1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
|
/*
* SPDX-License-Identifier: GPL-2.0-or-later
*
* Since 7a3000f7ba548cf7d74ac77cc63fe8de228a669e (v2.30) hwclock is linked
* with parse_date.y from gnullib. This gnulib code is distributed with GPLv3.
* Use --disable-hwclock-gplv3 to exclude this code.
*
*
* clock.c was written by Charles Hedrick, hedrick@cs.rutgers.edu, Apr 1992
* Modified for clock adjustments - Rob Hooft <hooft@chem.ruu.nl>, Nov 1992
* Improvements by Harald Koenig <koenig@nova.tat.physik.uni-tuebingen.de>
* and Alan Modra <alan@spri.levels.unisa.edu.au>.
*
* Major rewrite by Bryan Henderson <bryanh@giraffe-data.com>, 96.09.19.
* The new program is called hwclock. New features:
*
* - You can set the hardware clock without also modifying the system
* clock.
* - You can read and set the clock with finer than 1 second precision.
* - When you set the clock, hwclock automatically refigures the drift
* rate, based on how far off the clock was before you set it.
*
* Reshuffled things, added sparc code, and re-added alpha stuff
* by David Mosberger <davidm@azstarnet.com>
* and Jay Estabrook <jestabro@amt.tay1.dec.com>
* and Martin Ostermann <ost@comnets.rwth-aachen.de>, aeb@cwi.nl, 990212.
*
* Fix for Award 2094 bug, Dave Coffin (dcoffin@shore.net) 11/12/98
* Change of local time handling, Stefan Ring <e9725446@stud3.tuwien.ac.at>
* Change of adjtime handling, James P. Rutledge <ao112@rgfn.epcc.edu>.
*
*
*/
/*
* Explanation of `adjusting' (Rob Hooft):
*
* The problem with my machine is that its CMOS clock is 10 seconds
* per day slow. With this version of clock.c, and my '/etc/rc.local'
* reading '/etc/clock -au' instead of '/etc/clock -u -s', this error
* is automatically corrected at every boot.
*
* To do this job, the program reads and writes the file '/etc/adjtime'
* to determine the correction, and to save its data. In this file are
* three numbers:
*
* 1) the correction in seconds per day. (So if your clock runs 5
* seconds per day fast, the first number should read -5.0)
* 2) the number of seconds since 1/1/1970 the last time the program
* was used
* 3) the remaining part of a second which was leftover after the last
* adjustment
*
* Installation and use of this program:
*
* a) create a file '/etc/adjtime' containing as the first and only
* line: '0.0 0 0.0'
* b) run 'clock -au' or 'clock -a', depending on whether your cmos is
* in universal or local time. This updates the second number.
* c) set your system time using the 'date' command.
* d) update your cmos time using 'clock -wu' or 'clock -w'
* e) replace the first number in /etc/adjtime by your correction.
* f) put the command 'clock -au' or 'clock -a' in your '/etc/rc.local'
*/
#include <errno.h>
#include <getopt.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/time.h>
#ifdef HAVE_SYS_SYSCALL_H
#include <sys/syscall.h>
#endif
#include <time.h>
#include <unistd.h>
#include <inttypes.h>
#include "c.h"
#include "closestream.h"
#include "nls.h"
#include "optutils.h"
#include "pathnames.h"
#include "hwclock.h"
#include "timeutils.h"
#include "env.h"
#include "xalloc.h"
#include "path.h"
#include "strutils.h"
#ifdef HAVE_LIBAUDIT
#include <libaudit.h>
static int hwaudit_fd = -1;
#endif
UL_DEBUG_DEFINE_MASK(hwclock);
UL_DEBUG_DEFINE_MASKNAMES(hwclock) = UL_DEBUG_EMPTY_MASKNAMES;
/* The struct that holds our hardware access routines */
static struct clock_ops *ur;
/* Maximal clock adjustment in seconds per day.
(adjtime() glibc call has 2145 seconds limit on i386, so it is good enough for us as well,
43219 is a maximal safe value preventing exact_adjustment overflow.) */
#define MAX_DRIFT 2145.0
struct adjtime {
/*
* This is information we keep in the adjtime file that tells us how
* to do drift corrections. Elements are all straight from the
* adjtime file, so see documentation of that file for details.
* Exception is <dirty>, which is an indication that what's in this
* structure is not what's in the disk file (because it has been
* updated since read from the disk file).
*/
int dirty;
/* line 1 */
double drift_factor;
time_t last_adj_time;
double not_adjusted;
/* line 2 */
time_t last_calib_time;
/*
* The most recent time that we set the clock from an external
* authority (as opposed to just doing a drift adjustment)
*/
/* line 3 */
enum a_local_utc { UTC = 0, LOCAL, UNKNOWN } local_utc;
/*
* To which time zone, local or UTC, we most recently set the
* hardware clock.
*/
};
static void hwclock_init_debug(const char *str)
{
__UL_INIT_DEBUG_FROM_STRING(hwclock, HWCLOCK_DEBUG_, 0, str);
DBG(INIT, ul_debug("hwclock debug mask: 0x%04x", hwclock_debug_mask));
DBG(INIT, ul_debug("hwclock version: %s", PACKAGE_STRING));
}
/* FOR TESTING ONLY: inject random delays of up to 1000ms */
static void up_to_1000ms_sleep(void)
{
int usec = random() % 1000000;
DBG(RANDOM_SLEEP, ul_debug("sleeping ~%d usec", usec));
xusleep(usec);
}
/*
* time_t to timeval conversion.
*/
static struct timeval t2tv(time_t timet)
{
struct timeval rettimeval;
rettimeval.tv_sec = timet;
rettimeval.tv_usec = 0;
return rettimeval;
}
/*
* The difference in seconds between two times in "timeval" format.
*/
double time_diff(struct timeval subtrahend, struct timeval subtractor)
{
return (subtrahend.tv_sec - subtractor.tv_sec)
+ (subtrahend.tv_usec - subtractor.tv_usec) / 1E6;
}
/*
* The time, in "timeval" format, which is <increment> seconds after the
* time <addend>. Of course, <increment> may be negative.
*/
static struct timeval time_inc(struct timeval addend, double increment)
{
struct timeval newtime;
newtime.tv_sec = addend.tv_sec + (time_t)increment;
newtime.tv_usec = addend.tv_usec + (increment - (time_t)increment) * 1E6;
/*
* Now adjust it so that the microsecond value is between 0 and 1
* million.
*/
if (newtime.tv_usec < 0) {
newtime.tv_usec += 1E6;
newtime.tv_sec -= 1;
} else if (newtime.tv_usec >= 1E6) {
newtime.tv_usec -= 1E6;
newtime.tv_sec += 1;
}
return newtime;
}
static int
hw_clock_is_utc(const struct hwclock_control *ctl,
const struct adjtime *adjtime)
{
int ret;
if (ctl->utc)
ret = 1; /* --utc explicitly given on command line */
else if (ctl->local_opt)
ret = 0; /* --localtime explicitly given */
else
/* get info from adjtime file - default is UTC */
ret = (adjtime->local_utc != LOCAL);
if (ctl->verbose)
printf(_("Assuming hardware clock is kept in %s time.\n"),
ret ? _("UTC") : _("local"));
return ret;
}
/*
* Read the adjustment parameters out of the /etc/adjtime file.
*
* Return them as the adjtime structure <*adjtime_p>. Its defaults are
* initialized in main().
*/
static int read_adjtime(const struct hwclock_control *ctl,
struct adjtime *adjtime_p)
{
FILE *adjfile;
char line1[81]; /* String: first line of adjtime file */
char line2[81]; /* String: second line of adjtime file */
char line3[81]; /* String: third line of adjtime file */
int64_t last_adj_time;
int64_t last_calib_time;
if (access(ctl->adj_file_name, R_OK) != 0)
return EXIT_SUCCESS;
adjfile = fopen(ctl->adj_file_name, "r"); /* open file for reading */
if (adjfile == NULL) {
warn(_("cannot open %s"), ctl->adj_file_name);
return EXIT_FAILURE;
}
if (!fgets(line1, sizeof(line1), adjfile))
line1[0] = '\0'; /* In case fgets fails */
if (!fgets(line2, sizeof(line2), adjfile))
line2[0] = '\0'; /* In case fgets fails */
if (!fgets(line3, sizeof(line3), adjfile))
line3[0] = '\0'; /* In case fgets fails */
fclose(adjfile);
if (sscanf(line1, "%lf %"SCNd64" %lf",
&adjtime_p->drift_factor,
&last_adj_time,
&adjtime_p->not_adjusted) != 3)
warnx(_("Warning: unrecognized line in adjtime file: %s"), line1);
if (sscanf(line2, "%"SCNd64, &last_calib_time) != 1)
warnx(_("Warning: unrecognized line in adjtime file: %s"), line2);
adjtime_p->last_adj_time = (time_t)last_adj_time;
adjtime_p->last_calib_time = (time_t)last_calib_time;
if (!strcmp(line3, "UTC\n")) {
adjtime_p->local_utc = UTC;
} else if (!strcmp(line3, "LOCAL\n")) {
adjtime_p->local_utc = LOCAL;
} else {
adjtime_p->local_utc = UNKNOWN;
if (line3[0]) {
warnx(_("Warning: unrecognized third line in adjtime file\n"
"(Expected: `UTC' or `LOCAL' or nothing.)"));
}
}
if (ctl->verbose) {
printf(_("Last drift adjustment done at %"PRId64" seconds after 1969\n"),
(int64_t)adjtime_p->last_adj_time);
printf(_("Last calibration done at %"PRId64" seconds after 1969\n"),
(int64_t)adjtime_p->last_calib_time);
printf(_("Hardware clock is on %s time\n"),
(adjtime_p->local_utc ==
LOCAL) ? _("local") : (adjtime_p->local_utc ==
UTC) ? _("UTC") : _("unknown"));
}
return EXIT_SUCCESS;
}
/*
* Wait until the falling edge of the Hardware Clock's update flag so that
* any time that is read from the clock immediately after we return will be
* exact.
*
* The clock only has 1 second precision, so it gives the exact time only
* once per second, right on the falling edge of the update flag.
*
* We wait (up to one second) either blocked waiting for an rtc device or in
* a CPU spin loop. The former is probably not very accurate.
*
* Return 0 if it worked, nonzero if it didn't.
*/
static int synchronize_to_clock_tick(const struct hwclock_control *ctl)
{
int rc;
if (ctl->verbose)
printf(_("Waiting for clock tick...\n"));
rc = ur->synchronize_to_clock_tick(ctl);
if (ctl->verbose) {
if (rc)
printf(_("...synchronization failed\n"));
else
printf(_("...got clock tick\n"));
}
return rc;
}
/*
* Convert a time in broken down format (hours, minutes, etc.) into standard
* unix time (seconds into epoch). Return it as *systime_p.
*
* The broken down time is argument <tm>. This broken down time is either
* in local time zone or UTC, depending on value of logical argument
* "universal". True means it is in UTC.
*
* If the argument contains values that do not constitute a valid time, and
* mktime() recognizes this, return *valid_p == false and *systime_p
* undefined. However, mktime() sometimes goes ahead and computes a
* fictional time "as if" the input values were valid, e.g. if they indicate
* the 31st day of April, mktime() may compute the time of May 1. In such a
* case, we return the same fictional value mktime() does as *systime_p and
* return *valid_p == true.
*/
static int
mktime_tz(const struct hwclock_control *ctl, struct tm tm,
time_t *systime_p)
{
int valid;
if (ctl->universal)
*systime_p = timegm(&tm);
else
*systime_p = mktime(&tm);
if (*systime_p == -1) {
/*
* This apparently (not specified in mktime() documentation)
* means the 'tm' structure does not contain valid values
* (however, not containing valid values does _not_ imply
* mktime() returns -1).
*/
valid = 0;
if (ctl->verbose)
printf(_("Invalid values in hardware clock: "
"%4d/%.2d/%.2d %.2d:%.2d:%.2d\n"),
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec);
} else {
valid = 1;
if (ctl->verbose)
printf(_("Hw clock time : %4d/%.2d/%.2d %.2d:%.2d:%.2d = "
"%"PRId64" seconds since 1969\n"), tm.tm_year + 1900,
tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min,
tm.tm_sec, (int64_t)*systime_p);
}
return valid;
}
/*
* Read the hardware clock and return the current time via <tm> argument.
*
* Use the method indicated by <method> argument to access the hardware
* clock.
*/
static int
read_hardware_clock(const struct hwclock_control *ctl,
int *valid_p, time_t *systime_p)
{
struct tm tm;
int err;
err = ur->read_hardware_clock(ctl, &tm);
if (err)
return err;
if (ctl->verbose)
printf(_("Time read from Hardware Clock: %4d/%.2d/%.2d %02d:%02d:%02d\n"),
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour,
tm.tm_min, tm.tm_sec);
*valid_p = mktime_tz(ctl, tm, systime_p);
return 0;
}
/*
* Set the Hardware Clock to the time <newtime>, in local time zone or UTC,
* according to <universal>.
*/
static void
set_hardware_clock(const struct hwclock_control *ctl, const time_t newtime)
{
struct tm new_broken_time;
/*
* Time to which we will set Hardware Clock, in broken down format,
* in the time zone of caller's choice
*/
if (ctl->universal)
gmtime_r(&newtime, &new_broken_time);
else
localtime_r(&newtime, &new_broken_time);
if (ctl->verbose)
printf(_("Setting Hardware Clock to %.2d:%.2d:%.2d "
"= %"PRId64" seconds since 1969\n"),
new_broken_time.tm_hour, new_broken_time.tm_min,
new_broken_time.tm_sec, (int64_t)newtime);
if (!ctl->testing)
ur->set_hardware_clock(ctl, &new_broken_time);
}
static double
get_hardware_delay(const struct hwclock_control *ctl)
{
const char *devpath, *rtcname;
char name[128 + 1];
struct path_cxt *pc;
int rc;
devpath = ur->get_device_path();
if (!devpath)
goto unknown;
rtcname = strrchr(devpath, '/');
if (!rtcname || !*(rtcname + 1))
goto unknown;
rtcname++;
pc = ul_new_path("/sys/class/rtc/%s", rtcname);
if (!pc)
goto unknown;
rc = ul_path_scanf(pc, "name", "%128[^\n ]", name);
ul_unref_path(pc);
if (rc != 1 || !*name)
goto unknown;
if (ctl->verbose)
printf(_("RTC type: '%s'\n"), name);
/* MC146818A-compatible (x86) */
if (strcmp(name, "rtc_cmos") == 0)
return 0.5;
/* Another HW */
return 0;
unknown:
/* Let's be backwardly compatible */
return 0.5;
}
/*
* Set the Hardware Clock to the time "sethwtime", in local time zone or
* UTC, according to "universal".
