summaryrefslogtreecommitdiffstats
path: root/src/liblzma/common/common.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 21:12:04 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 21:12:04 +0000
commiteac54b7c4aec25060d7bd856f7cdc290943d6aae (patch)
tree9a6d81c9f88df4698e746d63d14ddafeddd918b8 /src/liblzma/common/common.h
parentInitial commit. (diff)
downloadxz-utils-eac54b7c4aec25060d7bd856f7cdc290943d6aae.tar.xz
xz-utils-eac54b7c4aec25060d7bd856f7cdc290943d6aae.zip
Adding upstream version 5.4.1.upstream/5.4.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/liblzma/common/common.h')
-rw-r--r--src/liblzma/common/common.h385
1 files changed, 385 insertions, 0 deletions
diff --git a/src/liblzma/common/common.h b/src/liblzma/common/common.h
new file mode 100644
index 0000000..11fec52
--- /dev/null
+++ b/src/liblzma/common/common.h
@@ -0,0 +1,385 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file common.h
+/// \brief Definitions common to the whole liblzma library
+//
+// Author: Lasse Collin
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#ifndef LZMA_COMMON_H
+#define LZMA_COMMON_H
+
+#include "sysdefs.h"
+#include "mythread.h"
+#include "tuklib_integer.h"
+
+#if defined(_WIN32) || defined(__CYGWIN__)
+# ifdef DLL_EXPORT
+# define LZMA_API_EXPORT __declspec(dllexport)
+# else
+# define LZMA_API_EXPORT
+# endif
+// Don't use ifdef or defined() below.
+#elif HAVE_VISIBILITY
+# define LZMA_API_EXPORT __attribute__((__visibility__("default")))
+#else
+# define LZMA_API_EXPORT
+#endif
+
+#define LZMA_API(type) LZMA_API_EXPORT type LZMA_API_CALL
+
+#include "lzma.h"
+
+// This is for detecting modern GCC and Clang attributes
+// like __symver__ in GCC >= 10.
+#ifdef __has_attribute
+# define lzma_has_attribute(attr) __has_attribute(attr)
+#else
+# define lzma_has_attribute(attr) 0
+#endif
+
+// The extra symbol versioning in the C files may only be used when
+// building a shared library. If HAVE_SYMBOL_VERSIONS_LINUX is defined
+// to 2 then symbol versioning is done only if also PIC is defined.
+// By default Libtool defines PIC when building a shared library and
+// doesn't define it when building a static library but it can be
+// overriden with --with-pic and --without-pic. configure let's rely
+// on PIC if neither --with-pic or --without-pic was used.
+#if defined(HAVE_SYMBOL_VERSIONS_LINUX) \
+ && (HAVE_SYMBOL_VERSIONS_LINUX == 2 && !defined(PIC))
+# undef HAVE_SYMBOL_VERSIONS_LINUX
+#endif
+
+#ifdef HAVE_SYMBOL_VERSIONS_LINUX
+// To keep link-time optimization (LTO, -flto) working with GCC,
+// the __symver__ attribute must be used instead of __asm__(".symver ...").
+// Otherwise the symbol versions may be lost, resulting in broken liblzma
+// that has wrong default versions in the exported symbol list!
+// The attribute was added in GCC 10; LTO with older GCC is not supported.
+//
+// To keep -Wmissing-prototypes happy, use LZMA_SYMVER_API only with function
+// declarations (including those with __alias__ attribute) and LZMA_API with
+// the function definitions. This means a little bit of silly copy-and-paste
+// between declarations and definitions though.
+//
+// As of GCC 12.2, the __symver__ attribute supports only @ and @@ but the
+// very convenient @@@ isn't supported (it's supported by GNU assembler
+// since 2000). When using @@ instead of @@@, the internal name must not be
+// the same as the external name to avoid problems in some situations. This
+// is why "#define foo_52 foo" is needed for the default symbol versions.
+//
+// __has_attribute is supported before GCC 10 and it is supported in Clang 14
+// too (which doesn't support __symver__) so use it to detect if __symver__
+// is available. This should be far more reliable than looking at compiler
+// version macros as nowadays especially __GNUC__ is defined by many compilers.
