalker->eCode = 1;
}
}
return WRC_Continue;
}
/*
** This function is called on every node of an expression tree used as an
** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
** that accesses any table other than the one identified by
** CCurHint.iTabCur, then do the following:
**
** 1) allocate a register and code an OP_Column instruction to read
** the specified column into the new register, and
**
** 2) transform the expression node to a TK_REGISTER node that reads
** from the newly populated register.
**
** Also, if the node is a TK_COLUMN that does access the table idenified
** by pCCurHint.iTabCur, and an index is being used (which we will
** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
** an access of the index rather than the original table.
*/
static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
int rc = WRC_Continue;
struct CCurHint *pHint = pWalker->u.pCCurHint;
if( pExpr->op==TK_COLUMN ){
if( pExpr->iTable!=pHint->iTabCur ){
int reg = ++pWalker->pParse->nMem; /* Register for column value */
sqlite3ExprCode(pWalker->pParse, pExpr, reg);
pExpr->op = TK_REGISTER;
pExpr->iTable = reg;
}else if( pHint->pIdx!=0 ){
pExpr->iTable = pHint->iIdxCur;
pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
assert( pExpr->iColumn>=0 );
}
}else if( pExpr->op==TK_AGG_FUNCTION ){
/* An aggregate function in the WHERE clause of a query means this must
** be a correlated sub-query, and expression pExpr is an aggregate from
** the parent context. Do not walk the function arguments in this case.
**
** todo: It should be possible to replace this node with a TK_REGISTER
** expression, as the result of the expression must be stored in a
** register at this point. The same holds for TK_AGG_COLUMN nodes. */
rc = WRC_Prune;
}
return rc;
}
/*
** Insert an OP_CursorHint instruction if it is appropriate to do so.
*/
static void codeCursorHint(
SrcItem *pTabItem, /* FROM clause item */
WhereInfo *pWInfo, /* The where clause */
WhereLevel *pLevel, /* Which loop to provide hints for */
WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */
){
Parse *pParse = pWInfo->pParse;
sqlite3 *db = pParse->db;
Vdbe *v = pParse->pVdbe;
Expr *pExpr = 0;
WhereLoop *pLoop = pLevel->pWLoop;
int iCur;
WhereClause *pWC;
WhereTerm *pTerm;
int i, j;
struct CCurHint sHint;
Walker sWalker;
if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
iCur = pLevel->iTabCur;
assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
sHint.iTabCur = iCur;
sHint.iIdxCur = pLevel->iIdxCur;
sHint.pIdx = pLoop->u.btree.pIndex;
memset(&sWalker, 0, sizeof(sWalker));
sWalker.pParse = pParse;
sWalker.u.pCCurHint = &sHint;
pWC = &pWInfo->sWC;
for(i=0; i<pWC->nBase; i++){
pTerm = &pWC->a[i];
if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
if( pTerm->prereqAll & pLevel->notReady ) continue;
/* Any terms specified as part of the ON(...) clause for any LEFT
** JOIN for which the current table is not the rhs are omitted
** from the cursor-hint.
**
** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
** that were specified as part of the WHERE clause must be excluded.
** This is to address the following:
**
** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
**
** Say there is a single row in t2 that matches (t1.a=t2.b), but its
** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
** pushed down to the cursor, this row is filtered out, causing
** SQLite to synthesize a row of NULL values. Which does match the
** WHERE clause, and so the query returns a row. Which is incorrect.
**
** For the same reason, WHERE terms such as:
**
** WHERE 1 = (t2.c IS NULL)
**
** are also excluded. See codeCursorHintIsOrFunction() for details.
*/
if( pTabItem->fg.jointype & JT_LEFT ){
Expr *pExpr = pTerm->pExpr;
if( !ExprHasProperty(pExpr, EP_OuterON)
|| pExpr->w.iJoin!=pTabItem->iCursor
){
sWalker.eCode = 0;
sWalker.xExprCallback = codeCursorHintIsOrFunction;
sqlite3WalkExpr(&sWalker, pTerm->pExpr);
if( sWalker.eCode ) continue;
}
}else{
if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) continue;
}
/* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
** the cursor. These terms are not needed as hints for a pure range
** scan (that has no == terms) so omit them. */
if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
if( j<pLoop->nLTerm ) continue;
}
/* No subqueries or non-deterministic functions allowed */
if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
/* For an index scan, make sure referenced columns are actually in
** the index. */
if( sHint.pIdx!=0 ){
sWalker.eCode = 0;
sWalker.xExprCallback = codeCursorHintCheckExpr;
sqlite3WalkExpr(&sWalker, pTerm->pExpr);
if( sWalker.eCode ) continue;
}
/* If we survive all prior tests, that means this term is worth hinting */
pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
}
if( pExpr!=0 ){
sWalker.xExprCallback = codeCursorHintFixExpr;
sqlite3WalkExpr(&sWalker, pExpr);
sqlite3VdbeAddOp4(v, OP_CursorHint,
(sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
(const char*)pExpr, P4_EXPR);
}
}
#else
# define codeCursorHint(A,B,C,D) /* No-op */
#endif /* SQLITE_ENABLE_CURSOR_HINTS */
/*
** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
** a rowid value just read from cursor iIdxCur, open on index pIdx. This
** function generates code to do a deferred seek of cursor iCur to the
** rowid stored in register iRowid.
**
** Normally, this is just:
**
** OP_DeferredSeek $iCur $iRowid
**
** Which causes a seek on $iCur to the row with rowid $iRowid.
**
** However, if the scan currently being coded is a branch of an OR-loop and
** the statement currently being coded is a SELECT, then additional information
** is added that might allow OP_Column to omit the seek and instead do its
** lookup on the index, thus avoiding an expensive seek operation. To
** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur
** and P4 is set to an array of integers containing one entry for each column
** in the table. For each table column, if the column is the i'th
** column of the index, then the corresponding array entry is set to (i+1).
** If the column does not appear in the index at all, the array entry is set
** to 0. The OP_Column opcode can check this array to see if the column it
** wants is in the index and if it is, it will substitute the index cursor
** and column number and continue with those new values, rather than seeking
** the table cursor.
*/
static void codeDeferredSeek(
WhereInfo *pWInfo, /* Where clause context */
Index *pIdx, /* Index scan is using */
int iCur, /* Cursor for IPK b-tree */
int iIdxCur /* Index cursor */
){
Parse *pParse = pWInfo->pParse; /* Parse context */
Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */
assert( iIdxCur>0 );
assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
pWInfo->bDeferredSeek = 1;
sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
&& DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
){
int i;
Table *pTab = pIdx->pTable;
u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
if( ai ){
ai[0] = pTab->nCol;
for(i=0; i<pIdx->nColumn-1; i++){
int x1, x2;
assert( pIdx->aiColumn[i]<pTab->nCol );
x1 = pIdx->aiColumn[i];
x2 = sqlite3TableColumnToStorage(pTab, x1);
testcase( x1!=x2 );
if( x1>=0 ) ai[x2+1] = i+1;
}
sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
}
}
}
/*
** If the expression passed as the second argument is a vector, generate
** code to write the first nReg elements of the vector into an array
** of registers starting with iReg.
**
** If the expression is not a vector, then nReg must be passed 1. In
** this case, generate code to evaluate the expression and leave the
** result in register iReg.
*/
static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
assert( nReg>0 );
if( p && sqlite3ExprIsVector(p) ){
#ifndef SQLITE_OMIT_SUBQUERY
if( ExprUseXSelect(p) ){
Vdbe *v = pParse->pVdbe;
int iSelect;
assert( p->op==TK_SELECT );
iSelect = sqlite3CodeSubselect(pParse, p);
sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
}else
#endif
{
int i;
const ExprList *pList;
assert( ExprUseXList(p) );
pList = p->x.pList;
assert( nReg<=pList->nExpr );
for(i=0; i<nReg; i++){
sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
}
}
}else{
assert( nReg==1 || pParse->nErr );
sqlite3ExprCode(pParse, p, iReg);
}
}
/*
** The pTruth expression is always true because it is the WHERE clause
** a partial index that is driving a query loop. Look through all of the
** WHERE clause terms on the query, and if any of those terms must be
** true because pTruth is true, then mark those WHERE clause terms as
** coded.
*/
static void whereApplyPartialIndexConstraints(
Expr *pTruth,
int iTabCur,
WhereClause *pWC
){
int i;
WhereTerm *pTerm;
while( pTruth->op==TK_AND ){
whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
pTruth = pTruth->pRight;
}
for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
Expr *pExpr;
if( pTerm->wtFlags & TERM_CODED ) continue;
pExpr = pTerm->pExpr;
if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
pTerm->wtFlags |= TERM_CODED;
}
}
}
/*
** This routine is called right after An OP_Filter has been generated and
** before the corresponding index search has been performed. This routine
** checks to see if there are additional Bloom filters in inner loops that
** can be checked prior to doing the index lookup. If there are available
** inner-loop Bloom filters, then evaluate those filters now, before the
** index lookup. The idea is that a Bloom filter check is way faster than
** an index lookup, and the Bloom filter might return false, meaning that
** the index lookup can be skipped.
**
** We know that an inner loop uses a Bloom filter because it has the
** WhereLevel.regFilter set. If an inner-loop Bloom filter is checked,
** then clear the WhereLevel.regFilter value to prevent the Bloom filter
** from being checked a second time when the inner loop is evaluated.
*/
static SQLITE_NOINLINE void filterPullDown(
Parse *pParse, /* Parsing context */
WhereInfo *pWInfo, /* Complete information about the WHERE clause */
int iLevel, /* Which level of pWInfo->a[] should be coded */
int addrNxt, /* Jump here to bypass inner loops */
Bitmask notReady /* Loops that are not ready */
){
while( ++iLevel < pWInfo->nLevel ){
WhereLevel *pLevel = &pWInfo->a[iLevel];
WhereLoop *pLoop = pLevel->pWLoop;
if( pLevel->regFilter==0 ) continue;
if( pLevel->pWLoop->nSkip ) continue;
/* ,--- Because sqlite3ConstructBloomFilter() has will not have set
** vvvvv--' pLevel->regFilter if this were true. */
if( NEVER(pLoop->prereq & notReady) ) continue;
assert( pLevel->addrBrk==0 );
pLevel->addrBrk = addrNxt;
if( pLoop->wsFlags & WHERE_IPK ){
WhereTerm *pTerm = pLoop->aLTerm[0];
int regRowid;
assert( pTerm!=0 );
assert( pTerm->pExpr!=0 );
testcase( pTerm->wtFlags & TERM_VIRTUAL );
regRowid = sqlite3GetTempReg(pParse);
regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid);
sqlite3VdbeAddOp2(pParse->pVdbe, OP_MustBeInt, regRowid, addrNxt);
VdbeCoverage(pParse->pVdbe);
sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
addrNxt, regRowid, 1);
VdbeCoverage(pParse->pVdbe);
}else{
u16 nEq = pLoop->u.btree.nEq;
int r1;
char *zStartAff;
assert( pLoop->wsFlags & WHERE_INDEXED );
assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 );
r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff);
codeApplyAffinity(pParse, r1, nEq, zStartAff);
sqlite3DbFree(pParse->db, zStartAff);
sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
addrNxt, r1, nEq);
VdbeCoverage(pParse->pVdbe);
}
pLevel->regFilter = 0;
pLevel->addrBrk = 0;
}
}
/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
Bitmask sqlite3WhereCodeOneLoopStart(
Parse *pParse, /* Parsing context */
Vdbe *v, /* Prepared statement under construction */
WhereInfo *pWInfo, /* Complete information about the WHERE clause */
int iLevel, /* Which level of pWInfo->a[] should be coded */
WhereLevel *pLevel, /* The current level pointer */
Bitmask notReady /* Which tables are currently available */
){
int j, k; /* Loop counters */
int iCur; /* The VDBE cursor for the table */
int addrNxt; /* Where to jump to continue with the next IN case */
int bRev; /* True if we need to scan in reverse order */
WhereLoop *pLoop; /* The WhereLoop object being coded */
WhereClause *pWC; /* Decomposition of the entire WHERE clause */
WhereTerm *pTerm; /* A WHERE clause term */
sqlite3 *db; /* Database connection */
SrcItem *pTabItem; /* FROM clause term being coded */
int addrBrk; /* Jump here to break out of the loop */
int addrHalt; /* addrBrk for the outermost loop */
int addrCont; /* Jump here to continue with next cycle */
int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
int iReleaseReg = 0; /* Temp register to free before returning */
Index *pIdx = 0; /* Index used by loop (if any) */
int iLoop; /* Iteration of constraint generator loop */
pWC = &pWInfo->sWC;
db = pParse->db;
pLoop = pLevel->pWLoop;
pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
iCur = pTabItem->iCursor;
pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
bRev = (pWInfo->revMask>>iLevel)&1;
VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
#if WHERETRACE_ENABLED /* 0x20800 */
if( sqlite3WhereTrace & 0x800 ){
sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n",
iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
sqlite3WhereLoopPrint(pLoop, pWC);
}
if( sqlite3WhereTrace & 0x20000 ){
if( iLevel==0 ){
sqlite3DebugPrintf("WHERE clause being coded:\n");
sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
}
sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
sqlite3WhereClausePrint(pWC);
