diff options
Diffstat (limited to 'sc/source/ui/StatisticsDialogs/RegressionDialog.cxx')
-rw-r--r-- | sc/source/ui/StatisticsDialogs/RegressionDialog.cxx | 686 |
1 files changed, 686 insertions, 0 deletions
diff --git a/sc/source/ui/StatisticsDialogs/RegressionDialog.cxx b/sc/source/ui/StatisticsDialogs/RegressionDialog.cxx new file mode 100644 index 000000000..b5efacb85 --- /dev/null +++ b/sc/source/ui/StatisticsDialogs/RegressionDialog.cxx @@ -0,0 +1,686 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + */ + +#include <document.hxx> +#include <reffact.hxx> +#include <TableFillingAndNavigationTools.hxx> +#include <RegressionDialog.hxx> +#include <scresid.hxx> +#include <strings.hrc> + +/* + Some regression basics + ---------------------- + + 1. Linear regression fits using data, a linear function between the dependent variable and the independent variable(s). + The basic form of this function is :- + + y = b + m_1*x_1 + m_2*x_2 + ... + m_k*x_k + + where y is the dependent variable + x_1, x_2, ..., x_k are the k independent variables + b is the intercept + m_1, m_2, ..., m_k are the slopes corresponding to the variables x_1, x_2, ..., x_k respectively. + + + This equation for n observations can be compactly written using matrices as :- + + y = X*A + + where y is the n dimensional column vector containing dependent variable observations. + where X is matrix of shape n*(k+1) where a row looks like [ 1 x_1 x_2 ... x_k ] + A is the k+1 dimensional column vector [ b m_1 m_2 ... m_k ] + + Calc formula LINEST(Y_array ; X_array) can be used to compute all entries in "A" along with many other statistics. + + + 2. Logarithmic regression is basically used to find a linear function between the dependent variable and + the natural logarithm of the independent variable(s). + So the basic form of this functions is :- + + y = b + m_1*ln(x_1) + m_2*ln(x_2) + ... + m_k*ln(x_k) + + This can be again written in a compact matrix form for n observations. + + y = ln(X)*A + + where y is the n dimensional column vector containing dependent variable observations. + where X is matrix of shape n*(k+1) where a row looks like [ e x_1 x_2 ... x_k ] + A is the k+1 dimensional column vector [ b m_1 m_2 ... m_k ] + + To estimate A, we use the formula =LINEST(Y_array ; LN(X_array)) + + + 3. Power regression is used to fit the following model :- + + y = b * (x_1 ^ m_1) * (x_2 ^ m_2) * ... * (x_k ^ m_k) + + To reduce this to a linear function(so that we can still use LINEST()), we take natural logarithm on both sides + + ln(y) = c + m_1*ln(x_1) + m_2*ln(x_2) + ... + m_k*ln(x_k) ; where c = ln(b) + + + This again can be written compactly in matrix form as :- + + ln(y) = ln(X)*A + + where y is the n dimensional column vector containing dependent variable observations. + where X is matrix of shape n*(k+1) where a row looks like [ e x_1 x_2 ... x_k ] + A is the k+1 dimensional column vector [ c m_1 m_2 ... m_k ] + + To estimate A, we use the formula =LINEST(LN(Y_array) ; LN(X_array)) + + Once we get A, to get back y from x's we use the formula :- + + y = exp( ln(X)*A ) + + + + Some references for computing confidence interval for the regression coefficients :- + + [1] https://en.wikipedia.org/wiki/Student%27s_t-test#Slope_of_a_regression_line + [2] https://en.wikipedia.org/wiki/Simple_linear_regression#Normality_assumption + [3] https://onlinecourses.science.psu.edu/stat414/node/280 + + */ + +namespace +{ + enum class ScRegType { + LINEAR, + LOGARITHMIC, + POWER + }; + + const char* constRegressionModel[] = + { + STR_LABEL_LINEAR, + STR_LABEL_LOGARITHMIC, + STR_LABEL_POWER + }; + + OUString constTemplateLINEST[] = + { + "=LINEST(%VARIABLE2_RANGE% ; %VARIABLE1_RANGE% ; %CALC_INTERCEPT% ; TRUE)", + "=LINEST(%VARIABLE2_RANGE% ; LN(%VARIABLE1_RANGE%) ; %CALC_INTERCEPT% ; TRUE)", + "=LINEST(LN(%VARIABLE2_RANGE%) ; LN(%VARIABLE1_RANGE%) ; %CALC_INTERCEPT% ; TRUE)" + }; + + OUString constRegressionFormula[] = + { + "=MMULT(%XDATAMATRIX_RANGE% ; %SLOPES_RANGE%) + %INTERCEPT_ADDR%", + "=MMULT(LN(%XDATAMATRIX_RANGE%) ; %SLOPES_RANGE%) + %INTERCEPT_ADDR%", + "=EXP(MMULT(LN(%XDATAMATRIX_RANGE%) ; %SLOPES_RANGE%) + %INTERCEPT_ADDR%)" + }; + +} // end anonymous namespace + +static size_t lcl_GetNumRowsColsInRange(const ScRange& rRange, bool bRows) +{ + if (bRows) + return rRange.aEnd.Row() - rRange.aStart.Row() + 1; + + return rRange.aEnd.Col() - rRange.aStart.Col() + 1; +} + +ScRegressionDialog::ScRegressionDialog( + SfxBindings* pSfxBindings, SfxChildWindow* pChildWindow, + weld::Window* pParent, ScViewData* pViewData ) + : ScStatisticsTwoVariableDialog( + pSfxBindings, pChildWindow, pParent, pViewData, + "modules/scalc/ui/regressiondialog.ui", "RegressionDialog") + , mbUnivariate(true) + , mnNumIndependentVars(1) + , mnNumObservations(0) + , mbUse3DAddresses(false) + , mbCalcIntercept(true) + , mxWithLabelsCheckBox(m_xBuilder->weld_check_button("withlabels-check")) + , mxLinearRadioButton(m_xBuilder->weld_radio_button("linear-radio")) + , mxLogarithmicRadioButton(m_xBuilder->weld_radio_button("logarithmic-radio")) + , mxPowerRadioButton(m_xBuilder->weld_radio_button("power-radio")) + , mxErrorMessage(m_xBuilder->weld_label("error-message")) + , mxConfidenceLevelField(m_xBuilder->weld_spin_button("confidencelevel-spin")) + , mxCalcResidualsCheckBox(m_xBuilder->weld_check_button("calcresiduals-check")) + , mxNoInterceptCheckBox(m_xBuilder->weld_check_button("nointercept-check")) +{ + mxWithLabelsCheckBox->connect_toggled(LINK(this, ScRegressionDialog, CheckBoxHdl)); + mxConfidenceLevelField->connect_value_changed(LINK(this, ScRegressionDialog, NumericFieldHdl)); +} + +ScRegressionDialog::~ScRegressionDialog() +{ +} + +void ScRegressionDialog::Close() +{ + DoClose(ScRegressionDialogWrapper::GetChildWindowId()); +} + +const char* ScRegressionDialog::GetUndoNameId() +{ + return STR_REGRESSION_UNDO_NAME; +} + +ScRange ScRegressionDialog::ApplyOutput(ScDocShell* pDocShell) +{ + AddressWalkerWriter aOutput(mOutputAddress, pDocShell, &mDocument, + formula::FormulaGrammar::mergeToGrammar( formula::FormulaGrammar::GRAM_ENGLISH, mAddressDetails.eConv)); + FormulaTemplate aTemplate(&mDocument); + aTemplate.autoReplaceUses3D(mbUse3DAddresses); + mbCalcIntercept = !mxNoInterceptCheckBox->get_active(); + + // max col of our output should account for + // 1. constant term column, + // 2. mnNumIndependentVars columns + // 3. Actual Y column + // 4. Predicted Y column + // 5. Residual Column + SCCOL nOutputMaxCol = mOutputAddress.Col() + mnNumIndependentVars + 3; + + ScRange aXDataRange(GetDataRange(mVariable1Range)); + ScRange aYDataRange(GetDataRange(mVariable2Range)); + + aTemplate.autoReplaceRange("%VARIABLE1_RANGE%", aXDataRange); + aTemplate.autoReplaceRange("%VARIABLE2_RANGE%", aYDataRange); + size_t nRegressionIndex = GetRegressionTypeIndex(); + ScRegType eRegType = static_cast<ScRegType>(nRegressionIndex); + bool bTakeLogX = eRegType == ScRegType::LOGARITHMIC || eRegType == ScRegType::POWER; + + WriteRawRegressionResults(aOutput, aTemplate, nRegressionIndex); + WriteRegressionStatistics(aOutput, aTemplate); + WriteRegressionANOVAResults(aOutput, aTemplate); + WriteRegressionEstimatesWithCI(aOutput, aTemplate, bTakeLogX); + if (mxCalcResidualsCheckBox->get_active()) + WritePredictionsWithResiduals(aOutput, aTemplate, nRegressionIndex); + + ScAddress aMaxAddress(aOutput.mMaximumAddress); + aMaxAddress.SetCol(std::max(aMaxAddress.Col(), nOutputMaxCol)); + return ScRange(aOutput.mMinimumAddress, aMaxAddress); +} + +bool ScRegressionDialog::InputRangesValid() +{ + if (!mVariable1Range.IsValid()) + { + mxErrorMessage->set_label(ScResId(STR_MESSAGE_XINVALID_RANGE)); + return false; + } + + if (!mVariable2Range.IsValid()) + { + mxErrorMessage->set_label(ScResId(STR_MESSAGE_YINVALID_RANGE)); + return false; + } + + if (!mOutputAddress.IsValid()) + { + mxErrorMessage->set_label(ScResId(STR_MESSAGE_INVALID_OUTPUT_ADDR)); + return false; + } + + { + double fConfidenceLevel = mxConfidenceLevelField->get_value(); + if ( fConfidenceLevel <= 0.0 || fConfidenceLevel >= 100.0 ) + { + mxErrorMessage->set_label(ScResId(STR_MESSAGE_INVALID_CONFIDENCE_LEVEL)); + return false; + } + } + + mVariable1Range.PutInOrder(); + mVariable2Range.PutInOrder(); + + bool bGroupedByColumn = mGroupedBy == BY_COLUMN; + + bool bYHasSingleDim = ( + (bGroupedByColumn && + mVariable2Range.aStart.Col() == mVariable2Range.aEnd.Col()) || + (!bGroupedByColumn && + mVariable2Range.aStart.Row() == mVariable2Range.aEnd.Row())); + + if (!bYHasSingleDim) + { + if (bGroupedByColumn) + mxErrorMessage->set_label(ScResId(STR_MESSAGE_YVARIABLE_MULTI_COLUMN)); + else + mxErrorMessage->set_label(ScResId(STR_MESSAGE_YVARIABLE_MULTI_ROW)); + return false; + } + + bool bWithLabels = mxWithLabelsCheckBox->get_active(); + + size_t nYObs = lcl_GetNumRowsColsInRange(mVariable2Range, bGroupedByColumn); + size_t nNumXVars = lcl_GetNumRowsColsInRange(mVariable1Range, !bGroupedByColumn); + mbUnivariate = nNumXVars == 1; + // Observation count mismatch check + if (lcl_GetNumRowsColsInRange(mVariable1Range, bGroupedByColumn) != nYObs) + { + if (mbUnivariate) + mxErrorMessage->set_label(ScResId(STR_MESSAGE_UNIVARIATE_NUMOBS_MISMATCH)); + else + mxErrorMessage->set_label(ScResId(STR_MESSAGE_MULTIVARIATE_NUMOBS_MISMATCH)); + return false; + } + + mnNumIndependentVars = nNumXVars; + mnNumObservations = bWithLabels ? nYObs - 1 : nYObs; + + mbUse3DAddresses = mVariable1Range.aStart.Tab() != mOutputAddress.Tab() || + mVariable2Range.aStart.Tab() != mOutputAddress.Tab(); + + mxErrorMessage->set_label(""); + + return true; +} + +size_t ScRegressionDialog::GetRegressionTypeIndex() const +{ + if (mxLinearRadioButton->get_active()) + return 0; + if (mxLogarithmicRadioButton->get_active()) + return 1; + return 2; +} + +ScRange ScRegressionDialog::GetDataRange(const ScRange& rRange) +{ + if (!mxWithLabelsCheckBox->get_active()) + return rRange; + + ScRange aDataRange(rRange); + if (mGroupedBy == BY_COLUMN) + aDataRange.aStart.IncRow(1); + else + aDataRange.aStart.IncCol(1); + + return aDataRange; +} + +OUString ScRegressionDialog::GetVariableNameFormula(bool bXVar, size_t nIndex, bool bWithLog) +{ + if (bXVar && nIndex == 0) + return "=\"" + ScResId(STR_LABEL_INTERCEPT) + "\""; + + if (mxWithLabelsCheckBox->get_active()) + { + ScAddress aAddr(bXVar ? mVariable1Range.aStart : mVariable2Range.aStart); + if (mGroupedBy == BY_COLUMN) + aAddr.IncCol(nIndex - 1); + else + aAddr.IncRow(nIndex - 1); + + ScRefFlags eAddrFlag = mbUse3DAddresses ? ScRefFlags::ADDR_ABS_3D : ScRefFlags::ADDR_ABS; + return bWithLog ? OUString("=CONCAT(\"LN(\";" + + aAddr.Format(eAddrFlag, &mDocument, mDocument.GetAddressConvention()) + ";\")\")") : + OUString("=" + aAddr.Format(eAddrFlag, &mDocument, mDocument.GetAddressConvention())); + } + + OUString aDefaultVarName; + + if (bXVar) + aDefaultVarName = "X" + OUString::number(nIndex); + else + aDefaultVarName = "Y"; + + return bWithLog ? OUString("=\"LN(" + aDefaultVarName + ")\"") : + OUString("=\"" + aDefaultVarName + "\""); +} + +OUString ScRegressionDialog::GetXVariableNameFormula(size_t nIndex, bool bWithLog) +{ + assert(nIndex <= mnNumIndependentVars); + return GetVariableNameFormula(true, nIndex, bWithLog); +} + +OUString ScRegressionDialog::GetYVariableNameFormula(bool bWithLog) +{ + return GetVariableNameFormula(false, 1, bWithLog); +} + +void ScRegressionDialog::WriteRawRegressionResults(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate, + size_t nRegressionIndex) +{ + rOutput.writeBoldString(ScResId(STR_REGRESSION)); + rOutput.newLine(); + // REGRESSION MODEL + rOutput.writeString(ScResId(STR_LABEL_REGRESSION_MODEL)); + rOutput.nextColumn(); + rOutput.writeString(ScResId(constRegressionModel[nRegressionIndex])); + rOutput.newLine(); + rOutput.newLine(); + + rOutput.writeString(ScResId(STR_LINEST_RAW_OUTPUT_TITLE)); + rOutput.newLine(); + rOutput.push(); + + rTemplate.setTemplate(constTemplateLINEST[nRegressionIndex]. + replaceFirst("%CALC_INTERCEPT%", + mbCalcIntercept ? OUStringLiteral("TRUE") : OUStringLiteral("FALSE"))); + rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1 + mnNumIndependentVars, 5); + // Add LINEST result components to template + // 1. Add ranges for coefficients and standard errors for indep. vars and the intercept. + // Note that these two are in the reverse order(m_n, m_n-1, ..., m_1, b) w.r.t what we expect. + rTemplate.autoReplaceRange("%COEFFICIENTS_REV_RANGE%", ScRange(rOutput.current(), rOutput.current(mnNumIndependentVars))); + rTemplate.autoReplaceRange("%SERRORSX_REV_RANGE%", ScRange(rOutput.current(0, 1), rOutput.current(mnNumIndependentVars, 1))); + + // 2. Add R-squared and standard error for y estimate. + rTemplate.autoReplaceAddress("%RSQUARED_ADDR%", rOutput.current(0, 2)); + rTemplate.autoReplaceAddress("%SERRORY_ADDR%", rOutput.current(1, 2)); + + // 3. Add F statistic and degrees of freedom + rTemplate.autoReplaceAddress("%FSTATISTIC_ADDR%", rOutput.current(0, 3)); + rTemplate.autoReplaceAddress("%DoFRESID_ADDR%", rOutput.current(1, 3)); + + // 4. Add regression sum of squares and residual sum of squares + rTemplate.autoReplaceAddress("%SSREG_ADDR%", rOutput.current(0, 4)); + rTemplate.autoReplaceAddress("%SSRESID_ADDR%", rOutput.current(1, 4)); + + rOutput.push(0, 4); + rOutput.newLine(); +} + +void ScRegressionDialog::WriteRegressionStatistics(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate) +{ + rOutput.newLine(); + rOutput.writeString(ScResId(STR_LABEL_REGRESSION_STATISTICS)); + rOutput.newLine(); + + const char* aMeasureNames[] = + { + STR_LABEL_RSQUARED, + STRID_CALC_STD_ERROR, + STR_LABEL_XVARIABLES_COUNT, + STR_OBSERVATIONS_LABEL, + STR_LABEL_ADJUSTED_RSQUARED + }; + + OUString aMeasureFormulas[] = + { + "=%RSQUARED_ADDR%", + "=%SERRORY_ADDR%", + "=" + OUString::number(mnNumIndependentVars), + "=" + OUString::number(mnNumObservations), + "=1 - (1 - %RSQUARED_ADDR%)*(%NUMOBS_ADDR% - 1)/(%NUMOBS_ADDR% - %NUMXVARS_ADDR%" + + (mbCalcIntercept ? OUStringLiteral(" - 1)") : OUStringLiteral(")")) + }; + + rTemplate.autoReplaceAddress("%NUMXVARS_ADDR%", rOutput.current(1, 2)); + rTemplate.autoReplaceAddress("%NUMOBS_ADDR%", rOutput.current(1, 3)); + + for (size_t nIdx = 0; nIdx < SAL_N_ELEMENTS(aMeasureNames); ++nIdx) + { + rOutput.writeString(ScResId(aMeasureNames[nIdx])); + rOutput.nextColumn(); + rTemplate.setTemplate(aMeasureFormulas[nIdx]); + rOutput.writeFormula(rTemplate.getTemplate()); + rOutput.newLine(); + } +} + +void ScRegressionDialog::WriteRegressionANOVAResults(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate) +{ + rOutput.newLine(); + rOutput.writeString(ScResId(STR_LABEL_ANOVA)); + rOutput.newLine(); + + const size_t nColsInTable = 6; + const size_t nRowsInTable = 4; + OUString aTable[nRowsInTable][nColsInTable] = + { + { + "", + ScResId(STR_ANOVA_LABEL_DF), + ScResId(STR_ANOVA_LABEL_SS), + ScResId(STR_ANOVA_LABEL_MS), + ScResId(STR_ANOVA_LABEL_F), + ScResId(STR_ANOVA_LABEL_SIGNIFICANCE_F) + }, + { + ScResId(STR_REGRESSION), + "=%NUMXVARS_ADDR%", + "=%SSREG_ADDR%", + "=%SSREG_ADDR% / %DoFREG_ADDR%", + "=%FSTATISTIC_ADDR%", + "=FDIST(%FSTATISTIC_ADDR% ; %DoFREG_ADDR% ; %DoFRESID_ADDR%)" + }, + { + ScResId(STR_LABEL_RESIDUAL), + "=%DoFRESID_ADDR%", + "=%SSRESID_ADDR%", + "=%SSRESID_ADDR% / %DoFRESID_ADDR%", + "", + "" + }, + { + ScResId(STR_ANOVA_LABEL_TOTAL), + "=%DoFREG_ADDR% + %DoFRESID_ADDR%", + "=%SSREG_ADDR% + %SSRESID_ADDR%", + "", + "", + "" + } + }; + + rTemplate.autoReplaceAddress("%DoFREG_ADDR%", rOutput.current(1, 1)); + + // Cell getter lambda + std::function<CellValueGetter> aCellGetterFunc = [&aTable](size_t nRowIdx, size_t nColIdx) -> const OUString& + { + return aTable[nRowIdx][nColIdx]; + }; + + // Cell writer lambda + std::function<CellWriter> aCellWriterFunc = [&rOutput, &rTemplate] + (const OUString& rContent, size_t /*nRowIdx*/, size_t /*nColIdx*/) + { + if (!rContent.isEmpty()) + { + if (rContent.startsWith("=")) + { + rTemplate.setTemplate(rContent); + rOutput.writeFormula(rTemplate.getTemplate()); + } + else + rOutput.writeString(rContent); + } + }; + + WriteTable(aCellGetterFunc, nRowsInTable, nColsInTable, rOutput, aCellWriterFunc); + + // User given confidence level + rOutput.newLine(); + rOutput.writeString(ScResId(STR_LABEL_CONFIDENCE_LEVEL)); + rOutput.nextColumn(); + rOutput.writeValue(mxConfidenceLevelField->get_value() / 100.0); + rTemplate.autoReplaceAddress("%CONFIDENCE_LEVEL_ADDR%", rOutput.current()); + rOutput.newLine(); +} + +// Write slopes, intercept, their standard errors, t-statistics, p-value, confidence intervals +void ScRegressionDialog::WriteRegressionEstimatesWithCI(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate, + bool bTakeLogX) +{ + rOutput.newLine(); + SCROW nLastRow = rOutput.current(0, 1 + mnNumIndependentVars).Row(); + + // Coefficients & Std.Errors ranges (column vectors) in this table (yet to populate). + rTemplate.autoReplaceRange("%COEFFICIENTS_RANGE%", + ScRange(rOutput.current(1, 1), + rOutput.current(1, 1 + mnNumIndependentVars))); + rTemplate.autoReplaceRange("%SLOPES_RANGE%", // Excludes the intercept + ScRange(rOutput.current(1, 2), + rOutput.current(1, 1 + mnNumIndependentVars))); + rTemplate.autoReplaceAddress("%INTERCEPT_ADDR%", rOutput.current(1, 1)); + rTemplate.autoReplaceRange("%SERRORSX_RANGE%", + ScRange(rOutput.current(2, 1), + rOutput.current(2, 1 + mnNumIndependentVars))); + // t-Statistics range in this table (yet to populate) + rTemplate.autoReplaceRange("%TSTAT_RANGE%", + ScRange(rOutput.current(3, 1), + rOutput.current(3, 1 + mnNumIndependentVars))); + + const size_t nColsInTable = 7; + const size_t nRowsInTable = 2; + OUString aTable[nRowsInTable][nColsInTable] = + { + { + "", + ScResId(STR_LABEL_COEFFICIENTS), + ScResId(STRID_CALC_STD_ERROR), + ScResId(STR_LABEL_TSTATISTIC), + ScResId(STR_P_VALUE_LABEL), + + "=CONCAT(\"" + ScResId(STR_LABEL_LOWER) + + " \" ; INT(%CONFIDENCE_LEVEL_ADDR% * 100) ; \"%\")", + + "=CONCAT(\"" + ScResId(STR_LABEL_UPPER) + + " \" ; INT(%CONFIDENCE_LEVEL_ADDR% * 100) ; \"%\")", + }, + + // Following are matrix formulas of size numcols = 1, numrows = (mnNumIndependentVars + 1) + { + "", + // This puts the coefficients in the reverse order compared to that in LINEST output. + "=INDEX(%COEFFICIENTS_REV_RANGE%; 1 ; " + OUString::number(nLastRow + 2) + " - ROW())", + // This puts the standard errors in the reverse order compared to that in LINEST output. + "=INDEX(%SERRORSX_REV_RANGE%; 1 ; " + OUString::number(nLastRow + 2) + " - ROW())", + // t-Statistic + "=%COEFFICIENTS_RANGE% / %SERRORSX_RANGE%", + // p-Value + "=TDIST(ABS(%TSTAT_RANGE%) ; %DoFRESID_ADDR% ; 2 )", + // Lower limit of confidence interval + "=%COEFFICIENTS_RANGE% - %SERRORSX_RANGE% * " + "TINV(1 - %CONFIDENCE_LEVEL_ADDR% ; %DoFRESID_ADDR%)", + // Upper limit of confidence interval + "=%COEFFICIENTS_RANGE% + %SERRORSX_RANGE% * " + "TINV(1 - %CONFIDENCE_LEVEL_ADDR% ; %DoFRESID_ADDR%)" + } + }; + + // Cell getter lambda + std::function<CellValueGetter> aCellGetterFunc = [&aTable](size_t nRowIdx, size_t nColIdx) -> const OUString& + { + return aTable[nRowIdx][nColIdx]; + }; + + // Cell writer lambda + size_t nNumIndependentVars = mnNumIndependentVars; + std::function<CellWriter> aCellWriterFunc = [&rOutput, &rTemplate, nNumIndependentVars] + (const OUString& rContent, size_t nRowIdx, size_t /*nColIdx*/) + { + if (!rContent.isEmpty()) + { + if (rContent.startsWith("=")) + { + rTemplate.setTemplate(rContent); + if (nRowIdx == 0) + rOutput.writeFormula(rTemplate.getTemplate()); + else + rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1, 1 + nNumIndependentVars); + } + else + rOutput.writeString(rContent); + } + }; + + WriteTable(aCellGetterFunc, nRowsInTable, nColsInTable, rOutput, aCellWriterFunc); + + // Go back to the second row and first column of the table to + // fill the names of variables + intercept + rOutput.push(0, -1); + + for (size_t nXvarIdx = 0; nXvarIdx <= mnNumIndependentVars; ++nXvarIdx) + { + rOutput.writeFormula(GetXVariableNameFormula(nXvarIdx, bTakeLogX)); + rOutput.newLine(); + } + +} + +// Re-write all observations in group-by column mode with predictions and residuals +void ScRegressionDialog::WritePredictionsWithResiduals(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate, + size_t nRegressionIndex) +{ + bool bGroupedByColumn = mGroupedBy == BY_COLUMN; + rOutput.newLine(); + rOutput.push(); + + // Range of X variables with rows as observations and columns as variables. + ScRange aDataMatrixRange(rOutput.current(0, 1), rOutput.current(mnNumIndependentVars - 1, mnNumObservations)); + rTemplate.autoReplaceRange("%XDATAMATRIX_RANGE%", aDataMatrixRange); + + // Write X variable names + for (size_t nXvarIdx = 1; nXvarIdx <= mnNumIndependentVars; ++nXvarIdx) + { + // Here we write the X variables without any transformation(LN) + rOutput.writeFormula(GetXVariableNameFormula(nXvarIdx, false)); + rOutput.nextColumn(); + } + rOutput.reset(); + + // Write the X data matrix + rOutput.nextRow(); + OUString aDataMatrixFormula = bGroupedByColumn ? OUString("=%VARIABLE1_RANGE%") : OUString("=TRANSPOSE(%VARIABLE1_RANGE%)"); + rTemplate.setTemplate(aDataMatrixFormula); + rOutput.writeMatrixFormula(rTemplate.getTemplate(), mnNumIndependentVars, mnNumObservations); + + // Write predicted values + rOutput.push(mnNumIndependentVars, -1); + rOutput.writeString(ScResId(STR_LABEL_PREDICTEDY)); + rOutput.nextRow(); + rTemplate.setTemplate(constRegressionFormula[nRegressionIndex]); + rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1, mnNumObservations); + rTemplate.autoReplaceRange("%PREDICTEDY_RANGE%", ScRange(rOutput.current(), rOutput.current(0, mnNumObservations - 1))); + + // Write actual Y + rOutput.push(1, -1); + rOutput.writeFormula(GetYVariableNameFormula(false)); + rOutput.nextRow(); + OUString aYVectorFormula = bGroupedByColumn ? OUString("=%VARIABLE2_RANGE%") : OUString("=TRANSPOSE(%VARIABLE2_RANGE%)"); + rTemplate.setTemplate(aYVectorFormula); + rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1, mnNumObservations); + rTemplate.autoReplaceRange("%ACTUALY_RANGE%", ScRange(rOutput.current(), rOutput.current(0, mnNumObservations - 1))); + + // Write residual + rOutput.push(1, -1); + rOutput.writeString(ScResId(STR_LABEL_RESIDUAL)); + rOutput.nextRow(); + rTemplate.setTemplate("=%ACTUALY_RANGE% - %PREDICTEDY_RANGE%"); + rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1, mnNumObservations); +} + +// Generic table writer +void ScRegressionDialog::WriteTable(const std::function<CellValueGetter>& rCellGetter, + size_t nRowsInTable, size_t nColsInTable, + AddressWalkerWriter& rOutput, + const std::function<CellWriter>& rFunc) +{ + for (size_t nRowIdx = 0; nRowIdx < nRowsInTable; ++nRowIdx) + { + for (size_t nColIdx = 0; nColIdx < nColsInTable; ++nColIdx) + { + rFunc(rCellGetter(nRowIdx, nColIdx), nRowIdx, nColIdx); + rOutput.nextColumn(); + } + rOutput.newLine(); + } +} + +IMPL_LINK_NOARG(ScRegressionDialog, CheckBoxHdl, weld::ToggleButton&, void) +{ + ValidateDialogInput(); +} + +IMPL_LINK_NOARG(ScRegressionDialog, NumericFieldHdl, weld::SpinButton&, void) +{ + ValidateDialogInput(); +} + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ |