diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 16:51:28 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 16:51:28 +0000 |
commit | 940b4d1848e8c70ab7642901a68594e8016caffc (patch) | |
tree | eb72f344ee6c3d9b80a7ecc079ea79e9fba8676d /sc/source/core/tool/interpr5.cxx | |
parent | Initial commit. (diff) | |
download | libreoffice-940b4d1848e8c70ab7642901a68594e8016caffc.tar.xz libreoffice-940b4d1848e8c70ab7642901a68594e8016caffc.zip |
Adding upstream version 1:7.0.4.upstream/1%7.0.4upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'sc/source/core/tool/interpr5.cxx')
-rw-r--r-- | sc/source/core/tool/interpr5.cxx | 3321 |
1 files changed, 3321 insertions, 0 deletions
diff --git a/sc/source/core/tool/interpr5.cxx b/sc/source/core/tool/interpr5.cxx new file mode 100644 index 000000000..685a2cfe8 --- /dev/null +++ b/sc/source/core/tool/interpr5.cxx @@ -0,0 +1,3321 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <rtl/math.hxx> +#include <string.h> +#include <math.h> + +#ifdef DEBUG_SC_LUP_DECOMPOSITION +#include <stdio.h> +#endif + +#include <unotools/bootstrap.hxx> +#include <svl/zforlist.hxx> + +#include <interpre.hxx> +#include <global.hxx> +#include <compiler.hxx> +#include <formulacell.hxx> +#include <document.hxx> +#include <dociter.hxx> +#include <scmatrix.hxx> +#include <globstr.hrc> +#include <scresid.hxx> +#include <cellkeytranslator.hxx> +#include <formulagroup.hxx> + +#include <vector> + +using ::std::vector; +using namespace formula; + +namespace { + +struct MatrixAdd +{ + double operator() (const double& lhs, const double& rhs) const + { + return ::rtl::math::approxAdd( lhs,rhs); + } +}; + +struct MatrixSub +{ + double operator() (const double& lhs, const double& rhs) const + { + return ::rtl::math::approxSub( lhs,rhs); + } +}; + +struct MatrixMul +{ + double operator() (const double& lhs, const double& rhs) const + { + return lhs * rhs; + } +}; + +struct MatrixDiv +{ + double operator() (const double& lhs, const double& rhs) const + { + return ScInterpreter::div( lhs,rhs); + } +}; + +struct MatrixPow +{ + double operator() (const double& lhs, const double& rhs) const + { + return ::pow( lhs,rhs); + } +}; + +// Multiply n x m Mat A with m x l Mat B to n x l Mat R +void lcl_MFastMult(const ScMatrixRef& pA, const ScMatrixRef& pB, const ScMatrixRef& pR, + SCSIZE n, SCSIZE m, SCSIZE l) +{ + double sum; + for (SCSIZE row = 0; row < n; row++) + { + for (SCSIZE col = 0; col < l; col++) + { // result element(col, row) =sum[ (row of A) * (column of B)] + sum = 0.0; + for (SCSIZE k = 0; k < m; k++) + sum += pA->GetDouble(k,row) * pB->GetDouble(col,k); + pR->PutDouble(sum, col, row); + } + } +} + +} + +double ScInterpreter::ScGetGCD(double fx, double fy) +{ + // By ODFF definition GCD(0,a) => a. This is also vital for the code in + // ScGCD() to work correctly with a preset fy=0.0 + if (fy == 0.0) + return fx; + else if (fx == 0.0) + return fy; + else + { + double fz = fmod(fx, fy); + while (fz > 0.0) + { + fx = fy; + fy = fz; + fz = fmod(fx, fy); + } + return fy; + } +} + +void ScInterpreter::ScGCD() +{ + short nParamCount = GetByte(); + if ( MustHaveParamCountMin( nParamCount, 1 ) ) + { + double fx, fy = 0.0; + ScRange aRange; + size_t nRefInList = 0; + while (nGlobalError == FormulaError::NONE && nParamCount-- > 0) + { + switch (GetStackType()) + { + case svDouble : + case svString: + case svSingleRef: + { + fx = ::rtl::math::approxFloor( GetDouble()); + if (fx < 0.0) + { + PushIllegalArgument(); + return; + } + fy = ScGetGCD(fx, fy); + } + break; + case svDoubleRef : + case svRefList : + { + FormulaError nErr = FormulaError::NONE; + PopDoubleRef( aRange, nParamCount, nRefInList); + double nCellVal; + ScValueIterator aValIter( pDok, aRange, mnSubTotalFlags ); + if (aValIter.GetFirst(nCellVal, nErr)) + { + do + { + fx = ::rtl::math::approxFloor( nCellVal); + if (fx < 0.0) + { + PushIllegalArgument(); + return; + } + fy = ScGetGCD(fx, fy); + } while (nErr == FormulaError::NONE && aValIter.GetNext(nCellVal, nErr)); + } + SetError(nErr); + } + break; + case svMatrix : + case svExternalSingleRef: + case svExternalDoubleRef: + { + ScMatrixRef pMat = GetMatrix(); + if (pMat) + { + SCSIZE nC, nR; + pMat->GetDimensions(nC, nR); + if (nC == 0 || nR == 0) + SetError(FormulaError::IllegalArgument); + else + { + double nVal = pMat->GetGcd(); + fy = ScGetGCD(nVal,fy); + } + } + } + break; + default : SetError(FormulaError::IllegalParameter); break; + } + } + PushDouble(fy); + } +} + +void ScInterpreter:: ScLCM() +{ + short nParamCount = GetByte(); + if ( MustHaveParamCountMin( nParamCount, 1 ) ) + { + double fx, fy = 1.0; + ScRange aRange; + size_t nRefInList = 0; + while (nGlobalError == FormulaError::NONE && nParamCount-- > 0) + { + switch (GetStackType()) + { + case svDouble : + case svString: + case svSingleRef: + { + fx = ::rtl::math::approxFloor( GetDouble()); + if (fx < 0.0) + { + PushIllegalArgument(); + return; + } + if (fx == 0.0 || fy == 0.0) + fy = 0.0; + else + fy = fx * fy / ScGetGCD(fx, fy); + } + break; + case svDoubleRef : + case svRefList : + { + FormulaError nErr = FormulaError::NONE; + PopDoubleRef( aRange, nParamCount, nRefInList); + double nCellVal; + ScValueIterator aValIter( pDok, aRange, mnSubTotalFlags ); + if (aValIter.GetFirst(nCellVal, nErr)) + { + do + { + fx = ::rtl::math::approxFloor( nCellVal); + if (fx < 0.0) + { + PushIllegalArgument(); + return; + } + if (fx == 0.0 || fy == 0.0) + fy = 0.0; + else + fy = fx * fy / ScGetGCD(fx, fy); + } while (nErr == FormulaError::NONE && aValIter.GetNext(nCellVal, nErr)); + } + SetError(nErr); + } + break; + case svMatrix : + case svExternalSingleRef: + case svExternalDoubleRef: + { + ScMatrixRef pMat = GetMatrix(); + if (pMat) + { + SCSIZE nC, nR; + pMat->GetDimensions(nC, nR); + if (nC == 0 || nR == 0) + SetError(FormulaError::IllegalArgument); + else + { + double nVal = pMat->GetLcm(); + fy = (nVal * fy ) / ScGetGCD(nVal, fy); + } + } + } + break; + default : SetError(FormulaError::IllegalParameter); break; + } + } + PushDouble(fy); + } +} + +void ScInterpreter::MakeMatNew(ScMatrixRef& rMat, SCSIZE nC, SCSIZE nR) +{ + rMat->SetErrorInterpreter( this); + // A temporary matrix is mutable and ScMatrix::CloneIfConst() returns the + // very matrix. + rMat->SetMutable(); + SCSIZE nCols, nRows; + rMat->GetDimensions( nCols, nRows); + if ( nCols != nC || nRows != nR ) + { // arbitrary limit of elements exceeded + SetError( FormulaError::MatrixSize); + rMat.reset(); + } +} + +ScMatrixRef ScInterpreter::GetNewMat(SCSIZE nC, SCSIZE nR, bool bEmpty) +{ + ScMatrixRef pMat; + if (bEmpty) + pMat = new ScMatrix(nC, nR); + else + pMat = new ScMatrix(nC, nR, 0.0); + MakeMatNew(pMat, nC, nR); + return pMat; +} + +ScMatrixRef ScInterpreter::GetNewMat(SCSIZE nC, SCSIZE nR, const std::vector<double>& rValues) +{ + ScMatrixRef pMat(new ScMatrix(nC, nR, rValues)); + MakeMatNew(pMat, nC, nR); + return pMat; +} + +ScMatrixRef ScInterpreter::CreateMatrixFromDoubleRef( const FormulaToken* pToken, + SCCOL nCol1, SCROW nRow1, SCTAB nTab1, + SCCOL nCol2, SCROW nRow2, SCTAB nTab2 ) +{ + if (nTab1 != nTab2 || nGlobalError != FormulaError::NONE) + { + // Not a 2D matrix. + SetError(FormulaError::IllegalParameter); + return nullptr; + } + + SCSIZE nMatCols = static_cast<SCSIZE>(nCol2 - nCol1 + 1); + SCSIZE nMatRows = static_cast<SCSIZE>(nRow2 - nRow1 + 1); + + if (!ScMatrix::IsSizeAllocatable( nMatCols, nMatRows)) + { + SetError(FormulaError::MatrixSize); + return nullptr; + } + + ScTokenMatrixMap::const_iterator aIter; + if (pToken && pTokenMatrixMap && ((aIter = pTokenMatrixMap->find( pToken)) != pTokenMatrixMap->end())) + { + /* XXX casting const away here is ugly; ScMatrixToken (to which the + * result of this function usually is assigned) should not be forced to + * carry a ScConstMatrixRef though. + * TODO: a matrix already stored in pTokenMatrixMap should be + * read-only and have a copy-on-write mechanism. Previously all tokens + * were modifiable so we're already better than before ... */ + return const_cast<FormulaToken*>((*aIter).second.get())->GetMatrix(); + } + + ScMatrixRef pMat = GetNewMat( nMatCols, nMatRows, true); + if (!pMat || nGlobalError != FormulaError::NONE) + return nullptr; + + if (!bCalcAsShown) + { + // Use fast array fill. + pDok->FillMatrix(*pMat, nTab1, nCol1, nRow1, nCol2, nRow2); + } + else + { + // Use slower ScCellIterator to round values. + + // TODO: this probably could use CellBucket for faster storage, see + // sc/source/core/data/column2.cxx and FillMatrixHandler, and then be + // moved to a function on its own, and/or squeeze the rounding into a + // similar FillMatrixHandler that would need to keep track of the cell + // position then. + + // Set position where the next entry is expected. + SCROW nNextRow = nRow1; + SCCOL nNextCol = nCol1; + // Set last position as if there was a previous entry. + SCROW nThisRow = nRow2; + SCCOL nThisCol = nCol1 - 1; + + ScCellIterator aCellIter( pDok, ScRange( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2)); + for (bool bHas = aCellIter.first(); bHas; bHas = aCellIter.next()) + { + nThisCol = aCellIter.GetPos().Col(); + nThisRow = aCellIter.GetPos().Row(); + if (nThisCol != nNextCol || nThisRow != nNextRow) + { + // Fill empty between iterator's positions. + for ( ; nNextCol <= nThisCol; ++nNextCol) + { + const SCSIZE nC = nNextCol - nCol1; + const SCSIZE nMatStopRow = ((nNextCol < nThisCol) ? nMatRows : nThisRow - nRow1); + for (SCSIZE nR = nNextRow - nRow1; nR < nMatStopRow; ++nR) + { + pMat->PutEmpty( nC, nR); + } + nNextRow = nRow1; + } + } + if (nThisRow == nRow2) + { + nNextCol = nThisCol + 1; + nNextRow = nRow1; + } + else + { + nNextCol = nThisCol; + nNextRow = nThisRow + 1; + } + + const SCSIZE nMatCol = static_cast<SCSIZE>(nThisCol - nCol1); + const SCSIZE nMatRow = static_cast<SCSIZE>(nThisRow - nRow1); + ScRefCellValue aCell( aCellIter.getRefCellValue()); + if (aCellIter.isEmpty() || aCell.hasEmptyValue()) + { + pMat->PutEmpty( nMatCol, nMatRow); + } + else if (aCell.hasError()) + { + pMat->PutError( aCell.mpFormula->GetErrCode(), nMatCol, nMatRow); + } + else if (aCell.hasNumeric()) + { + double fVal = aCell.getValue(); + // CELLTYPE_FORMULA already stores the rounded value. + if (aCell.meType == CELLTYPE_VALUE) + { + // TODO: this could be moved to ScCellIterator to take + // advantage of the faster ScAttrArray_IterGetNumberFormat. + const ScAddress aAdr( nThisCol, nThisRow, nTab1); + const sal_uInt32 nNumFormat = pDok->GetNumberFormat( mrContext, aAdr); + fVal = pDok->RoundValueAsShown( fVal, nNumFormat, &mrContext); + } + pMat->PutDouble( fVal, nMatCol, nMatRow); + } + else if (aCell.hasString()) + { + pMat->PutString( mrStrPool.intern( aCell.getString( pDok)), nMatCol, nMatRow); + } + else + { + assert(!"aCell.what?"); + pMat->PutEmpty( nMatCol, nMatRow); + } + } + + // Fill empty if iterator's last position wasn't the end. + if (nThisCol != nCol2 || nThisRow != nRow2) + { + for ( ; nNextCol <= nCol2; ++nNextCol) + { + SCSIZE nC = nNextCol - nCol1; + for (SCSIZE nR = nNextRow - nRow1; nR < nMatRows; ++nR) + { + pMat->PutEmpty( nC, nR); + } + nNextRow = nRow1; + } + } + } + + if (pToken && pTokenMatrixMap) + pTokenMatrixMap->emplace(pToken, new ScMatrixToken( pMat)); + + return pMat; +} + +ScMatrixRef ScInterpreter::GetMatrix() +{ + ScMatrixRef pMat = nullptr; + switch (GetRawStackType()) + { + case svSingleRef : + { + ScAddress aAdr; + PopSingleRef( aAdr ); + pMat = GetNewMat(1, 1); + if (pMat) + { + ScRefCellValue aCell(*pDok, aAdr); + if (aCell.hasEmptyValue()) + pMat->PutEmpty(0, 0); + else if (aCell.hasNumeric()) + pMat->PutDouble(GetCellValue(aAdr, aCell), 0); + else + { + svl::SharedString aStr; + GetCellString(aStr, aCell); + pMat->PutString(aStr, 0); + } + } + } + break; + case svDoubleRef: + { + SCCOL nCol1, nCol2; + SCROW nRow1, nRow2; + SCTAB nTab1, nTab2; + const formula::FormulaToken* p = sp ? pStack[sp-1] : nullptr; + PopDoubleRef(nCol1, nRow1, nTab1, nCol2, nRow2, nTab2); + pMat = CreateMatrixFromDoubleRef( p, nCol1, nRow1, nTab1, + nCol2, nRow2, nTab2); + } + break; + case svMatrix: + pMat = PopMatrix(); + break; + case svError : + case svMissing : + case svDouble : + { + double fVal = GetDouble(); + pMat = GetNewMat( 1, 1); + if ( pMat ) + { + if ( nGlobalError != FormulaError::NONE ) + { + fVal = CreateDoubleError( nGlobalError); + nGlobalError = FormulaError::NONE; + } + pMat->PutDouble( fVal, 0); + } + } + break; + case svString : + { + svl::SharedString aStr = GetString(); + pMat = GetNewMat( 1, 1); + if ( pMat ) + { + if ( nGlobalError != FormulaError::NONE ) + { + double fVal = CreateDoubleError( nGlobalError); + pMat->PutDouble( fVal, 0); + nGlobalError = FormulaError::NONE; + } + else + pMat->PutString(aStr, 0); + } + } + break; + case svExternalSingleRef: + { + ScExternalRefCache::TokenRef pToken; + PopExternalSingleRef(pToken); + pMat = GetNewMat( 1, 1, true); + if (!pMat) + break; + if (nGlobalError != FormulaError::NONE) + { + pMat->PutError( nGlobalError, 0, 0); + nGlobalError = FormulaError::NONE; + break; + } + switch (pToken->GetType()) + { + case svError: + pMat->PutError( pToken->GetError(), 0, 0); + break; + case svDouble: + pMat->PutDouble( pToken->GetDouble(), 0, 0); + break; + case svString: + pMat->PutString( pToken->GetString(), 0, 0); + break; + default: + ; // nothing, empty element matrix + } + } + break; + case svExternalDoubleRef: + PopExternalDoubleRef(pMat); + break; + default: + PopError(); + SetError( FormulaError::IllegalArgument); + break; + } + return pMat; +} + +ScMatrixRef ScInterpreter::GetMatrix( short & rParam, size_t & rRefInList ) +{ + switch (GetRawStackType()) + { + case svRefList: + { + ScRange aRange( ScAddress::INITIALIZE_INVALID ); + PopDoubleRef( aRange, rParam, rRefInList); + if (nGlobalError != FormulaError::NONE) + return nullptr; + + SCCOL nCol1, nCol2; + SCROW nRow1, nRow2; + SCTAB nTab1, nTab2; + aRange.GetVars( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2); + return CreateMatrixFromDoubleRef( nullptr, nCol1, nRow1, nTab1, nCol2, nRow2, nTab2); + } + break; + default: + return GetMatrix(); + } +} + +sc::RangeMatrix ScInterpreter::GetRangeMatrix() +{ + sc::RangeMatrix aRet; + switch (GetRawStackType()) + { + case svMatrix: + aRet = PopRangeMatrix(); + break; + default: + aRet.mpMat = GetMatrix(); + } + return aRet; +} + +void ScInterpreter::ScMatValue() +{ + if ( MustHaveParamCount( GetByte(), 3 ) ) + { + // 0 to count-1 + // Theoretically we could have GetSize() instead of GetUInt32(), but + // really, practically ... + SCSIZE nR = static_cast<SCSIZE>(GetUInt32()); + SCSIZE nC = static_cast<SCSIZE>(GetUInt32()); + if (nGlobalError != FormulaError::NONE) + { + PushError( nGlobalError); + return; + } + switch (GetStackType()) + { + case svSingleRef : + { + ScAddress aAdr; + PopSingleRef( aAdr ); + ScRefCellValue aCell(*pDok, aAdr); + if (aCell.meType == CELLTYPE_FORMULA) + { + FormulaError nErrCode = aCell.mpFormula->GetErrCode(); + if (nErrCode != FormulaError::NONE) + PushError( nErrCode); + else + { + const ScMatrix* pMat = aCell.mpFormula->GetMatrix(); + CalculateMatrixValue(pMat,nC,nR); + } + } + else + PushIllegalParameter(); + } + break; + case svDoubleRef : + { + SCCOL nCol1; + SCROW nRow1; + SCTAB nTab1; + SCCOL nCol2; + SCROW nRow2; + SCTAB nTab2; + PopDoubleRef(nCol1, nRow1, nTab1, nCol2, nRow2, nTab2); + if (nCol2 - nCol1 >= static_cast<SCCOL>(nR) && + nRow2 - nRow1 >= static_cast<SCROW>(nC) && + nTab1 == nTab2) + { + ScAddress aAdr( sal::static_int_cast<SCCOL>( nCol1 + nR ), + sal::static_int_cast<SCROW>( nRow1 + nC ), nTab1 ); + ScRefCellValue aCell(*pDok, aAdr); + if (aCell.hasNumeric()) + PushDouble(GetCellValue(aAdr, aCell)); + else + { + svl::SharedString aStr; + GetCellString(aStr, aCell); + PushString(aStr); + } + } + else + PushNoValue(); + } + break; + case svMatrix: + { + ScMatrixRef pMat = PopMatrix(); + CalculateMatrixValue(pMat.get(),nC,nR); + } + break; + default: + PopError(); + PushIllegalParameter(); + break; + } + } +} +void ScInterpreter::CalculateMatrixValue(const ScMatrix* pMat,SCSIZE nC,SCSIZE nR) +{ + if (pMat) + { + SCSIZE nCl, nRw; + pMat->GetDimensions(nCl, nRw); + if (nC < nCl && nR < nRw) + { + const ScMatrixValue nMatVal = pMat->Get( nC, nR); + ScMatValType nMatValType = nMatVal.nType; + if (ScMatrix::IsNonValueType( nMatValType)) + PushString( nMatVal.GetString() ); + else + PushDouble(nMatVal.fVal); + // also handles DoubleError + } + else + PushNoValue(); + } + else + PushNoValue(); +} + +void ScInterpreter::ScEMat() +{ + if ( MustHaveParamCount( GetByte(), 1 ) ) + { + SCSIZE nDim = static_cast<SCSIZE>(GetUInt32()); + if (nGlobalError != FormulaError::NONE || nDim == 0) + PushIllegalArgument(); + else if (!ScMatrix::IsSizeAllocatable( nDim, nDim)) + PushError( FormulaError::MatrixSize); + else + { + ScMatrixRef pRMat = GetNewMat(nDim, nDim); + if (pRMat) + { + MEMat(pRMat, nDim); + PushMatrix(pRMat); + } + else + PushIllegalArgument(); + } + } +} + +void ScInterpreter::MEMat(const ScMatrixRef& mM, SCSIZE n) +{ + mM->FillDouble(0.0, 0, 0, n-1, n-1); + for (SCSIZE i = 0; i < n; i++) + mM->PutDouble(1.0, i, i); +} + +/* Matrix LUP decomposition according to the pseudocode of "Introduction to + * Algorithms" by Cormen, Leiserson, Rivest, Stein. + * + * Added scaling for numeric stability. + * + * Given an n x n nonsingular matrix A, find a permutation matrix P, a unit + * lower-triangular matrix L, and an upper-triangular matrix U such that PA=LU. + * Compute L and U "in place" in the matrix A, the original content is + * destroyed. Note that the diagonal elements of the U triangular matrix + * replace the diagonal elements of the L-unit matrix (that are each ==1). The + * permutation matrix P is an array, where P[i]=j means that the i-th row of P + * contains a 1 in column j. Additionally keep track of the number of + * permutations (row exchanges). + * + * Returns 0 if a singular matrix is encountered, else +1 if an even number of + * permutations occurred, or -1 if odd, which is the sign of the determinant. + * This may be used to calculate the determinant by multiplying the sign with + * the product of the diagonal elements of the LU matrix. + */ +static int lcl_LUP_decompose( ScMatrix* mA, const SCSIZE n, + ::std::vector< SCSIZE> & P ) +{ + int nSign = 1; + // Find scale of each row. + ::std::vector< double> aScale(n); + for (SCSIZE i=0; i < n; ++i) + { + double fMax = 0.0; + for (SCSIZE j=0; j < n; ++j) + { + double fTmp = fabs( mA->GetDouble( j, i)); + if (fMax < fTmp) + fMax = fTmp; + } + if (fMax == 0.0) + return 0; // singular matrix + aScale[i] = 1.0 / fMax; + } + // Represent identity permutation, P[i]=i + for (SCSIZE i=0; i < n; ++i) + P[i] = i; + // "Recursion" on the diagonal. + SCSIZE l = n - 1; + for (SCSIZE k=0; k < l; ++k) + { + // Implicit pivoting. With the scale found for a row, compare values of + // a column and pick largest. + double fMax = 0.0; + double fScale = aScale[k]; + SCSIZE kp = k; + for (SCSIZE i = k; i < n; ++i) + { + double fTmp = fScale * fabs( mA->GetDouble( k, i)); + if (fMax < fTmp) + { + fMax = fTmp; + kp = i; + } + } + if (fMax == 0.0) + return 0; // singular matrix + // Swap rows. The pivot element will be at mA[k,kp] (row,col notation) + if (k != kp) + { + // permutations + SCSIZE nTmp = P[k]; + P[k] = P[kp]; + P[kp] = nTmp; + nSign = -nSign; + // scales + double fTmp = aScale[k]; + aScale[k] = aScale[kp]; + aScale[kp] = fTmp; + // elements + for (SCSIZE i=0; i < n; ++i) + { + double fMatTmp = mA->GetDouble( i, k); + mA->PutDouble( mA->GetDouble( i, kp), i, k); + mA->PutDouble( fMatTmp, i, kp); + } + } + // Compute Schur complement. + for (SCSIZE i = k+1; i < n; ++i) + { + double fNum = mA->GetDouble( k, i); + double fDen = mA->GetDouble( k, k); + mA->PutDouble( fNum/fDen, k, i); + for (SCSIZE j = k+1; j < n; ++j) + mA->PutDouble( ( mA->GetDouble( j, i) * fDen - + fNum * mA->GetDouble( j, k) ) / fDen, j, i); + } + } +#ifdef DEBUG_SC_LUP_DECOMPOSITION + fprintf( stderr, "\n%s\n", "lcl_LUP_decompose(): LU"); + for (SCSIZE i=0; i < n; ++i) + { + for (SCSIZE j=0; j < n; ++j) + fprintf( stderr, "%8.2g ", mA->GetDouble( j, i)); + fprintf( stderr, "\n%s\n", ""); + } + fprintf( stderr, "\n%s\n", "lcl_LUP_decompose(): P"); + for (SCSIZE j=0; j < n; ++j) + fprintf( stderr, "%5u ", (unsigned)P[j]); + fprintf( stderr, "\n%s\n", ""); +#endif + + bool bSingular=false; + for (SCSIZE i=0; i<n && !bSingular; i++) + bSingular = (mA->GetDouble(i,i)) == 0.0; + if (bSingular) + nSign = 0; + + return nSign; +} + +/* Solve a LUP decomposed equation Ax=b. LU is a combined matrix of L and U + * triangulars and P the permutation vector as obtained from + * lcl_LUP_decompose(). B is the right-hand side input vector, X is used to + * return the solution vector. + */ +static void lcl_LUP_solve( const ScMatrix* mLU, const SCSIZE n, + const ::std::vector< SCSIZE> & P, const ::std::vector< double> & B, + ::std::vector< double> & X ) +{ + SCSIZE nFirst = SCSIZE_MAX; + // Ax=b => PAx=Pb, with decomposition LUx=Pb. + // Define y=Ux and solve for y in Ly=Pb using forward substitution. + for (SCSIZE i=0; i < n; ++i) + { + double fSum = B[P[i]]; + // Matrix inversion comes with a lot of zeros in the B vectors, we + // don't have to do all the computing with results multiplied by zero. + // Until then, simply lookout for the position of the first nonzero + // value. + if (nFirst != SCSIZE_MAX) + { + for (SCSIZE j = nFirst; j < i; ++j) + fSum -= mLU->GetDouble( j, i) * X[j]; // X[j] === y[j] + } + else if (fSum) + nFirst = i; + X[i] = fSum; // X[i] === y[i] + } + // Solve for x in Ux=y using back substitution. + for (SCSIZE i = n; i--; ) + { + double fSum = X[i]; // X[i] === y[i] + for (SCSIZE j = i+1; j < n; ++j) + fSum -= mLU->GetDouble( j, i) * X[j]; // X[j] === x[j] + X[i] = fSum / mLU->GetDouble( i, i); // X[i] === x[i] + } +#ifdef DEBUG_SC_LUP_DECOMPOSITION + fprintf( stderr, "\n%s\n", "lcl_LUP_solve():"); + for (SCSIZE i=0; i < n; ++i) + fprintf( stderr, "%8.2g ", X[i]); + fprintf( stderr, "%s\n", ""); +#endif +} + +void ScInterpreter::ScMatDet() +{ + if ( MustHaveParamCount( GetByte(), 1 ) ) + { + ScMatrixRef pMat = GetMatrix(); + if (!pMat) + { + PushIllegalParameter(); + return; + } + if ( !pMat->IsNumeric() ) + { + PushNoValue(); + return; + } + SCSIZE nC, nR; + pMat->GetDimensions(nC, nR); + if ( nC != nR || nC == 0 ) + PushIllegalArgument(); + else if (!ScMatrix::IsSizeAllocatable( nC, nR)) + PushError( FormulaError::MatrixSize); + else + { + // LUP decomposition is done inplace, use copy. + ScMatrixRef xLU = pMat->Clone(); + if (!xLU) + PushError( FormulaError::CodeOverflow); + else + { + ::std::vector< SCSIZE> P(nR); + int nDetSign = lcl_LUP_decompose( xLU.get(), nR, P); + if (!nDetSign) + PushInt(0); // singular matrix + else + { + // In an LU matrix the determinant is simply the product of + // all diagonal elements. + double fDet = nDetSign; + for (SCSIZE i=0; i < nR; ++i) + fDet *= xLU->GetDouble( i, i); + PushDouble( fDet); + } + } + } + } +} + +void ScInterpreter::ScMatInv() +{ + if ( MustHaveParamCount( GetByte(), 1 ) ) + { + ScMatrixRef pMat = GetMatrix(); + if (!pMat) + { + PushIllegalParameter(); + return; + } + if ( !pMat->IsNumeric() ) + { + PushNoValue(); + return; + } + SCSIZE nC, nR; + pMat->GetDimensions(nC, nR); + + if (ScCalcConfig::isOpenCLEnabled()) + { + sc::FormulaGroupInterpreter *pInterpreter = sc::FormulaGroupInterpreter::getStatic(); + if (pInterpreter != nullptr) + { + ScMatrixRef xResMat = pInterpreter->inverseMatrix(*pMat); + if (xResMat) + { + PushMatrix(xResMat); + return; + } + } + } + + if ( nC != nR || nC == 0 ) + PushIllegalArgument(); + else if (!ScMatrix::IsSizeAllocatable( nC, nR)) + PushError( FormulaError::MatrixSize); + else + { + // LUP decomposition is done inplace, use copy. + ScMatrixRef xLU = pMat->Clone(); + // The result matrix. + ScMatrixRef xY = GetNewMat( nR, nR); + if (!xLU || !xY) + PushError( FormulaError::CodeOverflow); + else + { + ::std::vector< SCSIZE> P(nR); + int nDetSign = lcl_LUP_decompose( xLU.get(), nR, P); + if (!nDetSign) + PushIllegalArgument(); + else + { + // Solve equation for each column. + ::std::vector< double> B(nR); + ::std::vector< double> X(nR); + for (SCSIZE j=0; j < nR; ++j) + { + for (SCSIZE i=0; i < nR; ++i) + B[i] = 0.0; + B[j] = 1.0; + lcl_LUP_solve( xLU.get(), nR, P, B, X); + for (SCSIZE i=0; i < nR; ++i) + xY->PutDouble( X[i], j, i); + } +#ifdef DEBUG_SC_LUP_DECOMPOSITION + /* Possible checks for ill-condition: + * 1. Scale matrix, invert scaled matrix. If there are + * elements of the inverted matrix that are several + * orders of magnitude greater than 1 => + * ill-conditioned. + * Just how much is "several orders"? + * 2. Invert the inverted matrix and assess whether the + * result is sufficiently close to the original matrix. + * If not => ill-conditioned. + * Just what is sufficient? + * 3. Multiplying the inverse by the original matrix should + * produce a result sufficiently close to the identity + * matrix. + * Just what is sufficient? + * + * The following is #3. + */ + const double fInvEpsilon = 1.0E-7; + ScMatrixRef xR = GetNewMat( nR, nR); + if (xR) + { + ScMatrix* pR = xR.get(); + lcl_MFastMult( pMat, xY.get(), pR, nR, nR, nR); + fprintf( stderr, "\n%s\n", "ScMatInv(): mult-identity"); + for (SCSIZE i=0; i < nR; ++i) + { + for (SCSIZE j=0; j < nR; ++j) + { + double fTmp = pR->GetDouble( j, i); + fprintf( stderr, "%8.2g ", fTmp); + if (fabs( fTmp - (i == j)) > fInvEpsilon) + SetError( FormulaError::IllegalArgument); + } + fprintf( stderr, "\n%s\n", ""); + } + } +#endif + if (nGlobalError != FormulaError::NONE) + PushError( nGlobalError); + else + PushMatrix( xY); + } + } + } + } +} + +void ScInterpreter::ScMatMult() +{ + if ( MustHaveParamCount( GetByte(), 2 ) ) + { + ScMatrixRef pMat2 = GetMatrix(); + ScMatrixRef pMat1 = GetMatrix(); + ScMatrixRef pRMat; + if (pMat1 && pMat2) + { + if ( pMat1->IsNumeric() && pMat2->IsNumeric() ) + { + SCSIZE nC1, nC2; + SCSIZE nR1, nR2; + pMat1->GetDimensions(nC1, nR1); + pMat2->GetDimensions(nC2, nR2); + if (nC1 != nR2) + PushIllegalArgument(); + else + { + pRMat = GetNewMat(nC2, nR1); + if (pRMat) + { + double sum; + for (SCSIZE i = 0; i < nR1; i++) + { + for (SCSIZE j = 0; j < nC2; j++) + { + sum = 0.0; + for (SCSIZE k = 0; k < nC1; k++) + { + sum += pMat1->GetDouble(k,i)*pMat2->GetDouble(j,k); + } + pRMat->PutDouble(sum, j, i); + } + } + PushMatrix(pRMat); + } + else + PushIllegalArgument(); + } + } + else + PushNoValue(); + } + else + PushIllegalParameter(); + } +} + +void ScInterpreter::ScMatTrans() +{ + if ( MustHaveParamCount( GetByte(), 1 ) ) + { + ScMatrixRef pMat = GetMatrix(); + ScMatrixRef pRMat; + if (pMat) + { + SCSIZE nC, nR; + pMat->GetDimensions(nC, nR); + pRMat = GetNewMat(nR, nC); + if ( pRMat ) + { + pMat->MatTrans(*pRMat); + PushMatrix(pRMat); + } + else + PushIllegalArgument(); + } + else + PushIllegalParameter(); + } +} + +/** Minimum extent of one result matrix dimension. + For a row or column vector to be replicated the larger matrix dimension is + returned, else the smaller dimension. + */ +static SCSIZE lcl_GetMinExtent( SCSIZE n1, SCSIZE n2 ) +{ + if (n1 == 1) + return n2; + else if (n2 == 1) + return n1; + else if (n1 < n2) + return n1; + else + return n2; +} + +template<class Function> +static ScMatrixRef lcl_MatrixCalculation( + const ScMatrix& rMat1, const ScMatrix& rMat2, ScInterpreter* pInterpreter) +{ + static const Function Op; + + SCSIZE nC1, nC2, nMinC; + SCSIZE nR1, nR2, nMinR; + SCSIZE i, j; + rMat1.GetDimensions(nC1, nR1); + rMat2.GetDimensions(nC2, nR2); + nMinC = lcl_GetMinExtent( nC1, nC2); + nMinR = lcl_GetMinExtent( nR1, nR2); + ScMatrixRef xResMat = pInterpreter->GetNewMat(nMinC, nMinR); + if (xResMat) + { + for (i = 0; i < nMinC; i++) + { + for (j = 0; j < nMinR; j++) + { + bool bVal1 = rMat1.IsValueOrEmpty(i,j); + bool bVal2 = rMat2.IsValueOrEmpty(i,j); + FormulaError nErr; + if (bVal1 && bVal2) + { + double d = Op(rMat1.GetDouble(i,j), rMat2.GetDouble(i,j)); + xResMat->PutDouble( d, i, j); + } + else if (((nErr = rMat1.GetErrorIfNotString(i,j)) != FormulaError::NONE) || + ((nErr = rMat2.GetErrorIfNotString(i,j)) != FormulaError::NONE)) + { + xResMat->PutError( nErr, i, j); + } + else if ((!bVal1 && rMat1.IsStringOrEmpty(i,j)) || (!bVal2 && rMat2.IsStringOrEmpty(i,j))) + { + FormulaError nError1 = FormulaError::NONE; + SvNumFormatType nFmt1 = SvNumFormatType::ALL; + double fVal1 = (bVal1 ? rMat1.GetDouble(i,j) : + pInterpreter->ConvertStringToValue( rMat1.GetString(i,j).getString(), nError1, nFmt1)); + + FormulaError nError2 = FormulaError::NONE; + SvNumFormatType nFmt2 = SvNumFormatType::ALL; + double fVal2 = (bVal2 ? rMat2.GetDouble(i,j) : + pInterpreter->ConvertStringToValue( rMat2.GetString(i,j).getString(), nError2, nFmt2)); + + if (nError1 != FormulaError::NONE) + xResMat->PutError( nError1, i, j); + else if (nError2 != FormulaError::NONE) + xResMat->PutError( nError2, i, j); + else + { + double d = Op( fVal1, fVal2); + xResMat->PutDouble( d, i, j); + } + } + else + xResMat->PutError( FormulaError::NoValue, i, j); + } + } + } + return xResMat; +} + +ScMatrixRef ScInterpreter::MatConcat(const ScMatrixRef& pMat1, const ScMatrixRef& pMat2) +{ + SCSIZE nC1, nC2, nMinC; + SCSIZE nR1, nR2, nMinR; + pMat1->GetDimensions(nC1, nR1); + pMat2->GetDimensions(nC2, nR2); + nMinC = lcl_GetMinExtent( nC1, nC2); + nMinR = lcl_GetMinExtent( nR1, nR2); + ScMatrixRef xResMat = GetNewMat(nMinC, nMinR); + if (xResMat) + { + xResMat->MatConcat(nMinC, nMinR, pMat1, pMat2, *pFormatter, pDok->GetSharedStringPool()); + } + return xResMat; +} + +// for DATE, TIME, DATETIME, DURATION +static void lcl_GetDiffDateTimeFmtType( SvNumFormatType& nFuncFmt, SvNumFormatType nFmt1, SvNumFormatType nFmt2 ) +{ + if ( nFmt1 != SvNumFormatType::UNDEFINED || nFmt2 != SvNumFormatType::UNDEFINED ) + { + if ( nFmt1 == nFmt2 ) + { + if ( nFmt1 == SvNumFormatType::TIME || nFmt1 == SvNumFormatType::DATETIME + || nFmt1 == SvNumFormatType::DURATION ) + nFuncFmt = SvNumFormatType::DURATION; // times result in time duration + // else: nothing special, number (date - date := days) + } + else if ( nFmt1 == SvNumFormatType::UNDEFINED ) + nFuncFmt = nFmt2; // e.g. date + days := date + else if ( nFmt2 == SvNumFormatType::UNDEFINED ) + nFuncFmt = nFmt1; + else + { + if ( nFmt1 == SvNumFormatType::DATE || nFmt2 == SvNumFormatType::DATE || + nFmt1 == SvNumFormatType::DATETIME || nFmt2 == SvNumFormatType::DATETIME ) + { + if ( nFmt1 == SvNumFormatType::TIME || nFmt2 == SvNumFormatType::TIME ) + nFuncFmt = SvNumFormatType::DATETIME; // date + time + } + } + } +} + +void ScInterpreter::ScAdd() +{ + CalculateAddSub(false); +} + +void ScInterpreter::CalculateAddSub(bool _bSub) +{ + ScMatrixRef pMat1 = nullptr; + ScMatrixRef pMat2 = nullptr; + double fVal1 = 0.0, fVal2 = 0.0; + SvNumFormatType nFmt1, nFmt2; + nFmt1 = nFmt2 = SvNumFormatType::UNDEFINED; + SvNumFormatType nFmtCurrencyType = nCurFmtType; + sal_uLong nFmtCurrencyIndex = nCurFmtIndex; + SvNumFormatType nFmtPercentType = nCurFmtType; + if ( GetStackType() == svMatrix ) + pMat2 = GetMatrix(); + else + { + fVal2 = GetDouble(); + switch ( nCurFmtType ) + { + case SvNumFormatType::DATE : + case SvNumFormatType::TIME : + case SvNumFormatType::DATETIME : + case SvNumFormatType::DURATION : + nFmt2 = nCurFmtType; + break; + case SvNumFormatType::CURRENCY : + nFmtCurrencyType = nCurFmtType; + nFmtCurrencyIndex = nCurFmtIndex; + break; + case SvNumFormatType::PERCENT : + nFmtPercentType = SvNumFormatType::PERCENT; + break; + default: break; + } + } + if ( GetStackType() == svMatrix ) + pMat1 = GetMatrix(); + else + { + fVal1 = GetDouble(); + switch ( nCurFmtType ) + { + case SvNumFormatType::DATE : + case SvNumFormatType::TIME : + case SvNumFormatType::DATETIME : + case SvNumFormatType::DURATION : + nFmt1 = nCurFmtType; + break; + case SvNumFormatType::CURRENCY : + nFmtCurrencyType = nCurFmtType; + nFmtCurrencyIndex = nCurFmtIndex; + break; + case SvNumFormatType::PERCENT : + nFmtPercentType = SvNumFormatType::PERCENT; + break; + default: break; + } + } + if (pMat1 && pMat2) + { + ScMatrixRef pResMat; + if ( _bSub ) + { + pResMat = lcl_MatrixCalculation<MatrixSub>( *pMat1, *pMat2, this); + } + else + { + pResMat = lcl_MatrixCalculation<MatrixAdd>( *pMat1, *pMat2, this); + } + + if (!pResMat) + PushNoValue(); + else + PushMatrix(pResMat); + } + else if (pMat1 || pMat2) + { + double fVal; + bool bFlag; + ScMatrixRef pMat = pMat1; + if (!pMat) + { + fVal = fVal1; + pMat = pMat2; + bFlag = true; // double - Matrix + } + else + { + fVal = fVal2; + bFlag = false; // Matrix - double + } + SCSIZE nC, nR; + pMat->GetDimensions(nC, nR); + ScMatrixRef pResMat = GetNewMat(nC, nR, true); + if (pResMat) + { + if (_bSub) + { + pMat->SubOp( bFlag, fVal, *pResMat); + } + else + { + pMat->AddOp( fVal, *pResMat); + } + PushMatrix(pResMat); + } + else + PushIllegalArgument(); + } + else + { + // Determine nFuncFmtType type before PushDouble(). + if ( nFmtCurrencyType == SvNumFormatType::CURRENCY ) + { + nFuncFmtType = nFmtCurrencyType; + nFuncFmtIndex = nFmtCurrencyIndex; + } + else + { + lcl_GetDiffDateTimeFmtType( nFuncFmtType, nFmt1, nFmt2 ); + if (nFmtPercentType == SvNumFormatType::PERCENT && nFuncFmtType == SvNumFormatType::NUMBER) + nFuncFmtType = SvNumFormatType::PERCENT; + } + if ( _bSub ) + PushDouble( ::rtl::math::approxSub( fVal1, fVal2 ) ); + else + PushDouble( ::rtl::math::approxAdd( fVal1, fVal2 ) ); + } +} + +void ScInterpreter::ScAmpersand() +{ + ScMatrixRef pMat1 = nullptr; + ScMatrixRef pMat2 = nullptr; + OUString sStr1, sStr2; + if ( GetStackType() == svMatrix ) + pMat2 = GetMatrix(); + else + sStr2 = GetString().getString(); + if ( GetStackType() == svMatrix ) + pMat1 = GetMatrix(); + else + sStr1 = GetString().getString(); + if (pMat1 && pMat2) + { + ScMatrixRef pResMat = MatConcat(pMat1, pMat2); + if (!pResMat) + PushNoValue(); + else + PushMatrix(pResMat); + } + else if (pMat1 || pMat2) + { + OUString sStr; + bool bFlag; + ScMatrixRef pMat = pMat1; + if (!pMat) + { + sStr = sStr1; + pMat = pMat2; + bFlag = true; // double - Matrix + } + else + { + sStr = sStr2; + bFlag = false; // Matrix - double + } + SCSIZE nC, nR; + pMat->GetDimensions(nC, nR); + ScMatrixRef pResMat = GetNewMat(nC, nR); + if (pResMat) + { + if (nGlobalError != FormulaError::NONE) + { + for (SCSIZE i = 0; i < nC; ++i) + for (SCSIZE j = 0; j < nR; ++j) + pResMat->PutError( nGlobalError, i, j); + } + else if (bFlag) + { + for (SCSIZE i = 0; i < nC; ++i) + for (SCSIZE j = 0; j < nR; ++j) + { + FormulaError nErr = pMat->GetErrorIfNotString( i, j); + if (nErr != FormulaError::NONE) + pResMat->PutError( nErr, i, j); + else + { + OUString aTmp = sStr + pMat->GetString(*pFormatter, i, j).getString(); + pResMat->PutString(mrStrPool.intern(aTmp), i, j); + } + } + } + else + { + for (SCSIZE i = 0; i < nC; ++i) + for (SCSIZE j = 0; j < nR; ++j) + { + FormulaError nErr = pMat->GetErrorIfNotString( i, j); + if (nErr != FormulaError::NONE) + pResMat->PutError( nErr, i, j); + else + { + OUString aTmp = pMat->GetString(*pFormatter, i, j).getString() + sStr; + pResMat->PutString(mrStrPool.intern(aTmp), i, j); + } + } + } + PushMatrix(pResMat); + } + else + PushIllegalArgument(); + } + else + { + if ( CheckStringResultLen( sStr1, sStr2 ) ) + sStr1 += sStr2; + PushString(sStr1); + } +} + +void ScInterpreter::ScSub() +{ + CalculateAddSub(true); +} + +void ScInterpreter::ScMul() +{ + ScMatrixRef pMat1 = nullptr; + ScMatrixRef pMat2 = nullptr; + double fVal1 = 0.0, fVal2 = 0.0; + SvNumFormatType nFmtCurrencyType = nCurFmtType; + sal_uLong nFmtCurrencyIndex = nCurFmtIndex; + if ( GetStackType() == svMatrix ) + pMat2 = GetMatrix(); + else + { + fVal2 = GetDouble(); + switch ( nCurFmtType ) + { + case SvNumFormatType::CURRENCY : + nFmtCurrencyType = nCurFmtType; + nFmtCurrencyIndex = nCurFmtIndex; + break; + default: break; + } + } + if ( GetStackType() == svMatrix ) + pMat1 = GetMatrix(); + else + { + fVal1 = GetDouble(); + switch ( nCurFmtType ) + { + case SvNumFormatType::CURRENCY : + nFmtCurrencyType = nCurFmtType; + nFmtCurrencyIndex = nCurFmtIndex; + break; + default: break; + } + } + if (pMat1 && pMat2) + { + ScMatrixRef pResMat = lcl_MatrixCalculation<MatrixMul>( *pMat1, *pMat2, this); + if (!pResMat) + PushNoValue(); + else + PushMatrix(pResMat); + } + else if (pMat1 || pMat2) + { + double fVal; + ScMatrixRef pMat = pMat1; + if (!pMat) + { + fVal = fVal1; + pMat = pMat2; + } + else + fVal = fVal2; + SCSIZE nC, nR; + pMat->GetDimensions(nC, nR); + ScMatrixRef pResMat = GetNewMat(nC, nR); + if (pResMat) + { + pMat->MulOp( fVal, *pResMat); + PushMatrix(pResMat); + } + else + PushIllegalArgument(); + } + else + { + // Determine nFuncFmtType type before PushDouble(). + if ( nFmtCurrencyType == SvNumFormatType::CURRENCY ) + { + nFuncFmtType = nFmtCurrencyType; + nFuncFmtIndex = nFmtCurrencyIndex; + } + PushDouble(fVal1 * fVal2); + } +} + +void ScInterpreter::ScDiv() +{ + ScMatrixRef pMat1 = nullptr; + ScMatrixRef pMat2 = nullptr; + double fVal1 = 0.0, fVal2 = 0.0; + SvNumFormatType nFmtCurrencyType = nCurFmtType; + sal_uLong nFmtCurrencyIndex = nCurFmtIndex; + SvNumFormatType nFmtCurrencyType2 = SvNumFormatType::UNDEFINED; + if ( GetStackType() == svMatrix ) + pMat2 = GetMatrix(); + else + { + fVal2 = GetDouble(); + // do not take over currency, 123kg/456USD is not USD + nFmtCurrencyType2 = nCurFmtType; + } + if ( GetStackType() == svMatrix ) + pMat1 = GetMatrix(); + else + { + fVal1 = GetDouble(); + switch ( nCurFmtType ) + { + case SvNumFormatType::CURRENCY : + nFmtCurrencyType = nCurFmtType; + nFmtCurrencyIndex = nCurFmtIndex; + break; + default: break; + } + } + if (pMat1 && pMat2) + { + ScMatrixRef pResMat = lcl_MatrixCalculation<MatrixDiv>( *pMat1, *pMat2, this); + if (!pResMat) + PushNoValue(); + else + PushMatrix(pResMat); + } + else if (pMat1 || pMat2) + { + double fVal; + bool bFlag; + ScMatrixRef pMat = pMat1; + if (!pMat) + { + fVal = fVal1; + pMat = pMat2; + bFlag = true; // double - Matrix + } + else + { + fVal = fVal2; + bFlag = false; // Matrix - double + } + SCSIZE nC, nR; + pMat->GetDimensions(nC, nR); + ScMatrixRef pResMat = GetNewMat(nC, nR); + if (pResMat) + { + pMat->DivOp( bFlag, fVal, *pResMat); + PushMatrix(pResMat); + } + else + PushIllegalArgument(); + } + else + { + // Determine nFuncFmtType type before PushDouble(). + if ( nFmtCurrencyType == SvNumFormatType::CURRENCY && + nFmtCurrencyType2 != SvNumFormatType::CURRENCY) + { // even USD/USD is not USD + nFuncFmtType = nFmtCurrencyType; + nFuncFmtIndex = nFmtCurrencyIndex; + } + PushDouble( div( fVal1, fVal2) ); + } +} + +void ScInterpreter::ScPower() +{ + if ( MustHaveParamCount( GetByte(), 2 ) ) + ScPow(); +} + +void ScInterpreter::ScPow() +{ + ScMatrixRef pMat1 = nullptr; + ScMatrixRef pMat2 = nullptr; + double fVal1 = 0.0, fVal2 = 0.0; + if ( GetStackType() == svMatrix ) + pMat2 = GetMatrix(); + else + fVal2 = GetDouble(); + if ( GetStackType() == svMatrix ) + pMat1 = GetMatrix(); + else + fVal1 = GetDouble(); + if (pMat1 && pMat2) + { + ScMatrixRef pResMat = lcl_MatrixCalculation<MatrixPow>( *pMat1, *pMat2, this); + if (!pResMat) + PushNoValue(); + else + PushMatrix(pResMat); + } + else if (pMat1 || pMat2) + { + double fVal; + bool bFlag; + ScMatrixRef pMat = pMat1; + if (!pMat) + { + fVal = fVal1; + pMat = pMat2; + bFlag = true; // double - Matrix + } + else + { + fVal = fVal2; + bFlag = false; // Matrix - double + } + SCSIZE nC, nR; + pMat->GetDimensions(nC, nR); + ScMatrixRef pResMat = GetNewMat(nC, nR); + if (pResMat) + { + pMat->PowOp( bFlag, fVal, *pResMat); + PushMatrix(pResMat); + } + else + PushIllegalArgument(); + } + else + { + PushDouble( sc::power( fVal1, fVal2)); + } +} + +namespace { + +class SumValues +{ + double mfSum; + bool mbError; +public: + SumValues() : mfSum(0.0), mbError(false) {} + + void operator() (double f) + { + if (mbError) + return; + + FormulaError nErr = GetDoubleErrorValue(f); + if (nErr == FormulaError::NONE) + mfSum += f; + else if (nErr != FormulaError::ElementNaN) + { + // Propagate the first error encountered, ignore "this is not a + // number" elements. + mfSum = f; + mbError = true; + } + } + + double getValue() const { return mfSum; } +}; + +} + +void ScInterpreter::ScSumProduct() +{ + short nParamCount = GetByte(); + if ( !MustHaveParamCountMin( nParamCount, 1) ) + return; + + // XXX NOTE: Excel returns #VALUE! for reference list and 0 (why?) for + // array of references. We calculate the proper individual arrays if sizes + // match. + + size_t nInRefList = 0; + ScMatrixRef pMatLast; + ScMatrixRef pMat; + + pMatLast = GetMatrix( --nParamCount, nInRefList); + if (!pMatLast) + { + PushIllegalParameter(); + return; + } + + SCSIZE nC, nCLast, nR, nRLast; + pMatLast->GetDimensions(nCLast, nRLast); + std::vector<double> aResArray; + pMatLast->GetDoubleArray(aResArray); + + while (nParamCount--) + { + pMat = GetMatrix( nParamCount, nInRefList); + if (!pMat) + { + PushIllegalParameter(); + return; + } + pMat->GetDimensions(nC, nR); + if (nC != nCLast || nR != nRLast) + { + PushNoValue(); + return; + } + + pMat->MergeDoubleArrayMultiply(aResArray); + } + + double fSum = std::for_each(aResArray.begin(), aResArray.end(), SumValues()).getValue(); + PushDouble(fSum); +} + +void ScInterpreter::ScSumX2MY2() +{ + CalculateSumX2MY2SumX2DY2(false); +} +void ScInterpreter::CalculateSumX2MY2SumX2DY2(bool _bSumX2DY2) +{ + if ( !MustHaveParamCount( GetByte(), 2 ) ) + return; + + ScMatrixRef pMat1 = nullptr; + ScMatrixRef pMat2 = nullptr; + SCSIZE i, j; + pMat2 = GetMatrix(); + pMat1 = GetMatrix(); + if (!pMat2 || !pMat1) + { + PushIllegalParameter(); + return; + } + SCSIZE nC1, nC2; + SCSIZE nR1, nR2; + pMat2->GetDimensions(nC2, nR2); + pMat1->GetDimensions(nC1, nR1); + if (nC1 != nC2 || nR1 != nR2) + { + PushNoValue(); + return; + } + double fVal, fSum = 0.0; + for (i = 0; i < nC1; i++) + for (j = 0; j < nR1; j++) + if (!pMat1->IsStringOrEmpty(i,j) && !pMat2->IsStringOrEmpty(i,j)) + { + fVal = pMat1->GetDouble(i,j); + fSum += fVal * fVal; + fVal = pMat2->GetDouble(i,j); + if ( _bSumX2DY2 ) + fSum += fVal * fVal; + else + fSum -= fVal * fVal; + } + PushDouble(fSum); +} + +void ScInterpreter::ScSumX2DY2() +{ + CalculateSumX2MY2SumX2DY2(true); +} + +void ScInterpreter::ScSumXMY2() +{ + if ( !MustHaveParamCount( GetByte(), 2 ) ) + return; + + ScMatrixRef pMat2 = GetMatrix(); + ScMatrixRef pMat1 = GetMatrix(); + if (!pMat2 || !pMat1) + { + PushIllegalParameter(); + return; + } + SCSIZE nC1, nC2; + SCSIZE nR1, nR2; + pMat2->GetDimensions(nC2, nR2); + pMat1->GetDimensions(nC1, nR1); + if (nC1 != nC2 || nR1 != nR2) + { + PushNoValue(); + return; + } // if (nC1 != nC2 || nR1 != nR2) + ScMatrixRef pResMat = lcl_MatrixCalculation<MatrixSub>( *pMat1, *pMat2, this); + if (!pResMat) + { + PushNoValue(); + } + else + { + ScMatrix::IterateResult aRes = pResMat->SumSquare(false); + double fSum = aRes.mfFirst + aRes.mfRest; + PushDouble(fSum); + } +} + +void ScInterpreter::ScFrequency() +{ + if ( !MustHaveParamCount( GetByte(), 2 ) ) + return; + + vector<double> aBinArray; + vector<long> aBinIndexOrder; + + GetSortArray( 1, aBinArray, &aBinIndexOrder, false, false ); + SCSIZE nBinSize = aBinArray.size(); + if (nGlobalError != FormulaError::NONE) + { + PushNoValue(); + return; + } + + vector<double> aDataArray; + GetSortArray( 1, aDataArray, nullptr, false, false ); + SCSIZE nDataSize = aDataArray.size(); + + if (aDataArray.empty() || nGlobalError != FormulaError::NONE) + { + PushNoValue(); + return; + } + ScMatrixRef pResMat = GetNewMat(1, nBinSize+1); + if (!pResMat) + { + PushIllegalArgument(); + return; + } + + if (nBinSize != aBinIndexOrder.size()) + { + PushIllegalArgument(); + return; + } + + SCSIZE j; + SCSIZE i = 0; + for (j = 0; j < nBinSize; ++j) + { + SCSIZE nCount = 0; + while (i < nDataSize && aDataArray[i] <= aBinArray[j]) + { + ++nCount; + ++i; + } + pResMat->PutDouble(static_cast<double>(nCount), aBinIndexOrder[j]); + } + pResMat->PutDouble(static_cast<double>(nDataSize-i), j); + PushMatrix(pResMat); +} + +namespace { + +// Helper methods for LINEST/LOGEST and TREND/GROWTH +// All matrices must already exist and have the needed size, no control tests +// done. Those methods, which names start with lcl_T, are adapted to case 3, +// where Y (=observed values) is given as row. +// Remember, ScMatrix matrices are zero based, index access (column,row). + +// <A;B> over all elements; uses the matrices as vectors of length M +double lcl_GetSumProduct(const ScMatrixRef& pMatA, const ScMatrixRef& pMatB, SCSIZE nM) +{ + double fSum = 0.0; + for (SCSIZE i=0; i<nM; i++) + fSum += pMatA->GetDouble(i) * pMatB->GetDouble(i); + return fSum; +} + +// Special version for use within QR decomposition. +// Euclidean norm of column index C starting in row index R; +// matrix A has count N rows. +double lcl_GetColumnEuclideanNorm(const ScMatrixRef& pMatA, SCSIZE nC, SCSIZE nR, SCSIZE nN) +{ + double fNorm = 0.0; + for (SCSIZE row=nR; row<nN; row++) + fNorm += (pMatA->GetDouble(nC,row)) * (pMatA->GetDouble(nC,row)); + return sqrt(fNorm); +} + +// Euclidean norm of row index R starting in column index C; +// matrix A has count N columns. +double lcl_TGetColumnEuclideanNorm(const ScMatrixRef& pMatA, SCSIZE nR, SCSIZE nC, SCSIZE nN) +{ + double fNorm = 0.0; + for (SCSIZE col=nC; col<nN; col++) + fNorm += (pMatA->GetDouble(col,nR)) * (pMatA->GetDouble(col,nR)); + return sqrt(fNorm); +} + +// Special version for use within QR decomposition. +// Maximum norm of column index C starting in row index R; +// matrix A has count N rows. +double lcl_GetColumnMaximumNorm(const ScMatrixRef& pMatA, SCSIZE nC, SCSIZE nR, SCSIZE nN) +{ + double fNorm = 0.0; + for (SCSIZE row=nR; row<nN; row++) + { + double fVal = fabs(pMatA->GetDouble(nC,row)); + if (fNorm < fVal) + fNorm = fVal; + } + return fNorm; +} + +// Maximum norm of row index R starting in col index C; +// matrix A has count N columns. +double lcl_TGetColumnMaximumNorm(const ScMatrixRef& pMatA, SCSIZE nR, SCSIZE nC, SCSIZE nN) +{ + double fNorm = 0.0; + for (SCSIZE col=nC; col<nN; col++) + { + double fVal = fabs(pMatA->GetDouble(col,nR)); + if (fNorm < fVal) + fNorm = fVal; + } + return fNorm; +} + +// Special version for use within QR decomposition. +// <A(Ca);B(Cb)> starting in row index R; +// Ca and Cb are indices of columns, matrices A and B have count N rows. +double lcl_GetColumnSumProduct(const ScMatrixRef& pMatA, SCSIZE nCa, + const ScMatrixRef& pMatB, SCSIZE nCb, SCSIZE nR, SCSIZE nN) +{ + double fResult = 0.0; + for (SCSIZE row=nR; row<nN; row++) + fResult += pMatA->GetDouble(nCa,row) * pMatB->GetDouble(nCb,row); + return fResult; +} + +// <A(Ra);B(Rb)> starting in column index C; +// Ra and Rb are indices of rows, matrices A and B have count N columns. +double lcl_TGetColumnSumProduct(const ScMatrixRef& pMatA, SCSIZE nRa, + const ScMatrixRef& pMatB, SCSIZE nRb, SCSIZE nC, SCSIZE nN) +{ + double fResult = 0.0; + for (SCSIZE col=nC; col<nN; col++) + fResult += pMatA->GetDouble(col,nRa) * pMatB->GetDouble(col,nRb); + return fResult; +} + +// no mathematical signum, but used to switch between adding and subtracting +double lcl_GetSign(double fValue) +{ + return (fValue >= 0.0 ? 1.0 : -1.0 ); +} + +/* Calculates a QR decomposition with Householder reflection. + * For each NxK matrix A exists a decomposition A=Q*R with an orthogonal + * NxN matrix Q and a NxK matrix R. + * Q=H1*H2*...*Hk with Householder matrices H. Such a householder matrix can + * be build from a vector u by H=I-(2/u'u)*(u u'). This vectors u are returned + * in the columns of matrix A, overwriting the old content. + * The matrix R has a quadric upper part KxK with values in the upper right + * triangle and zeros in all other elements. Here the diagonal elements of R + * are stored in the vector R and the other upper right elements in the upper + * right of the matrix A. + * The function returns false, if calculation breaks. But because of round-off + * errors singularity is often not detected. + */ +bool lcl_CalculateQRdecomposition(const ScMatrixRef& pMatA, + ::std::vector< double>& pVecR, SCSIZE nK, SCSIZE nN) +{ + // ScMatrix matrices are zero based, index access (column,row) + for (SCSIZE col = 0; col <nK; col++) + { + // calculate vector u of the householder transformation + const double fScale = lcl_GetColumnMaximumNorm(pMatA, col, col, nN); + if (fScale == 0.0) + { + // A is singular + return false; + } + for (SCSIZE row = col; row <nN; row++) + pMatA->PutDouble( pMatA->GetDouble(col,row)/fScale, col, row); + + const double fEuclid = lcl_GetColumnEuclideanNorm(pMatA, col, col, nN); + const double fFactor = 1.0/fEuclid/(fEuclid + fabs(pMatA->GetDouble(col,col))); + const double fSignum = lcl_GetSign(pMatA->GetDouble(col,col)); + pMatA->PutDouble( pMatA->GetDouble(col,col) + fSignum*fEuclid, col,col); + pVecR[col] = -fSignum * fScale * fEuclid; + + // apply Householder transformation to A + for (SCSIZE c=col+1; c<nK; c++) + { + const double fSum =lcl_GetColumnSumProduct(pMatA, col, pMatA, c, col, nN); + for (SCSIZE row = col; row <nN; row++) + pMatA->PutDouble( pMatA->GetDouble(c,row) - fSum * fFactor * pMatA->GetDouble(col,row), c, row); + } + } + return true; +} + +// same with transposed matrix A, N is count of columns, K count of rows +bool lcl_TCalculateQRdecomposition(const ScMatrixRef& pMatA, + ::std::vector< double>& pVecR, SCSIZE nK, SCSIZE nN) +{ + double fSum ; + // ScMatrix matrices are zero based, index access (column,row) + for (SCSIZE row = 0; row <nK; row++) + { + // calculate vector u of the householder transformation + const double fScale = lcl_TGetColumnMaximumNorm(pMatA, row, row, nN); + if (fScale == 0.0) + { + // A is singular + return false; + } + for (SCSIZE col = row; col <nN; col++) + pMatA->PutDouble( pMatA->GetDouble(col,row)/fScale, col, row); + + const double fEuclid = lcl_TGetColumnEuclideanNorm(pMatA, row, row, nN); + const double fFactor = 1.0/fEuclid/(fEuclid + fabs(pMatA->GetDouble(row,row))); + const double fSignum = lcl_GetSign(pMatA->GetDouble(row,row)); + pMatA->PutDouble( pMatA->GetDouble(row,row) + fSignum*fEuclid, row,row); + pVecR[row] = -fSignum * fScale * fEuclid; + + // apply Householder transformation to A + for (SCSIZE r=row+1; r<nK; r++) + { + fSum =lcl_TGetColumnSumProduct(pMatA, row, pMatA, r, row, nN); + for (SCSIZE col = row; col <nN; col++) + pMatA->PutDouble( + pMatA->GetDouble(col,r) - fSum * fFactor * pMatA->GetDouble(col,row), col, r); + } + } + return true; +} + +/* Applies a Householder transformation to a column vector Y with is given as + * Nx1 Matrix. The vector u, from which the Householder transformation is built, + * is the column part in matrix A, with column index C, starting with row + * index C. A is the result of the QR decomposition as obtained from + * lcl_CalculateQRdecomposition. + */ +void lcl_ApplyHouseholderTransformation(const ScMatrixRef& pMatA, SCSIZE nC, + const ScMatrixRef& pMatY, SCSIZE nN) +{ + // ScMatrix matrices are zero based, index access (column,row) + double fDenominator = lcl_GetColumnSumProduct(pMatA, nC, pMatA, nC, nC, nN); + double fNumerator = lcl_GetColumnSumProduct(pMatA, nC, pMatY, 0, nC, nN); + double fFactor = 2.0 * (fNumerator/fDenominator); + for (SCSIZE row = nC; row < nN; row++) + pMatY->PutDouble( + pMatY->GetDouble(row) - fFactor * pMatA->GetDouble(nC,row), row); +} + +// Same with transposed matrices A and Y. +void lcl_TApplyHouseholderTransformation(const ScMatrixRef& pMatA, SCSIZE nR, + const ScMatrixRef& pMatY, SCSIZE nN) +{ + // ScMatrix matrices are zero based, index access (column,row) + double fDenominator = lcl_TGetColumnSumProduct(pMatA, nR, pMatA, nR, nR, nN); + double fNumerator = lcl_TGetColumnSumProduct(pMatA, nR, pMatY, 0, nR, nN); + double fFactor = 2.0 * (fNumerator/fDenominator); + for (SCSIZE col = nR; col < nN; col++) + pMatY->PutDouble( + pMatY->GetDouble(col) - fFactor * pMatA->GetDouble(col,nR), col); +} + +/* Solve for X in R*X=S using back substitution. The solution X overwrites S. + * Uses R from the result of the QR decomposition of a NxK matrix A. + * S is a column vector given as matrix, with at least elements on index + * 0 to K-1; elements on index>=K are ignored. Vector R must not have zero + * elements, no check is done. + */ +void lcl_SolveWithUpperRightTriangle(const ScMatrixRef& pMatA, + ::std::vector< double>& pVecR, const ScMatrixRef& pMatS, + SCSIZE nK, bool bIsTransposed) +{ + // ScMatrix matrices are zero based, index access (column,row) + SCSIZE row; + // SCSIZE is never negative, therefore test with rowp1=row+1 + for (SCSIZE rowp1 = nK; rowp1>0; rowp1--) + { + row = rowp1-1; + double fSum = pMatS->GetDouble(row); + for (SCSIZE col = rowp1; col<nK ; col++) + if (bIsTransposed) + fSum -= pMatA->GetDouble(row,col) * pMatS->GetDouble(col); + else + fSum -= pMatA->GetDouble(col,row) * pMatS->GetDouble(col); + pMatS->PutDouble( fSum / pVecR[row] , row); + } +} + +/* Solve for X in R' * X= T using forward substitution. The solution X + * overwrites T. Uses R from the result of the QR decomposition of a NxK + * matrix A. T is a column vectors given as matrix, with at least elements on + * index 0 to K-1; elements on index>=K are ignored. Vector R must not have + * zero elements, no check is done. + */ +void lcl_SolveWithLowerLeftTriangle(const ScMatrixRef& pMatA, + ::std::vector< double>& pVecR, const ScMatrixRef& pMatT, + SCSIZE nK, bool bIsTransposed) +{ + // ScMatrix matrices are zero based, index access (column,row) + for (SCSIZE row = 0; row < nK; row++) + { + double fSum = pMatT -> GetDouble(row); + for (SCSIZE col=0; col < row; col++) + { + if (bIsTransposed) + fSum -= pMatA->GetDouble(col,row) * pMatT->GetDouble(col); + else + fSum -= pMatA->GetDouble(row,col) * pMatT->GetDouble(col); + } + pMatT->PutDouble( fSum / pVecR[row] , row); + } +} + +/* Calculates Z = R * B + * R is given in matrix A and vector VecR as obtained from the QR + * decomposition in lcl_CalculateQRdecomposition. B and Z are column vectors + * given as matrix with at least index 0 to K-1; elements on index>=K are + * not used. + */ +void lcl_ApplyUpperRightTriangle(const ScMatrixRef& pMatA, + ::std::vector< double>& pVecR, const ScMatrixRef& pMatB, + const ScMatrixRef& pMatZ, SCSIZE nK, bool bIsTransposed) +{ + // ScMatrix matrices are zero based, index access (column,row) + for (SCSIZE row = 0; row < nK; row++) + { + double fSum = pVecR[row] * pMatB->GetDouble(row); + for (SCSIZE col = row+1; col < nK; col++) + if (bIsTransposed) + fSum += pMatA->GetDouble(row,col) * pMatB->GetDouble(col); + else + fSum += pMatA->GetDouble(col,row) * pMatB->GetDouble(col); + pMatZ->PutDouble( fSum, row); + } +} + +double lcl_GetMeanOverAll(const ScMatrixRef& pMat, SCSIZE nN) +{ + double fSum = 0.0; + for (SCSIZE i=0 ; i<nN; i++) + fSum += pMat->GetDouble(i); + return fSum/static_cast<double>(nN); +} + +// Calculates means of the columns of matrix X. X is a RxC matrix; +// ResMat is a 1xC matrix (=row). +void lcl_CalculateColumnMeans(const ScMatrixRef& pX, const ScMatrixRef& pResMat, + SCSIZE nC, SCSIZE nR) +{ + for (SCSIZE i=0; i < nC; i++) + { + double fSum =0.0; + for (SCSIZE k=0; k < nR; k++) + fSum += pX->GetDouble(i,k); // GetDouble(Column,Row) + pResMat ->PutDouble( fSum/static_cast<double>(nR),i); + } +} + +// Calculates means of the rows of matrix X. X is a RxC matrix; +// ResMat is a Rx1 matrix (=column). +void lcl_CalculateRowMeans(const ScMatrixRef& pX, const ScMatrixRef& pResMat, + SCSIZE nC, SCSIZE nR) +{ + for (SCSIZE k=0; k < nR; k++) + { + double fSum = 0.0; + for (SCSIZE i=0; i < nC; i++) + fSum += pX->GetDouble(i,k); // GetDouble(Column,Row) + pResMat ->PutDouble( fSum/static_cast<double>(nC),k); + } +} + +void lcl_CalculateColumnsDelta(const ScMatrixRef& pMat, const ScMatrixRef& pColumnMeans, + SCSIZE nC, SCSIZE nR) +{ + for (SCSIZE i = 0; i < nC; i++) + for (SCSIZE k = 0; k < nR; k++) + pMat->PutDouble( ::rtl::math::approxSub + (pMat->GetDouble(i,k) , pColumnMeans->GetDouble(i) ) , i, k); +} + +void lcl_CalculateRowsDelta(const ScMatrixRef& pMat, const ScMatrixRef& pRowMeans, + SCSIZE nC, SCSIZE nR) +{ + for (SCSIZE k = 0; k < nR; k++) + for (SCSIZE i = 0; i < nC; i++) + pMat->PutDouble( ::rtl::math::approxSub + ( pMat->GetDouble(i,k) , pRowMeans->GetDouble(k) ) , i, k); +} + +// Case1 = simple regression +// MatX = X - MeanX, MatY = Y - MeanY, y - haty = (y - MeanY) - (haty - MeanY) +// = (y-MeanY)-((slope*x+a)-(slope*MeanX+a)) = (y-MeanY)-slope*(x-MeanX) +double lcl_GetSSresid(const ScMatrixRef& pMatX, const ScMatrixRef& pMatY, double fSlope, + SCSIZE nN) +{ + double fSum = 0.0; + for (SCSIZE i=0; i<nN; i++) + { + const double fTemp = pMatY->GetDouble(i) - fSlope * pMatX->GetDouble(i); + fSum += fTemp * fTemp; + } + return fSum; +} + +} + +// Fill default values in matrix X, transform Y to log(Y) in case LOGEST|GROWTH, +// determine sizes of matrices X and Y, determine kind of regression, clone +// Y in case LOGEST|GROWTH, if constant. +bool ScInterpreter::CheckMatrix(bool _bLOG, sal_uInt8& nCase, SCSIZE& nCX, + SCSIZE& nCY, SCSIZE& nRX, SCSIZE& nRY, SCSIZE& M, + SCSIZE& N, ScMatrixRef& pMatX, ScMatrixRef& pMatY) +{ + + nCX = 0; + nCY = 0; + nRX = 0; + nRY = 0; + M = 0; + N = 0; + pMatY->GetDimensions(nCY, nRY); + const SCSIZE nCountY = nCY * nRY; + for ( SCSIZE i = 0; i < nCountY; i++ ) + { + if (!pMatY->IsValue(i)) + { + PushIllegalArgument(); + return false; + } + } + + if ( _bLOG ) + { + ScMatrixRef pNewY = pMatY->CloneIfConst(); + for (SCSIZE nElem = 0; nElem < nCountY; nElem++) + { + const double fVal = pNewY->GetDouble(nElem); + if (fVal <= 0.0) + { + PushIllegalArgument(); + return false; + } + else + pNewY->PutDouble(log(fVal), nElem); + } + pMatY = pNewY; + } + + if (pMatX) + { + pMatX->GetDimensions(nCX, nRX); + const SCSIZE nCountX = nCX * nRX; + for ( SCSIZE i = 0; i < nCountX; i++ ) + if (!pMatX->IsValue(i)) + { + PushIllegalArgument(); + return false; + } + if (nCX == nCY && nRX == nRY) + { + nCase = 1; // simple regression + M = 1; + N = nCountY; + } + else if (nCY != 1 && nRY != 1) + { + PushIllegalArgument(); + return false; + } + else if (nCY == 1) + { + if (nRX != nRY) + { + PushIllegalArgument(); + return false; + } + else + { + nCase = 2; // Y is column + N = nRY; + M = nCX; + } + } + else if (nCX != nCY) + { + PushIllegalArgument(); + return false; + } + else + { + nCase = 3; // Y is row + N = nCY; + M = nRX; + } + } + else + { + pMatX = GetNewMat(nCY, nRY); + nCX = nCY; + nRX = nRY; + if (!pMatX) + { + PushIllegalArgument(); + return false; + } + for ( SCSIZE i = 1; i <= nCountY; i++ ) + pMatX->PutDouble(static_cast<double>(i), i-1); + nCase = 1; + N = nCountY; + M = 1; + } + return true; +} + +// LINEST +void ScInterpreter::ScLinest() +{ + CalculateRGPRKP(false); +} + +// LOGEST +void ScInterpreter::ScLogest() +{ + CalculateRGPRKP(true); +} + +void ScInterpreter::CalculateRGPRKP(bool _bRKP) +{ + sal_uInt8 nParamCount = GetByte(); + if (!MustHaveParamCount( nParamCount, 1, 4 )) + return; + bool bConstant, bStats; + + // optional forth parameter + if (nParamCount == 4) + bStats = GetBool(); + else + bStats = false; + + // The third parameter may not be missing in ODF, if the forth parameter + // is present. But Excel allows it with default true, we too. + if (nParamCount >= 3) + { + if (IsMissing()) + { + Pop(); + bConstant = true; +// PushIllegalParameter(); if ODF behavior is desired +// return; + } + else + bConstant = GetBool(); + } + else + bConstant = true; + + ScMatrixRef pMatX; + if (nParamCount >= 2) + { + if (IsMissing()) + { //In ODF1.2 empty second parameter (which is two ;; ) is allowed + Pop(); + pMatX = nullptr; + } + else + { + pMatX = GetMatrix(); + } + } + else + pMatX = nullptr; + + ScMatrixRef pMatY = GetMatrix(); + if (!pMatY) + { + PushIllegalParameter(); + return; + } + + // 1 = simple; 2 = multiple with Y as column; 3 = multiple with Y as row + sal_uInt8 nCase; + + SCSIZE nCX, nCY; // number of columns + SCSIZE nRX, nRY; //number of rows + SCSIZE K = 0, N = 0; // K=number of variables X, N=number of data samples + if (!CheckMatrix(_bRKP,nCase,nCX,nCY,nRX,nRY,K,N,pMatX,pMatY)) + { + PushIllegalParameter(); + return; + } + + // Enough data samples? + if ((bConstant && (N<K+1)) || (!bConstant && (N<K)) || (N<1) || (K<1)) + { + PushIllegalParameter(); + return; + } + + ScMatrixRef pResMat; + if (bStats) + pResMat = GetNewMat(K+1,5); + else + pResMat = GetNewMat(K+1,1); + if (!pResMat) + { + PushError(FormulaError::CodeOverflow); + return; + } + // Fill unused cells in pResMat; order (column,row) + if (bStats) + { + for (SCSIZE i=2; i<K+1; i++) + { + pResMat->PutError( FormulaError::NotAvailable, i, 2); + pResMat->PutError( FormulaError::NotAvailable, i, 3); + pResMat->PutError( FormulaError::NotAvailable, i, 4); + } + } + + // Uses sum(x-MeanX)^2 and not [sum x^2]-N * MeanX^2 in case bConstant. + // Clone constant matrices, so that Mat = Mat - Mean is possible. + double fMeanY = 0.0; + if (bConstant) + { + ScMatrixRef pNewX = pMatX->CloneIfConst(); + ScMatrixRef pNewY = pMatY->CloneIfConst(); + if (!pNewX || !pNewY) + { + PushError(FormulaError::CodeOverflow); + return; + } + pMatX = pNewX; + pMatY = pNewY; + // DeltaY is possible here; DeltaX depends on nCase, so later + fMeanY = lcl_GetMeanOverAll(pMatY, N); + for (SCSIZE i=0; i<N; i++) + { + pMatY->PutDouble( ::rtl::math::approxSub(pMatY->GetDouble(i),fMeanY), i ); + } + } + + if (nCase==1) + { + // calculate simple regression + double fMeanX = 0.0; + if (bConstant) + { // Mat = Mat - Mean + fMeanX = lcl_GetMeanOverAll(pMatX, N); + for (SCSIZE i=0; i<N; i++) + { + pMatX->PutDouble( ::rtl::math::approxSub(pMatX->GetDouble(i),fMeanX), i ); + } + } + double fSumXY = lcl_GetSumProduct(pMatX,pMatY,N); + double fSumX2 = lcl_GetSumProduct(pMatX,pMatX,N); + if (fSumX2==0.0) + { + PushNoValue(); // all x-values are identical + return; + } + double fSlope = fSumXY / fSumX2; + double fIntercept = 0.0; + if (bConstant) + fIntercept = fMeanY - fSlope * fMeanX; + pResMat->PutDouble(_bRKP ? exp(fIntercept) : fIntercept, 1, 0); //order (column,row) + pResMat->PutDouble(_bRKP ? exp(fSlope) : fSlope, 0, 0); + + if (bStats) + { + double fSSreg = fSlope * fSlope * fSumX2; + pResMat->PutDouble(fSSreg, 0, 4); + + double fDegreesFreedom =static_cast<double>( bConstant ? N-2 : N-1 ); + pResMat->PutDouble(fDegreesFreedom, 1, 3); + + double fSSresid = lcl_GetSSresid(pMatX,pMatY,fSlope,N); + pResMat->PutDouble(fSSresid, 1, 4); + + if (fDegreesFreedom == 0.0 || fSSresid == 0.0 || fSSreg == 0.0) + { // exact fit; test SSreg too, because SSresid might be + // unequal zero due to round of errors + pResMat->PutDouble(0.0, 1, 4); // SSresid + pResMat->PutError( FormulaError::NotAvailable, 0, 3); // F + pResMat->PutDouble(0.0, 1, 2); // RMSE + pResMat->PutDouble(0.0, 0, 1); // SigmaSlope + if (bConstant) + pResMat->PutDouble(0.0, 1, 1); //SigmaIntercept + else + pResMat->PutError( FormulaError::NotAvailable, 1, 1); + pResMat->PutDouble(1.0, 0, 2); // R^2 + } + else + { + double fFstatistic = (fSSreg / static_cast<double>(K)) + / (fSSresid / fDegreesFreedom); + pResMat->PutDouble(fFstatistic, 0, 3); + + // standard error of estimate + double fRMSE = sqrt(fSSresid / fDegreesFreedom); + pResMat->PutDouble(fRMSE, 1, 2); + + double fSigmaSlope = fRMSE / sqrt(fSumX2); + pResMat->PutDouble(fSigmaSlope, 