}
#endif
/* Create labels for the "break" and "continue" instructions
** for the current loop. Jump to addrBrk to break out of a loop.
** Jump to cont to go immediately to the next iteration of the
** loop.
**
** When there is an IN operator, we also have a "addrNxt" label that
** means to continue with the next IN value combination. When
** there are no IN operators in the constraints, the "addrNxt" label
** is the same as "addrBrk".
*/
addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
/* If this is the right table of a LEFT OUTER JOIN, allocate and
** initialize a memory cell that records if this table matches any
** row of the left table of the join.
*/
assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
|| pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
);
if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
pLevel->iLeftJoin = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
VdbeComment((v, "init LEFT JOIN no-match flag"));
}
/* Compute a safe address to jump to if we discover that the table for
** this loop is empty and can never contribute content. */
for(j=iLevel; j>0; j--){
if( pWInfo->a[j].iLeftJoin ) break;
if( pWInfo->a[j].pRJ ) break;
}
addrHalt = pWInfo->a[j].addrBrk;
/* Special case of a FROM clause subquery implemented as a co-routine */
if( pTabItem->fg.viaCoroutine ){
int regYield = pTabItem->regReturn;
sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
VdbeCoverage(v);
VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
pLevel->op = OP_Goto;
}else
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
/* Case 1: The table is a virtual-table. Use the VFilter and VNext
** to access the data.
*/
int iReg; /* P3 Value for OP_VFilter */
int addrNotFound;
int nConstraint = pLoop->nLTerm;
iReg = sqlite3GetTempRange(pParse, nConstraint+2);
addrNotFound = pLevel->addrBrk;
for(j=0; j<nConstraint; j++){
int iTarget = iReg+j+2;
pTerm = pLoop->aLTerm[j];
if( NEVER(pTerm==0) ) continue;
if( pTerm->eOperator & WO_IN ){
if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){
int iTab = pParse->nTab++;
int iCache = ++pParse->nMem;
sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab);
sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache);
}else{
codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
addrNotFound = pLevel->addrNxt;
}
}else{
Expr *pRight = pTerm->pExpr->pRight;
codeExprOrVector(pParse, pRight, iTarget, 1);
if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET
&& pLoop->u.vtab.bOmitOffset
){
assert( pTerm->eOperator==WO_AUX );
assert( pWInfo->pSelect!=0 );
assert( pWInfo->pSelect->iOffset>0 );
sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pSelect->iOffset);
VdbeComment((v,"Zero OFFSET counter"));
}
}
}
sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
pLoop->u.vtab.idxStr,
pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
VdbeCoverage(v);
pLoop->u.vtab.needFree = 0;
/* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
** the u.vtab.idxStr. NULL it out to prevent a use-after-free */
if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
pLevel->p1 = iCur;
pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
pLevel->p2 = sqlite3VdbeCurrentAddr(v);
assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
for(j=0; j<nConstraint; j++){
pTerm = pLoop->aLTerm[j];
if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
disableTerm(pLevel, pTerm);
continue;
}
if( (pTerm->eOperator & WO_IN)!=0
&& (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0
&& !db->mallocFailed
){
Expr *pCompare; /* The comparison operator */
Expr *pRight; /* RHS of the comparison */
VdbeOp *pOp; /* Opcode to access the value of the IN constraint */
int iIn; /* IN loop corresponding to the j-th constraint */
/* Reload the constraint value into reg[iReg+j+2]. The same value
** was loaded into the same register prior to the OP_VFilter, but
** the xFilter implementation might have changed the datatype or
** encoding of the value in the register, so it *must* be reloaded.
*/
for(iIn=0; ALWAYS(iIn<pLevel->u.in.nIn); iIn++){
pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2)
|| (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2)
){
testcase( pOp->opcode==OP_Rowid );
sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
break;
}
}
/* Generate code that will continue to the next row if
** the IN constraint is not satisfied
*/
pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
if( !db->mallocFailed ){
int iFld = pTerm->u.x.iField;
Expr *pLeft = pTerm->pExpr->pLeft;
assert( pLeft!=0 );
if( iFld>0 ){
assert( pLeft->op==TK_VECTOR );
assert( ExprUseXList(pLeft) );
assert( iFld<=pLeft->x.pList->nExpr );
pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr;
}else{
pCompare->pLeft = pLeft;
}
pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
if( pRight ){
pRight->iTable = iReg+j+2;
sqlite3ExprIfFalse(
pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
);
}
pCompare->pLeft = 0;
}
sqlite3ExprDelete(db, pCompare);
}
}
/* These registers need to be preserved in case there is an IN operator
** loop. So we could deallocate the registers here (and potentially
** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems
** simpler and safer to simply not reuse the registers.
**
** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
*/
}else
#endif /* SQLITE_OMIT_VIRTUALTABLE */
if( (pLoop->wsFlags & WHERE_IPK)!=0
&& (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
){
/* Case 2: We can directly reference a single row using an
** equality comparison against the ROWID field. Or
** we reference multiple rows using a "rowid IN (...)"
** construct.
*/
assert( pLoop->u.btree.nEq==1 );
pTerm = pLoop->aLTerm[0];
assert( pTerm!=0 );
assert( pTerm->pExpr!=0 );
testcase( pTerm->wtFlags & TERM_VIRTUAL );
iReleaseReg = ++pParse->nMem;
iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
addrNxt = pLevel->addrNxt;
if( pLevel->regFilter ){
sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
VdbeCoverage(v);
sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
iRowidReg, 1);
VdbeCoverage(v);
filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
}
sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
VdbeCoverage(v);
pLevel->op = OP_Noop;
}else if( (pLoop->wsFlags & WHERE_IPK)!=0
&& (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
){
/* Case 3: We have an inequality comparison against the ROWID field.
*/
int testOp = OP_Noop;
int start;
int memEndValue = 0;
WhereTerm *pStart, *pEnd;
j = 0;
pStart = pEnd = 0;
if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
assert( pStart!=0 || pEnd!=0 );
if( bRev ){
pTerm = pStart;
pStart = pEnd;
pEnd = pTerm;
}
codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
if( pStart ){
Expr *pX; /* The expression that defines the start bound */
int r1, rTemp; /* Registers for holding the start boundary */
int op; /* Cursor seek operation */
/* The following constant maps TK_xx codes into corresponding
** seek opcodes. It depends on a particular ordering of TK_xx
*/
const u8 aMoveOp[] = {
/* TK_GT */ OP_SeekGT,
/* TK_LE */ OP_SeekLE,
/* TK_LT */ OP_SeekLT,
/* TK_GE */ OP_SeekGE
};
assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
assert( (pStart->wtFlags & TERM_VNULL)==0 );
testcase( pStart->wtFlags & TERM_VIRTUAL );
pX = pStart->pExpr;
assert( pX!=0 );
testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
if( sqlite3ExprIsVector(pX->pRight) ){
r1 = rTemp = sqlite3GetTempReg(pParse);
codeExprOrVector(pParse, pX->pRight, r1, 1);
testcase( pX->op==TK_GT );
testcase( pX->op==TK_GE );
testcase( pX->op==TK_LT );
testcase( pX->op==TK_LE );
op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
assert( pX->op!=TK_GT || op==OP_SeekGE );
assert( pX->op!=TK_GE || op==OP_SeekGE );
assert( pX->op!=TK_LT || op==OP_SeekLE );
assert( pX->op!=TK_LE || op==OP_SeekLE );
}else{
r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
disableTerm(pLevel, pStart);
op = aMoveOp[(pX->op - TK_GT)];
}
sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
VdbeComment((v, "pk"));
VdbeCoverageIf(v, pX->op==TK_GT);
VdbeCoverageIf(v, pX->op==TK_LE);
VdbeCoverageIf(v, pX->op==TK_LT);
VdbeCoverageIf(v, pX->op==TK_GE);
sqlite3ReleaseTempReg(pParse, rTemp);
}else{
sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
VdbeCoverageIf(v, bRev==0);
VdbeCoverageIf(v, bRev!=0);
}
if( pEnd ){
Expr *pX;
pX = pEnd->pExpr;
assert( pX!=0 );
assert( (pEnd->wtFlags & TERM_VNULL)==0 );
testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
testcase( pEnd->wtFlags & TERM_VIRTUAL );
memEndValue = ++pParse->nMem;
codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
if( 0==sqlite3ExprIsVector(pX->pRight)
&& (pX->op==TK_LT || pX->op==TK_GT)
){
testOp = bRev ? OP_Le : OP_Ge;
}else{
testOp = bRev ? OP_Lt : OP_Gt;
}
if( 0==sqlite3ExprIsVector(pX->pRight) ){
disableTerm(pLevel, pEnd);
}
}
start = sqlite3VdbeCurrentAddr(v);
pLevel->op = bRev ? OP_Prev : OP_Next;
pLevel->p1 = iCur;
pLevel->p2 = start;
assert( pLevel->p5==0 );
if( testOp!=OP_Noop ){
iRowidReg = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
VdbeCoverageIf(v, testOp==OP_Le);
VdbeCoverageIf(v, testOp==OP_Lt);
VdbeCoverageIf(v, testOp==OP_Ge);
VdbeCoverageIf(v, testOp==OP_Gt);
sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
}
}else if( pLoop->wsFlags & WHERE_INDEXED ){
/* Case 4: A scan using an index.
**
** The WHERE clause may contain zero or more equality
** terms ("==" or "IN" operators) that refer to the N
** left-most columns of the index. It may also contain
** inequality constraints (>, <, >= or <=) on the indexed
** column that immediately follows the N equalities. Only
** the right-most column can be an inequality - the rest must
** use the "==" and "IN" operators. For example, if the
** index is on (x,y,z), then the following clauses are all
** optimized:
**
** x=5
** x=5 AND y=10
** x=5 AND y<10
** x=5 AND y>5 AND y<10
** x=5 AND y=5 AND z<=10
**
** The z<10 term of the following cannot be used, only
** the x=5 term:
**
** x=5 AND z<10
**
** N may be zero if there are inequality constraints.
** If there are no inequality constraints, then N is at
** least one.
**
** This case is also used when there are no WHERE clause
** constraints but an index is selected anyway, in order
** to force the output order to conform to an ORDER BY.
*/
static const u8 aStartOp[] = {
0,
0,
OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
OP_Last, /* 3: (!start_constraints && startEq && bRev) */
OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
};
static const u8 aEndOp[] = {
OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
};
u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */
u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */
int regBase; /* Base register holding constraint values */
WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
int startEq; /* True if range start uses ==, >= or <= */
int endEq; /* True if range end uses ==, >= or <= */
int start_constraints; /* Start of range is constrained */
int nConstraint; /* Number of constraint terms */
int iIdxCur; /* The VDBE cursor for the index */
int nExtraReg = 0; /* Number of extra registers needed */
int op; /* Instruction opcode */
char *zStartAff; /* Affinity for start of range constraint */
char *zEndAff = 0; /* Affinity for end of range constraint */
u8 bSeekPastNull = 0; /* True to seek past initial nulls */
u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
int omitTable; /* True if we use the index only */
int regBignull = 0; /* big-null flag register */
int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */
pIdx = pLoop->u.btree.pIndex;
iIdxCur = pLevel->iIdxCur;
assert( nEq>=pLoop->nSkip );
/* Find any inequality constraint terms for the start and end
** of the range.
*/
j = nEq;
if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
pRangeStart = pLoop->aLTerm[j++];
nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
/* Like optimization range constraints always occur in pairs */
assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
(pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
}
if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
pRangeEnd = pLoop->aLTerm[j++];
nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
assert( pRangeStart!=0 ); /* LIKE opt constraints */
assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
pLevel->iLikeRepCntr = (u32)++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
VdbeComment((v, "LIKE loop counter"));
pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
/* iLikeRepCntr actually stores 2x the counter register number. The
** bottom bit indicates whether the search order is ASC or DESC. */
testcase( bRev );
testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
assert( (bRev & ~1)==0 );
pLevel->iLikeRepCntr <<=1;
pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
}
#endif
if( pRangeStart==0 ){
j = pIdx->aiColumn[nEq];
if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
bSeekPastNull = 1;
}
}
}
assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
/* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
** FIRST). In both cases separate ordered scans are made of those
** index entries for which the column is null and for those for which
** it is not. For an ASC sort, the non-NULL entries are scanned first.
** For DESC, NULL entries are scanned first.
*/
if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
&& (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
){
assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
assert( pRangeEnd==0 && pRangeStart==0 );
testcase( pLoop->nSkip>0 );
nExtraReg = 1;
bSeekPastNull = 1;
pLevel->regBignull = regBignull = ++pParse->nMem;
if( pLevel->iLeftJoin ){
sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
}
pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
}
/* If we are doing a reverse order scan on an ascending index, or
** a forward order scan on a descending index, interchange the
** start and end terms (pRangeStart and pRangeEnd).
*/
if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){
SWAP(WhereTerm *, pRangeEnd, pRangeStart);
SWAP(u8, bSeekPastNull, bStopAtNull);
SWAP(u8, nBtm, nTop);
}
if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){
/* In case OP_SeekScan is used, ensure that the index cursor does not
** point to a valid row for the first iteration of this loop. */
sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
}
/* Generate code to evaluate all constraint terms using == or IN
** and store the values of those terms in an array of registers
** starting at regBase.
*/
codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
if( zStartAff && nTop ){
zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
}
addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
start_constraints = pRangeStart || nEq>0;
/* Seek the index cursor to the start of the range. */
nConstraint = nEq;
if( pRangeStart ){
Expr *pRight = pRangeStart->pExpr->pRight;
codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
if( (pRangeStart->wtFlags & TERM_VNULL)==0
&& sqlite3ExprCanBeNull(pRight)
){
sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
VdbeCoverage(v);
}
if( zStartAff ){
updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
}
nConstraint += nBtm;
testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
if( sqlite3ExprIsVector(pRight)==0 ){
disableTerm(pLevel, pRangeStart);
}else{
startEq = 1;
}
bSeekPastNull = 0;
}else if( bSeekPastNull ){
startEq = 0;
sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
start_constraints = 1;
nConstraint++;
}else if( regBignull ){
sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
start_constraints = 1;
nConstraint++;
}
codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
/* The skip-scan logic inside the call to codeAllEqualityConstraints()
** above has already left the cursor sitting on the correct row,
** so no further seeking is needed */
}else{
if( regBignull ){
sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
VdbeComment((v, "NULL-scan pass ctr"));
}
if( pLevel->regFilter ){
sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
regBase, nEq);
VdbeCoverage(v);
filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
}
op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
assert( op!=0 );
if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
assert( regBignull==0 );
/* TUNING: The OP_SeekScan opcode seeks to reduce the number
** of expensive seek operations by replacing a single seek with
** 1 or more step operations. The question is, how many steps
** should we try before giving up and going with a seek. The cost
** of a seek is proportional to the logarithm of the of the number
** of entries in the tree, so basing the number of steps to try
** on the estimated number of rows in the btree seems like a good
** guess. */
addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
(pIdx->aiRowLogEst[0]+9)/10);
if( pRangeStart ){
sqlite3VdbeChangeP5(v, 1);
sqlite3VdbeChangeP2(v, addrSeekScan, sqlite3VdbeCurrentAddr(v)+1);
addrSeekScan = 0;
}
VdbeCoverage(v);
}
sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
VdbeCoverage(v);
VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
assert( bSeekPastNull==0 || bStopAtNull==0 );
if( regBignull ){
assert( bSeekPastNull==1 || bStopAtNull==1 );
assert( bSeekPastNull==!bStopAtNull );
assert( bStopAtNull==startEq );
sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
nConstraint-startEq);
VdbeCoverage(v);
VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
}
}
/* Load the value for the inequality constraint at the end of the
** range (if any).
*/
nConstraint = nEq;
assert( pLevel->p2==0 );
if( pRangeEnd ){
Expr *pRight = pRangeEnd->pExpr->pRight;
if( addrSeekScan ){
/* For a seek-scan that has a range on the lowest term of the index,
** we have to make the top of the loop be code that sets the end
** condition of the range. Otherwise, the OP_SeekScan might jump
** over that initialization, leaving the range-end value set to the
** range-start value, resulting in a wrong answer.
** See ticket 5981a8c041a3c2f3 (2021-11-02).
*/
pLevel->p2 = sqlite3VdbeCurrentAddr(v);
}
codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
if( (pRangeEnd->wtFlags & TERM_VNULL)==0
&& sqlite3ExprCanBeNull(pRight)
){
sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
VdbeCoverage(v);
}
if( zEndAff ){
updateRangeAffinityStr(pRight, nTop, zEndAff);
codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
}else{
assert( pParse->db->mallocFailed );
}
nConstraint += nTop;
testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
if( sqlite3ExprIsVector(pRight)==0 ){
disableTerm(pLevel, pRangeEnd);
}else{
endEq = 1;
}
}else if( bStopAtNull ){
if( regBignull==0 ){
sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
endEq = 0;
}
nConstraint++;
}
if( zStartAff ) sqlite3DbNNFreeNN(db, zStartAff);
if( zEndAff ) sqlite3DbNNFreeNN(db, zEndAff);
/* Top of the loop body */
if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v);
/* Check if the index cursor is past the end of the range. */
if( nConstraint ){
if( regBignull ){
/* Except, skip the end-of-range check while doing the NULL-scan */
sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
VdbeComment((v, "If NULL-scan 2nd pass"));
VdbeCoverage(v);
}
op = aEndOp[bRev*2 + endEq];
sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
}
if( regBignull ){
/* During a NULL-scan, check to see if we have reached the end of
** the NULLs */
assert( bSeekPastNull==!bStopAtNull );
assert( bSeekPastNull+bStopAtNull==1 );
assert( nConstraint+bSeekPastNull>0 );
sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
VdbeComment((v, "If NULL-scan 1st pass"));
VdbeCoverage(v);
op = aEndOp[bRev*2 + bSeekPastNull];
sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
nConstraint+bSeekPastNull);
testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
}
if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
}
/* Seek the table cursor, if required */
omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
&& (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0;
if( omitTable ){
/* pIdx is a covering index. No need to access the main table. */
}else if( HasRowid(pIdx->pTable) ){
codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
}else if( iCur!=iIdxCur ){
Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
for(j=0; j<pPk->nKeyCol; j++){
k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
}
sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
}
if( pLevel->iLeftJoin==0 ){
/* If a partial index is driving the loop, try to eliminate WHERE clause
** terms from the query that must be true due to the WHERE clause of
** the partial index.
**
** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
** for a LEFT JOIN.
*/
if( pIdx->pPartIdxWhere ){
whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
}
}else{
testcase( pIdx->pPartIdxWhere );
/* The following assert() is not a requirement, merely an observation:
** The OR-optimization doesn't work for the right hand table of
** a LEFT JOIN: */
assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 );
}
/* Record the instruction used to terminate the loop. */
if( pLoop->wsFlags & WHERE_ONEROW ){
pLevel->op = OP_Noop;
}else if( bRev ){
pLevel->op = OP_Prev;
}else{
pLevel->op = OP_Next;
}
pLevel->p1 = iIdxCur;
pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
}else{
assert( pLevel->p5==0 );
}
if( omitTable ) pIdx = 0;
}else
#ifndef SQLITE_OMIT_OR_OPTIMIZATION
if( pLoop->wsFlags & WHERE_MULTI_OR ){
/* Case 5: Two or more separately indexed terms connected by OR
**
** Example:
**
** CREATE TABLE t1(a,b,c,d);
** CREATE INDEX i1 ON t1(a);
** CREATE INDEX i2 ON t1(b);
** CREATE INDEX i3 ON t1(c);
**
** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
**
** In the example, there are three indexed terms connected by OR.
** The top of the loop looks like this:
**
** Null 1 # Zero the rowset in reg 1
**
** Then, for each indexed term, the following. The arguments to
** RowSetTest are such that the rowid of the current row is inserted
** into the RowSet. If it is already present, control skips the
** Gosub opcode and jumps straight to the code generated by WhereEnd().
**
** sqlite3WhereBegin(<term>)
** RowSetTest # Insert rowid into rowset
** Gosub 2 A
** sqlite3WhereEnd()
**
** Following the above, code to terminate the loop. Label A, the target
** of the Gosub above, jumps to the instruction right after the Goto.
**
** Null 1 # Zero the rowset in reg 1
** Goto B # The loop is finished.
**
** A: <loop body> # Return data, whatever.
**
** Return 2 # Jump back to the Gosub
**
** B: <after the loop>
**
** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
** use an ephemeral index instead of a RowSet to record the primary
** keys of the rows we have already seen.
**
*/
WhereClause *pOrWc; /* The OR-clause broken out into subterms */
SrcList *pOrTab; /* Shortened table list or OR-clause generation */
Index *pCov = 0; /* Potential covering index (or NULL) */
int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
int regRowset = 0; /* Register for RowSet object */
int regRowid = 0; /* Register holding rowid */
int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
int iRetInit; /* Address of regReturn init */
int untestedTerms = 0; /* Some terms not completely tested */
int ii; /* Loop counter */
Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
Table *pTab = pTabItem->pTab;
pTerm = pLoop->aLTerm[0];
assert( pTerm!=0 );
assert( pTerm->eOperator & WO_OR );
assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
pOrWc = &pTerm->u.pOrInfo->wc;
pLevel->op = OP_Return;
pLevel->p1 = regReturn;
/* Set up a new SrcList in pOrTab containing the table being scanned
** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
*/
if( pWInfo->nLevel>1 ){
int nNotReady; /* The number of notReady tables */
SrcItem *origSrc; /* Original list of tables */
nNotReady = pWInfo->nLevel - iLevel - 1;
pOrTab = sqlite3DbMallocRawNN(db,
sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
if( pOrTab==0 ) return notReady;
pOrTab->nAlloc = (u8)(nNotReady + 1);
pOrTab->nSrc = pOrTab->nAlloc;
memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
origSrc = pWInfo->pTabList->a;
for(k=1; k<=nNotReady; k++){
memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
}
}else{
pOrTab = pWInfo->pTabList;
}
/* Initialize the rowset register to contain NULL. An SQL NULL is
** equivalent to an empty rowset. Or, create an ephemeral index
** capable of holding primary keys in the case of a WITHOUT ROWID.
**
** Also initialize regReturn to contain the address of the instruction
** immediately following the OP_Return at the bottom of the loop. This
** is required in a few obscure LEFT JOIN cases where control jumps
** over the top of the loop into the body of it. In this case the
** correct response for the end-of-loop code (the OP_Return) is to
** fall through to the next instruction, just as an OP_Next does if
** called on an uninitialized cursor.
*/
if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
if( HasRowid(pTab) ){
regRowset = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
}else{
Index *pPk = sqlite3PrimaryKeyIndex(pTab);
regRowset = pParse->nTab++;
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
sqlite3VdbeSetP4KeyInfo(pParse, pPk);
}
regRowid = ++pParse->nMem;
}
iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
/* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
** Then for every term xN, evaluate as the subexpression: xN AND y
** That way, terms in y that are factored into the disjunction will
** be picked up by the recursive calls to sqlite3WhereBegin() below.
**
** Actually, each subexpression is converted to "xN AND w" where w is
** the "interesting" terms of z - terms that did not originate in the
** ON or USING clause of a LEFT JOIN, and terms that are usable as
** indices.
**
** This optimization also only applies if the (x1 OR x2 OR ...) term
** is not contained in the ON clause of a LEFT JOIN.
** See ticket http://www.sqlite.org/src/info/f2369304e4
**
** 2022-02-04: Do not push down slices of a row-value comparison.
** In other words, "w" or "y" may not be a slice of a vector. Otherwise,
** the initialization of the right-hand operand of the vector comparison
** might not occur, or might occur only in an OR branch that is not
** taken. dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1.
**
** 2022-03-03: Do not push down expressions that involve subqueries.
** The subquery might get coded as a subroutine. Any table-references
** in the subquery might be resolved to index-references for the index on
** the OR branch in which the subroutine is coded. But if the subroutine
** is invoked from a different OR branch that uses a different index, such
** index-references will not work. tag-20220303a
** https://sqlite.org/forum/forumpost/36937b197273d403
*/
if( pWC->nTerm>1 ){
int iTerm;
for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
Expr *pExpr = pWC->a[iTerm].pExpr;
if( &pWC->a[iTerm] == pTerm ) continue;
testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
testcase( pWC->a[iTerm].wtFlags & TERM_SLICE );
if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){
continue;
}
if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
if( ExprHasProperty(pExpr, EP_Subquery) ) continue; /* tag-20220303a */
pExpr = sqlite3ExprDup(db, pExpr, 0);
pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
}
if( pAndExpr ){
/* The extra 0x10000 bit on the opcode is masked off and does not
** become part of the new Expr.op. However, it does make the
** op==TK_AND comparison inside of sqlite3PExpr() false, and this
** prevents sqlite3PExpr() from applying the AND short-circuit
** optimization, which we do not want here. */
pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
}
}
/* Run a separate WHERE clause for each term of the OR clause. After
** eliminating duplicates from other WHERE clauses, the action for each
** sub-WHERE clause is to to invoke the main loop body as a subroutine.
*/
ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
for(ii=0; ii<pOrWc->nTerm; ii++){
WhereTerm *pOrTerm = &pOrWc->a[ii];
if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
WhereInfo *pSubWInfo; /* Info for single OR-term scan */
Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
Expr *pDelete; /* Local copy of OR clause term */
int jmp1 = 0; /* Address of jump operation */
testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
&& !ExprHasProperty(pOrExpr, EP_OuterON)
); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0);
if( db->mallocFailed ){
sqlite3ExprDelete(db, pDelete);
continue;
}
if( pAndExpr ){
pAndExpr->pLeft = pOrExpr;
pOrExpr = pAndExpr;
}
/* Loop through table entries that match term pOrTerm. */
ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0,
WHERE_OR_SUBCLAUSE, iCovCur);
assert( pSubWInfo || pParse->nErr );
if( pSubWInfo ){
WhereLoop *pSubLoop;
int addrExplain = sqlite3WhereExplainOneScan(
pParse, pOrTab, &pSubWInfo->a[0], 0
);
sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
/* This is the sub-WHERE clause body. First skip over
** duplicate rows from prior sub-WHERE clauses, and record the
** rowid (or PRIMARY KEY) for the current row so that the same
** row will be skipped in subsequent sub-WHERE clauses.
*/
if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
if( HasRowid(pTab) ){
sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
regRowid, iSet);
VdbeCoverage(v);
}else{
Index *pPk = sqlite3PrimaryKeyIndex(pTab);
int nPk = pPk->nKeyCol;
int iPk;
int r;
/* Read the PK into an array of temp registers. */
r = sqlite3GetTempRange(pParse, nPk);
for(iPk=0; iPk<nPk; iPk++){
int iCol = pPk->aiColumn[iPk];
sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
}
/* Check if the temp table already contains this key. If so,
** the row has already been included in the result set and
** can be ignored (by jumping past the Gosub below). Otherwise,
** insert the key into the temp table and proceed with processing
** the row.
**
** Use some of the same optimizations as OP_RowSetTest: If iSet
** is zero, assume that the key cannot already be present in
** the temp table. And if iSet is -1, assume that there is no
** need to insert the key into the temp table, as it will never
** be tested for. */
if( iSet ){
jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
VdbeCoverage(v);
}
if( iSet>=0 ){
sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
r, nPk);
if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
}
/* Release the array of temp registers */
sqlite3ReleaseTempRange(pParse, r, nPk);
}
}
/* Invoke the main loop body as a subroutine */
sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
/* Jump here (skipping the main loop body subroutine) if the
** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
/* The pSubWInfo->untestedTerms flag means that this OR term
** contained one or more AND term from a notReady table. The
** terms from the notReady table could not be tested and will
** need to be tested later.
*/
if( pSubWInfo->untestedTerms ) untestedTerms = 1;
/* If all of the OR-connected terms are optimized using the same
** index, and the index is opened using the same cursor number
** by each call to sqlite3WhereBegin() made by this loop, it may
** be possible to use that index as a covering index.
**
** If the call to sqlite3WhereBegin() above resulted in a scan that
** uses an index, and this is either the first OR-connected term
** processed or the index is the same as that used by all previous
** terms, set pCov to the candidate covering index. Otherwise, set
** pCov to NULL to indicate that no candidate covering index will
** be available.
*/
pSubLoop = pSubWInfo->a[0].pWLoop;
assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
&& (ii==0 || pSubLoop->u.btree.pIndex==pCov)
&& (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
){
assert( pSubWInfo->a[0].iIdxCur==iCovCur );
pCov = pSubLoop->u.btree.pIndex;
}else{
pCov = 0;
}
if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
pWInfo->bDeferredSeek = 1;
}
/* Finish the loop through table entries that match term pOrTerm. */
sqlite3WhereEnd(pSubWInfo);
ExplainQueryPlanPop(pParse);
}
sqlite3ExprDelete(db, pDelete);
}
}
ExplainQueryPlanPop(pParse);
assert( pLevel->pWLoop==pLoop );
assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 );
assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 );
pLevel->u.pCoveringIdx = pCov;
if( pCov ) pLevel->iIdxCur = iCovCur;
if( pAndExpr ){
pAndExpr->pLeft = 0;
sqlite3ExprDelete(db, pAndExpr);
}
sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
sqlite3VdbeGoto(v, pLevel->addrBrk);
sqlite3VdbeResolveLabel(v, iLoopBody);
/* Set the P2 operand of the OP_Return opcode that will end the current
** loop to point to this spot, which is the top of the next containing
** loop. The byte-code formatter will use that P2 value as a hint to
** indent everything in between the this point and the final OP_Return.
** See tag-20220407a in vdbe.c and shell.c */
assert( pLevel->op==OP_Return );
pLevel->p2 = sqlite3VdbeCurrentAddr(v);
if( pWInfo->nLevel>1 ){ sqlite3DbFreeNN(db, pOrTab); }
if( !untestedTerms ) disableTerm(pLevel, pTerm);
}else
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
{
/* Case 6: There is no usable index. We must do a complete
** scan of the entire table.
*/
static const u8 aStep[] = { OP_Next, OP_Prev };
static const u8 aStart[] = { OP_Rewind, OP_Last };
assert( bRev==0 || bRev==1 );
if( pTabItem->fg.isRecursive ){
/* Tables marked isRecursive have only a single row that is stored in
** a pseudo-cursor. No need to Rewind or Next such cursors. */
pLevel->op = OP_Noop;
}else{
codeCursorHint(pTabItem, pWInfo, pLevel, 0);
pLevel->op = aStep[bRev];
pLevel->p1 = iCur;
pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
VdbeCoverageIf(v, bRev==0);
VdbeCoverageIf(v, bRev!=0);
pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
}
}
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
#endif
/* Insert code to test every subexpression that can be completely
** computed using the current set of tables.
**
** This loop may run between one and three times, depending on the
** constraints to be generated. The value of stack variable iLoop
** determines the constraints coded by each iteration, as follows:
**
** iLoop==1: Code only expressions that are entirely covered by pIdx.
** iLoop==2: Code remaining expressions that do not contain correlated
** sub-queries.
** iLoop==3: Code all remaining expressions.
**
** An effort is made to skip unnecessary iterations of the loop.
*/
iLoop = (pIdx ? 1 : 2);
do{
int iNext = 0; /* Next value for iLoop */
for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
Expr *pE;
int skipLikeAddr = 0;
testcase( pTerm->wtFlags & TERM_VIRTUAL );
testcase( pTerm->wtFlags & TERM_CODED );
if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
testcase( pWInfo->untestedTerms==0
&& (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
pWInfo->untestedTerms = 1;
continue;
}
pE = pTerm->pExpr;
assert( pE!=0 );
if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ){
if( !ExprHasProperty(pE,EP_OuterON|EP_InnerON) ){
/* Defer processing WHERE clause constraints until after outer
** join processing. tag-20220513a */
continue;
}else if( (pTabItem->fg.jointype & JT_LEFT)==JT_LEFT
&& !ExprHasProperty(pE,EP_OuterON) ){
continue;
}else{
Bitmask m = sqlite3WhereGetMask(&pWInfo->sMaskSet, pE->w.iJoin);
if( m & pLevel->notReady ){
/* An ON clause that is not ripe */
continue;
}
}
}
if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
iNext = 2;
continue;
}
if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
if( iNext==0 ) iNext = 3;
continue;
}
if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
/* If the TERM_LIKECOND flag is set, that means that the range search
** is sufficient to guarantee that the LIKE operator is true, so we
** can skip the call to the like(A,B) function. But this only works
** for strings. So do not skip the call to the function on the pass
** that compares BLOBs. */
#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
continue;
#else
u32 x = pLevel->iLikeRepCntr;
if( x>0 ){
skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
VdbeCoverageIf(v, (x&1)==1);
VdbeCoverageIf(v, (x&1)==0);
}
#endif
}
#ifdef WHERETRACE_ENABLED /* 0xffff */
if( sqlite3WhereTrace ){
VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
pWC->nTerm-j, pTerm, iLoop));
}
if( sqlite3WhereTrace & 0x800 ){
sqlite3DebugPrintf("Coding auxiliary constraint:\n");
sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
}
#endif
sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
pTerm->wtFlags |= TERM_CODED;
}
iLoop = iNext;
}while( iLoop>0 );
/* Insert code to test for implied constraints based on transitivity
** of the "==" operator.
**
** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
** and we are coding the t1 loop and the t2 loop has not yet coded,
** then we cannot use the "t1.a=t2.b" constraint, but we can code
** the implied "t1.a=123" constraint.
*/
for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){
Expr *pE, sEAlt;
WhereTerm *pAlt;
if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
if( pTerm->leftCursor!=iCur ) continue;
if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ) continue;
pE = pTerm->pExpr;
#ifdef WHERETRACE_ENABLED /* 0x800 */
if( sqlite3WhereTrace & 0x800 ){
sqlite3DebugPrintf("Coding transitive constraint:\n");
sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
}
#endif
assert( !ExprHasProperty(pE, EP_OuterON) );
assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
WO_EQ|WO_IN|WO_IS, 0);
if( pAlt==0 ) continue;
if( pAlt->wtFlags & (TERM_CODED) ) continue;
if( (pAlt->eOperator & WO_IN)
&& ExprUseXSelect(pAlt->pExpr)
&& (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
){
continue;
}
testcase( pAlt->eOperator & WO_EQ );
testcase( pAlt->eOperator & WO_IS );
testcase( pAlt->eOperator & WO_IN );
VdbeModuleComment((v, "begin transitive constraint"));
sEAlt = *pAlt->pExpr;
sEAlt.pLeft = pE->pLeft;
sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
pAlt->wtFlags |= TERM_CODED;
}
/* For a RIGHT OUTER JOIN, record the fact that the current row has
** been matched at least once.
*/
if( pLevel->pRJ ){
Table *pTab;
int nPk;
int r;
int jmp1 = 0;
WhereRightJoin *pRJ = pLevel->pRJ;
/* pTab is the right-hand table of the RIGHT JOIN. Generate code that
** will record that the current row of that table has been matched at
** least once. This is accomplished by storing the PK for the row in
** both the iMatch index and the regBloom Bloom filter.
*/
pTab = pWInfo->pTabList->a[pLevel->iFrom].pTab;
if( HasRowid(pTab) ){
r = sqlite3GetTempRange(pParse, 2);
sqlite3ExprCodeGetColumnOfTable(v, pTab, pLevel->iTabCur, -1, r+1);
nPk = 1;
}else{
int iPk;
Index *pPk = sqlite3PrimaryKeyIndex(pTab);
nPk = pPk->nKeyCol;
r = sqlite3GetTempRange(pParse, nPk+1);
for(iPk=0; iPk<nPk; iPk++){
int iCol = pPk->aiColumn[iPk];
sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+1+iPk);
}
}
jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, 0, r+1, nPk);
VdbeCoverage(v);
VdbeComment((v, "match against %s", pTab->zName));
sqlite3VdbeAddOp3(v, OP_MakeRecord, r+1, nPk, r);
sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pRJ->iMatch, r, r+1, nPk);
sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pRJ->regBloom, 0, r+1, nPk);
sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
sqlite3VdbeJumpHere(v, jmp1);
sqlite3ReleaseTempRange(pParse, r, nPk+1);
}
/* For a LEFT OUTER JOIN, generate code that will record the fact that
** at least one row of the right table has matched the left table.
*/
if( pLevel->iLeftJoin ){
pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
VdbeComment((v, "record LEFT JOIN hit"));
if( pLevel->pRJ==0 ){
goto code_outer_join_constraints; /* WHERE clause constraints */
}
}
if( pLevel->pRJ ){
/* Create a subroutine used to process all interior loops and code
** of the RIGHT JOIN. During normal operation, the subroutine will
** be in-line with the rest of the code. But at the end, a separate
** loop will run that invokes this subroutine for unmatched rows
** of pTab, with all tables to left begin set to NULL.
*/
WhereRightJoin *pRJ = pLevel->pRJ;
sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pRJ->regReturn);
pRJ->addrSubrtn = sqlite3VdbeCurrentAddr(v);
assert( pParse->withinRJSubrtn < 255 );
pParse->withinRJSubrtn++;
/* WHERE clause constraints must be deferred until after outer join
** row elimination has completed, since WHERE clause constraints apply
** to the results of the OUTER JOIN. The following loop generates the
** appropriate WHERE clause constraint checks. tag-20220513a.
*/
code_outer_join_constraints:
for(pTerm=pWC->a, j=0; j<pWC->nBase; j++, pTerm++){
testcase( pTerm->wtFlags & TERM_VIRTUAL );
testcase( pTerm->wtFlags & TERM_CODED );
if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
assert( pWInfo->untestedTerms );
continue;
}
if( pTabItem->fg.jointype & JT_LTORJ ) continue;
assert( pTerm->pExpr );
sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
pTerm->wtFlags |= TERM_CODED;
}
}
#if WHERETRACE_ENABLED /* 0x20800 */
if( sqlite3WhereTrace & 0x20000 ){
sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
iLevel);
sqlite3WhereClausePrint(pWC);
}
if( sqlite3WhereTrace & 0x800 ){
sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n",
iLevel, (u64)pLevel->notReady);
}
#endif
return pLevel->notReady;
}
/*
** Generate the code for the loop that finds all non-matched terms
** for a RIGHT JOIN.
*/
SQLITE_NOINLINE void sqlite3WhereRightJoinLoop(
WhereInfo *pWInfo,
int iLevel,
WhereLevel *pLevel
){
Parse *pParse = pWInfo->pParse;
Vdbe *v = pParse->pVdbe;
WhereRightJoin *pRJ = pLevel->pRJ;
Expr *pSubWhere = 0;
WhereClause *pWC = &pWInfo->sWC;
WhereInfo *pSubWInfo;
WhereLoop *pLoop = pLevel->pWLoop;
SrcItem *pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
SrcList sFrom;
Bitmask mAll = 0;
int k;
ExplainQueryPlan((pParse, 1, "RIGHT-JOIN %s", pTabItem->pTab->zName));
sqlite3VdbeNoJumpsOutsideSubrtn(v, pRJ->addrSubrtn, pRJ->endSubrtn,
pRJ->regReturn);
for(k=0; k<iLevel; k++){
int iIdxCur;
mAll |= pWInfo->a[k].pWLoop->maskSelf;
sqlite3VdbeAddOp1(v, OP_NullRow, pWInfo->a[k].iTabCur);
iIdxCur = pWInfo->a[k].iIdxCur;
if( iIdxCur ){
sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
}
}
if( (pTabItem->fg.jointype & JT_LTORJ)==0 ){
mAll |= pLoop->maskSelf;
for(k=0; k<pWC->nTerm; k++){
WhereTerm *pTerm = &pWC->a[k];
if( (pTerm->wtFlags & (TERM_VIRTUAL|TERM_SLICE))!=0
&& pTerm->eOperator!=WO_ROWVAL
){
break;
}
if( pTerm->prereqAll & ~mAll ) continue;
if( ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) ) continue;
pSubWhere = sqlite3ExprAnd(pParse, pSubWhere,
sqlite3ExprDup(pParse->db, pTerm->pExpr, 0));
}
}
sFrom.nSrc = 1;
sFrom.nAlloc = 1;
memcpy(&sFrom.a[0], pTabItem, sizeof(SrcItem));
sFrom.a[0].fg.jointype = 0;
assert( pParse->withinRJSubrtn < 100 );
pParse->withinRJSubrtn++;
pSubWInfo = sqlite3WhereBegin(pParse, &sFrom, pSubWhere, 0, 0, 0,
WHERE_RIGHT_JOIN, 0);
if( pSubWInfo ){
int iCur = pLevel->iTabCur;
int r = ++pParse->nMem;
int nPk;
int jmp;
int addrCont = sqlite3WhereContinueLabel(pSubWInfo);
Table *pTab = pTabItem->pTab;
if( HasRowid(pTab) ){
sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, r);
nPk = 1;
}else{
int iPk;
Index *pPk = sqlite3PrimaryKeyIndex(pTab);
nPk = pPk->nKeyCol;
pParse->nMem += nPk - 1;
for(iPk=0; iPk<nPk; iPk++){
int iCol = pPk->aiColumn[iPk];
sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
}
}
jmp = sqlite3VdbeAddOp4Int(v, OP_Filter, pRJ->regBloom, 0, r, nPk);
VdbeCoverage(v);
sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, addrCont, r, nPk);
VdbeCoverage(v);
sqlite3VdbeJumpHere(v, jmp);
sqlite3VdbeAddOp2(v, OP_Gosub, pRJ->regReturn, pRJ->addrSubrtn);
sqlite3WhereEnd(pSubWInfo);
}
sqlite3ExprDelete(pParse->db, pSubWhere);
ExplainQueryPlanPop(pParse);
assert( pParse->withinRJSubrtn>0 );
pParse->withinRJSubrtn--;
}
|