summaryrefslogtreecommitdiffstats
path: root/src/liblzma/common/index_encoder.c
blob: c7cafb72decc24eec0815f818aa4068f1a08fabf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
///////////////////////////////////////////////////////////////////////////////
//
/// \file       index_encoder.c
/// \brief      Encodes the Index field
//
//  Author:     Lasse Collin
//
//  This file has been put into the public domain.
//  You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////

#include "index_encoder.h"
#include "index.h"
#include "check.h"


typedef struct {
	enum {
		SEQ_INDICATOR,
		SEQ_COUNT,
		SEQ_UNPADDED,
		SEQ_UNCOMPRESSED,
		SEQ_NEXT,
		SEQ_PADDING,
		SEQ_CRC32,
	} sequence;

	/// Index being encoded
	const lzma_index *index;

	/// Iterator for the Index being encoded
	lzma_index_iter iter;

	/// Position in integers
	size_t pos;

	/// CRC32 of the List of Records field
	uint32_t crc32;
} lzma_index_coder;


static lzma_ret
index_encode(void *coder_ptr,
		const lzma_allocator *allocator lzma_attribute((__unused__)),
		const uint8_t *restrict in lzma_attribute((__unused__)),
		size_t *restrict in_pos lzma_attribute((__unused__)),
		size_t in_size lzma_attribute((__unused__)),
		uint8_t *restrict out, size_t *restrict out_pos,
		size_t out_size,
		lzma_action action lzma_attribute((__unused__)))
{
	lzma_index_coder *coder = coder_ptr;

	// Position where to start calculating CRC32. The idea is that we
	// need to call lzma_crc32() only once per call to index_encode().
	const size_t out_start = *out_pos;

	// Return value to use if we return at the end of this function.
	// We use "goto out" to jump out of the while-switch construct
	// instead of returning directly, because that way we don't need
	// to copypaste the lzma_crc32() call to many places.
	lzma_ret ret = LZMA_OK;

	while (*out_pos < out_size)
	switch (coder->sequence) {
	case SEQ_INDICATOR:
		out[*out_pos] = INDEX_INDICATOR;
		++*out_pos;
		coder->sequence = SEQ_COUNT;
		break;

	case SEQ_COUNT: {
		const lzma_vli count = lzma_index_block_count(coder->index);
		ret = lzma_vli_encode(count, &coder->pos,
				out, out_pos, out_size);
		if (ret != LZMA_STREAM_END)
			goto out;

		ret = LZMA_OK;
		coder->pos = 0;
		coder->sequence = SEQ_NEXT;
		break;
	}

	case SEQ_NEXT:
		if (lzma_index_iter_next(
				&coder->iter, LZMA_INDEX_ITER_BLOCK)) {
			// Get the size of the Index Padding field.
			coder->pos = lzma_index_padding_size(coder->index);
			assert(coder->pos <= 3);
			coder->sequence = SEQ_PADDING;
			break;
		}

		coder->sequence = SEQ_UNPADDED;

	// Fall through

	case SEQ_UNPADDED:
	case SEQ_UNCOMPRESSED: {
		const lzma_vli size = coder->sequence == SEQ_UNPADDED
				? coder->iter.block.unpadded_size
				: coder->iter.block.uncompressed_size;

		ret = lzma_vli_encode(size, &coder->pos,
				out, out_pos, out_size);
		if (ret != LZMA_STREAM_END)
			goto out;

		ret = LZMA_OK;
		coder->pos = 0;

		// Advance to SEQ_UNCOMPRESSED or SEQ_NEXT.
		++coder->sequence;
		break;
	}

	case SEQ_PADDING:
		if (coder->pos > 0) {
			--coder->pos;
			out[(*out_pos)++] = 0x00;
			break;
		}

		// Finish the CRC32 calculation.
		coder->crc32 = lzma_crc32(out + out_start,
				*out_pos - out_start, coder->crc32);

		coder->sequence = SEQ_CRC32;

	// Fall through

	case SEQ_CRC32:
		// We don't use the main loop, because we don't want
		// coder->crc32 to be touched anymore.
		do {
			if (*out_pos == out_size)
				return LZMA_OK;

			out[*out_pos] = (coder->crc32 >> (coder->pos * 8))
					& 0xFF;
			++*out_pos;

		} while (++coder->pos < 4);

		return LZMA_STREAM_END;

	default:
		assert(0);
		return LZMA_PROG_ERROR;
	}

out:
	// Update the CRC32.
	coder->crc32 = lzma_crc32(out + out_start,
			*out_pos - out_start, coder->crc32);

	return ret;
}


static void
index_encoder_end(void *coder, const lzma_allocator *allocator)
{
	lzma_free(coder, allocator);
	return;
}


static void
index_encoder_reset(lzma_index_coder *coder, const lzma_index *i)
{
	lzma_index_iter_init(&coder->iter, i);

	coder->sequence = SEQ_INDICATOR;
	coder->index = i;
	coder->pos = 0;
	coder->crc32 = 0;

	return;
}


extern lzma_ret
lzma_index_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
		const lzma_index *i)
{
	lzma_next_coder_init(&lzma_index_encoder_init, next, allocator);

	if (i == NULL)
		return LZMA_PROG_ERROR;

	if (next->coder == NULL) {
		next->coder = lzma_alloc(sizeof(lzma_index_coder), allocator);
		if (next->coder == NULL)
			return LZMA_MEM_ERROR;

		next->code = &index_encode;
		next->end = &index_encoder_end;
	}

	index_encoder_reset(next->coder, i);

	return LZMA_OK;
}


extern LZMA_API(lzma_ret)
lzma_index_encoder(lzma_stream *strm, const lzma_index *i)
{
	lzma_next_strm_init(lzma_index_encoder_init, strm, i);

	strm->internal->supported_actions[LZMA_RUN] = true;
	strm->internal->supported_actions[LZMA_FINISH] = true;

	return LZMA_OK;
}


extern LZMA_API(lzma_ret)
lzma_index_buffer_encode(const lzma_index *i,
		uint8_t *out, size_t *out_pos, size_t out_size)
{
	// Validate the arguments.
	if (i == NULL || out == NULL || out_pos == NULL || *out_pos > out_size)
		return LZMA_PROG_ERROR;

	// Don't try to encode if there's not enough output space.
	if (out_size - *out_pos < lzma_index_size(i))
		return LZMA_BUF_ERROR;

	// The Index encoder needs just one small data structure so we can
	// allocate it on stack.
	lzma_index_coder coder;
	index_encoder_reset(&coder, i);

	// Do the actual encoding. This should never fail, but store
	// the original *out_pos just in case.
	const size_t out_start = *out_pos;
	lzma_ret ret = index_encode(&coder, NULL, NULL, NULL, 0,
			out, out_pos, out_size, LZMA_RUN);

	if (ret == LZMA_STREAM_END) {
		ret = LZMA_OK;
	} else {
		// We should never get here, but just in case, restore the
		// output position and set the error accordingly if something
		// goes wrong and debugging isn't enabled.
		assert(0);
		*out_pos = out_start;
		ret = LZMA_PROG_ERROR;
	}

	return ret;
}