+# if lzma_has_attribute(__symver__)
+# define LZMA_SYMVER_API(extnamever, type, intname) \
+ extern __attribute__((__symver__(extnamever))) \
+ LZMA_API(type) intname
+# else
+# define LZMA_SYMVER_API(extnamever, type, intname) \
+ __asm__(".symver " #intname "," extnamever); \
+ extern LZMA_API(type) intname
+# endif
+#endif
+
+// These allow helping the compiler in some often-executed branches, whose
+// result is almost always the same.
+#ifdef __GNUC__
+# define likely(expr) __builtin_expect(expr, true)
+# define unlikely(expr) __builtin_expect(expr, false)
+#else
+# define likely(expr) (expr)
+# define unlikely(expr) (expr)
+#endif
+
+
+/// Size of temporary buffers needed in some filters
+#define LZMA_BUFFER_SIZE 4096
+
+
+/// Maximum number of worker threads within one multithreaded component.
+/// The limit exists solely to make it simpler to prevent integer overflows
+/// when allocating structures etc. This should be big enough for now...
+/// the code won't scale anywhere close to this number anyway.
+#define LZMA_THREADS_MAX 16384
+
+
+/// Starting value for memory usage estimates. Instead of calculating size
+/// of _every_ structure and taking into account malloc() overhead etc., we
+/// add a base size to all memory usage estimates. It's not very accurate
+/// but should be easily good enough.
+#define LZMA_MEMUSAGE_BASE (UINT64_C(1) << 15)
+
+/// Start of internal Filter ID space. These IDs must never be used
+/// in Streams.
+#define LZMA_FILTER_RESERVED_START (LZMA_VLI_C(1) << 62)
+
+
+/// Supported flags that can be passed to lzma_stream_decoder(),
+/// lzma_auto_decoder(), or lzma_stream_decoder_mt().
+#define LZMA_SUPPORTED_FLAGS \
+ ( LZMA_TELL_NO_CHECK \
+ | LZMA_TELL_UNSUPPORTED_CHECK \
+ | LZMA_TELL_ANY_CHECK \
+ | LZMA_IGNORE_CHECK \
+ | LZMA_CONCATENATED \
+ | LZMA_FAIL_FAST )
+
+
+/// Largest valid lzma_action value as unsigned integer.
+#define LZMA_ACTION_MAX ((unsigned int)(LZMA_FULL_BARRIER))
+
+
+/// Special return value (lzma_ret) to indicate that a timeout was reached
+/// and lzma_code() must not return LZMA_BUF_ERROR. This is converted to
+/// LZMA_OK in lzma_code().
+#define LZMA_TIMED_OUT LZMA_RET_INTERNAL1
+
+/// Special return value (lzma_ret) for use in stream_decoder_mt.c to
+/// indicate Index was detected instead of a Block Header.
+#define LZMA_INDEX_DETECTED LZMA_RET_INTERNAL2
+
+
+typedef struct lzma_next_coder_s lzma_next_coder;
+
+typedef struct lzma_filter_info_s lzma_filter_info;
+
+
+/// Type of a function used to initialize a filter encoder or decoder
+typedef lzma_ret (*lzma_init_function)(
+ lzma_next_coder *next, const lzma_allocator *allocator,
+ const lzma_filter_info *filters);
+
+/// Type of a function to do some kind of coding work (filters, Stream,
+/// Block encoders/decoders etc.). Some special coders use don't use both
+/// input and output buffers, but for simplicity they still use this same
+/// function prototype.
+typedef lzma_ret (*lzma_code_function)(
+ void *coder, const lzma_allocator *allocator,
+ const uint8_t *restrict in, size_t *restrict in_pos,
+ size_t in_size, uint8_t *restrict out,
+ size_t *restrict out_pos, size_t out_size,
+ lzma_action action);
+
+/// Type of a function to free the memory allocated for the coder
+typedef void (*lzma_end_function)(
+ void *coder, const lzma_allocator *allocator);
+
+
+/// Raw coder validates and converts an array of lzma_filter structures to
+/// an array of lzma_filter_info structures. This array is used with
+/// lzma_next_filter_init to initialize the filter chain.
+struct lzma_filter_info_s {
+ /// Filter ID. This can be used to share the same initiazation
+ /// function *and* data structures with different Filter IDs
+ /// (LZMA_FILTER_LZMA1EXT does it), and also by the encoder
+ /// with lzma_filters_update() if filter chain is updated
+ /// in the middle of a raw stream or Block (LZMA_SYNC_FLUSH).
+ lzma_vli id;
+
+ /// Pointer to function used to initialize the filter.
+ /// This is NULL to indicate end of array.
+ lzma_init_function init;
+
+ /// Pointer to filter's options structure
+ void *options;
+};
+
+
+/// Hold data and function pointers of the next filter in the chain.
+struct lzma_next_coder_s {
+ /// Pointer to coder-specific data
+ void *coder;
+
+ /// Filter ID. This is LZMA_VLI_UNKNOWN when this structure doesn't
+ /// point to a filter coder.
+ lzma_vli id;
+
+ /// "Pointer" to init function. This is never called here.
+ /// We need only to detect if we are initializing a coder
+ /// that was allocated earlier. See lzma_next_coder_init and
+ /// lzma_next_strm_init macros in this file.
+ uintptr_t init;
+
+ /// Pointer to function to do the actual coding
+ lzma_code_function code;
+
+ /// Pointer to function to free lzma_next_coder.coder. This can
+ /// be NULL; in that case, lzma_free is called to free
+ /// lzma_next_coder.coder.
+ lzma_end_function end;
+
+ /// Pointer to a function to get progress information. If this is NULL,
+ /// lzma_stream.total_in and .total_out are used instead.
+ void (*get_progress)(void *coder,
+ uint64_t *progress_in, uint64_t *progress_out);
+
+ /// Pointer to function to return the type of the integrity check.
+ /// Most coders won't support this.
+ lzma_check (*get_check)(const void *coder);
+
+ /// Pointer to function to get and/or change the memory usage limit.
+ /// If new_memlimit == 0, the limit is not changed.
+ lzma_ret (*memconfig)(void *coder, uint64_t *memusage,
+ uint64_t *old_memlimit, uint64_t new_memlimit);
+
+ /// Update the filter-specific options or the whole filter chain
+ /// in the encoder.
+ lzma_ret (*update)(void *coder, const lzma_allocator *allocator,
+ const lzma_filter *filters,
+ const lzma_filter *reversed_filters);
+
+ /// Set how many bytes of output this coder may produce at maximum.
+ /// On success LZMA_OK must be returned.
+ /// If the filter chain as a whole cannot support this feature,
+ /// this must return LZMA_OPTIONS_ERROR.
+ /// If no input has been given to the coder and the requested limit
+ /// is too small, this must return LZMA_BUF_ERROR. If input has been
+ /// seen, LZMA_OK is allowed too.
+ lzma_ret (*set_out_limit)(void *coder, uint64_t *uncomp_size,
+ uint64_t out_limit);
+};
+
+
+/// Macro to initialize lzma_next_coder structure
+#define LZMA_NEXT_CODER_INIT \
+ (lzma_next_coder){ \
+ .coder = NULL, \
+ .init = (uintptr_t)(NULL), \
+ .id = LZMA_VLI_UNKNOWN, \
+ .code = NULL, \
+ .end = NULL, \
+ .get_progress = NULL, \
+ .get_check = NULL, \
+ .memconfig = NULL, \
+ .update = NULL, \
+ .set_out_limit = NULL, \
+ }
+
+
+/// Internal data for lzma_strm_init, lzma_code, and lzma_end. A pointer to
+/// this is stored in lzma_stream.
+struct lzma_internal_s {
+ /// The actual coder that should do something useful
+ lzma_next_coder next;
+
+ /// Track the state of the coder. This is used to validate arguments
+ /// so that the actual coders can rely on e.g. that LZMA_SYNC_FLUSH
+ /// is used on every call to lzma_code until next.code has returned
+ /// LZMA_STREAM_END.
+ enum {
+ ISEQ_RUN,
+ ISEQ_SYNC_FLUSH,
+ ISEQ_FULL_FLUSH,
+ ISEQ_FINISH,
+ ISEQ_FULL_BARRIER,
+ ISEQ_END,
+ ISEQ_ERROR,
+ } sequence;
+
+ /// A copy of lzma_stream avail_in. This is used to verify that the
+ /// amount of input doesn't change once e.g. LZMA_FINISH has been
+ /// used.
+ size_t avail_in;
+
+ /// Indicates which lzma_action values are allowed by next.code.
+ bool supported_actions[LZMA_ACTION_MAX + 1];
+
+ /// If true, lzma_code will return LZMA_BUF_ERROR if no progress was
+ /// made (no input consumed and no output produced by next.code).
+ bool allow_buf_error;
+};
+
+
+/// Allocates memory
+extern void *lzma_alloc(size_t size, const lzma_allocator *allocator)
+ lzma_attribute((__malloc__)) lzma_attr_alloc_size(1);
+
+/// Allocates memory and zeroes it (like calloc()). This can be faster
+/// than lzma_alloc() + memzero() while being backward compatible with
+/// custom allocators.
+extern void * lzma_attribute((__malloc__)) lzma_attr_alloc_size(1)
+ lzma_alloc_zero(size_t size, const lzma_allocator *allocator);
+
+/// Frees memory
+extern void lzma_free(void *ptr, const lzma_allocator *allocator);
+
+
+/// Allocates strm->internal if it is NULL, and initializes *strm and
+/// strm->internal. This function is only called via lzma_next_strm_init macro.
+extern lzma_ret lzma_strm_init(lzma_stream *strm);
+
+/// Initializes the next filter in the chain, if any. This takes care of
+/// freeing the memory of previously initialized filter if it is different
+/// than the filter being initialized now. This way the actual filter
+/// initialization functions don't need to use lzma_next_coder_init macro.
+extern lzma_ret lzma_next_filter_init(lzma_next_coder *next,
+ const lzma_allocator *allocator,
+ const lzma_filter_info *filters);
+
+/// Update the next filter in the chain, if any. This checks that
+/// the application is not trying to change the Filter IDs.
+extern lzma_ret lzma_next_filter_update(
+ lzma_next_coder *next, const lzma_allocator *allocator,
+ const lzma_filter *reversed_filters);
+
+/// Frees the memory allocated for next->coder either using next->end or,
+/// if next->end is NULL, using lzma_free.
+extern void lzma_next_end(lzma_next_coder *next,
+ const lzma_allocator *allocator);
+
+
+/// Copy as much data as possible from in[] to out[] and update *in_pos
+/// and *out_pos accordingly. Returns the number of bytes copied.
+extern size_t lzma_bufcpy(const uint8_t *restrict in, size_t *restrict in_pos,
+ size_t in_size, uint8_t *restrict out,
+ size_t *restrict out_pos, size_t out_size);
+
+
+/// \brief Return if expression doesn't evaluate to LZMA_OK
+///
+/// There are several situations where we want to return immediately
+/// with the value of expr if it isn't LZMA_OK. This macro shortens
+/// the code a little.
+#define return_if_error(expr) \
+do { \
+ const lzma_ret ret_ = (expr); \
+ if (ret_ != LZMA_OK) \
+ return ret_; \
+} while (0)
+
+
+/// If next isn't already initialized, free the previous coder. Then mark
+/// that next is _possibly_ initialized for the coder using this macro.
+/// "Possibly" means that if e.g. allocation of next->coder fails, the
+/// structure isn't actually initialized for this coder, but leaving
+/// next->init to func is still OK.
+#define lzma_next_coder_init(func, next, allocator) \
+do { \
+ if ((uintptr_t)(func) != (next)->init) \
+ lzma_next_end(next, allocator); \
+ (next)->init = (uintptr_t)(func); \
+} while (0)
+
+
+/// Initializes lzma_strm and calls func() to initialize strm->internal->next.
+/// (The function being called will use lzma_next_coder_init()). If
+/// initialization fails, memory that wasn't freed by func() is freed
+/// along strm->internal.
+#define lzma_next_strm_init(func, strm, ...) \
+do { \
+ return_if_error(lzma_strm_init(strm)); \
+ const lzma_ret ret_ = func(&(strm)->internal->next, \
+ (strm)->allocator, __VA_ARGS__); \
+ if (ret_ != LZMA_OK) { \
+ lzma_end(strm); \
+ return ret_; \
+ } \
+} while (0)
+
+#endif