0, 1); + + if (bConstant) + { + double fSigmaIntercept = fRMSE + * sqrt(fMeanX*fMeanX/fSumX2 + 1.0/static_cast<double>(N)); + pResMat->PutDouble(fSigmaIntercept, 1, 1); + } + else + { + pResMat->PutError( FormulaError::NotAvailable, 1, 1); + } + + double fR2 = fSSreg / (fSSreg + fSSresid); + pResMat->PutDouble(fR2, 0, 2); + } + } + PushMatrix(pResMat); + } + else // calculate multiple regression; + { + // Uses a QR decomposition X = QR. The solution B = (X'X)^(-1) * X' * Y + // becomes B = R^(-1) * Q' * Y + if (nCase ==2) // Y is column + { + ::std::vector< double> aVecR(N); // for QR decomposition + // Enough memory for needed matrices? + ScMatrixRef pMeans = GetNewMat(K, 1); // mean of each column + ScMatrixRef pMatZ; // for Q' * Y , inter alia + if (bStats) + pMatZ = pMatY->Clone(); // Y is used in statistic, keep it + else + pMatZ = pMatY; // Y can be overwritten + ScMatrixRef pSlopes = GetNewMat(1,K); // from b1 to bK + if (!pMeans || !pMatZ || !pSlopes) + { + PushError(FormulaError::CodeOverflow); + return; + } + if (bConstant) + { + lcl_CalculateColumnMeans(pMatX, pMeans, K, N); + lcl_CalculateColumnsDelta(pMatX, pMeans, K, N); + } + if (!lcl_CalculateQRdecomposition(pMatX, aVecR, K, N)) + { + PushNoValue(); + return; + } + // Later on we will divide by elements of aVecR, so make sure + // that they aren't zero. + bool bIsSingular=false; + for (SCSIZE row=0; row < K && !bIsSingular; row++) + bIsSingular = aVecR[row] == 0.0; + if (bIsSingular) + { + PushNoValue(); + return; + } + // Z = Q' Y; + for (SCSIZE col = 0; col < K; col++) + { + lcl_ApplyHouseholderTransformation(pMatX, col, pMatZ, N); + } + // B = R^(-1) * Q' * Y <=> B = R^(-1) * Z <=> R * B = Z + // result Z should have zeros for index>=K; if not, ignore values + for (SCSIZE col = 0; col < K ; col++) + { + pSlopes->PutDouble( pMatZ->GetDouble(col), col); + } + lcl_SolveWithUpperRightTriangle(pMatX, aVecR, pSlopes, K, false); + double fIntercept = 0.0; + if (bConstant) + fIntercept = fMeanY - lcl_GetSumProduct(pMeans,pSlopes,K); + // Fill first line in result matrix + pResMat->PutDouble(_bRKP ? exp(fIntercept) : fIntercept, K, 0 ); + for (SCSIZE i = 0; i < K; i++) + pResMat->PutDouble(_bRKP ? exp(pSlopes->GetDouble(i)) + : pSlopes->GetDouble(i) , K-1-i, 0); + + if (bStats) + { + double fSSreg = 0.0; + double fSSresid = 0.0; + // re-use memory of Z; + pMatZ->FillDouble(0.0, 0, 0, 0, N-1); + // Z = R * Slopes + lcl_ApplyUpperRightTriangle(pMatX, aVecR, pSlopes, pMatZ, K, false); + // Z = Q * Z, that is Q * R * Slopes = X * Slopes + for (SCSIZE colp1 = K; colp1 > 0; colp1--) + { + lcl_ApplyHouseholderTransformation(pMatX, colp1-1, pMatZ,N); + } + fSSreg =lcl_GetSumProduct(pMatZ, pMatZ, N); + // re-use Y for residuals, Y = Y-Z + for (SCSIZE row = 0; row < N; row++) + pMatY->PutDouble(pMatY->GetDouble(row) - pMatZ->GetDouble(row), row); + fSSresid = lcl_GetSumProduct(pMatY, pMatY, N); + pResMat->PutDouble(fSSreg, 0, 4); + pResMat->PutDouble(fSSresid, 1, 4); + + double fDegreesFreedom =static_cast<double>( bConstant ? N-K-1 : N-K ); + pResMat->PutDouble(fDegreesFreedom, 1, 3); + + if (fDegreesFreedom == 0.0 || fSSresid == 0.0 || fSSreg == 0.0) + { // exact fit; incl. observed values Y are identical + pResMat->PutDouble(0.0, 1, 4); // SSresid + // F = (SSreg/K) / (SSresid/df) = #DIV/0! + pResMat->PutError( FormulaError::NotAvailable, 0, 3); // F + // RMSE = sqrt(SSresid / df) = sqrt(0 / df) = 0 + pResMat->PutDouble(0.0, 1, 2); // RMSE + // SigmaSlope[i] = RMSE * sqrt(matrix[i,i]) = 0 * sqrt(...) = 0 + for (SCSIZE i=0; i<K; i++) + pResMat->PutDouble(0.0, K-1-i, 1); + + // SigmaIntercept = RMSE * sqrt(...) = 0 + if (bConstant) + pResMat->PutDouble(0.0, K, 1); //SigmaIntercept + else + pResMat->PutError( FormulaError::NotAvailable, K, 1); + + // R^2 = SSreg / (SSreg + SSresid) = 1.0 + pResMat->PutDouble(1.0, 0, 2); // R^2 + } + else + { + double fFstatistic = (fSSreg / static_cast<double>(K)) + / (fSSresid / fDegreesFreedom); + pResMat->PutDouble(fFstatistic, 0, 3); + + // standard error of estimate = root mean SSE + double fRMSE = sqrt(fSSresid / fDegreesFreedom); + pResMat->PutDouble(fRMSE, 1, 2); + + // standard error of slopes + // = RMSE * sqrt(diagonal element of (R' R)^(-1) ) + // standard error of intercept + // = RMSE * sqrt( Xmean * (R' R)^(-1) * Xmean' + 1/N) + // (R' R)^(-1) = R^(-1) * (R')^(-1). Do not calculate it as + // a whole matrix, but iterate over unit vectors. + double fSigmaIntercept = 0.0; + double fPart; // for Xmean * single column of (R' R)^(-1) + for (SCSIZE col = 0; col < K; col++) + { + //re-use memory of MatZ + pMatZ->FillDouble(0.0,0,0,0,K-1); // Z = unit vector e + pMatZ->PutDouble(1.0, col); + //Solve R' * Z = e + lcl_SolveWithLowerLeftTriangle(pMatX, aVecR, pMatZ, K, false); + // Solve R * Znew = Zold + lcl_SolveWithUpperRightTriangle(pMatX, aVecR, pMatZ, K, false); + // now Z is column col in (R' R)^(-1) + double fSigmaSlope = fRMSE * sqrt(pMatZ->GetDouble(col)); + pResMat->PutDouble(fSigmaSlope, K-1-col, 1); + // (R' R) ^(-1) is symmetric + if (bConstant) + { + fPart = lcl_GetSumProduct(pMeans, pMatZ, K); + fSigmaIntercept += fPart * pMeans->GetDouble(col); + } + } + if (bConstant) + { + fSigmaIntercept = fRMSE + * sqrt(fSigmaIntercept + 1.0 / static_cast<double>(N)); + pResMat->PutDouble(fSigmaIntercept, K, 1); + } + else + { + pResMat->PutError( FormulaError::NotAvailable, K, 1); + } + + double fR2 = fSSreg / (fSSreg + fSSresid); + pResMat->PutDouble(fR2, 0, 2); + } + } + PushMatrix(pResMat); + } + else // nCase == 3, Y is row, all matrices are transposed + { + ::std::vector< double> aVecR(N); // for QR decomposition + // Enough memory for needed matrices? + ScMatrixRef pMeans = GetNewMat(1, K); // mean of each row + ScMatrixRef pMatZ; // for Q' * Y , inter alia + if (bStats) + pMatZ = pMatY->Clone(); // Y is used in statistic, keep it + else + pMatZ = pMatY; // Y can be overwritten + ScMatrixRef pSlopes = GetNewMat(K,1); // from b1 to bK + if (!pMeans || !pMatZ || !pSlopes) + { + PushError(FormulaError::CodeOverflow); + return; + } + if (bConstant) + { + lcl_CalculateRowMeans(pMatX, pMeans, N, K); + lcl_CalculateRowsDelta(pMatX, pMeans, N, K); + } + + if (!lcl_TCalculateQRdecomposition(pMatX, aVecR, K, N)) + { + PushNoValue(); + return; + } + + // Later on we will divide by elements of aVecR, so make sure + // that they aren't zero. + bool bIsSingular=false; + for (SCSIZE row=0; row < K && !bIsSingular; row++) + bIsSingular = aVecR[row] == 0.0; + if (bIsSingular) + { + PushNoValue(); + return; + } + // Z = Q' Y + for (SCSIZE row = 0; row < K; row++) + { + lcl_TApplyHouseholderTransformation(pMatX, row, pMatZ, N); + } + // B = R^(-1) * Q' * Y <=> B = R^(-1) * Z <=> R * B = Z + // result Z should have zeros for index>=K; if not, ignore values + for (SCSIZE col = 0; col < K ; col++) + { + pSlopes->PutDouble( pMatZ->GetDouble(col), col); + } + lcl_SolveWithUpperRightTriangle(pMatX, aVecR, pSlopes, K, true); + double fIntercept = 0.0; + if (bConstant) + fIntercept = fMeanY - lcl_GetSumProduct(pMeans,pSlopes,K); + // Fill first line in result matrix + pResMat->PutDouble(_bRKP ? exp(fIntercept) : fIntercept, K, 0 ); + for (SCSIZE i = 0; i < K; i++) + pResMat->PutDouble(_bRKP ? exp(pSlopes->GetDouble(i)) + : pSlopes->GetDouble(i) , K-1-i, 0); + + if (bStats) + { + double fSSreg = 0.0; + double fSSresid = 0.0; + // re-use memory of Z; + pMatZ->FillDouble(0.0, 0, 0, N-1, 0); + // Z = R * Slopes + lcl_ApplyUpperRightTriangle(pMatX, aVecR, pSlopes, pMatZ, K, true); + // Z = Q * Z, that is Q * R * Slopes = X * Slopes + for (SCSIZE rowp1 = K; rowp1 > 0; rowp1--) + { + lcl_TApplyHouseholderTransformation(pMatX, rowp1-1, pMatZ,N); + } + fSSreg =lcl_GetSumProduct(pMatZ, pMatZ, N); + // re-use Y for residuals, Y = Y-Z + for (SCSIZE col = 0; col < N; col++) + pMatY->PutDouble(pMatY->GetDouble(col) - pMatZ->GetDouble(col), col); + fSSresid = lcl_GetSumProduct(pMatY, pMatY, N); + pResMat->PutDouble(fSSreg, 0, 4); + pResMat->PutDouble(fSSresid, 1, 4); + + double fDegreesFreedom =static_cast<double>( bConstant ? N-K-1 : N-K ); + pResMat->PutDouble(fDegreesFreedom, 1, 3); + + if (fDegreesFreedom == 0.0 || fSSresid == 0.0 || fSSreg == 0.0) + { // exact fit; incl. case observed values Y are identical + pResMat->PutDouble(0.0, 1, 4); // SSresid + // F = (SSreg/K) / (SSresid/df) = #DIV/0! + pResMat->PutError( FormulaError::NotAvailable, 0, 3); // F + // RMSE = sqrt(SSresid / df) = sqrt(0 / df) = 0 + pResMat->PutDouble(0.0, 1, 2); // RMSE + // SigmaSlope[i] = RMSE * sqrt(matrix[i,i]) = 0 * sqrt(...) = 0 + for (SCSIZE i=0; i<K; i++) + pResMat->PutDouble(0.0, K-1-i, 1); + + // SigmaIntercept = RMSE * sqrt(...) = 0 + if (bConstant) + pResMat->PutDouble(0.0, K, 1); //SigmaIntercept + else + pResMat->PutError( FormulaError::NotAvailable, K, 1); + + // R^2 = SSreg / (SSreg + SSresid) = 1.0 + pResMat->PutDouble(1.0, 0, 2); // R^2 + } + else + { + double fFstatistic = (fSSreg / static_cast<double>(K)) + / (fSSresid / fDegreesFreedom); + pResMat->PutDouble(fFstatistic, 0, 3); + + // standard error of estimate = root mean SSE + double fRMSE = sqrt(fSSresid / fDegreesFreedom); + pResMat->PutDouble(fRMSE, 1, 2); + + // standard error of slopes + // = RMSE * sqrt(diagonal element of (R' R)^(-1) ) + // standard error of intercept + // = RMSE * sqrt( Xmean * (R' R)^(-1) * Xmean' + 1/N) + // (R' R)^(-1) = R^(-1) * (R')^(-1). Do not calculate it as + // a whole matrix, but iterate over unit vectors. + // (R' R) ^(-1) is symmetric + double fSigmaIntercept = 0.0; + double fPart; // for Xmean * single col of (R' R)^(-1) + for (SCSIZE row = 0; row < K; row++) + { + //re-use memory of MatZ + pMatZ->FillDouble(0.0,0,0,K-1,0); // Z = unit vector e + pMatZ->PutDouble(1.0, row); + //Solve R' * Z = e + lcl_SolveWithLowerLeftTriangle(pMatX, aVecR, pMatZ, K, true); + // Solve R * Znew = Zold + lcl_SolveWithUpperRightTriangle(pMatX, aVecR, pMatZ, K, true); + // now Z is column col in (R' R)^(-1) + double fSigmaSlope = fRMSE * sqrt(pMatZ->GetDouble(row)); + pResMat->PutDouble(fSigmaSlope, K-1-row, 1); + if (bConstant) + { + fPart = lcl_GetSumProduct(pMeans, pMatZ, K); + fSigmaIntercept += fPart * pMeans->GetDouble(row); + } + } + if (bConstant) + { + fSigmaIntercept = fRMSE + * sqrt(fSigmaIntercept + 1.0 / static_cast<double>(N)); + pResMat->PutDouble(fSigmaIntercept, K, 1); + } + else + { + pResMat->PutError( FormulaError::NotAvailable, K, 1); + } + + double fR2 = fSSreg / (fSSreg + fSSresid); + pResMat->PutDouble(fR2, 0, 2); + } + } + PushMatrix(pResMat); + } + } +} + +void