*
* Wait for a fraction of a second so that "sethwtime" is the value of the
* Hardware Clock as of system time "refsystime", which is in the past. For
* example, if "sethwtime" is 14:03:05 and "refsystime" is 12:10:04.5 and
* the current system time is 12:10:06.0: Wait .5 seconds (to make exactly 2
* seconds since "refsystime") and then set the Hardware Clock to 14:03:07,
* thus getting a precise and retroactive setting of the clock. The .5 delay is
* default on x86, see --delay and get_hardware_delay().
*
* (Don't be confused by the fact that the system clock and the Hardware
* Clock differ by two hours in the above example. That's just to remind you
* that there are two independent time scales here).
*
* This function ought to be able to accept set times as fractional times.
* Idea for future enhancement.
*/
static void
set_hardware_clock_exact(const struct hwclock_control *ctl,
const time_t sethwtime,
const struct timeval refsystime)
{
/*
* The Hardware Clock can only be set to any integer time plus one
* half second. The integer time is required because there is no
* interface to set or get a fractional second. The additional half
* second is because the Hardware Clock updates to the following
* second precisely 500 ms (not 1 second!) after you release the
* divider reset (after setting the new time) - see description of
* DV2, DV1, DV0 in Register A in the MC146818A data sheet (and note
* that although that document doesn't say so, real-world code seems
* to expect that the SET bit in Register B functions the same way).
* That means that, e.g., when you set the clock to 1:02:03, it
* effectively really sets it to 1:02:03.5, because it will update to
* 1:02:04 only half a second later. Our caller passes the desired
* integer Hardware Clock time in sethwtime, and the corresponding
* system time (which may have a fractional part, and which may or may
* not be the same!) in refsystime. In an ideal situation, we would
* then apply sethwtime to the Hardware Clock at refsystime+500ms, so
* that when the Hardware Clock ticks forward to sethwtime+1s half a
* second later at refsystime+1000ms, everything is in sync. So we
* spin, waiting for gettimeofday() to return a time at or after that
* time (refsystime+500ms) up to a tolerance value, initially 1ms. If
* we miss that time due to being preempted for some other process,
* then we increase the margin a little bit (initially 1ms, doubling
* each time), add 1 second (or more, if needed to get a time that is
* in the future) to both the time for which we are waiting and the
* time that we will apply to the Hardware Clock, and start waiting
* again.
*
* For example, the caller requests that we set the Hardware Clock to
* 1:02:03, with reference time (current system time) = 6:07:08.250.
* We want the Hardware Clock to update to 1:02:04 at 6:07:09.250 on
* the system clock, and the first such update will occur 0.500
* seconds after we write to the Hardware Clock, so we spin until the
* system clock reads 6:07:08.750. If we get there, great, but let's
* imagine the system is so heavily loaded that our process is
* preempted and by the time we get to run again, the system clock
* reads 6:07:11.990. We now want to wait until the next xx:xx:xx.750
* time, which is 6:07:12.750 (4.5 seconds after the reference time),
* at which point we will set the Hardware Clock to 1:02:07 (4 seconds
* after the originally requested time). If we do that successfully,
* then at 6:07:13.250 (5 seconds after the reference time), the
* Hardware Clock will update to 1:02:08 (5 seconds after the
* originally requested time), and all is well thereafter.
*/
time_t newhwtime = sethwtime;
double target_time_tolerance_secs = 0.001; /* initial value */
double tolerance_incr_secs = 0.001; /* initial value */
double delay;
struct timeval rtc_set_delay_tv;
struct timeval targetsystime;
struct timeval nowsystime;
struct timeval prevsystime = refsystime;
double deltavstarget;
if (ctl->rtc_delay != -1.0) /* --delay specified */
delay = ctl->rtc_delay;
else
delay = get_hardware_delay(ctl);
if (ctl->verbose)
printf(_("Using delay: %.6f seconds\n"), delay);
rtc_set_delay_tv.tv_sec = 0;
rtc_set_delay_tv.tv_usec = delay * 1E6;
timeradd(&refsystime, &rtc_set_delay_tv, &targetsystime);
while (1) {
double ticksize;
ON_DBG(RANDOM_SLEEP, up_to_1000ms_sleep());
gettimeofday(&nowsystime, NULL);
deltavstarget = time_diff(nowsystime, targetsystime);
ticksize = time_diff(nowsystime, prevsystime);
prevsystime = nowsystime;
if (ticksize < 0) {
if (ctl->verbose)
printf(_("time jumped backward %.6f seconds "
"to %"PRId64".%06"PRId64" - retargeting\n"),
ticksize, (int64_t)nowsystime.tv_sec,
(int64_t)nowsystime.tv_usec);
/* The retarget is handled at the end of the loop. */
} else if (deltavstarget < 0) {
/* deltavstarget < 0 if current time < target time */
DBG(DELTA_VS_TARGET,
ul_debug("%"PRId64".%06"PRId64" < %"PRId64".%06"PRId64" (%.6f)",
(int64_t)nowsystime.tv_sec, (int64_t)nowsystime.tv_usec,
(int64_t)targetsystime.tv_sec,
(int64_t)targetsystime.tv_usec, deltavstarget));
continue; /* not there yet - keep spinning */
} else if (deltavstarget <= target_time_tolerance_secs) {
/* Close enough to the target time; done waiting. */
break;
} else /* (deltavstarget > target_time_tolerance_secs) */ {
/*
* We missed our window. Increase the tolerance and
* aim for the next opportunity.
*/
if (ctl->verbose)
printf(_("missed it - %"PRId64".%06"PRId64" is too far "
"past %"PRId64".%06"PRId64" (%.6f > %.6f)\n"),
(int64_t)nowsystime.tv_sec,
(int64_t)nowsystime.tv_usec,
(int64_t)targetsystime.tv_sec,
(int64_t)targetsystime.tv_usec,
deltavstarget,
target_time_tolerance_secs);
target_time_tolerance_secs += tolerance_incr_secs;
tolerance_incr_secs *= 2;
}
/*
* Aim for the same offset (tv_usec) within the second in
* either the current second (if that offset hasn't arrived
* yet), or the next second.
*/
if (nowsystime.tv_usec < targetsystime.tv_usec)
targetsystime.tv_sec = nowsystime.tv_sec;
else
targetsystime.tv_sec = nowsystime.tv_sec + 1;
}
newhwtime = sethwtime
+ ceil(time_diff(nowsystime, refsystime)
- delay /* don't count this */);
if (ctl->verbose)
printf(_("%"PRId64".%06"PRId64" is close enough to %"PRId64".%06"PRId64" (%.6f < %.6f)\n"
"Set RTC to %"PRId64" (%"PRId64" + %d; refsystime = %"PRId64".%06"PRId64")\n"),
(int64_t)nowsystime.tv_sec, (int64_t)nowsystime.tv_usec,
(int64_t)targetsystime.tv_sec, (int64_t)targetsystime.tv_usec,
deltavstarget, target_time_tolerance_secs,
(int64_t)newhwtime, (int64_t)sethwtime,
(int)((int64_t)newhwtime - (int64_t)sethwtime),
(int64_t)refsystime.tv_sec, (int64_t)refsystime.tv_usec);
set_hardware_clock(ctl, newhwtime);
}
static int
display_time(struct timeval hwctime)
{
char buf[ISO_BUFSIZ];
if (strtimeval_iso(&hwctime, ISO_TIMESTAMP_DOT, buf, sizeof(buf)))
return EXIT_FAILURE;
printf("%s\n", buf);
return EXIT_SUCCESS;
}
/*
* Adjusts System time, sets the kernel's timezone and RTC timescale.
*
* The kernel warp_clock function adjusts the System time according to the
* tz.tz_minuteswest argument and sets PCIL (see below). At boot settimeofday(2)
* has one-shot access to this function as shown in the table below.
*
* +-------------------------------------------------------------------------+
* | settimeofday(tv, tz) |
* |-------------------------------------------------------------------------|
* | Arguments | System Time | TZ | PCIL | | warp_clock |
* | tv | tz | set | warped | set | set | firsttime | locked |
* |---------|---------|---------------|-----|------|-----------|------------|
* | pointer | NULL | yes | no | no | no | 1 | no |
* | NULL | ptr2utc | no | no | yes | no | 0 | yes |
* | NULL | pointer | no | yes | yes | yes | 0 | yes |
* +-------------------------------------------------------------------------+
* ptr2utc: tz.tz_minuteswest is zero (UTC).
* PCIL: persistent_clock_is_local, sets the "11 minute mode" timescale.
* firsttime: locks the warp_clock function (initialized to 1 at boot).
*
* +---------------------------------------------------------------------------+
* | op | RTC scale | settimeofday calls |
* |---------|-----------|-----------------------------------------------------|
* | systz | Local | 1) warps system time*, sets PCIL* and kernel tz |
* | systz | UTC | 1st) locks warp_clock* 2nd) sets kernel tz |
* | hctosys | Local | 1st) sets PCIL* & kernel tz 2nd) sets system time |
* | hctosys | UTC | 1st) locks warp* 2nd) sets tz 3rd) sets system time |
* +---------------------------------------------------------------------------+
* * only on first call after boot
*
* POSIX 2008 marked TZ in settimeofday() as deprecated. Unfortunately,
* different C libraries react to this deprecation in a different way. Since
* glibc v2.31 settimeofday() will fail if both args are not NULL, Musl-C
* ignores TZ at all, etc. We use __set_time() and __set_timezone() to hide
* these portability issues and to keep code readable.
*/
#define __set_time(_tv) settimeofday(_tv, NULL)
#ifndef SYS_settimeofday
# ifdef __NR_settimeofday
# define SYS_settimeofday __NR_settimeofday
# elif defined(__NR_settimeofday_time32)
# define SYS_settimeofday __NR_settimeofday_time32
# endif
#endif
static inline int __set_timezone(const struct timezone *tz)
{
#ifdef SYS_settimeofday
errno = 0;
return syscall(SYS_settimeofday, NULL, tz);
#else
return settimeofday(NULL, tz);
#endif
}
static int
set_system_clock(const struct hwclock_control *ctl,
const struct timeval newtime)
{
struct tm broken;
int minuteswest;
int rc = 0;
localtime_r(&newtime.tv_sec, &broken);
minuteswest = -get_gmtoff(&broken) / 60;
if (ctl->verbose) {
if (ctl->universal) {
puts(_("Calling settimeofday(NULL, 0) "
"to lock the warp_clock function."));
if (!( ctl->universal && !minuteswest ))
printf(_("Calling settimeofday(NULL, %d) "
"to set the kernel timezone.\n"),
minuteswest);
} else
printf(_("Calling settimeofday(NULL, %d) to warp "
"System time, set PCIL and the kernel tz.\n"),
minuteswest);
if (ctl->hctosys)
printf(_("Calling settimeofday(%"PRId64".%06"PRId64", NULL) "
"to set the System time.\n"),
(int64_t)newtime.tv_sec, (int64_t)newtime.tv_usec);
}
if (!ctl->testing) {
const struct timezone tz_utc = { 0 };
const struct timezone tz = { minuteswest };
/* If UTC RTC: lock warp_clock and PCIL */
if (ctl->universal)
rc = __set_timezone(&tz_utc);
/* Set kernel tz; if localtime RTC: warp_clock and set PCIL */
if (!rc && !( ctl->universal && !minuteswest ))
rc = __set_timezone(&tz);
/* Set the System Clock */
if ((!rc || errno == ENOSYS) && ctl->hctosys)
rc = __set_time(&newtime);
if (rc) {
warn(_("settimeofday() failed"));
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
/*
* Refresh the last calibrated and last adjusted timestamps in <*adjtime_p>
* to facilitate future drift calculations based on this set point.
*
* With the --update-drift option:
* Update the drift factor in <*adjtime_p> based on the fact that the
* Hardware Clock was just calibrated to <nowtime> and before that was
* set to the <hclocktime> time scale.
*/
static void
adjust_drift_factor(const struct hwclock_control *ctl,
struct adjtime *adjtime_p,
const struct timeval nowtime,
const struct timeval hclocktime)
{
if (!ctl->update) {
if (ctl->verbose)
printf(_("Not adjusting drift factor because the "
"--update-drift option was not used.\n"));
} else if (adjtime_p->last_calib_time == 0) {
if (ctl->verbose)
printf(_("Not adjusting drift factor because last "
"calibration time is zero,\n"
"so history is bad and calibration startover "
"is necessary.\n"));
} else if ((hclocktime.tv_sec - adjtime_p->last_calib_time) < 4 * 60 * 60) {
if (ctl->verbose)
printf(_("Not adjusting drift factor because it has "
"been less than four hours since the last "
"calibration.\n"));
} else {
/*
* At adjustment time we drift correct the hardware clock
* according to the contents of the adjtime file and refresh
* its last adjusted timestamp.
*
* At calibration time we set the Hardware Clock and refresh
* both timestamps in <*adjtime_p>.
*
* Here, with the --update-drift option, we also update the
* drift factor in <*adjtime_p>.
*
* Let us do computation in doubles. (Floats almost suffice,
* but 195 days + 1 second equals 195 days in floats.)
*/
const double sec_per_day = 24.0 * 60.0 * 60.0;
double factor_adjust;
double drift_factor;
struct timeval last_calib;
last_calib = t2tv(adjtime_p->last_calib_time);
/*
* Correction to apply to the current drift factor.
*
* Simplified: uncorrected_drift / days_since_calibration.
*
* hclocktime is fully corrected with the current drift factor.
* Its difference from nowtime is the missed drift correction.
*/
factor_adjust = time_diff(nowtime, hclocktime) /
(time_diff(nowtime, last_calib) / sec_per_day);
drift_factor = adjtime_p->drift_factor + factor_adjust;
if (fabs(drift_factor) > MAX_DRIFT) {
if (ctl->verbose)
printf(_("Clock drift factor was calculated as "
"%f seconds/day.\n"
"It is far too much. Resetting to zero.\n"),
drift_factor);
drift_factor = 0;
} else {
if (ctl->verbose)
printf(_("Clock drifted %f seconds in the past "
"%f seconds\nin spite of a drift factor of "
"%f seconds/day.\n"
"Adjusting drift factor by %f seconds/day\n"),
time_diff(nowtime, hclocktime),
time_diff(nowtime, last_calib),
adjtime_p->drift_factor, factor_adjust);
}
adjtime_p->drift_factor = drift_factor;
}
adjtime_p->last_calib_time = nowtime.tv_sec;
adjtime_p->last_adj_time = nowtime.tv_sec;
adjtime_p->not_adjusted = 0;
adjtime_p->dirty = 1;
}
/*
* Calculate the drift correction currently needed for the
* Hardware Clock based on the last time it was adjusted,
* and the current drift factor, as stored in the adjtime file.
*
* The total drift adjustment needed is stored at tdrift_p.
*
*/
static void
calculate_adjustment(const struct hwclock_control *ctl,
const double factor,
const time_t last_time,
const double not_adjusted,
const time_t systime, struct timeval *tdrift_p)
{
double exact_adjustment;
exact_adjustment =
((double)(systime - last_time)) * factor / (24 * 60 * 60)
+ not_adjusted;
tdrift_p->tv_sec = (time_t) floor(exact_adjustment);
tdrift_p->tv_usec = (exact_adjustment -
(double)tdrift_p->tv_sec) * 1E6;
if (ctl->verbose) {
printf(P_("Time since last adjustment is %"PRId64" second\n",
"Time since last adjustment is %"PRId64" seconds\n",
((int64_t)systime - (int64_t)last_time)),
((int64_t)systime - (int64_t)last_time));
printf(_("Calculated Hardware Clock drift is %"PRId64".%06"PRId64" seconds\n"),
(int64_t)tdrift_p->tv_sec, (int64_t)tdrift_p->tv_usec);
}
}
/*
* Write the contents of the <adjtime> structure to its disk file.
*
* But if the contents are clean (unchanged since read from disk), don't
* bother.
*/
static int save_adjtime(const struct hwclock_control *ctl,
const struct adjtime *adjtime)
{
char *content; /* Stuff to write to disk file */
FILE *fp;
xasprintf(&content, "%f %"PRId64" %f\n%"PRId64"\n%s\n",
adjtime->drift_factor,
(int64_t)adjtime->last_adj_time,
adjtime->not_adjusted,
(int64_t)adjtime->last_calib_time,
(adjtime->local_utc == LOCAL) ? "LOCAL" : "UTC");
if (ctl->verbose){
printf(_("New %s data:\n%s"),
ctl->adj_file_name, content);
}
if (!ctl->testing) {
int rc;
fp = fopen(ctl->adj_file_name, "w");
if (fp == NULL) {
warn(_("cannot open %s"), ctl->adj_file_name);
return EXIT_FAILURE;
}
rc = fputs(content, fp) < 0;
rc += close_stream(fp);
if (rc) {
warn(_("cannot update %s"), ctl->adj_file_name);
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
/*
* Do the adjustment requested, by 1) setting the Hardware Clock (if
* necessary), and 2) updating the last-adjusted time in the adjtime
* structure.
*
* Do not update anything if the Hardware Clock does not currently present a
* valid time.
*
* <hclocktime> is the drift corrected time read from the Hardware Clock.
*
* <read_time> was the system time when the <hclocktime> was read, which due
* to computational delay could be a short time ago. It is used to define a
* trigger point for setting the Hardware Clock. The fractional part of the
* Hardware clock set time is subtracted from read_time to 'refer back', or
* delay, the trigger point. Fractional parts must be accounted for in this
* way, because the Hardware Clock can only be set to a whole second.
*
* <universal>: the Hardware Clock is kept in UTC.
*
* <testing>: We are running in test mode (no updating of clock).
*
*/
static void
do_adjustment(const struct hwclock_control *ctl, struct adjtime *adjtime_p,
const struct timeval hclocktime,
const struct timeval read_time)
{
if (adjtime_p->last_adj_time == 0) {
if (ctl->verbose)
printf(_("Not setting clock because last adjustment time is zero, "
"so history is bad.\n"));
} else if (fabs(adjtime_p->drift_factor) > MAX_DRIFT) {
if (ctl->verbose)
printf(_("Not setting clock because drift factor %f is far too high.\n"),
adjtime_p->drift_factor);
} else {
set_hardware_clock_exact(ctl, hclocktime.tv_sec,
time_inc(read_time,
-(hclocktime.tv_usec / 1E6)));
adjtime_p->last_adj_time = hclocktime.tv_sec;
adjtime_p->not_adjusted = 0;
adjtime_p->dirty = 1;
}
}
static void determine_clock_access_method(const struct hwclock_control *ctl)
{
ur = NULL;
#ifdef USE_HWCLOCK_CMOS
if (ctl->directisa)
ur = probe_for_cmos_clock();
#endif
#ifdef __linux__
if (!ur)
ur = probe_for_rtc_clock(ctl);
#endif
if (ur) {
if (ctl->verbose)
puts(ur->interface_name);
} else {
if (ctl->verbose)
printf(_("No usable clock interface found.\n"));
warnx(_("Cannot access the Hardware Clock via "
"any known method."));
if (!ctl->verbose)
warnx(_("Use the --verbose option to see the "
"details of our search for an access "
"method."));
hwclock_exit(ctl, EXIT_FAILURE);
}
}
/* Do all the normal work of hwclock - read, set clock, etc. */
static int
manipulate_clock(const struct hwclock_control *ctl, const time_t set_time,
const struct timeval startup_time, struct adjtime *adjtime)
{
/* The time at which we read the Hardware Clock */
struct timeval read_time = { 0 };
/*
* The Hardware Clock gives us a valid time, or at
* least something close enough to fool mktime().
*/
int hclock_valid = 0;
/*
* Tick synchronized time read from the Hardware Clock and
* then drift corrected for all operations except --show.
*/
struct timeval hclocktime = { 0 };
/*
* hclocktime correlated to startup_time. That is, what drift
* corrected Hardware Clock time would have been at start up.
*/
struct timeval startup_hclocktime = { 0 };
/* Total Hardware Clock drift correction needed. */
struct timeval tdrift = { 0 };
if ((ctl->set || ctl->systohc || ctl->adjust) &&
(adjtime->local_utc == UTC) != ctl->universal) {
adjtime->local_utc = ctl->universal ? UTC : LOCAL;
adjtime->dirty = 1;
}
/*
* Negate the drift correction, because we want to 'predict' a
* Hardware Clock time that includes drift.
*/
if (ctl->predict) {
hclocktime = t2tv(set_time);
calculate_adjustment(ctl, adjtime->drift_factor,
adjtime->last_adj_time,
adjtime->not_adjusted,
hclocktime.tv_sec, &tdrift);
hclocktime = time_inc(hclocktime, (double)
-(tdrift.tv_sec + tdrift.tv_usec / 1E6));
if (ctl->verbose) {
printf(_("Target date: %"PRId64"\n"), (int64_t)set_time);
printf(_("Predicted RTC: %"PRId64"\n"), (int64_t)hclocktime.tv_sec);
}
return display_time(hclocktime);
}
if (ctl->systz)
return set_system_clock(ctl, startup_time);
if (ur->get_permissions())
return EXIT_FAILURE;
/*
* Read and drift correct RTC time; except for RTC set functions
* without the --update-drift option because: 1) it's not needed;
* 2) it enables setting a corrupted RTC without reading it first;
* 3) it significantly reduces system shutdown time.
*/
if ( ! ((ctl->set || ctl->systohc) && !ctl->update)) {
/*
* Timing critical - do not change the order of, or put
* anything between the follow three statements.
* Synchronization failure MUST exit, because all drift
* operations are invalid without it.
*/
if (synchronize_to_clock_tick(ctl))
return EXIT_FAILURE;
read_hardware_clock(ctl, &hclock_valid, &hclocktime.tv_sec);
gettimeofday(&read_time, NULL);
if (!hclock_valid) {
warnx(_("RTC read returned an invalid value."));
return EXIT_FAILURE;
}
/*
* Calculate and apply drift correction to the Hardware Clock
* time for everything except --show
*/
calculate_adjustment(ctl, adjtime->drift_factor,
adjtime->last_adj_time,
adjtime->not_adjusted,
hclocktime.tv_sec, &tdrift);
if (!ctl->show)
hclocktime = time_inc(tdrift, hclocktime.tv_sec);
startup_hclocktime =
time_inc(hclocktime, time_diff(startup_time, read_time));
}
if (ctl->show || ctl->get) {
return display_time(startup_hclocktime);
}
if (ctl->set) {
set_hardware_clock_exact(ctl, set_time, startup_time);
if (!ctl->noadjfile)
adjust_drift_factor(ctl, adjtime, t2tv(set_time),
startup_hclocktime);
} else if (ctl->adjust) {
if (tdrift.tv_sec > 0 || tdrift.tv_sec < -1)
do_adjustment(ctl, adjtime, hclocktime, read_time);
else
printf(_("Needed adjustment is less than one second, "
"so not setting clock.\n"));
} else if (ctl->systohc) {
struct timeval nowtime, reftime;
/*
* We can only set_hardware_clock_exact to a
* whole seconds time, so we set it with
* reference to the most recent whole
* seconds time.
*/
gettimeofday(&nowtime, NULL);
reftime.tv_sec = nowtime.tv_sec;
reftime.tv_usec = 0;
set_hardware_clock_exact(ctl, (time_t) reftime.tv_sec, reftime);
if (!ctl->noadjfile)
adjust_drift_factor(ctl, adjtime, nowtime,
hclocktime);
} else if (ctl->hctosys) {
return set_system_clock(ctl, hclocktime);
}
if (!ctl->noadjfile && adjtime->dirty)
return save_adjtime(ctl, adjtime);
return EXIT_SUCCESS;
}
/**
* Get or set the kernel RTC driver's epoch on Alpha machines.
* ISA machines are hard coded for 1900.
*/
#if defined(__linux__) && defined(__alpha__)
static void
manipulate_epoch(const struct hwclock_control *ctl)
{
if (ctl->getepoch) {
unsigned long epoch;
if (get_epoch_rtc(ctl, &epoch))
warnx(_("unable to read the RTC epoch."));
else
printf(_("The RTC epoch is set to %lu.\n"), epoch);
} else if (ctl->setepoch) {
if (!ctl->epoch_option)
warnx(_("--epoch is required for --setepoch."));
else if (!ctl->testing)
if (set_epoch_rtc(ctl))
warnx(_("unable to set the RTC epoch."));
}
}
#endif /* __linux__ __alpha__ */
#ifdef __linux__
static int
manipulate_rtc_param(const struct hwclock_control *ctl)
{
if (ctl->param_get_option) {
uint64_t id = 0, value = 0;
if (get_param_rtc(ctl, ctl->param_get_option, &id, &value)) {
warnx(_("unable to read the RTC parameter %s"),
ctl->param_get_option);
return 1;
}
printf(_("The RTC parameter 0x%jx is set to 0x%jx.\n"),
(uintmax_t) id, (uintmax_t) value);
} else if (ctl->param_set_option) {
if (ctl->testing)
return 0;
return set_param_rtc(ctl, ctl->param_set_option);
}
return 1;
}
#endif
static void out_version(void)
{
printf(UTIL_LINUX_VERSION);
}
static void __attribute__((__noreturn__))
usage(void)
{
#ifdef __linux__
const struct hwclock_param *param = get_hwclock_params();
#endif
fputs(USAGE_HEADER, stdout);
printf(_(" %s [function] [option...]\n"), program_invocation_short_name);
fputs(USAGE_SEPARATOR, stdout);
puts(_("Time clocks utility."));
fputs(USAGE_FUNCTIONS, stdout);
puts(_(" -r, --show display the RTC time"));
puts(_(" --get display drift corrected RTC time"));
puts(_(" --set set the RTC according to --date"));
puts(_(" -s, --hctosys set the system time from the RTC"));
puts(_(" -w, --systohc set the RTC from the system time"));
puts(_(" --systz send timescale configurations to the kernel"));
puts(_(" -a, --adjust adjust the RTC to account for systematic drift"));
#if defined(__linux__) && defined(__alpha__)
puts(_(" --getepoch display the RTC epoch"));
puts(_(" --setepoch set the RTC epoch according to --epoch"));
#endif
#ifdef __linux__
puts(_(" --param-get <param> display the RTC parameter"));
puts(_(" --param-set <param>=<value> set the RTC parameter"));
#endif
puts(_(" --predict predict the drifted RTC time according to --date"));
fputs(USAGE_OPTIONS, stdout);
puts(_(" -u, --utc the RTC timescale is UTC"));
puts(_(" -l, --localtime the RTC timescale is Local"));
#ifdef __linux__
printf(_(
" -f, --rtc <file> use an alternate file to %1$s\n"), _PATH_RTC_DEV);
#endif
printf(_(
" --directisa use the ISA bus instead of %1$s access\n"), _PATH_RTC_DEV);
puts(_(" --date <time> date/time input for --set and --predict"));
puts(_(" --delay <sec> delay used when set new RTC time"));
#if defined(__linux__) && defined(__alpha__)
puts(_(" --epoch <year> epoch input for --setepoch"));
#endif
puts(_(" --update-drift update the RTC drift factor"));
printf(_(
" --noadjfile do not use %1$s\n"), _PATH_ADJTIME);
printf(_(
" --adjfile <file> use an alternate file to %1$s\n"), _PATH_ADJTIME);
puts(_(" --test dry run; implies --verbose"));
puts(_(" -v, --verbose display more details"));
fputs(USAGE_SEPARATOR, stdout);
printf(USAGE_HELP_OPTIONS(33));
#ifdef __linux__
fputs(USAGE_ARGUMENTS, stdout);
puts(_(" <param> is either a numeric RTC parameter value or one of these aliases:"));
while (param->name) {
printf(_(" - %1$s: %2$s (0x%3$x)\n"), param->name, param->help, param->id);
param++;
}
puts(_(" See Kernel's include/uapi/linux/rtc.h for parameters and values."));
fputs(USAGE_ARG_SEPARATOR, stdout);
puts(_(" <param> and <value> accept hexadecimal values if prefixed with 0x, otherwise decimal."));
#endif
printf(USAGE_MAN_TAIL("hwclock(8)"));
exit(EXIT_SUCCESS);
}
int main(int argc, char **argv)
{
struct hwclock_control ctl = {
.show = 1, /* default op is show */
.rtc_delay = -1.0 /* unspecified */
};
struct timeval startup_time;
struct adjtime adjtime = { 0 };
/*
* The time we started up, in seconds into the epoch, including
* fractions.
*/
time_t set_time = 0; /* Time to which user said to set Hardware Clock */
int rc, c;
/* Long only options. */
enum {
OPT_ADJFILE = CHAR_MAX + 1,
OPT_DATE,
OPT_DELAY,
OPT_DIRECTISA,
OPT_EPOCH,
OPT_GET,
OPT_GETEPOCH,
OPT_NOADJFILE,
OPT_PARAM_GET,
OPT_PARAM_SET,
OPT_PREDICT,
OPT_SET,
OPT_SETEPOCH,
OPT_SYSTZ,
OPT_TEST,
OPT_UPDATE
};
static const struct option longopts[] = {
{ "adjust", no_argument, NULL, 'a' },
{ "help", no_argument, NULL, 'h' },
{ "localtime", no_argument, NULL, 'l' },
{ "show", no_argument, NULL, 'r' },
{ "hctosys", no_argument, NULL, 's' },
{ "utc", no_argument, NULL, 'u' },
{ "version", no_argument, NULL, 'V' },
{ "systohc", no_argument, NULL, 'w' },
{ "debug", no_argument, NULL, 'D' },
{ "ul-debug", required_argument, NULL, 'd' },
{ "verbose", no_argument, NULL, 'v' },
{ "set", no_argument, NULL, OPT_SET },
#if defined(__linux__) && defined(__alpha__)
{ "getepoch", no_argument, NULL, OPT_GETEPOCH },
{ "setepoch", no_argument, NULL, OPT_SETEPOCH },
{ "epoch", required_argument, NULL, OPT_EPOCH },
#endif
#ifdef __linux__
{ "param-get", required_argument, NULL, OPT_PARAM_GET },
{ "param-set", required_argument, NULL, OPT_PARAM_SET },
#endif
{ "noadjfile", no_argument, NULL, OPT_NOADJFILE },
{ "directisa", no_argument, NULL, OPT_DIRECTISA },
{ "test", no_argument, NULL, OPT_TEST },
{ "date", required_argument, NULL, OPT_DATE },
{ "delay", required_argument, NULL, OPT_DELAY },
#ifdef __linux__
{ "rtc", required_argument, NULL, 'f' },
#endif
{ "adjfile", required_argument, NULL, OPT_ADJFILE },
{ "systz", no_argument, NULL, OPT_SYSTZ },
{ "predict", no_argument, NULL, OPT_PREDICT },
{ "get", no_argument, NULL, OPT_GET },
{ "update-drift", no_argument, NULL, OPT_UPDATE },
{ NULL, 0, NULL, 0 }
};
static const ul_excl_t excl[] = { /* rows and cols in ASCII order */
{ 'a','r','s','w',
OPT_GET, OPT_GETEPOCH, OPT_PREDICT,
OPT_SET, OPT_SETEPOCH, OPT_SYSTZ },
{ 'l', 'u' },
{ OPT_ADJFILE, OPT_NOADJFILE },
{ OPT_NOADJFILE, OPT_UPDATE },
{ 0 }
};
int excl_st[ARRAY_SIZE(excl)] = UL_EXCL_STATUS_INIT;
/* Remember what time we were invoked */
gettimeofday(&startup_time, NULL);
#ifdef HAVE_LIBAUDIT
hwaudit_fd = audit_open();
if (hwaudit_fd < 0 && !(errno == EINVAL || errno == EPROTONOSUPPORT ||
errno == EAFNOSUPPORT)) {
/*
* You get these error codes only when the kernel doesn't
* have audit compiled in.
*/
warnx(_("Unable to connect to audit system"));
return EXIT_FAILURE;
}
#endif
setlocale(LC_ALL, "");
#ifdef LC_NUMERIC
/*
* We need LC_CTYPE and LC_TIME and LC_MESSAGES, but must avoid
* LC_NUMERIC since it gives problems when we write to /etc/adjtime.
* - gqueri@mail.dotcom.fr
*/
setlocale(LC_NUMERIC, "C");
#endif
bindtextdomain(PACKAGE, LOCALEDIR);
textdomain(PACKAGE);
close_stdout_atexit();
while ((c = getopt_long(argc, argv,
"hvVDd:alrsuwf:", longopts, NULL)) != -1) {
err_exclusive_options(c, longopts, excl, excl_st);
switch (c) {
case 'D':
warnx(_("use --verbose, --debug has been deprecated."));
break;
case 'v':
ctl.verbose = 1;
break;
case 'd':
hwclock_init_debug(optarg);
break;
case 'a':
ctl.adjust = 1;
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
case 'l':
ctl.local_opt = 1; /* --localtime */
break;
case 'r':
ctl.show = 1;
break;
case 's':
ctl.hctosys = 1;
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
case 'u':
ctl.utc = 1;
break;
case 'w':
ctl.systohc = 1;
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
case OPT_SET:
ctl.set = 1;
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
#if defined(__linux__) && defined(__alpha__)
case OPT_GETEPOCH:
ctl.getepoch = 1;
ctl.show = 0;
break;
case OPT_SETEPOCH:
ctl.setepoch = 1;
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
case OPT_EPOCH:
ctl.epoch_option = optarg; /* --epoch */
break;
#endif
#ifdef __linux__
case OPT_PARAM_GET:
ctl.param_get_option = optarg;
ctl.show = 0;
break;
case OPT_PARAM_SET:
ctl.param_set_option = optarg;
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
#endif
case OPT_NOADJFILE:
ctl.noadjfile = 1;
break;
case OPT_DIRECTISA:
ctl.directisa = 1;
break;
case OPT_TEST:
ctl.testing = 1; /* --test */
ctl.verbose = 1;
break;
case OPT_DATE:
ctl.date_opt = optarg; /* --date */
break;
case OPT_DELAY:
ctl.rtc_delay = strtod_or_err(optarg, "invalid --delay argument");
break;
case OPT_ADJFILE:
ctl.adj_file_name = optarg; /* --adjfile */
break;
case OPT_SYSTZ:
ctl.systz = 1; /* --systz */
ctl.show = 0;
ctl.hwaudit_on = 1;
break;
case OPT_PREDICT:
ctl.predict = 1; /* --predict */
ctl.show = 0;
break;
case OPT_GET:
ctl.get = 1; /* --get */
ctl.show = 0;
break;
case OPT_UPDATE:
ctl.update = 1; /* --update-drift */
break;
#ifdef __linux__
case 'f':
ctl.rtc_dev_name = optarg; /* --rtc */
break;
#endif
case 'V': /* --version */
print_version(EXIT_SUCCESS);
case 'h': /* --help */
usage();
default:
errtryhelp(EXIT_FAILURE);
}
}
if (argc -= optind) {
warnx(_("%d too many arguments given"), argc);
errtryhelp(EXIT_FAILURE);
}
if (!ctl.adj_file_name)
ctl.adj_file_name = _PATH_ADJTIME;
if (ctl.update && !ctl.set && !ctl.systohc) {
warnx(_("--update-drift requires --set or --systohc"));
exit(EXIT_FAILURE);
}
if (ctl.noadjfile && !ctl.utc && !ctl.local_opt) {
warnx(_("With --noadjfile, you must specify "
"either --utc or --localtime"));
exit(EXIT_FAILURE);
}
if (ctl.set || ctl.predict) {
if (!ctl.date_opt) {
warnx(_("--date is required for --set or --predict"));
exit(EXIT_FAILURE);
}
#ifdef USE_HWCLOCK_GPLv3_DATETIME
/* date(1) compatible GPLv3 parser */
struct timespec when = { 0 };
if (parse_date(&when, ctl.date_opt, NULL))
set_time = when.tv_sec;
#else
/* minimalistic GPLv2 based parser */
usec_t usec;
if (parse_timestamp(ctl.date_opt, &usec) == 0)
set_time = (time_t) (usec / 1000000);
#endif
else {
warnx(_("invalid date '%s'"), ctl.date_opt);
exit(EXIT_FAILURE);
}
}
#ifdef __linux__
if (ctl.param_get_option || ctl.param_set_option) {
if (manipulate_rtc_param(&ctl))
hwclock_exit(&ctl, EXIT_FAILURE);
hwclock_exit(&ctl, EXIT_SUCCESS);
}
#endif
#if defined(__linux__) && defined(__alpha__)
if (ctl.getepoch || ctl.setepoch) {
manipulate_epoch(&ctl);
hwclock_exit(&ctl, EXIT_SUCCESS);
}
#endif
if (ctl.verbose) {
out_version();
printf(_("System Time: %"PRId64".%06"PRId64"\n"),
(int64_t)startup_time.tv_sec, (int64_t)startup_time.tv_usec);
}
if (!ctl.systz && !ctl.predict)
determine_clock_access_method(&ctl);
if (!ctl.noadjfile && !(ctl.systz && (ctl.utc || ctl.local_opt))) {
if ((rc = read_adjtime(&ctl, &adjtime)) != 0)
hwclock_exit(&ctl, rc);
} else
/* Avoid writing adjtime file if we don't have to. */
adjtime.dirty = 0;
ctl.universal = hw_clock_is_utc(&ctl, &adjtime);
rc = manipulate_clock(&ctl, set_time, startup_time, &adjtime);
if (ctl.testing)
puts(_("Test mode: nothing was changed."));
hwclock_exit(&ctl, rc);
return rc; /* Not reached */
}
void
hwclock_exit(const struct hwclock_control *ctl
#ifndef HAVE_LIBAUDIT
__attribute__((__unused__))
#endif
, int status)
{
#ifdef HAVE_LIBAUDIT
if (ctl->hwaudit_on && !ctl->testing) {
audit_log_user_message(hwaudit_fd, AUDIT_USYS_CONFIG,
"op=change-system-time", NULL, NULL, NULL,
status == EXIT_SUCCESS ? 1 : 0);
}
close(hwaudit_fd);
#endif
exit(status);
}
/*
* History of this program:
*
* 98.08.12 BJH Version 2.4
*
* Don't use century byte from Hardware Clock. Add comments telling why.
*
* 98.06.20 BJH Version 2.3.
*
* Make --hctosys set the kernel timezone from TZ environment variable
* and/or /usr/lib/zoneinfo. From Klaus Ripke (klaus@ripke.com).
*
* 98.03.05 BJH. Version 2.2.
*
* Add --getepoch and --setepoch.
*
* Fix some word length things so it works on Alpha.
*
* Make it work when /dev/rtc doesn't have the interrupt functions. In this
* case, busywait for the top of a second instead of blocking and waiting
* for the update complete interrupt.
*
* Fix a bunch of bugs too numerous to mention.
*
* 97.06.01: BJH. Version 2.1. Read and write the century byte (Byte 50) of
* the ISA Hardware Clock when using direct ISA I/O. Problem discovered by
* job (jei@iclnl.icl.nl).
*
* Use the rtc clock access method in preference to the KDGHWCLK method.
* Problem discovered by Andreas Schwab <schwab@LS5.informatik.uni-dortmund.de>.
*
* November 1996: Version 2.0.1. Modifications by Nicolai Langfeldt
* (janl@math.uio.no) to make it compile on linux 1.2 machines as well as
* more recent versions of the kernel. Introduced the NO_CLOCK access method
* and wrote feature test code to detect absence of rtc headers.
*
***************************************************************************
* Maintenance notes
*
* To compile this, you must use GNU compiler optimization (-O option) in
* order to make the "extern inline" functions from asm/io.h (inb(), etc.)
* compile. If you don't optimize, which means the compiler will generate no
* inline functions, the references to these functions in this program will
* be compiled as external references. Since you probably won't be linking
* with any functions by these names, you will have unresolved external
* references when you link.
*
* Here's some info on how we must deal with the time that elapses while
* this program runs: There are two major delays as we run:
*
* 1) Waiting up to 1 second for a transition of the Hardware Clock so
* we are synchronized to the Hardware Clock.
* 2) Running the "date" program to interpret the value of our --date
* option.
*
* Reading the /etc/adjtime file is the next biggest source of delay and
* uncertainty.
*
* The user wants to know what time it was at the moment they invoked us, not
* some arbitrary time later. And in setting the clock, they are giving us the
* time at the moment we are invoked, so if we set the clock some time
* later, we have to add some time to that.
*
* So we check the system time as soon as we start up, then run "date" and
* do file I/O if necessary, then wait to synchronize with a Hardware Clock
* edge, then check the system time again to see how much time we spent. We
* immediately read the clock then and (if appropriate) report that time,
* and additionally, the delay we measured.
*
* If we're setting the clock to a time given by the user, we wait some more
* so that the total delay is an integral number of seconds, then set the
* Hardware Clock to the time the user requested plus that integral number
* of seconds. N.B. The Hardware Clock can only be set in integral seconds.
*
* If we're setting the clock to the system clock value, we wait for the
* system clock to reach the top of a second, and then set the Hardware
* Clock to the system clock's value.
*
* Here's an interesting point about setting the Hardware Clock: On my
* machine, when you set it, it sets to that precise time. But one can
* imagine another clock whose update oscillator marches on a steady one
* second period, so updating the clock between any two oscillator ticks is
* the same as updating it right at the earlier tick. To avoid any
* complications that might cause, we set the clock as soon as possible
* after an oscillator tick.
*
* About synchronizing to the Hardware Clock when reading the time: The
* precision of the Hardware Clock counters themselves is one second. You
* can't read the counters and find out that is 12:01:02.5. But if you
* consider the location in time of the counter's ticks as part of its
* value, then its precision is as infinite as time is continuous! What I'm
* saying is this: To find out the _exact_ time in the hardware clock, we
* wait until the next clock tick (the next time the second counter changes)
* and measure how long we had to wait. We then read the value of the clock
* counters and subtract the wait time and we know precisely what time it
* was when we set out to query the time.
*
* hwclock uses this method, and considers the Hardware Clock to have
* infinite precision.
*/
|