summaryrefslogtreecommitdiffstats
path: root/sc/source/ui/StatisticsDialogs/RegressionDialog.cxx
diff options
context:
space:
mode:
Diffstat (limited to 'sc/source/ui/StatisticsDialogs/RegressionDialog.cxx')
-rw-r--r--sc/source/ui/StatisticsDialogs/RegressionDialog.cxx686
1 files changed, 686 insertions, 0 deletions
diff --git a/sc/source/ui/StatisticsDialogs/RegressionDialog.cxx b/sc/source/ui/StatisticsDialogs/RegressionDialog.cxx
new file mode 100644
index 000000000..b5efacb85
--- /dev/null
+++ b/sc/source/ui/StatisticsDialogs/RegressionDialog.cxx
@@ -0,0 +1,686 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
+/*
+ * This file is part of the LibreOffice project.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/.
+ *
+ */
+
+#include <document.hxx>
+#include <reffact.hxx>
+#include <TableFillingAndNavigationTools.hxx>
+#include <RegressionDialog.hxx>
+#include <scresid.hxx>
+#include <strings.hrc>
+
+/*
+ Some regression basics
+ ----------------------
+
+ 1. Linear regression fits using data, a linear function between the dependent variable and the independent variable(s).
+ The basic form of this function is :-
+
+ y = b + m_1*x_1 + m_2*x_2 + ... + m_k*x_k
+
+ where y is the dependent variable
+ x_1, x_2, ..., x_k are the k independent variables
+ b is the intercept
+ m_1, m_2, ..., m_k are the slopes corresponding to the variables x_1, x_2, ..., x_k respectively.
+
+
+ This equation for n observations can be compactly written using matrices as :-
+
+ y = X*A
+
+ where y is the n dimensional column vector containing dependent variable observations.
+ where X is matrix of shape n*(k+1) where a row looks like [ 1 x_1 x_2 ... x_k ]
+ A is the k+1 dimensional column vector [ b m_1 m_2 ... m_k ]
+
+ Calc formula LINEST(Y_array ; X_array) can be used to compute all entries in "A" along with many other statistics.
+
+
+ 2. Logarithmic regression is basically used to find a linear function between the dependent variable and
+ the natural logarithm of the independent variable(s).
+ So the basic form of this functions is :-
+
+ y = b + m_1*ln(x_1) + m_2*ln(x_2) + ... + m_k*ln(x_k)
+
+ This can be again written in a compact matrix form for n observations.
+
+ y = ln(X)*A
+
+ where y is the n dimensional column vector containing dependent variable observations.
+ where X is matrix of shape n*(k+1) where a row looks like [ e x_1 x_2 ... x_k ]
+ A is the k+1 dimensional column vector [ b m_1 m_2 ... m_k ]
+
+ To estimate A, we use the formula =LINEST(Y_array ; LN(X_array))
+
+
+ 3. Power regression is used to fit the following model :-
+
+ y = b * (x_1 ^ m_1) * (x_2 ^ m_2) * ... * (x_k ^ m_k)
+
+ To reduce this to a linear function(so that we can still use LINEST()), we take natural logarithm on both sides
+
+ ln(y) = c + m_1*ln(x_1) + m_2*ln(x_2) + ... + m_k*ln(x_k) ; where c = ln(b)
+
+
+ This again can be written compactly in matrix form as :-
+
+ ln(y) = ln(X)*A
+
+ where y is the n dimensional column vector containing dependent variable observations.
+ where X is matrix of shape n*(k+1) where a row looks like [ e x_1 x_2 ... x_k ]
+ A is the k+1 dimensional column vector [ c m_1 m_2 ... m_k ]
+
+ To estimate A, we use the formula =LINEST(LN(Y_array) ; LN(X_array))
+
+ Once we get A, to get back y from x's we use the formula :-
+
+ y = exp( ln(X)*A )
+
+
+
+ Some references for computing confidence interval for the regression coefficients :-
+
+ [1] https://en.wikipedia.org/wiki/Student%27s_t-test#Slope_of_a_regression_line
+ [2] https://en.wikipedia.org/wiki/Simple_linear_regression#Normality_assumption
+ [3] https://onlinecourses.science.psu.edu/stat414/node/280
+
+ */
+
+namespace
+{
+ enum class ScRegType {
+ LINEAR,
+ LOGARITHMIC,
+ POWER
+ };
+
+ const char* constRegressionModel[] =
+ {
+ STR_LABEL_LINEAR,
+ STR_LABEL_LOGARITHMIC,
+ STR_LABEL_POWER
+ };
+
+ OUString constTemplateLINEST[] =
+ {
+ "=LINEST(%VARIABLE2_RANGE% ; %VARIABLE1_RANGE% ; %CALC_INTERCEPT% ; TRUE)",
+ "=LINEST(%VARIABLE2_RANGE% ; LN(%VARIABLE1_RANGE%) ; %CALC_INTERCEPT% ; TRUE)",
+ "=LINEST(LN(%VARIABLE2_RANGE%) ; LN(%VARIABLE1_RANGE%) ; %CALC_INTERCEPT% ; TRUE)"
+ };
+
+ OUString constRegressionFormula[] =
+ {
+ "=MMULT(%XDATAMATRIX_RANGE% ; %SLOPES_RANGE%) + %INTERCEPT_ADDR%",
+ "=MMULT(LN(%XDATAMATRIX_RANGE%) ; %SLOPES_RANGE%) + %INTERCEPT_ADDR%",
+ "=EXP(MMULT(LN(%XDATAMATRIX_RANGE%) ; %SLOPES_RANGE%) + %INTERCEPT_ADDR%)"
+ };
+
+} // end anonymous namespace
+
+static size_t lcl_GetNumRowsColsInRange(const ScRange& rRange, bool bRows)
+{
+ if (bRows)
+ return rRange.aEnd.Row() - rRange.aStart.Row() + 1;
+
+ return rRange.aEnd.Col() - rRange.aStart.Col() + 1;
+}
+
+ScRegressionDialog::ScRegressionDialog(
+ SfxBindings* pSfxBindings, SfxChildWindow* pChildWindow,
+ weld::Window* pParent, ScViewData* pViewData )
+ : ScStatisticsTwoVariableDialog(
+ pSfxBindings, pChildWindow, pParent, pViewData,
+ "modules/scalc/ui/regressiondialog.ui", "RegressionDialog")
+ , mbUnivariate(true)
+ , mnNumIndependentVars(1)
+ , mnNumObservations(0)
+ , mbUse3DAddresses(false)
+ , mbCalcIntercept(true)
+ , mxWithLabelsCheckBox(m_xBuilder->weld_check_button("withlabels-check"))
+ , mxLinearRadioButton(m_xBuilder->weld_radio_button("linear-radio"))
+ , mxLogarithmicRadioButton(m_xBuilder->weld_radio_button("logarithmic-radio"))
+ , mxPowerRadioButton(m_xBuilder->weld_radio_button("power-radio"))
+ , mxErrorMessage(m_xBuilder->weld_label("error-message"))
+ , mxConfidenceLevelField(m_xBuilder->weld_spin_button("confidencelevel-spin"))
+ , mxCalcResidualsCheckBox(m_xBuilder->weld_check_button("calcresiduals-check"))
+ , mxNoInterceptCheckBox(m_xBuilder->weld_check_button("nointercept-check"))
+{
+ mxWithLabelsCheckBox->connect_toggled(LINK(this, ScRegressionDialog, CheckBoxHdl));
+ mxConfidenceLevelField->connect_value_changed(LINK(this, ScRegressionDialog, NumericFieldHdl));
+}
+
+ScRegressionDialog::~ScRegressionDialog()
+{
+}
+
+void ScRegressionDialog::Close()
+{
+ DoClose(ScRegressionDialogWrapper::GetChildWindowId());
+}
+
+const char* ScRegressionDialog::GetUndoNameId()
+{
+ return STR_REGRESSION_UNDO_NAME;
+}
+
+ScRange ScRegressionDialog::ApplyOutput(ScDocShell* pDocShell)
+{
+ AddressWalkerWriter aOutput(mOutputAddress, pDocShell, &mDocument,
+ formula::FormulaGrammar::mergeToGrammar( formula::FormulaGrammar::GRAM_ENGLISH, mAddressDetails.eConv));
+ FormulaTemplate aTemplate(&mDocument);
+ aTemplate.autoReplaceUses3D(mbUse3DAddresses);
+ mbCalcIntercept = !mxNoInterceptCheckBox->get_active();
+
+ // max col of our output should account for
+ // 1. constant term column,
+ // 2. mnNumIndependentVars columns
+ // 3. Actual Y column
+ // 4. Predicted Y column
+ // 5. Residual Column
+ SCCOL nOutputMaxCol = mOutputAddress.Col() + mnNumIndependentVars + 3;
+
+ ScRange aXDataRange(GetDataRange(mVariable1Range));
+ ScRange aYDataRange(GetDataRange(mVariable2Range));
+
+ aTemplate.autoReplaceRange("%VARIABLE1_RANGE%", aXDataRange);
+ aTemplate.autoReplaceRange("%VARIABLE2_RANGE%", aYDataRange);
+ size_t nRegressionIndex = GetRegressionTypeIndex();
+ ScRegType eRegType = static_cast<ScRegType>(nRegressionIndex);
+ bool bTakeLogX = eRegType == ScRegType::LOGARITHMIC || eRegType == ScRegType::POWER;
+
+ WriteRawRegressionResults(aOutput, aTemplate, nRegressionIndex);
+ WriteRegressionStatistics(aOutput, aTemplate);
+ WriteRegressionANOVAResults(aOutput, aTemplate);
+ WriteRegressionEstimatesWithCI(aOutput, aTemplate, bTakeLogX);
+ if (mxCalcResidualsCheckBox->get_active())
+ WritePredictionsWithResiduals(aOutput, aTemplate, nRegressionIndex);
+
+ ScAddress aMaxAddress(aOutput.mMaximumAddress);
+ aMaxAddress.SetCol(std::max(aMaxAddress.Col(), nOutputMaxCol));
+ return ScRange(aOutput.mMinimumAddress, aMaxAddress);
+}
+
+bool ScRegressionDialog::InputRangesValid()
+{
+ if (!mVariable1Range.IsValid())
+ {
+ mxErrorMessage->set_label(ScResId(STR_MESSAGE_XINVALID_RANGE));
+ return false;
+ }
+
+ if (!mVariable2Range.IsValid())
+ {
+ mxErrorMessage->set_label(ScResId(STR_MESSAGE_YINVALID_RANGE));
+ return false;
+ }
+
+ if (!mOutputAddress.IsValid())
+ {
+ mxErrorMessage->set_label(ScResId(STR_MESSAGE_INVALID_OUTPUT_ADDR));
+ return false;
+ }
+
+ {
+ double fConfidenceLevel = mxConfidenceLevelField->get_value();
+ if ( fConfidenceLevel <= 0.0 || fConfidenceLevel >= 100.0 )
+ {
+ mxErrorMessage->set_label(ScResId(STR_MESSAGE_INVALID_CONFIDENCE_LEVEL));
+ return false;
+ }
+ }
+
+ mVariable1Range.PutInOrder();
+ mVariable2Range.PutInOrder();
+
+ bool bGroupedByColumn = mGroupedBy == BY_COLUMN;
+
+ bool bYHasSingleDim = (
+ (bGroupedByColumn &&
+ mVariable2Range.aStart.Col() == mVariable2Range.aEnd.Col()) ||
+ (!bGroupedByColumn &&
+ mVariable2Range.aStart.Row() == mVariable2Range.aEnd.Row()));
+
+ if (!bYHasSingleDim)
+ {
+ if (bGroupedByColumn)
+ mxErrorMessage->set_label(ScResId(STR_MESSAGE_YVARIABLE_MULTI_COLUMN));
+ else
+ mxErrorMessage->set_label(ScResId(STR_MESSAGE_YVARIABLE_MULTI_ROW));
+ return false;
+ }
+
+ bool bWithLabels = mxWithLabelsCheckBox->get_active();
+
+ size_t nYObs = lcl_GetNumRowsColsInRange(mVariable2Range, bGroupedByColumn);
+ size_t nNumXVars = lcl_GetNumRowsColsInRange(mVariable1Range, !bGroupedByColumn);
+ mbUnivariate = nNumXVars == 1;
+ // Observation count mismatch check
+ if (lcl_GetNumRowsColsInRange(mVariable1Range, bGroupedByColumn) != nYObs)
+ {
+ if (mbUnivariate)
+ mxErrorMessage->set_label(ScResId(STR_MESSAGE_UNIVARIATE_NUMOBS_MISMATCH));
+ else
+ mxErrorMessage->set_label(ScResId(STR_MESSAGE_MULTIVARIATE_NUMOBS_MISMATCH));
+ return false;
+ }
+
+ mnNumIndependentVars = nNumXVars;
+ mnNumObservations = bWithLabels ? nYObs - 1 : nYObs;
+
+ mbUse3DAddresses = mVariable1Range.aStart.Tab() != mOutputAddress.Tab() ||
+ mVariable2Range.aStart.Tab() != mOutputAddress.Tab();
+
+ mxErrorMessage->set_label("");
+
+ return true;
+}
+
+size_t ScRegressionDialog::GetRegressionTypeIndex() const
+{
+ if (mxLinearRadioButton->get_active())
+ return 0;
+ if (mxLogarithmicRadioButton->get_active())
+ return 1;
+ return 2;
+}
+
+ScRange ScRegressionDialog::GetDataRange(const ScRange& rRange)
+{
+ if (!mxWithLabelsCheckBox->get_active())
+ return rRange;
+
+ ScRange aDataRange(rRange);
+ if (mGroupedBy == BY_COLUMN)
+ aDataRange.aStart.IncRow(1);
+ else
+ aDataRange.aStart.IncCol(1);
+
+ return aDataRange;
+}
+
+OUString ScRegressionDialog::GetVariableNameFormula(bool bXVar, size_t nIndex, bool bWithLog)
+{
+ if (bXVar && nIndex == 0)
+ return "=\"" + ScResId(STR_LABEL_INTERCEPT) + "\"";
+
+ if (mxWithLabelsCheckBox->get_active())
+ {
+ ScAddress aAddr(bXVar ? mVariable1Range.aStart : mVariable2Range.aStart);
+ if (mGroupedBy == BY_COLUMN)
+ aAddr.IncCol(nIndex - 1);
+ else
+ aAddr.IncRow(nIndex - 1);
+
+ ScRefFlags eAddrFlag = mbUse3DAddresses ? ScRefFlags::ADDR_ABS_3D : ScRefFlags::ADDR_ABS;
+ return bWithLog ? OUString("=CONCAT(\"LN(\";" +
+ aAddr.Format(eAddrFlag, &mDocument, mDocument.GetAddressConvention()) + ";\")\")") :
+ OUString("=" + aAddr.Format(eAddrFlag, &mDocument, mDocument.GetAddressConvention()));
+ }
+
+ OUString aDefaultVarName;
+
+ if (bXVar)
+ aDefaultVarName = "X" + OUString::number(nIndex);
+ else
+ aDefaultVarName = "Y";
+
+ return bWithLog ? OUString("=\"LN(" + aDefaultVarName + ")\"") :
+ OUString("=\"" + aDefaultVarName + "\"");
+}
+
+OUString ScRegressionDialog::GetXVariableNameFormula(size_t nIndex, bool bWithLog)
+{
+ assert(nIndex <= mnNumIndependentVars);
+ return GetVariableNameFormula(true, nIndex, bWithLog);
+}
+
+OUString ScRegressionDialog::GetYVariableNameFormula(bool bWithLog)
+{
+ return GetVariableNameFormula(false, 1, bWithLog);
+}
+
+void ScRegressionDialog::WriteRawRegressionResults(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate,
+ size_t nRegressionIndex)
+{
+ rOutput.writeBoldString(ScResId(STR_REGRESSION));
+ rOutput.newLine();
+ // REGRESSION MODEL
+ rOutput.writeString(ScResId(STR_LABEL_REGRESSION_MODEL));
+ rOutput.nextColumn();
+ rOutput.writeString(ScResId(constRegressionModel[nRegressionIndex]));
+ rOutput.newLine();
+ rOutput.newLine();
+
+ rOutput.writeString(ScResId(STR_LINEST_RAW_OUTPUT_TITLE));
+ rOutput.newLine();
+ rOutput.push();
+
+ rTemplate.setTemplate(constTemplateLINEST[nRegressionIndex].
+ replaceFirst("%CALC_INTERCEPT%",
+ mbCalcIntercept ? OUStringLiteral("TRUE") : OUStringLiteral("FALSE")));
+ rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1 + mnNumIndependentVars, 5);
+ // Add LINEST result components to template
+ // 1. Add ranges for coefficients and standard errors for indep. vars and the intercept.
+ // Note that these two are in the reverse order(m_n, m_n-1, ..., m_1, b) w.r.t what we expect.
+ rTemplate.autoReplaceRange("%COEFFICIENTS_REV_RANGE%", ScRange(rOutput.current(), rOutput.current(mnNumIndependentVars)));
+ rTemplate.autoReplaceRange("%SERRORSX_REV_RANGE%", ScRange(rOutput.current(0, 1), rOutput.current(mnNumIndependentVars, 1)));
+
+ // 2. Add R-squared and standard error for y estimate.
+ rTemplate.autoReplaceAddress("%RSQUARED_ADDR%", rOutput.current(0, 2));
+ rTemplate.autoReplaceAddress("%SERRORY_ADDR%", rOutput.current(1, 2));
+
+ // 3. Add F statistic and degrees of freedom
+ rTemplate.autoReplaceAddress("%FSTATISTIC_ADDR%", rOutput.current(0, 3));
+ rTemplate.autoReplaceAddress("%DoFRESID_ADDR%", rOutput.current(1, 3));
+
+ // 4. Add regression sum of squares and residual sum of squares
+ rTemplate.autoReplaceAddress("%SSREG_ADDR%", rOutput.current(0, 4));
+ rTemplate.autoReplaceAddress("%SSRESID_ADDR%", rOutput.current(1, 4));
+
+ rOutput.push(0, 4);
+ rOutput.newLine();
+}
+
+void ScRegressionDialog::WriteRegressionStatistics(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate)
+{
+ rOutput.newLine();
+ rOutput.writeString(ScResId(STR_LABEL_REGRESSION_STATISTICS));
+ rOutput.newLine();
+
+ const char* aMeasureNames[] =
+ {
+ STR_LABEL_RSQUARED,
+ STRID_CALC_STD_ERROR,
+ STR_LABEL_XVARIABLES_COUNT,
+ STR_OBSERVATIONS_LABEL,
+ STR_LABEL_ADJUSTED_RSQUARED
+ };
+
+ OUString aMeasureFormulas[] =
+ {
+ "=%RSQUARED_ADDR%",
+ "=%SERRORY_ADDR%",
+ "=" + OUString::number(mnNumIndependentVars),
+ "=" + OUString::number(mnNumObservations),
+ "=1 - (1 - %RSQUARED_ADDR%)*(%NUMOBS_ADDR% - 1)/(%NUMOBS_ADDR% - %NUMXVARS_ADDR%" +
+ (mbCalcIntercept ? OUStringLiteral(" - 1)") : OUStringLiteral(")"))
+ };
+
+ rTemplate.autoReplaceAddress("%NUMXVARS_ADDR%", rOutput.current(1, 2));
+ rTemplate.autoReplaceAddress("%NUMOBS_ADDR%", rOutput.current(1, 3));
+
+ for (size_t nIdx = 0; nIdx < SAL_N_ELEMENTS(aMeasureNames); ++nIdx)
+ {
+ rOutput.writeString(ScResId(aMeasureNames[nIdx]));
+ rOutput.nextColumn();
+ rTemplate.setTemplate(aMeasureFormulas[nIdx]);
+ rOutput.writeFormula(rTemplate.getTemplate());
+ rOutput.newLine();
+ }
+}
+
+void ScRegressionDialog::WriteRegressionANOVAResults(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate)
+{
+ rOutput.newLine();
+ rOutput.writeString(ScResId(STR_LABEL_ANOVA));
+ rOutput.newLine();
+
+ const size_t nColsInTable = 6;
+ const size_t nRowsInTable = 4;
+ OUString aTable[nRowsInTable][nColsInTable] =
+ {
+ {
+ "",
+ ScResId(STR_ANOVA_LABEL_DF),
+ ScResId(STR_ANOVA_LABEL_SS),
+ ScResId(STR_ANOVA_LABEL_MS),
+ ScResId(STR_ANOVA_LABEL_F),
+ ScResId(STR_ANOVA_LABEL_SIGNIFICANCE_F)
+ },
+ {
+ ScResId(STR_REGRESSION),
+ "=%NUMXVARS_ADDR%",
+ "=%SSREG_ADDR%",
+ "=%SSREG_ADDR% / %DoFREG_ADDR%",
+ "=%FSTATISTIC_ADDR%",
+ "=FDIST(%FSTATISTIC_ADDR% ; %DoFREG_ADDR% ; %DoFRESID_ADDR%)"
+ },
+ {
+ ScResId(STR_LABEL_RESIDUAL),
+ "=%DoFRESID_ADDR%",
+ "=%SSRESID_ADDR%",
+ "=%SSRESID_ADDR% / %DoFRESID_ADDR%",
+ "",
+ ""
+ },
+ {
+ ScResId(STR_ANOVA_LABEL_TOTAL),
+ "=%DoFREG_ADDR% + %DoFRESID_ADDR%",
+ "=%SSREG_ADDR% + %SSRESID_ADDR%",
+ "",
+ "",
+ ""
+ }
+ };
+
+ rTemplate.autoReplaceAddress("%DoFREG_ADDR%", rOutput.current(1, 1));
+
+ // Cell getter lambda
+ std::function<CellValueGetter> aCellGetterFunc = [&aTable](size_t nRowIdx, size_t nColIdx) -> const OUString&
+ {
+ return aTable[nRowIdx][nColIdx];
+ };
+
+ // Cell writer lambda
+ std::function<CellWriter> aCellWriterFunc = [&rOutput, &rTemplate]
+ (const OUString& rContent, size_t /*nRowIdx*/, size_t /*nColIdx*/)
+ {
+ if (!rContent.isEmpty())
+ {
+ if (rContent.startsWith("="))
+ {
+ rTemplate.setTemplate(rContent);
+ rOutput.writeFormula(rTemplate.getTemplate());
+ }
+ else
+ rOutput.writeString(rContent);
+ }
+ };
+
+ WriteTable(aCellGetterFunc, nRowsInTable, nColsInTable, rOutput, aCellWriterFunc);
+
+ // User given confidence level
+ rOutput.newLine();
+ rOutput.writeString(ScResId(STR_LABEL_CONFIDENCE_LEVEL));
+ rOutput.nextColumn();
+ rOutput.writeValue(mxConfidenceLevelField->get_value() / 100.0);
+ rTemplate.autoReplaceAddress("%CONFIDENCE_LEVEL_ADDR%", rOutput.current());
+ rOutput.newLine();
+}
+
+// Write slopes, intercept, their standard errors, t-statistics, p-value, confidence intervals
+void ScRegressionDialog::WriteRegressionEstimatesWithCI(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate,
+ bool bTakeLogX)
+{
+ rOutput.newLine();
+ SCROW nLastRow = rOutput.current(0, 1 + mnNumIndependentVars).Row();
+
+ // Coefficients & Std.Errors ranges (column vectors) in this table (yet to populate).
+ rTemplate.autoReplaceRange("%COEFFICIENTS_RANGE%",
+ ScRange(rOutput.current(1, 1),
+ rOutput.current(1, 1 + mnNumIndependentVars)));
+ rTemplate.autoReplaceRange("%SLOPES_RANGE%", // Excludes the intercept
+ ScRange(rOutput.current(1, 2),
+ rOutput.current(1, 1 + mnNumIndependentVars)));
+ rTemplate.autoReplaceAddress("%INTERCEPT_ADDR%", rOutput.current(1, 1));
+ rTemplate.autoReplaceRange("%SERRORSX_RANGE%",
+ ScRange(rOutput.current(2, 1),
+ rOutput.current(2, 1 + mnNumIndependentVars)));
+ // t-Statistics range in this table (yet to populate)
+ rTemplate.autoReplaceRange("%TSTAT_RANGE%",
+ ScRange(rOutput.current(3, 1),
+ rOutput.current(3, 1 + mnNumIndependentVars)));
+
+ const size_t nColsInTable = 7;
+ const size_t nRowsInTable = 2;
+ OUString aTable[nRowsInTable][nColsInTable] =
+ {
+ {
+ "",
+ ScResId(STR_LABEL_COEFFICIENTS),
+ ScResId(STRID_CALC_STD_ERROR),
+ ScResId(STR_LABEL_TSTATISTIC),
+ ScResId(STR_P_VALUE_LABEL),
+
+ "=CONCAT(\"" + ScResId(STR_LABEL_LOWER) +
+ " \" ; INT(%CONFIDENCE_LEVEL_ADDR% * 100) ; \"%\")",
+
+ "=CONCAT(\"" + ScResId(STR_LABEL_UPPER) +
+ " \" ; INT(%CONFIDENCE_LEVEL_ADDR% * 100) ; \"%\")",
+ },
+
+ // Following are matrix formulas of size numcols = 1, numrows = (mnNumIndependentVars + 1)
+ {
+ "",
+ // This puts the coefficients in the reverse order compared to that in LINEST output.
+ "=INDEX(%COEFFICIENTS_REV_RANGE%; 1 ; " + OUString::number(nLastRow + 2) + " - ROW())",
+ // This puts the standard errors in the reverse order compared to that in LINEST output.
+ "=INDEX(%SERRORSX_REV_RANGE%; 1 ; " + OUString::number(nLastRow + 2) + " - ROW())",
+ // t-Statistic
+ "=%COEFFICIENTS_RANGE% / %SERRORSX_RANGE%",
+ // p-Value
+ "=TDIST(ABS(%TSTAT_RANGE%) ; %DoFRESID_ADDR% ; 2 )",
+ // Lower limit of confidence interval
+ "=%COEFFICIENTS_RANGE% - %SERRORSX_RANGE% * "
+ "TINV(1 - %CONFIDENCE_LEVEL_ADDR% ; %DoFRESID_ADDR%)",
+ // Upper limit of confidence interval
+ "=%COEFFICIENTS_RANGE% + %SERRORSX_RANGE% * "
+ "TINV(1 - %CONFIDENCE_LEVEL_ADDR% ; %DoFRESID_ADDR%)"
+ }
+ };
+
+ // Cell getter lambda
+ std::function<CellValueGetter> aCellGetterFunc = [&aTable](size_t nRowIdx, size_t nColIdx) -> const OUString&
+ {
+ return aTable[nRowIdx][nColIdx];
+ };
+
+ // Cell writer lambda
+ size_t nNumIndependentVars = mnNumIndependentVars;
+ std::function<CellWriter> aCellWriterFunc = [&rOutput, &rTemplate, nNumIndependentVars]
+ (const OUString& rContent, size_t nRowIdx, size_t /*nColIdx*/)
+ {
+ if (!rContent.isEmpty())
+ {
+ if (rContent.startsWith("="))
+ {
+ rTemplate.setTemplate(rContent);
+ if (nRowIdx == 0)
+ rOutput.writeFormula(rTemplate.getTemplate());
+ else
+ rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1, 1 + nNumIndependentVars);
+ }
+ else
+ rOutput.writeString(rContent);
+ }
+ };
+
+ WriteTable(aCellGetterFunc, nRowsInTable, nColsInTable, rOutput, aCellWriterFunc);
+
+ // Go back to the second row and first column of the table to
+ // fill the names of variables + intercept
+ rOutput.push(0, -1);
+
+ for (size_t nXvarIdx = 0; nXvarIdx <= mnNumIndependentVars; ++nXvarIdx)
+ {
+ rOutput.writeFormula(GetXVariableNameFormula(nXvarIdx, bTakeLogX));
+ rOutput.newLine();
+ }
+
+}
+
+// Re-write all observations in group-by column mode with predictions and residuals
+void ScRegressionDialog::WritePredictionsWithResiduals(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate,
+ size_t nRegressionIndex)
+{
+ bool bGroupedByColumn = mGroupedBy == BY_COLUMN;
+ rOutput.newLine();
+ rOutput.push();
+
+ // Range of X variables with rows as observations and columns as variables.
+ ScRange aDataMatrixRange(rOutput.current(0, 1), rOutput.current(mnNumIndependentVars - 1, mnNumObservations));
+ rTemplate.autoReplaceRange("%XDATAMATRIX_RANGE%", aDataMatrixRange);
+
+ // Write X variable names
+ for (size_t nXvarIdx = 1; nXvarIdx <= mnNumIndependentVars; ++nXvarIdx)
+ {
+ // Here we write the X variables without any transformation(LN)
+ rOutput.writeFormula(GetXVariableNameFormula(nXvarIdx, false));
+ rOutput.nextColumn();
+ }
+ rOutput.reset();
+
+ // Write the X data matrix
+ rOutput.nextRow();
+ OUString aDataMatrixFormula = bGroupedByColumn ? OUString("=%VARIABLE1_RANGE%") : OUString("=TRANSPOSE(%VARIABLE1_RANGE%)");
+ rTemplate.setTemplate(aDataMatrixFormula);
+ rOutput.writeMatrixFormula(rTemplate.getTemplate(), mnNumIndependentVars, mnNumObservations);
+
+ // Write predicted values
+ rOutput.push(mnNumIndependentVars, -1);
+ rOutput.writeString(ScResId(STR_LABEL_PREDICTEDY));
+ rOutput.nextRow();
+ rTemplate.setTemplate(constRegressionFormula[nRegressionIndex]);
+ rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1, mnNumObservations);
+ rTemplate.autoReplaceRange("%PREDICTEDY_RANGE%", ScRange(rOutput.current(), rOutput.current(0, mnNumObservations - 1)));
+
+ // Write actual Y
+ rOutput.push(1, -1);
+ rOutput.writeFormula(GetYVariableNameFormula(false));
+ rOutput.nextRow();
+ OUString aYVectorFormula = bGroupedByColumn ? OUString("=%VARIABLE2_RANGE%") : OUString("=TRANSPOSE(%VARIABLE2_RANGE%)");
+ rTemplate.setTemplate(aYVectorFormula);
+ rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1, mnNumObservations);
+ rTemplate.autoReplaceRange("%ACTUALY_RANGE%", ScRange(rOutput.current(), rOutput.current(0, mnNumObservations - 1)));
+
+ // Write residual
+ rOutput.push(1, -1);
+ rOutput.writeString(ScResId(STR_LABEL_RESIDUAL));
+ rOutput.nextRow();
+ rTemplate.setTemplate("=%ACTUALY_RANGE% - %PREDICTEDY_RANGE%");
+ rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1, mnNumObservations);
+}
+
+// Generic table writer
+void ScRegressionDialog::WriteTable(const std::function<CellValueGetter>& rCellGetter,
+ size_t nRowsInTable, size_t nColsInTable,
+ AddressWalkerWriter& rOutput,
+ const std::function<CellWriter>& rFunc)
+{
+ for (size_t nRowIdx = 0; nRowIdx < nRowsInTable; ++nRowIdx)
+ {
+ for (size_t nColIdx = 0; nColIdx < nColsInTable; ++nColIdx)
+ {
+ rFunc(rCellGetter(nRowIdx, nColIdx), nRowIdx, nColIdx);
+ rOutput.nextColumn();
+ }
+ rOutput.newLine();
+ }
+}
+
+IMPL_LINK_NOARG(ScRegressionDialog, CheckBoxHdl, weld::ToggleButton&, void)
+{
+ ValidateDialogInput();
+}
+
+IMPL_LINK_NOARG(ScRegressionDialog, NumericFieldHdl, weld::SpinButton&, void)
+{
+ ValidateDialogInput();
+}
+
+/* vim:set shiftwidth=4 softtabstop=4 expandtab: */