ScInterpreter::ScTrend() +{ + CalculateTrendGrowth(false); +} + +void ScInterpreter::ScGrowth() +{ + CalculateTrendGrowth(true); +} + +void ScInterpreter::CalculateTrendGrowth(bool _bGrowth) +{ + sal_uInt8 nParamCount = GetByte(); + if (!MustHaveParamCount( nParamCount, 1, 4 )) + return; + + // optional forth parameter + bool bConstant; + if (nParamCount == 4) + bConstant = GetBool(); + else + bConstant = true; + + // The third parameter may be missing in ODF, although the forth parameter + // is present. Default values depend on data not yet read. + ScMatrixRef pMatNewX; + if (nParamCount >= 3) + { + if (IsMissing()) + { + Pop(); + pMatNewX = nullptr; + } + else + pMatNewX = GetMatrix(); + } + else + pMatNewX = nullptr; + + //In ODF1.2 empty second parameter (which is two ;; ) is allowed + //Defaults will be set in CheckMatrix + ScMatrixRef pMatX; + if (nParamCount >= 2) + { + if (IsMissing()) + { + Pop(); + pMatX = nullptr; + } + else + { + pMatX = GetMatrix(); + } + } + else + pMatX = nullptr; + + ScMatrixRef pMatY = GetMatrix(); + if (!pMatY) + { + PushIllegalParameter(); + return; + } + + // 1 = simple; 2 = multiple with Y as column; 3 = multiple with Y as row + sal_uInt8 nCase; + + SCSIZE nCX, nCY; // number of columns + SCSIZE nRX, nRY; //number of rows + SCSIZE K = 0, N = 0; // K=number of variables X, N=number of data samples + if (!CheckMatrix(_bGrowth,nCase,nCX,nCY,nRX,nRY,K,N,pMatX,pMatY)) + { + PushIllegalParameter(); + return; + } + + // Enough data samples? + if ((bConstant && (N<K+1)) || (!bConstant && (N<K)) || (N<1) || (K<1)) + { + PushIllegalParameter(); + return; + } + + // Set default pMatNewX if necessary + SCSIZE nCXN, nRXN; + SCSIZE nCountXN; + if (!pMatNewX) + { + nCXN = nCX; + nRXN = nRX; + nCountXN = nCXN * nRXN; + pMatNewX = pMatX->Clone(); // pMatX will be changed to X-meanX + } + else + { + pMatNewX->GetDimensions(nCXN, nRXN); + if ((nCase == 2 && K != nCXN) || (nCase == 3 && K != nRXN)) + { + PushIllegalArgument(); + return; + } + nCountXN = nCXN * nRXN; + for (SCSIZE i = 0; i < nCountXN; i++) + if (!pMatNewX->IsValue(i)) + { + PushIllegalArgument(); + return; + } + } + ScMatrixRef pResMat; // size depends on nCase + if (nCase == 1) + pResMat = GetNewMat(nCXN,nRXN); + else + { + if (nCase==2) + pResMat = GetNewMat(1,nRXN); + else + pResMat = GetNewMat(nCXN,1); + } + if (!pResMat) + { + PushError(FormulaError::CodeOverflow); + return; + } + // Uses sum(x-MeanX)^2 and not [sum x^2]-N * MeanX^2 in case bConstant. + // Clone constant matrices, so that Mat = Mat - Mean is possible. + double fMeanY = 0.0; + if (bConstant) + { + ScMatrixRef pCopyX = pMatX->CloneIfConst(); + ScMatrixRef pCopyY = pMatY->CloneIfConst(); + if (!pCopyX || !pCopyY) + { + PushError(FormulaError::MatrixSize); + return; + } + pMatX = pCopyX; + pMatY = pCopyY; + // DeltaY is possible here; DeltaX depends on nCase, so later + fMeanY = lcl_GetMeanOverAll(pMatY, N); + for (SCSIZE i=0; i<N; i++) + { + pMatY->PutDouble( ::rtl::math::approxSub(pMatY->GetDouble(i),fMeanY), i ); + } + } + + if (nCase==1) + { + // calculate simple regression + double fMeanX = 0.0; + if (bConstant) + { // Mat = Mat - Mean + fMeanX = lcl_GetMeanOverAll(pMatX, N); + for (SCSIZE i=0; i<N; i++) + { + pMatX->PutDouble( ::rtl::math::approxSub(pMatX->GetDouble(i),fMeanX), i ); + } + } + double fSumXY = lcl_GetSumProduct(pMatX,pMatY,N); + double fSumX2 = lcl_GetSumProduct(pMatX,pMatX,N); + if (fSumX2==0.0) + { + PushNoValue(); // all x-values are identical + return; + } + double fSlope = fSumXY / fSumX2; + double fHelp; + if (bConstant) + { + double fIntercept = fMeanY - fSlope * fMeanX; + for (SCSIZE i = 0; i < nCountXN; i++) + { + fHelp = pMatNewX->GetDouble(i)*fSlope + fIntercept; + pResMat->PutDouble(_bGrowth ? exp(fHelp) : fHelp, i); + } + } + else + { + for (SCSIZE i = 0; i < nCountXN; i++) + { + fHelp = pMatNewX->GetDouble(i)*fSlope; + pResMat->PutDouble(_bGrowth ? exp(fHelp) : fHelp, i); + } + } + } + else // calculate multiple regression; + { + if (nCase ==2) // Y is column + { + ::std::vector< double> aVecR(N); // for QR decomposition + // Enough memory for needed matrices? + ScMatrixRef pMeans = GetNewMat(K, 1); // mean of each column + ScMatrixRef pSlopes = GetNewMat(1,K); // from b1 to bK + if (!pMeans || !pSlopes) + { + PushError(FormulaError::CodeOverflow); + return; + } + if (bConstant) + { + lcl_CalculateColumnMeans(pMatX, pMeans, K, N); + lcl_CalculateColumnsDelta(pMatX, pMeans, K, N); + } + if (!lcl_CalculateQRdecomposition(pMatX, aVecR, K, N)) + { + PushNoValue(); + return; + } + // Later on we will divide by elements of aVecR, so make sure + // that they aren't zero. + bool bIsSingular=false; + for (SCSIZE row=0; row < K && !bIsSingular; row++) + bIsSingular = aVecR[row] == 0.0; + if (bIsSingular) + { + PushNoValue(); + return; + } + // Z := Q' Y; Y is overwritten with result Z + for (SCSIZE col = 0; col < K; col++) + { + lcl_ApplyHouseholderTransformation(pMatX, col, pMatY, N); + } + // B = R^(-1) * Q' * Y <=> B = R^(-1) * Z <=> R * B = Z + // result Z should have zeros for index>=K; if not, ignore values + for (SCSIZE col = 0; col < K ; col++) + { + pSlopes->PutDouble( pMatY->GetDouble(col), col); + } + lcl_SolveWithUpperRightTriangle(pMatX, aVecR, pSlopes, K, false); + + // Fill result matrix + lcl_MFastMult(pMatNewX,pSlopes,pResMat,nRXN,K,1); + if (bConstant) + { + double fIntercept = fMeanY - lcl_GetSumProduct(pMeans,pSlopes,K); + for (SCSIZE row = 0; row < nRXN; row++) + pResMat->PutDouble(pResMat->GetDouble(row)+fIntercept, row); + } + if (_bGrowth) + { + for (SCSIZE i = 0; i < nRXN; i++) + pResMat->PutDouble(exp(pResMat->GetDouble(i)), i); + } + } + else + { // nCase == 3, Y is row, all matrices are transposed + + ::std::vector< double> aVecR(N); // for QR decomposition + // Enough memory for needed matrices? + ScMatrixRef pMeans = GetNewMat(1, K); // mean of each row + ScMatrixRef pSlopes = GetNewMat(K,1); // row from b1 to bK + if (!pMeans || !pSlopes) + { + PushError(FormulaError::CodeOverflow); + return; + } + if (bConstant) + { + lcl_CalculateRowMeans(pMatX, pMeans, N, K); + lcl_CalculateRowsDelta(pMatX, pMeans, N, K); + } + if (!lcl_TCalculateQRdecomposition(pMatX, aVecR, K, N)) + { + PushNoValue(); + return; + } + // Later on we will divide by elements of aVecR, so make sure + // that they aren't zero. + bool bIsSingular=false; + for (SCSIZE row=0; row < K && !bIsSingular; row++) + bIsSingular = aVecR[row] == 0.0; + if (bIsSingular) + { + PushNoValue(); + return; + } + // Z := Q' Y; Y is overwritten with result Z + for (SCSIZE row = 0; row < K; row++) + { + lcl_TApplyHouseholderTransformation(pMatX, row, pMatY, N); + } + // B = R^(-1) * Q' * Y <=> B = R^(-1) * Z <=> R * B = Z + // result Z should have zeros for index>=K; if not, ignore values + for (SCSIZE col = 0; col < K ; col++) + { + pSlopes->PutDouble( pMatY->GetDouble(col), col); + } + lcl_SolveWithUpperRightTriangle(pMatX, aVecR, pSlopes, K, true); + + // Fill result matrix + lcl_MFastMult(pSlopes,pMatNewX,pResMat,1,K,nCXN); + if (bConstant) + { + double fIntercept = fMeanY - lcl_GetSumProduct(pMeans,pSlopes,K); + for (SCSIZE col = 0; col < nCXN; col++) + pResMat->PutDouble(pResMat->GetDouble(col)+fIntercept, col); + } + if (_bGrowth) + { + for (SCSIZE i = 0; i < nCXN; i++) + pResMat->PutDouble(exp(pResMat->GetDouble(i)), i); + } + } + } + PushMatrix(pResMat); +} + +void ScInterpreter::ScMatRef() +{ + // In case it contains relative references resolve them as usual. + Push( *pCur ); + ScAddress aAdr; + PopSingleRef( aAdr ); + + ScRefCellValue aCell(*pDok, aAdr); + + if (aCell.meType != CELLTYPE_FORMULA) + { + PushError( FormulaError::NoRef ); + return; + } + + if (aCell.mpFormula->IsRunning()) + { + // Twisted odd corner case where an array element's cell tries to + // access the top left matrix while it is still running, see tdf#88737 + // This is a hackish workaround, not a general solution, the matrix + // isn't available anyway and FormulaError::CircularReference would be set. + PushError( FormulaError::RetryCircular ); + return; + } + + const ScMatrix* pMat = aCell.mpFormula->GetMatrix(); + if (pMat) + { + SCSIZE nCols, nRows; + pMat->GetDimensions( nCols, nRows ); + SCSIZE nC = static_cast<SCSIZE>(aPos.Col() - aAdr.Col()); + SCSIZE nR = static_cast<SCSIZE>(aPos.Row() - aAdr.Row()); + if ((nCols <= nC && nCols != 1) || (nRows <= nR && nRows != 1)) + PushNA(); + else + { + const ScMatrixValue nMatVal = pMat->Get( nC, nR); + ScMatValType nMatValType = nMatVal.nType; + + if (ScMatrix::IsNonValueType( nMatValType)) + { + if (ScMatrix::IsEmptyPathType( nMatValType)) + { // result of empty false jump path + nFuncFmtType = SvNumFormatType::LOGICAL; + PushInt(0); + } + else if (ScMatrix::IsEmptyType( nMatValType)) + { + // Not inherited (really?) and display as empty string, not 0. + PushTempToken( new ScEmptyCellToken( false, true)); + } + else + PushString( nMatVal.GetString() ); + } + else + { + // Determine nFuncFmtType type before PushDouble(). + pDok->GetNumberFormatInfo(mrContext, nCurFmtType, nCurFmtIndex, aAdr); + nFuncFmtType = nCurFmtType; + nFuncFmtIndex = nCurFmtIndex; + PushDouble(nMatVal.fVal); // handles DoubleError + } + } + } + else + { + // Determine nFuncFmtType type before PushDouble(). + pDok->GetNumberFormatInfo(mrContext, nCurFmtType, nCurFmtIndex, aAdr); + nFuncFmtType = nCurFmtType; + nFuncFmtIndex = nCurFmtIndex; + // If not a result matrix, obtain the cell value. + FormulaError nErr = aCell.mpFormula->GetErrCode(); + if (nErr != FormulaError::NONE) + PushError( nErr ); + else if (aCell.mpFormula->IsValue()) + PushDouble(aCell.mpFormula->GetValue()); + else + { + svl::SharedString aVal = aCell.mpFormula->GetString(); + PushString( aVal ); + } + } +} + +void ScInterpreter::ScInfo() +{ + if( MustHaveParamCount( GetByte(), 1 ) ) + { + OUString aStr = GetString().getString(); + ScCellKeywordTranslator::transKeyword(aStr, ScGlobal::GetLocale(), ocInfo); + if( aStr == "SYSTEM" ) + PushString( SC_INFO_OSVERSION ); + else if( aStr == "OSVERSION" ) + PushString( "Windows (32-bit) NT 5.01" ); + else if( aStr == "RELEASE" ) + PushString( ::utl::Bootstrap::getBuildIdData( OUString() ) ); + else if( aStr == "NUMFILE" ) + PushDouble( 1 ); + else if( aStr == "RECALC" ) + PushString( ScResId( pDok->GetAutoCalc() ? STR_RECALC_AUTO : STR_RECALC_MANUAL ) ); + else if (aStr == "DIRECTORY" || aStr == "MEMAVAIL" || aStr == "MEMUSED" || aStr == "ORIGIN" || aStr == "TOTMEM") + PushNA(); + else + PushIllegalArgument(); + } +} + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ |