diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /drivers/net/phy/sfp.c | |
parent | Initial commit. (diff) | |
download | linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip |
Adding upstream version 5.10.209.upstream/5.10.209
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/net/phy/sfp.c')
-rw-r--r-- | drivers/net/phy/sfp.c | 2629 |
1 files changed, 2629 insertions, 0 deletions
diff --git a/drivers/net/phy/sfp.c b/drivers/net/phy/sfp.c new file mode 100644 index 000000000..6a5f40f11 --- /dev/null +++ b/drivers/net/phy/sfp.c @@ -0,0 +1,2629 @@ +// SPDX-License-Identifier: GPL-2.0 +#include <linux/acpi.h> +#include <linux/ctype.h> +#include <linux/delay.h> +#include <linux/gpio/consumer.h> +#include <linux/hwmon.h> +#include <linux/i2c.h> +#include <linux/interrupt.h> +#include <linux/jiffies.h> +#include <linux/mdio/mdio-i2c.h> +#include <linux/module.h> +#include <linux/mutex.h> +#include <linux/of.h> +#include <linux/phy.h> +#include <linux/platform_device.h> +#include <linux/rtnetlink.h> +#include <linux/slab.h> +#include <linux/workqueue.h> + +#include "sfp.h" +#include "swphy.h" + +enum { + GPIO_MODDEF0, + GPIO_LOS, + GPIO_TX_FAULT, + GPIO_TX_DISABLE, + GPIO_RATE_SELECT, + GPIO_MAX, + + SFP_F_PRESENT = BIT(GPIO_MODDEF0), + SFP_F_LOS = BIT(GPIO_LOS), + SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), + SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), + SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), + + SFP_E_INSERT = 0, + SFP_E_REMOVE, + SFP_E_DEV_ATTACH, + SFP_E_DEV_DETACH, + SFP_E_DEV_DOWN, + SFP_E_DEV_UP, + SFP_E_TX_FAULT, + SFP_E_TX_CLEAR, + SFP_E_LOS_HIGH, + SFP_E_LOS_LOW, + SFP_E_TIMEOUT, + + SFP_MOD_EMPTY = 0, + SFP_MOD_ERROR, + SFP_MOD_PROBE, + SFP_MOD_WAITDEV, + SFP_MOD_HPOWER, + SFP_MOD_WAITPWR, + SFP_MOD_PRESENT, + + SFP_DEV_DETACHED = 0, + SFP_DEV_DOWN, + SFP_DEV_UP, + + SFP_S_DOWN = 0, + SFP_S_FAIL, + SFP_S_WAIT, + SFP_S_INIT, + SFP_S_INIT_PHY, + SFP_S_INIT_TX_FAULT, + SFP_S_WAIT_LOS, + SFP_S_LINK_UP, + SFP_S_TX_FAULT, + SFP_S_REINIT, + SFP_S_TX_DISABLE, +}; + +static const char * const mod_state_strings[] = { + [SFP_MOD_EMPTY] = "empty", + [SFP_MOD_ERROR] = "error", + [SFP_MOD_PROBE] = "probe", + [SFP_MOD_WAITDEV] = "waitdev", + [SFP_MOD_HPOWER] = "hpower", + [SFP_MOD_WAITPWR] = "waitpwr", + [SFP_MOD_PRESENT] = "present", +}; + +static const char *mod_state_to_str(unsigned short mod_state) +{ + if (mod_state >= ARRAY_SIZE(mod_state_strings)) + return "Unknown module state"; + return mod_state_strings[mod_state]; +} + +static const char * const dev_state_strings[] = { + [SFP_DEV_DETACHED] = "detached", + [SFP_DEV_DOWN] = "down", + [SFP_DEV_UP] = "up", +}; + +static const char *dev_state_to_str(unsigned short dev_state) +{ + if (dev_state >= ARRAY_SIZE(dev_state_strings)) + return "Unknown device state"; + return dev_state_strings[dev_state]; +} + +static const char * const event_strings[] = { + [SFP_E_INSERT] = "insert", + [SFP_E_REMOVE] = "remove", + [SFP_E_DEV_ATTACH] = "dev_attach", + [SFP_E_DEV_DETACH] = "dev_detach", + [SFP_E_DEV_DOWN] = "dev_down", + [SFP_E_DEV_UP] = "dev_up", + [SFP_E_TX_FAULT] = "tx_fault", + [SFP_E_TX_CLEAR] = "tx_clear", + [SFP_E_LOS_HIGH] = "los_high", + [SFP_E_LOS_LOW] = "los_low", + [SFP_E_TIMEOUT] = "timeout", +}; + +static const char *event_to_str(unsigned short event) +{ + if (event >= ARRAY_SIZE(event_strings)) + return "Unknown event"; + return event_strings[event]; +} + +static const char * const sm_state_strings[] = { + [SFP_S_DOWN] = "down", + [SFP_S_FAIL] = "fail", + [SFP_S_WAIT] = "wait", + [SFP_S_INIT] = "init", + [SFP_S_INIT_PHY] = "init_phy", + [SFP_S_INIT_TX_FAULT] = "init_tx_fault", + [SFP_S_WAIT_LOS] = "wait_los", + [SFP_S_LINK_UP] = "link_up", + [SFP_S_TX_FAULT] = "tx_fault", + [SFP_S_REINIT] = "reinit", + [SFP_S_TX_DISABLE] = "tx_disable", +}; + +static const char *sm_state_to_str(unsigned short sm_state) +{ + if (sm_state >= ARRAY_SIZE(sm_state_strings)) + return "Unknown state"; + return sm_state_strings[sm_state]; +} + +static const char *gpio_of_names[] = { + "mod-def0", + "los", + "tx-fault", + "tx-disable", + "rate-select0", +}; + +static const enum gpiod_flags gpio_flags[] = { + GPIOD_IN, + GPIOD_IN, + GPIOD_IN, + GPIOD_ASIS, + GPIOD_ASIS, +}; + +/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a + * non-cooled module to initialise its laser safety circuitry. We wait + * an initial T_WAIT period before we check the tx fault to give any PHY + * on board (for a copper SFP) time to initialise. + */ +#define T_WAIT msecs_to_jiffies(50) +#define T_START_UP msecs_to_jiffies(300) +#define T_START_UP_BAD_GPON msecs_to_jiffies(60000) + +/* t_reset is the time required to assert the TX_DISABLE signal to reset + * an indicated TX_FAULT. + */ +#define T_RESET_US 10 +#define T_FAULT_RECOVER msecs_to_jiffies(1000) + +/* N_FAULT_INIT is the number of recovery attempts at module initialisation + * time. If the TX_FAULT signal is not deasserted after this number of + * attempts at clearing it, we decide that the module is faulty. + * N_FAULT is the same but after the module has initialised. + */ +#define N_FAULT_INIT 5 +#define N_FAULT 5 + +/* T_PHY_RETRY is the time interval between attempts to probe the PHY. + * R_PHY_RETRY is the number of attempts. + */ +#define T_PHY_RETRY msecs_to_jiffies(50) +#define R_PHY_RETRY 12 + +/* SFP module presence detection is poor: the three MOD DEF signals are + * the same length on the PCB, which means it's possible for MOD DEF 0 to + * connect before the I2C bus on MOD DEF 1/2. + * + * The SFF-8472 specifies t_serial ("Time from power on until module is + * ready for data transmission over the two wire serial bus.") as 300ms. + */ +#define T_SERIAL msecs_to_jiffies(300) +#define T_HPOWER_LEVEL msecs_to_jiffies(300) +#define T_PROBE_RETRY_INIT msecs_to_jiffies(100) +#define R_PROBE_RETRY_INIT 10 +#define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) +#define R_PROBE_RETRY_SLOW 12 + +/* SFP modules appear to always have their PHY configured for bus address + * 0x56 (which with mdio-i2c, translates to a PHY address of 22). + */ +#define SFP_PHY_ADDR 22 + +/* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM + * at a time. Some SFP modules and also some Linux I2C drivers do not like + * reads longer than 16 bytes. + */ +#define SFP_EEPROM_BLOCK_SIZE 16 + +struct sff_data { + unsigned int gpios; + bool (*module_supported)(const struct sfp_eeprom_id *id); +}; + +struct sfp { + struct device *dev; + struct i2c_adapter *i2c; + struct mii_bus *i2c_mii; + struct sfp_bus *sfp_bus; + struct phy_device *mod_phy; + const struct sff_data *type; + size_t i2c_block_size; + u32 max_power_mW; + + unsigned int (*get_state)(struct sfp *); + void (*set_state)(struct sfp *, unsigned int); + int (*read)(struct sfp *, bool, u8, void *, size_t); + int (*write)(struct sfp *, bool, u8, void *, size_t); + + struct gpio_desc *gpio[GPIO_MAX]; + int gpio_irq[GPIO_MAX]; + + bool need_poll; + + struct mutex st_mutex; /* Protects state */ + unsigned int state_soft_mask; + unsigned int state; + struct delayed_work poll; + struct delayed_work timeout; + struct mutex sm_mutex; /* Protects state machine */ + unsigned char sm_mod_state; + unsigned char sm_mod_tries_init; + unsigned char sm_mod_tries; + unsigned char sm_dev_state; + unsigned short sm_state; + unsigned char sm_fault_retries; + unsigned char sm_phy_retries; + + struct sfp_eeprom_id id; + unsigned int module_power_mW; + unsigned int module_t_start_up; + bool tx_fault_ignore; + +#if IS_ENABLED(CONFIG_HWMON) + struct sfp_diag diag; + struct delayed_work hwmon_probe; + unsigned int hwmon_tries; + struct device *hwmon_dev; + char *hwmon_name; +#endif + +}; + +static bool sff_module_supported(const struct sfp_eeprom_id *id) +{ + return id->base.phys_id == SFF8024_ID_SFF_8472 && + id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; +} + +static const struct sff_data sff_data = { + .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, + .module_supported = sff_module_supported, +}; + +static bool sfp_module_supported(const struct sfp_eeprom_id *id) +{ + if (id->base.phys_id == SFF8024_ID_SFP && + id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) + return true; + + /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored + * phys id SFF instead of SFP. Therefore mark this module explicitly + * as supported based on vendor name and pn match. + */ + if (id->base.phys_id == SFF8024_ID_SFF_8472 && + id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && + !memcmp(id->base.vendor_name, "UBNT ", 16) && + !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) + return true; + + return false; +} + +static const struct sff_data sfp_data = { + .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | + SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, + .module_supported = sfp_module_supported, +}; + +static const struct of_device_id sfp_of_match[] = { + { .compatible = "sff,sff", .data = &sff_data, }, + { .compatible = "sff,sfp", .data = &sfp_data, }, + { }, +}; +MODULE_DEVICE_TABLE(of, sfp_of_match); + +static unsigned long poll_jiffies; + +static unsigned int sfp_gpio_get_state(struct sfp *sfp) +{ + unsigned int i, state, v; + + for (i = state = 0; i < GPIO_MAX; i++) { + if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) + continue; + + v = gpiod_get_value_cansleep(sfp->gpio[i]); + if (v) + state |= BIT(i); + } + + return state; +} + +static unsigned int sff_gpio_get_state(struct sfp *sfp) +{ + return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; +} + +static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) +{ + if (state & SFP_F_PRESENT) { + /* If the module is present, drive the signals */ + if (sfp->gpio[GPIO_TX_DISABLE]) + gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], + state & SFP_F_TX_DISABLE); + if (state & SFP_F_RATE_SELECT) + gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], + state & SFP_F_RATE_SELECT); + } else { + /* Otherwise, let them float to the pull-ups */ + if (sfp->gpio[GPIO_TX_DISABLE]) + gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); + if (state & SFP_F_RATE_SELECT) + gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); + } +} + +static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, + size_t len) +{ + struct i2c_msg msgs[2]; + u8 bus_addr = a2 ? 0x51 : 0x50; + size_t block_size = sfp->i2c_block_size; + size_t this_len; + int ret; + + msgs[0].addr = bus_addr; + msgs[0].flags = 0; + msgs[0].len = 1; + msgs[0].buf = &dev_addr; + msgs[1].addr = bus_addr; + msgs[1].flags = I2C_M_RD; + msgs[1].len = len; + msgs[1].buf = buf; + + while (len) { + this_len = len; + if (this_len > block_size) + this_len = block_size; + + msgs[1].len = this_len; + + ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); + if (ret < 0) + return ret; + + if (ret != ARRAY_SIZE(msgs)) + break; + + msgs[1].buf += this_len; + dev_addr += this_len; + len -= this_len; + } + + return msgs[1].buf - (u8 *)buf; +} + +static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, + size_t len) +{ + struct i2c_msg msgs[1]; + u8 bus_addr = a2 ? 0x51 : 0x50; + int ret; + + msgs[0].addr = bus_addr; + msgs[0].flags = 0; + msgs[0].len = 1 + len; + msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); + if (!msgs[0].buf) + return -ENOMEM; + + msgs[0].buf[0] = dev_addr; + memcpy(&msgs[0].buf[1], buf, len); + + ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); + + kfree(msgs[0].buf); + + if (ret < 0) + return ret; + + return ret == ARRAY_SIZE(msgs) ? len : 0; +} + +static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) +{ + struct mii_bus *i2c_mii; + int ret; + + if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) + return -EINVAL; + + sfp->i2c = i2c; + sfp->read = sfp_i2c_read; + sfp->write = sfp_i2c_write; + + i2c_mii = mdio_i2c_alloc(sfp->dev, i2c); + if (IS_ERR(i2c_mii)) + return PTR_ERR(i2c_mii); + + i2c_mii->name = "SFP I2C Bus"; + i2c_mii->phy_mask = ~0; + + ret = mdiobus_register(i2c_mii); + if (ret < 0) { + mdiobus_free(i2c_mii); + return ret; + } + + sfp->i2c_mii = i2c_mii; + + return 0; +} + +/* Interface */ +static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) +{ + return sfp->read(sfp, a2, addr, buf, len); +} + +static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) +{ + return sfp->write(sfp, a2, addr, buf, len); +} + +static unsigned int sfp_soft_get_state(struct sfp *sfp) +{ + unsigned int state = 0; + u8 status; + int ret; + + ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); + if (ret == sizeof(status)) { + if (status & SFP_STATUS_RX_LOS) + state |= SFP_F_LOS; + if (status & SFP_STATUS_TX_FAULT) + state |= SFP_F_TX_FAULT; + } else { + dev_err_ratelimited(sfp->dev, + "failed to read SFP soft status: %d\n", + ret); + /* Preserve the current state */ + state = sfp->state; + } + + return state & sfp->state_soft_mask; +} + +static void sfp_soft_set_state(struct sfp *sfp, unsigned int state) +{ + u8 status; + + if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) == + sizeof(status)) { + if (state & SFP_F_TX_DISABLE) + status |= SFP_STATUS_TX_DISABLE_FORCE; + else + status &= ~SFP_STATUS_TX_DISABLE_FORCE; + + sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status)); + } +} + +static void sfp_soft_start_poll(struct sfp *sfp) +{ + const struct sfp_eeprom_id *id = &sfp->id; + + sfp->state_soft_mask = 0; + if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE && + !sfp->gpio[GPIO_TX_DISABLE]) + sfp->state_soft_mask |= SFP_F_TX_DISABLE; + if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT && + !sfp->gpio[GPIO_TX_FAULT]) + sfp->state_soft_mask |= SFP_F_TX_FAULT; + if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS && + !sfp->gpio[GPIO_LOS]) + sfp->state_soft_mask |= SFP_F_LOS; + + if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && + !sfp->need_poll) + mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); +} + +static void sfp_soft_stop_poll(struct sfp *sfp) +{ + sfp->state_soft_mask = 0; +} + +static unsigned int sfp_get_state(struct sfp *sfp) +{ + unsigned int state = sfp->get_state(sfp); + + if (state & SFP_F_PRESENT && + sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT)) + state |= sfp_soft_get_state(sfp); + + return state; +} + +static void sfp_set_state(struct sfp *sfp, unsigned int state) +{ + sfp->set_state(sfp, state); + + if (state & SFP_F_PRESENT && + sfp->state_soft_mask & SFP_F_TX_DISABLE) + sfp_soft_set_state(sfp, state); +} + +static unsigned int sfp_check(void *buf, size_t len) +{ + u8 *p, check; + + for (p = buf, check = 0; len; p++, len--) + check += *p; + + return check; +} + +/* hwmon */ +#if IS_ENABLED(CONFIG_HWMON) +static umode_t sfp_hwmon_is_visible(const void *data, + enum hwmon_sensor_types type, + u32 attr, int channel) +{ + const struct sfp *sfp = data; + + switch (type) { + case hwmon_temp: + switch (attr) { + case hwmon_temp_min_alarm: + case hwmon_temp_max_alarm: + case hwmon_temp_lcrit_alarm: + case hwmon_temp_crit_alarm: + case hwmon_temp_min: + case hwmon_temp_max: + case hwmon_temp_lcrit: + case hwmon_temp_crit: + if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) + return 0; + fallthrough; + case hwmon_temp_input: + case hwmon_temp_label: + return 0444; + default: + return 0; + } + case hwmon_in: + switch (attr) { + case hwmon_in_min_alarm: + case hwmon_in_max_alarm: + case hwmon_in_lcrit_alarm: + case hwmon_in_crit_alarm: + case hwmon_in_min: + case hwmon_in_max: + case hwmon_in_lcrit: + case hwmon_in_crit: + if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) + return 0; + fallthrough; + case hwmon_in_input: + case hwmon_in_label: + return 0444; + default: + return 0; + } + case hwmon_curr: + switch (attr) { + case hwmon_curr_min_alarm: + case hwmon_curr_max_alarm: + case hwmon_curr_lcrit_alarm: + case hwmon_curr_crit_alarm: + case hwmon_curr_min: + case hwmon_curr_max: + case hwmon_curr_lcrit: + case hwmon_curr_crit: + if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) + return 0; + fallthrough; + case hwmon_curr_input: + case hwmon_curr_label: + return 0444; + default: + return 0; + } + case hwmon_power: + /* External calibration of receive power requires + * floating point arithmetic. Doing that in the kernel + * is not easy, so just skip it. If the module does + * not require external calibration, we can however + * show receiver power, since FP is then not needed. + */ + if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && + channel == 1) + return 0; + switch (attr) { + case hwmon_power_min_alarm: + case hwmon_power_max_alarm: + case hwmon_power_lcrit_alarm: + case hwmon_power_crit_alarm: + case hwmon_power_min: + case hwmon_power_max: + case hwmon_power_lcrit: + case hwmon_power_crit: + if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) + return 0; + fallthrough; + case hwmon_power_input: + case hwmon_power_label: + return 0444; + default: + return 0; + } + default: + return 0; + } +} + +static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) +{ + __be16 val; + int err; + + err = sfp_read(sfp, true, reg, &val, sizeof(val)); + if (err < 0) + return err; + + *value = be16_to_cpu(val); + + return 0; +} + +static void sfp_hwmon_to_rx_power(long *value) +{ + *value = DIV_ROUND_CLOSEST(*value, 10); +} + +static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, + long *value) +{ + if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) + *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; +} + +static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) +{ + sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), + be16_to_cpu(sfp->diag.cal_t_offset), value); + + if (*value >= 0x8000) + *value -= 0x10000; + + *value = DIV_ROUND_CLOSEST(*value * 1000, 256); +} + +static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) +{ + sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), + be16_to_cpu(sfp->diag.cal_v_offset), value); + + *value = DIV_ROUND_CLOSEST(*value, 10); +} + +static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) +{ + sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), + be16_to_cpu(sfp->diag.cal_txi_offset), value); + + *value = DIV_ROUND_CLOSEST(*value, 500); +} + +static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) +{ + sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), + be16_to_cpu(sfp->diag.cal_txpwr_offset), value); + + *value = DIV_ROUND_CLOSEST(*value, 10); +} + +static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) +{ + int err; + + err = sfp_hwmon_read_sensor(sfp, reg, value); + if (err < 0) + return err; + + sfp_hwmon_calibrate_temp(sfp, value); + + return 0; +} + +static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) +{ + int err; + + err = sfp_hwmon_read_sensor(sfp, reg, value); + if (err < 0) + return err; + + sfp_hwmon_calibrate_vcc(sfp, value); + + return 0; +} + +static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) +{ + int err; + + err = sfp_hwmon_read_sensor(sfp, reg, value); + if (err < 0) + return err; + + sfp_hwmon_calibrate_bias(sfp, value); + + return 0; +} + +static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) +{ + int err; + + err = sfp_hwmon_read_sensor(sfp, reg, value); + if (err < 0) + return err; + + sfp_hwmon_calibrate_tx_power(sfp, value); + + return 0; +} + +static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) +{ + int err; + + err = sfp_hwmon_read_sensor(sfp, reg, value); + if (err < 0) + return err; + + sfp_hwmon_to_rx_power(value); + + return 0; +} + +static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) +{ + u8 status; + int err; + + switch (attr) { + case hwmon_temp_input: + return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); + + case hwmon_temp_lcrit: + *value = be16_to_cpu(sfp->diag.temp_low_alarm); + sfp_hwmon_calibrate_temp(sfp, value); + return 0; + + case hwmon_temp_min: + *value = be16_to_cpu(sfp->diag.temp_low_warn); + sfp_hwmon_calibrate_temp(sfp, value); + return 0; + case hwmon_temp_max: + *value = be16_to_cpu(sfp->diag.temp_high_warn); + sfp_hwmon_calibrate_temp(sfp, value); + return 0; + + case hwmon_temp_crit: + *value = be16_to_cpu(sfp->diag.temp_high_alarm); + sfp_hwmon_calibrate_temp(sfp, value); + return 0; + + case hwmon_temp_lcrit_alarm: + err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_ALARM0_TEMP_LOW); + return 0; + + case hwmon_temp_min_alarm: + err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_WARN0_TEMP_LOW); + return 0; + + case hwmon_temp_max_alarm: + err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_WARN0_TEMP_HIGH); + return 0; + + case hwmon_temp_crit_alarm: + err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_ALARM0_TEMP_HIGH); + return 0; + default: + return -EOPNOTSUPP; + } + + return -EOPNOTSUPP; +} + +static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) +{ + u8 status; + int err; + + switch (attr) { + case hwmon_in_input: + return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); + + case hwmon_in_lcrit: + *value = be16_to_cpu(sfp->diag.volt_low_alarm); + sfp_hwmon_calibrate_vcc(sfp, value); + return 0; + + case hwmon_in_min: + *value = be16_to_cpu(sfp->diag.volt_low_warn); + sfp_hwmon_calibrate_vcc(sfp, value); + return 0; + + case hwmon_in_max: + *value = be16_to_cpu(sfp->diag.volt_high_warn); + sfp_hwmon_calibrate_vcc(sfp, value); + return 0; + + case hwmon_in_crit: + *value = be16_to_cpu(sfp->diag.volt_high_alarm); + sfp_hwmon_calibrate_vcc(sfp, value); + return 0; + + case hwmon_in_lcrit_alarm: + err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_ALARM0_VCC_LOW); + return 0; + + case hwmon_in_min_alarm: + err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_WARN0_VCC_LOW); + return 0; + + case hwmon_in_max_alarm: + err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_WARN0_VCC_HIGH); + return 0; + + case hwmon_in_crit_alarm: + err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_ALARM0_VCC_HIGH); + return 0; + default: + return -EOPNOTSUPP; + } + + return -EOPNOTSUPP; +} + +static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) +{ + u8 status; + int err; + + switch (attr) { + case hwmon_curr_input: + return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); + + case hwmon_curr_lcrit: + *value = be16_to_cpu(sfp->diag.bias_low_alarm); + sfp_hwmon_calibrate_bias(sfp, value); + return 0; + + case hwmon_curr_min: + *value = be16_to_cpu(sfp->diag.bias_low_warn); + sfp_hwmon_calibrate_bias(sfp, value); + return 0; + + case hwmon_curr_max: + *value = be16_to_cpu(sfp->diag.bias_high_warn); + sfp_hwmon_calibrate_bias(sfp, value); + return 0; + + case hwmon_curr_crit: + *value = be16_to_cpu(sfp->diag.bias_high_alarm); + sfp_hwmon_calibrate_bias(sfp, value); + return 0; + + case hwmon_curr_lcrit_alarm: + err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); + return 0; + + case hwmon_curr_min_alarm: + err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_WARN0_TX_BIAS_LOW); + return 0; + + case hwmon_curr_max_alarm: + err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); + return 0; + + case hwmon_curr_crit_alarm: + err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); + return 0; + default: + return -EOPNOTSUPP; + } + + return -EOPNOTSUPP; +} + +static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) +{ + u8 status; + int err; + + switch (attr) { + case hwmon_power_input: + return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); + + case hwmon_power_lcrit: + *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); + sfp_hwmon_calibrate_tx_power(sfp, value); + return 0; + + case hwmon_power_min: + *value = be16_to_cpu(sfp->diag.txpwr_low_warn); + sfp_hwmon_calibrate_tx_power(sfp, value); + return 0; + + case hwmon_power_max: + *value = be16_to_cpu(sfp->diag.txpwr_high_warn); + sfp_hwmon_calibrate_tx_power(sfp, value); + return 0; + + case hwmon_power_crit: + *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); + sfp_hwmon_calibrate_tx_power(sfp, value); + return 0; + + case hwmon_power_lcrit_alarm: + err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_ALARM0_TXPWR_LOW); + return 0; + + case hwmon_power_min_alarm: + err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_WARN0_TXPWR_LOW); + return 0; + + case hwmon_power_max_alarm: + err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_WARN0_TXPWR_HIGH); + return 0; + + case hwmon_power_crit_alarm: + err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_ALARM0_TXPWR_HIGH); + return 0; + default: + return -EOPNOTSUPP; + } + + return -EOPNOTSUPP; +} + +static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) +{ + u8 status; + int err; + + switch (attr) { + case hwmon_power_input: + return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); + + case hwmon_power_lcrit: + *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); + sfp_hwmon_to_rx_power(value); + return 0; + + case hwmon_power_min: + *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); + sfp_hwmon_to_rx_power(value); + return 0; + + case hwmon_power_max: + *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); + sfp_hwmon_to_rx_power(value); + return 0; + + case hwmon_power_crit: + *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); + sfp_hwmon_to_rx_power(value); + return 0; + + case hwmon_power_lcrit_alarm: + err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_ALARM1_RXPWR_LOW); + return 0; + + case hwmon_power_min_alarm: + err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_WARN1_RXPWR_LOW); + return 0; + + case hwmon_power_max_alarm: + err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_WARN1_RXPWR_HIGH); + return 0; + + case hwmon_power_crit_alarm: + err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); + if (err < 0) + return err; + + *value = !!(status & SFP_ALARM1_RXPWR_HIGH); + return 0; + default: + return -EOPNOTSUPP; + } + + return -EOPNOTSUPP; +} + +static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, + u32 attr, int channel, long *value) +{ + struct sfp *sfp = dev_get_drvdata(dev); + + switch (type) { + case hwmon_temp: + return sfp_hwmon_temp(sfp, attr, value); + case hwmon_in: + return sfp_hwmon_vcc(sfp, attr, value); + case hwmon_curr: + return sfp_hwmon_bias(sfp, attr, value); + case hwmon_power: + switch (channel) { + case 0: + return sfp_hwmon_tx_power(sfp, attr, value); + case 1: + return sfp_hwmon_rx_power(sfp, attr, value); + default: + return -EOPNOTSUPP; + } + default: + return -EOPNOTSUPP; + } +} + +static const char *const sfp_hwmon_power_labels[] = { + "TX_power", + "RX_power", +}; + +static int sfp_hwmon_read_string(struct device *dev, + enum hwmon_sensor_types type, + u32 attr, int channel, const char **str) +{ + switch (type) { + case hwmon_curr: + switch (attr) { + case hwmon_curr_label: + *str = "bias"; + return 0; + default: + return -EOPNOTSUPP; + } + break; + case hwmon_temp: + switch (attr) { + case hwmon_temp_label: + *str = "temperature"; + return 0; + default: + return -EOPNOTSUPP; + } + break; + case hwmon_in: + switch (attr) { + case hwmon_in_label: + *str = "VCC"; + return 0; + default: + return -EOPNOTSUPP; + } + break; + case hwmon_power: + switch (attr) { + case hwmon_power_label: + *str = sfp_hwmon_power_labels[channel]; + return 0; + default: + return -EOPNOTSUPP; + } + break; + default: + return -EOPNOTSUPP; + } + + return -EOPNOTSUPP; +} + +static const struct hwmon_ops sfp_hwmon_ops = { + .is_visible = sfp_hwmon_is_visible, + .read = sfp_hwmon_read, + .read_string = sfp_hwmon_read_string, +}; + +static u32 sfp_hwmon_chip_config[] = { + HWMON_C_REGISTER_TZ, + 0, +}; + +static const struct hwmon_channel_info sfp_hwmon_chip = { + .type = hwmon_chip, + .config = sfp_hwmon_chip_config, +}; + +static u32 sfp_hwmon_temp_config[] = { + HWMON_T_INPUT | + HWMON_T_MAX | HWMON_T_MIN | + HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | + HWMON_T_CRIT | HWMON_T_LCRIT | + HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | + HWMON_T_LABEL, + 0, +}; + +static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = { + .type = hwmon_temp, + .config = sfp_hwmon_temp_config, +}; + +static u32 sfp_hwmon_vcc_config[] = { + HWMON_I_INPUT | + HWMON_I_MAX | HWMON_I_MIN | + HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | + HWMON_I_CRIT | HWMON_I_LCRIT | + HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | + HWMON_I_LABEL, + 0, +}; + +static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = { + .type = hwmon_in, + .config = sfp_hwmon_vcc_config, +}; + +static u32 sfp_hwmon_bias_config[] = { + HWMON_C_INPUT | + HWMON_C_MAX | HWMON_C_MIN | + HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | + HWMON_C_CRIT | HWMON_C_LCRIT | + HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | + HWMON_C_LABEL, + 0, +}; + +static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = { + .type = hwmon_curr, + .config = sfp_hwmon_bias_config, +}; + +static u32 sfp_hwmon_power_config[] = { + /* Transmit power */ + HWMON_P_INPUT | + HWMON_P_MAX | HWMON_P_MIN | + HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | + HWMON_P_CRIT | HWMON_P_LCRIT | + HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | + HWMON_P_LABEL, + /* Receive power */ + HWMON_P_INPUT | + HWMON_P_MAX | HWMON_P_MIN | + HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | + HWMON_P_CRIT | HWMON_P_LCRIT | + HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | + HWMON_P_LABEL, + 0, +}; + +static const struct hwmon_channel_info sfp_hwmon_power_channel_info = { + .type = hwmon_power, + .config = sfp_hwmon_power_config, +}; + +static const struct hwmon_channel_info *sfp_hwmon_info[] = { + &sfp_hwmon_chip, + &sfp_hwmon_vcc_channel_info, + &sfp_hwmon_temp_channel_info, + &sfp_hwmon_bias_channel_info, + &sfp_hwmon_power_channel_info, + NULL, +}; + +static const struct hwmon_chip_info sfp_hwmon_chip_info = { + .ops = &sfp_hwmon_ops, + .info = sfp_hwmon_info, +}; + +static void sfp_hwmon_probe(struct work_struct *work) +{ + struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); + int err, i; + + /* hwmon interface needs to access 16bit registers in atomic way to + * guarantee coherency of the diagnostic monitoring data. If it is not + * possible to guarantee coherency because EEPROM is broken in such way + * that does not support atomic 16bit read operation then we have to + * skip registration of hwmon device. + */ + if (sfp->i2c_block_size < 2) { + dev_info(sfp->dev, + "skipping hwmon device registration due to broken EEPROM\n"); + dev_info(sfp->dev, + "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); + return; + } + + err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); + if (err < 0) { + if (sfp->hwmon_tries--) { + mod_delayed_work(system_wq, &sfp->hwmon_probe, + T_PROBE_RETRY_SLOW); + } else { + dev_warn(sfp->dev, "hwmon probe failed: %d\n", err); + } + return; + } + + sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL); + if (!sfp->hwmon_name) { + dev_err(sfp->dev, "out of memory for hwmon name\n"); + return; + } + + for (i = 0; sfp->hwmon_name[i]; i++) + if (hwmon_is_bad_char(sfp->hwmon_name[i])) + sfp->hwmon_name[i] = '_'; + + sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, + sfp->hwmon_name, sfp, + &sfp_hwmon_chip_info, + NULL); + if (IS_ERR(sfp->hwmon_dev)) + dev_err(sfp->dev, "failed to register hwmon device: %ld\n", + PTR_ERR(sfp->hwmon_dev)); +} + +static int sfp_hwmon_insert(struct sfp *sfp) +{ + if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE) + return 0; + + if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) + return 0; + + if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) + /* This driver in general does not support address + * change. + */ + return 0; + + mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); + sfp->hwmon_tries = R_PROBE_RETRY_SLOW; + + return 0; +} + +static void sfp_hwmon_remove(struct sfp *sfp) +{ + cancel_delayed_work_sync(&sfp->hwmon_probe); + if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { + hwmon_device_unregister(sfp->hwmon_dev); + sfp->hwmon_dev = NULL; + kfree(sfp->hwmon_name); + } +} + +static int sfp_hwmon_init(struct sfp *sfp) +{ + INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); + + return 0; +} + +static void sfp_hwmon_exit(struct sfp *sfp) +{ + cancel_delayed_work_sync(&sfp->hwmon_probe); +} +#else +static int sfp_hwmon_insert(struct sfp *sfp) +{ + return 0; +} + +static void sfp_hwmon_remove(struct sfp *sfp) +{ +} + +static int sfp_hwmon_init(struct sfp *sfp) +{ + return 0; +} + +static void sfp_hwmon_exit(struct sfp *sfp) +{ +} +#endif + +/* Helpers */ +static void sfp_module_tx_disable(struct sfp *sfp) +{ + dev_dbg(sfp->dev, "tx disable %u -> %u\n", + sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); + sfp->state |= SFP_F_TX_DISABLE; + sfp_set_state(sfp, sfp->state); +} + +static void sfp_module_tx_enable(struct sfp *sfp) +{ + dev_dbg(sfp->dev, "tx disable %u -> %u\n", + sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); + sfp->state &= ~SFP_F_TX_DISABLE; + sfp_set_state(sfp, sfp->state); +} + +static void sfp_module_tx_fault_reset(struct sfp *sfp) +{ + unsigned int state = sfp->state; + + if (state & SFP_F_TX_DISABLE) + return; + + sfp_set_state(sfp, state | SFP_F_TX_DISABLE); + + udelay(T_RESET_US); + + sfp_set_state(sfp, state); +} + +/* SFP state machine */ +static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) +{ + if (timeout) + mod_delayed_work(system_power_efficient_wq, &sfp->timeout, + timeout); + else + cancel_delayed_work(&sfp->timeout); +} + +static void sfp_sm_next(struct sfp *sfp, unsigned int state, + unsigned int timeout) +{ + sfp->sm_state = state; + sfp_sm_set_timer(sfp, timeout); +} + +static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, + unsigned int timeout) +{ + sfp->sm_mod_state = state; + sfp_sm_set_timer(sfp, timeout); +} + +static void sfp_sm_phy_detach(struct sfp *sfp) +{ + sfp_remove_phy(sfp->sfp_bus); + phy_device_remove(sfp->mod_phy); + phy_device_free(sfp->mod_phy); + sfp->mod_phy = NULL; +} + +static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45) +{ + struct phy_device *phy; + int err; + + phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45); + if (phy == ERR_PTR(-ENODEV)) + return PTR_ERR(phy); + if (IS_ERR(phy)) { + dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy)); + return PTR_ERR(phy); + } + + err = phy_device_register(phy); + if (err) { + phy_device_free(phy); + dev_err(sfp->dev, "phy_device_register failed: %d\n", err); + return err; + } + + err = sfp_add_phy(sfp->sfp_bus, phy); + if (err) { + phy_device_remove(phy); + phy_device_free(phy); + dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err); + return err; + } + + sfp->mod_phy = phy; + + return 0; +} + +static void sfp_sm_link_up(struct sfp *sfp) +{ + sfp_link_up(sfp->sfp_bus); + sfp_sm_next(sfp, SFP_S_LINK_UP, 0); +} + +static void sfp_sm_link_down(struct sfp *sfp) +{ + sfp_link_down(sfp->sfp_bus); +} + +static void sfp_sm_link_check_los(struct sfp *sfp) +{ + const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); + const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); + __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); + bool los = false; + + /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL + * are set, we assume that no LOS signal is available. If both are + * set, we assume LOS is not implemented (and is meaningless.) + */ + if (los_options == los_inverted) + los = !(sfp->state & SFP_F_LOS); + else if (los_options == los_normal) + los = !!(sfp->state & SFP_F_LOS); + + if (los) + sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); + else + sfp_sm_link_up(sfp); +} + +static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) +{ + const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); + const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); + __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); + + return (los_options == los_inverted && event == SFP_E_LOS_LOW) || + (los_options == los_normal && event == SFP_E_LOS_HIGH); +} + +static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) +{ + const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); + const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); + __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); + + return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || + (los_options == los_normal && event == SFP_E_LOS_LOW); +} + +static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) +{ + if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { + dev_err(sfp->dev, + "module persistently indicates fault, disabling\n"); + sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); + } else { + if (warn) + dev_err(sfp->dev, "module transmit fault indicated\n"); + + sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); + } +} + +/* Probe a SFP for a PHY device if the module supports copper - the PHY + * normally sits at I2C bus address 0x56, and may either be a clause 22 + * or clause 45 PHY. + * + * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with + * negotiation enabled, but some may be in 1000base-X - which is for the + * PHY driver to determine. + * + * Clause 45 copper SFP+ modules (10G) appear to switch their interface + * mode according to the negotiated line speed. + */ +static int sfp_sm_probe_for_phy(struct sfp *sfp) +{ + int err = 0; + + switch (sfp->id.base.extended_cc) { + case SFF8024_ECC_10GBASE_T_SFI: + case SFF8024_ECC_10GBASE_T_SR: + case SFF8024_ECC_5GBASE_T: + case SFF8024_ECC_2_5GBASE_T: + err = sfp_sm_probe_phy(sfp, true); + break; + + default: + if (sfp->id.base.e1000_base_t) + err = sfp_sm_probe_phy(sfp, false); + break; + } + return err; +} + +static int sfp_module_parse_power(struct sfp *sfp) +{ + u32 power_mW = 1000; + bool supports_a2; + + if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) + power_mW = 1500; + if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) + power_mW = 2000; + + supports_a2 = sfp->id.ext.sff8472_compliance != + SFP_SFF8472_COMPLIANCE_NONE || + sfp->id.ext.diagmon & SFP_DIAGMON_DDM; + + if (power_mW > sfp->max_power_mW) { + /* Module power specification exceeds the allowed maximum. */ + if (!supports_a2) { + /* The module appears not to implement bus address + * 0xa2, so assume that the module powers up in the + * indicated mode. + */ + dev_err(sfp->dev, + "Host does not support %u.%uW modules\n", + power_mW / 1000, (power_mW / 100) % 10); + return -EINVAL; + } else { + dev_warn(sfp->dev, + "Host does not support %u.%uW modules, module left in power mode 1\n", + power_mW / 1000, (power_mW / 100) % 10); + return 0; + } + } + + if (power_mW <= 1000) { + /* Modules below 1W do not require a power change sequence */ + sfp->module_power_mW = power_mW; + return 0; + } + + if (!supports_a2) { + /* The module power level is below the host maximum and the + * module appears not to implement bus address 0xa2, so assume + * that the module powers up in the indicated mode. + */ + return 0; + } + + /* If the module requires a higher power mode, but also requires + * an address change sequence, warn the user that the module may + * not be functional. + */ + if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { + dev_warn(sfp->dev, + "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", + power_mW / 1000, (power_mW / 100) % 10); + return 0; + } + + sfp->module_power_mW = power_mW; + + return 0; +} + +static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) +{ + u8 val; + int err; + + err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); + if (err != sizeof(val)) { + dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err); + return -EAGAIN; + } + + /* DM7052 reports as a high power module, responds to reads (with + * all bytes 0xff) at 0x51 but does not accept writes. In any case, + * if the bit is already set, we're already in high power mode. + */ + if (!!(val & BIT(0)) == enable) + return 0; + + if (enable) + val |= BIT(0); + else + val &= ~BIT(0); + + err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); + if (err != sizeof(val)) { + dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err); + return -EAGAIN; + } + + if (enable) + dev_info(sfp->dev, "Module switched to %u.%uW power level\n", + sfp->module_power_mW / 1000, + (sfp->module_power_mW / 100) % 10); + + return 0; +} + +/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL + * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do + * not support multibyte reads from the EEPROM. Each multi-byte read + * operation returns just one byte of EEPROM followed by zeros. There is + * no way to identify which modules are using Realtek RTL8672 and RTL9601C + * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor + * name and vendor id into EEPROM, so there is even no way to detect if + * module is V-SOL V2801F. Therefore check for those zeros in the read + * data and then based on check switch to reading EEPROM to one byte + * at a time. + */ +static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) +{ + size_t i, block_size = sfp->i2c_block_size; + + /* Already using byte IO */ + if (block_size == 1) + return false; + + for (i = 1; i < len; i += block_size) { + if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) + return false; + } + return true; +} + +static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) +{ + u8 check; + int err; + + if (id->base.phys_id != SFF8024_ID_SFF_8472 || + id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || + id->base.connector != SFF8024_CONNECTOR_LC) { + dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); + id->base.phys_id = SFF8024_ID_SFF_8472; + id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; + id->base.connector = SFF8024_CONNECTOR_LC; + err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); + if (err != 3) { + dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err); + return err; + } + + /* Cotsworks modules have been found to require a delay between write operations. */ + mdelay(50); + + /* Update base structure checksum */ + check = sfp_check(&id->base, sizeof(id->base) - 1); + err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); + if (err != 1) { + dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err); + return err; + } + } + return 0; +} + +static int sfp_sm_mod_probe(struct sfp *sfp, bool report) +{ + /* SFP module inserted - read I2C data */ + struct sfp_eeprom_id id; + bool cotsworks_sfbg; + bool cotsworks; + u8 check; + int ret; + + sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; + + ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); + if (ret < 0) { + if (report) + dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret); + return -EAGAIN; + } + + if (ret != sizeof(id.base)) { + dev_err(sfp->dev, "EEPROM short read: %d\n", ret); + return -EAGAIN; + } + + /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from + * address 0x51 is just one byte at a time. Also SFF-8472 requires + * that EEPROM supports atomic 16bit read operation for diagnostic + * fields, so do not switch to one byte reading at a time unless it + * is really required and we have no other option. + */ + if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { + dev_info(sfp->dev, + "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); + dev_info(sfp->dev, + "Switching to reading EEPROM to one byte at a time\n"); + sfp->i2c_block_size = 1; + + ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); + if (ret < 0) { + if (report) + dev_err(sfp->dev, "failed to read EEPROM: %d\n", + ret); + return -EAGAIN; + } + + if (ret != sizeof(id.base)) { + dev_err(sfp->dev, "EEPROM short read: %d\n", ret); + return -EAGAIN; + } + } + + /* Cotsworks do not seem to update the checksums when they + * do the final programming with the final module part number, + * serial number and date code. + */ + cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); + cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); + + /* Cotsworks SFF module EEPROM do not always have valid phys_id, + * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if + * Cotsworks PN matches and bytes are not correct. + */ + if (cotsworks && cotsworks_sfbg) { + ret = sfp_cotsworks_fixup_check(sfp, &id); + if (ret < 0) + return ret; + } + + /* Validate the checksum over the base structure */ + check = sfp_check(&id.base, sizeof(id.base) - 1); + if (check != id.base.cc_base) { + if (cotsworks) { + dev_warn(sfp->dev, + "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", + check, id.base.cc_base); + } else { + dev_err(sfp->dev, + "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", + check, id.base.cc_base); + print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, + 16, 1, &id, sizeof(id), true); + return -EINVAL; + } + } + + ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); + if (ret < 0) { + if (report) + dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret); + return -EAGAIN; + } + + if (ret != sizeof(id.ext)) { + dev_err(sfp->dev, "EEPROM short read: %d\n", ret); + return -EAGAIN; + } + + check = sfp_check(&id.ext, sizeof(id.ext) - 1); + if (check != id.ext.cc_ext) { + if (cotsworks) { + dev_warn(sfp->dev, + "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", + check, id.ext.cc_ext); + } else { + dev_err(sfp->dev, + "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", + check, id.ext.cc_ext); + print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, + 16, 1, &id, sizeof(id), true); + memset(&id.ext, 0, sizeof(id.ext)); + } + } + + sfp->id = id; + + dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", + (int)sizeof(id.base.vendor_name), id.base.vendor_name, + (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, + (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, + (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, + (int)sizeof(id.ext.datecode), id.ext.datecode); + + /* Check whether we support this module */ + if (!sfp->type->module_supported(&id)) { + dev_err(sfp->dev, + "module is not supported - phys id 0x%02x 0x%02x\n", + sfp->id.base.phys_id, sfp->id.base.phys_ext_id); + return -EINVAL; + } + + /* If the module requires address swap mode, warn about it */ + if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) + dev_warn(sfp->dev, + "module address swap to access page 0xA2 is not supported.\n"); + + /* Parse the module power requirement */ + ret = sfp_module_parse_power(sfp); + if (ret < 0) + return ret; + + if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) && + !memcmp(id.base.vendor_pn, "3FE46541AA ", 16)) + sfp->module_t_start_up = T_START_UP_BAD_GPON; + else + sfp->module_t_start_up = T_START_UP; + + if (!memcmp(id.base.vendor_name, "HUAWEI ", 16) && + !memcmp(id.base.vendor_pn, "MA5671A ", 16)) + sfp->tx_fault_ignore = true; + else + sfp->tx_fault_ignore = false; + + return 0; +} + +static void sfp_sm_mod_remove(struct sfp *sfp) +{ + if (sfp->sm_mod_state > SFP_MOD_WAITDEV) + sfp_module_remove(sfp->sfp_bus); + + sfp_hwmon_remove(sfp); + + memset(&sfp->id, 0, sizeof(sfp->id)); + sfp->module_power_mW = 0; + + dev_info(sfp->dev, "module removed\n"); +} + +/* This state machine tracks the upstream's state */ +static void sfp_sm_device(struct sfp *sfp, unsigned int event) +{ + switch (sfp->sm_dev_state) { + default: + if (event == SFP_E_DEV_ATTACH) + sfp->sm_dev_state = SFP_DEV_DOWN; + break; + + case SFP_DEV_DOWN: + if (event == SFP_E_DEV_DETACH) + sfp->sm_dev_state = SFP_DEV_DETACHED; + else if (event == SFP_E_DEV_UP) + sfp->sm_dev_state = SFP_DEV_UP; + break; + + case SFP_DEV_UP: + if (event == SFP_E_DEV_DETACH) + sfp->sm_dev_state = SFP_DEV_DETACHED; + else if (event == SFP_E_DEV_DOWN) + sfp->sm_dev_state = SFP_DEV_DOWN; + break; + } +} + +/* This state machine tracks the insert/remove state of the module, probes + * the on-board EEPROM, and sets up the power level. + */ +static void sfp_sm_module(struct sfp *sfp, unsigned int event) +{ + int err; + + /* Handle remove event globally, it resets this state machine */ + if (event == SFP_E_REMOVE) { + if (sfp->sm_mod_state > SFP_MOD_PROBE) + sfp_sm_mod_remove(sfp); + sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); + return; + } + + /* Handle device detach globally */ + if (sfp->sm_dev_state < SFP_DEV_DOWN && + sfp->sm_mod_state > SFP_MOD_WAITDEV) { + if (sfp->module_power_mW > 1000 && + sfp->sm_mod_state > SFP_MOD_HPOWER) + sfp_sm_mod_hpower(sfp, false); + sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); + return; + } + + switch (sfp->sm_mod_state) { + default: + if (event == SFP_E_INSERT) { + sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); + sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; + sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; + } + break; + + case SFP_MOD_PROBE: + /* Wait for T_PROBE_INIT to time out */ + if (event != SFP_E_TIMEOUT) + break; + + err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); + if (err == -EAGAIN) { + if (sfp->sm_mod_tries_init && + --sfp->sm_mod_tries_init) { + sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); + break; + } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { + if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) + dev_warn(sfp->dev, + "please wait, module slow to respond\n"); + sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); + break; + } + } + if (err < 0) { + sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); + break; + } + + err = sfp_hwmon_insert(sfp); + if (err) + dev_warn(sfp->dev, "hwmon probe failed: %d\n", err); + + sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); + fallthrough; + case SFP_MOD_WAITDEV: + /* Ensure that the device is attached before proceeding */ + if (sfp->sm_dev_state < SFP_DEV_DOWN) + break; + + /* Report the module insertion to the upstream device */ + err = sfp_module_insert(sfp->sfp_bus, &sfp->id); + if (err < 0) { + sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); + break; + } + + /* If this is a power level 1 module, we are done */ + if (sfp->module_power_mW <= 1000) + goto insert; + + sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); + fallthrough; + case SFP_MOD_HPOWER: + /* Enable high power mode */ + err = sfp_sm_mod_hpower(sfp, true); + if (err < 0) { + if (err != -EAGAIN) { + sfp_module_remove(sfp->sfp_bus); + sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); + } else { + sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); + } + break; + } + + sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); + break; + + case SFP_MOD_WAITPWR: + /* Wait for T_HPOWER_LEVEL to time out */ + if (event != SFP_E_TIMEOUT) + break; + + insert: + sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); + break; + + case SFP_MOD_PRESENT: + case SFP_MOD_ERROR: + break; + } +} + +static void sfp_sm_main(struct sfp *sfp, unsigned int event) +{ + unsigned long timeout; + int ret; + + /* Some events are global */ + if (sfp->sm_state != SFP_S_DOWN && + (sfp->sm_mod_state != SFP_MOD_PRESENT || + sfp->sm_dev_state != SFP_DEV_UP)) { + if (sfp->sm_state == SFP_S_LINK_UP && + sfp->sm_dev_state == SFP_DEV_UP) + sfp_sm_link_down(sfp); + if (sfp->sm_state > SFP_S_INIT) + sfp_module_stop(sfp->sfp_bus); + if (sfp->mod_phy) + sfp_sm_phy_detach(sfp); + sfp_module_tx_disable(sfp); + sfp_soft_stop_poll(sfp); + sfp_sm_next(sfp, SFP_S_DOWN, 0); + return; + } + + /* The main state machine */ + switch (sfp->sm_state) { + case SFP_S_DOWN: + if (sfp->sm_mod_state != SFP_MOD_PRESENT || + sfp->sm_dev_state != SFP_DEV_UP) + break; + + if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) + sfp_soft_start_poll(sfp); + + sfp_module_tx_enable(sfp); + + /* Initialise the fault clearance retries */ + sfp->sm_fault_retries = N_FAULT_INIT; + + /* We need to check the TX_FAULT state, which is not defined + * while TX_DISABLE is asserted. The earliest we want to do + * anything (such as probe for a PHY) is 50ms. + */ + sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT); + break; + + case SFP_S_WAIT: + if (event != SFP_E_TIMEOUT) + break; + + if (sfp->state & SFP_F_TX_FAULT) { + /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) + * from the TX_DISABLE deassertion for the module to + * initialise, which is indicated by TX_FAULT + * deasserting. + */ + timeout = sfp->module_t_start_up; + if (timeout > T_WAIT) + timeout -= T_WAIT; + else + timeout = 1; + + sfp_sm_next(sfp, SFP_S_INIT, timeout); + } else { + /* TX_FAULT is not asserted, assume the module has + * finished initialising. + */ + goto init_done; + } + break; + + case SFP_S_INIT: + if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { + /* TX_FAULT is still asserted after t_init or + * or t_start_up, so assume there is a fault. + */ + sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, + sfp->sm_fault_retries == N_FAULT_INIT); + } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { + init_done: + sfp->sm_phy_retries = R_PHY_RETRY; + goto phy_probe; + } + break; + + case SFP_S_INIT_PHY: + if (event != SFP_E_TIMEOUT) + break; + phy_probe: + /* TX_FAULT deasserted or we timed out with TX_FAULT + * clear. Probe for the PHY and check the LOS state. + */ + ret = sfp_sm_probe_for_phy(sfp); + if (ret == -ENODEV) { + if (--sfp->sm_phy_retries) { + sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); + break; + } else { + dev_info(sfp->dev, "no PHY detected\n"); + } + } else if (ret) { + sfp_sm_next(sfp, SFP_S_FAIL, 0); + break; + } + if (sfp_module_start(sfp->sfp_bus)) { + sfp_sm_next(sfp, SFP_S_FAIL, 0); + break; + } + sfp_sm_link_check_los(sfp); + + /* Reset the fault retry count */ + sfp->sm_fault_retries = N_FAULT; + break; + + case SFP_S_INIT_TX_FAULT: + if (event == SFP_E_TIMEOUT) { + sfp_module_tx_fault_reset(sfp); + sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); + } + break; + + case SFP_S_WAIT_LOS: + if (event == SFP_E_TX_FAULT) + sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); + else if (sfp_los_event_inactive(sfp, event)) + sfp_sm_link_up(sfp); + break; + + case SFP_S_LINK_UP: + if (event == SFP_E_TX_FAULT) { + sfp_sm_link_down(sfp); + sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); + } else if (sfp_los_event_active(sfp, event)) { + sfp_sm_link_down(sfp); + sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); + } + break; + + case SFP_S_TX_FAULT: + if (event == SFP_E_TIMEOUT) { + sfp_module_tx_fault_reset(sfp); + sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); + } + break; + + case SFP_S_REINIT: + if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { + sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); + } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { + dev_info(sfp->dev, "module transmit fault recovered\n"); + sfp_sm_link_check_los(sfp); + } + break; + + case SFP_S_TX_DISABLE: + break; + } +} + +static void sfp_sm_event(struct sfp *sfp, unsigned int event) +{ + mutex_lock(&sfp->sm_mutex); + + dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", + mod_state_to_str(sfp->sm_mod_state), + dev_state_to_str(sfp->sm_dev_state), + sm_state_to_str(sfp->sm_state), + event_to_str(event)); + + sfp_sm_device(sfp, event); + sfp_sm_module(sfp, event); + sfp_sm_main(sfp, event); + + dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", + mod_state_to_str(sfp->sm_mod_state), + dev_state_to_str(sfp->sm_dev_state), + sm_state_to_str(sfp->sm_state)); + + mutex_unlock(&sfp->sm_mutex); +} + +static void sfp_attach(struct sfp *sfp) +{ + sfp_sm_event(sfp, SFP_E_DEV_ATTACH); +} + +static void sfp_detach(struct sfp *sfp) +{ + sfp_sm_event(sfp, SFP_E_DEV_DETACH); +} + +static void sfp_start(struct sfp *sfp) +{ + sfp_sm_event(sfp, SFP_E_DEV_UP); +} + +static void sfp_stop(struct sfp *sfp) +{ + sfp_sm_event(sfp, SFP_E_DEV_DOWN); +} + +static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) +{ + /* locking... and check module is present */ + + if (sfp->id.ext.sff8472_compliance && + !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { + modinfo->type = ETH_MODULE_SFF_8472; + modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; + } else { + modinfo->type = ETH_MODULE_SFF_8079; + modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; + } + return 0; +} + +static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, + u8 *data) +{ + unsigned int first, last, len; + int ret; + + if (ee->len == 0) + return -EINVAL; + + first = ee->offset; + last = ee->offset + ee->len; + if (first < ETH_MODULE_SFF_8079_LEN) { + len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); + len -= first; + + ret = sfp_read(sfp, false, first, data, len); + if (ret < 0) + return ret; + + first += len; + data += len; + } + if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { + len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); + len -= first; + first -= ETH_MODULE_SFF_8079_LEN; + + ret = sfp_read(sfp, true, first, data, len); + if (ret < 0) + return ret; + } + return 0; +} + +static const struct sfp_socket_ops sfp_module_ops = { + .attach = sfp_attach, + .detach = sfp_detach, + .start = sfp_start, + .stop = sfp_stop, + .module_info = sfp_module_info, + .module_eeprom = sfp_module_eeprom, +}; + +static void sfp_timeout(struct work_struct *work) +{ + struct sfp *sfp = container_of(work, struct sfp, timeout.work); + + rtnl_lock(); + sfp_sm_event(sfp, SFP_E_TIMEOUT); + rtnl_unlock(); +} + +static void sfp_check_state(struct sfp *sfp) +{ + unsigned int state, i, changed; + + mutex_lock(&sfp->st_mutex); + state = sfp_get_state(sfp); + changed = state ^ sfp->state; + if (sfp->tx_fault_ignore) + changed &= SFP_F_PRESENT | SFP_F_LOS; + else + changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; + + for (i = 0; i < GPIO_MAX; i++) + if (changed & BIT(i)) + dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i], + !!(sfp->state & BIT(i)), !!(state & BIT(i))); + + state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); + sfp->state = state; + + rtnl_lock(); + if (changed & SFP_F_PRESENT) + sfp_sm_event(sfp, state & SFP_F_PRESENT ? + SFP_E_INSERT : SFP_E_REMOVE); + + if (changed & SFP_F_TX_FAULT) + sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? + SFP_E_TX_FAULT : SFP_E_TX_CLEAR); + + if (changed & SFP_F_LOS) + sfp_sm_event(sfp, state & SFP_F_LOS ? + SFP_E_LOS_HIGH : SFP_E_LOS_LOW); + rtnl_unlock(); + mutex_unlock(&sfp->st_mutex); +} + +static irqreturn_t sfp_irq(int irq, void *data) +{ + struct sfp *sfp = data; + + sfp_check_state(sfp); + + return IRQ_HANDLED; +} + +static void sfp_poll(struct work_struct *work) +{ + struct sfp *sfp = container_of(work, struct sfp, poll.work); + + sfp_check_state(sfp); + + if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || + sfp->need_poll) + mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); +} + +static struct sfp *sfp_alloc(struct device *dev) +{ + struct sfp *sfp; + + sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); + if (!sfp) + return ERR_PTR(-ENOMEM); + + sfp->dev = dev; + sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; + + mutex_init(&sfp->sm_mutex); + mutex_init(&sfp->st_mutex); + INIT_DELAYED_WORK(&sfp->poll, sfp_poll); + INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); + + sfp_hwmon_init(sfp); + + return sfp; +} + +static void sfp_cleanup(void *data) +{ + struct sfp *sfp = data; + + sfp_hwmon_exit(sfp); + + cancel_delayed_work_sync(&sfp->poll); + cancel_delayed_work_sync(&sfp->timeout); + if (sfp->i2c_mii) { + mdiobus_unregister(sfp->i2c_mii); + mdiobus_free(sfp->i2c_mii); + } + if (sfp->i2c) + i2c_put_adapter(sfp->i2c); + kfree(sfp); +} + +static int sfp_probe(struct platform_device *pdev) +{ + const struct sff_data *sff; + struct i2c_adapter *i2c; + char *sfp_irq_name; + struct sfp *sfp; + int err, i; + + sfp = sfp_alloc(&pdev->dev); + if (IS_ERR(sfp)) + return PTR_ERR(sfp); + + platform_set_drvdata(pdev, sfp); + + err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); + if (err < 0) + return err; + + sff = sfp->type = &sfp_data; + + if (pdev->dev.of_node) { + struct device_node *node = pdev->dev.of_node; + const struct of_device_id *id; + struct device_node *np; + + id = of_match_node(sfp_of_match, node); + if (WARN_ON(!id)) + return -EINVAL; + + sff = sfp->type = id->data; + + np = of_parse_phandle(node, "i2c-bus", 0); + if (!np) { + dev_err(sfp->dev, "missing 'i2c-bus' property\n"); + return -ENODEV; + } + + i2c = of_find_i2c_adapter_by_node(np); + of_node_put(np); + } else if (has_acpi_companion(&pdev->dev)) { + struct acpi_device *adev = ACPI_COMPANION(&pdev->dev); + struct fwnode_handle *fw = acpi_fwnode_handle(adev); + struct fwnode_reference_args args; + struct acpi_handle *acpi_handle; + int ret; + + ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args); + if (ret || !is_acpi_device_node(args.fwnode)) { + dev_err(&pdev->dev, "missing 'i2c-bus' property\n"); + return -ENODEV; + } + + acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode); + i2c = i2c_acpi_find_adapter_by_handle(acpi_handle); + } else { + return -EINVAL; + } + + if (!i2c) + return -EPROBE_DEFER; + + err = sfp_i2c_configure(sfp, i2c); + if (err < 0) { + i2c_put_adapter(i2c); + return err; + } + + for (i = 0; i < GPIO_MAX; i++) + if (sff->gpios & BIT(i)) { + sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, + gpio_of_names[i], gpio_flags[i]); + if (IS_ERR(sfp->gpio[i])) + return PTR_ERR(sfp->gpio[i]); + } + + sfp->get_state = sfp_gpio_get_state; + sfp->set_state = sfp_gpio_set_state; + + /* Modules that have no detect signal are always present */ + if (!(sfp->gpio[GPIO_MODDEF0])) + sfp->get_state = sff_gpio_get_state; + + device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", + &sfp->max_power_mW); + if (!sfp->max_power_mW) + sfp->max_power_mW = 1000; + + dev_info(sfp->dev, "Host maximum power %u.%uW\n", + sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); + + /* Get the initial state, and always signal TX disable, + * since the network interface will not be up. + */ + sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; + + if (sfp->gpio[GPIO_RATE_SELECT] && + gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) + sfp->state |= SFP_F_RATE_SELECT; + sfp_set_state(sfp, sfp->state); + sfp_module_tx_disable(sfp); + if (sfp->state & SFP_F_PRESENT) { + rtnl_lock(); + sfp_sm_event(sfp, SFP_E_INSERT); + rtnl_unlock(); + } + + for (i = 0; i < GPIO_MAX; i++) { + if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) + continue; + + sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); + if (sfp->gpio_irq[i] < 0) { + sfp->gpio_irq[i] = 0; + sfp->need_poll = true; + continue; + } + + sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, + "%s-%s", dev_name(sfp->dev), + gpio_of_names[i]); + + if (!sfp_irq_name) + return -ENOMEM; + + err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], + NULL, sfp_irq, + IRQF_ONESHOT | + IRQF_TRIGGER_RISING | + IRQF_TRIGGER_FALLING, + sfp_irq_name, sfp); + if (err) { + sfp->gpio_irq[i] = 0; + sfp->need_poll = true; + } + } + + if (sfp->need_poll) + mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); + + /* We could have an issue in cases no Tx disable pin is available or + * wired as modules using a laser as their light source will continue to + * be active when the fiber is removed. This could be a safety issue and + * we should at least warn the user about that. + */ + if (!sfp->gpio[GPIO_TX_DISABLE]) + dev_warn(sfp->dev, + "No tx_disable pin: SFP modules will always be emitting.\n"); + + sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); + if (!sfp->sfp_bus) + return -ENOMEM; + + return 0; +} + +static int sfp_remove(struct platform_device *pdev) +{ + struct sfp *sfp = platform_get_drvdata(pdev); + + sfp_unregister_socket(sfp->sfp_bus); + + rtnl_lock(); + sfp_sm_event(sfp, SFP_E_REMOVE); + rtnl_unlock(); + + return 0; +} + +static void sfp_shutdown(struct platform_device *pdev) +{ + struct sfp *sfp = platform_get_drvdata(pdev); + int i; + + for (i = 0; i < GPIO_MAX; i++) { + if (!sfp->gpio_irq[i]) + continue; + + devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); + } + + cancel_delayed_work_sync(&sfp->poll); + cancel_delayed_work_sync(&sfp->timeout); +} + +static struct platform_driver sfp_driver = { + .probe = sfp_probe, + .remove = sfp_remove, + .shutdown = sfp_shutdown, + .driver = { + .name = "sfp", + .of_match_table = sfp_of_match, + }, +}; + +static int sfp_init(void) +{ + poll_jiffies = msecs_to_jiffies(100); + + return platform_driver_register(&sfp_driver); +} +module_init(sfp_init); + +static void sfp_exit(void) +{ + platform_driver_unregister(&sfp_driver); +} +module_exit(sfp_exit); + +MODULE_ALIAS("platform:sfp"); +MODULE_AUTHOR("Russell King"); +MODULE_LICENSE("GPL v2"); |