diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /fs/userfaultfd.c | |
parent | Initial commit. (diff) | |
download | linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip |
Adding upstream version 5.10.209.upstream/5.10.209
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fs/userfaultfd.c')
-rw-r--r-- | fs/userfaultfd.c | 2007 |
1 files changed, 2007 insertions, 0 deletions
diff --git a/fs/userfaultfd.c b/fs/userfaultfd.c new file mode 100644 index 000000000..a3074a9d7 --- /dev/null +++ b/fs/userfaultfd.c @@ -0,0 +1,2007 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * fs/userfaultfd.c + * + * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> + * Copyright (C) 2008-2009 Red Hat, Inc. + * Copyright (C) 2015 Red Hat, Inc. + * + * Some part derived from fs/eventfd.c (anon inode setup) and + * mm/ksm.c (mm hashing). + */ + +#include <linux/list.h> +#include <linux/hashtable.h> +#include <linux/sched/signal.h> +#include <linux/sched/mm.h> +#include <linux/mm.h> +#include <linux/poll.h> +#include <linux/slab.h> +#include <linux/seq_file.h> +#include <linux/file.h> +#include <linux/bug.h> +#include <linux/anon_inodes.h> +#include <linux/syscalls.h> +#include <linux/userfaultfd_k.h> +#include <linux/mempolicy.h> +#include <linux/ioctl.h> +#include <linux/security.h> +#include <linux/hugetlb.h> + +int sysctl_unprivileged_userfaultfd __read_mostly = 1; + +static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; + +/* + * Start with fault_pending_wqh and fault_wqh so they're more likely + * to be in the same cacheline. + * + * Locking order: + * fd_wqh.lock + * fault_pending_wqh.lock + * fault_wqh.lock + * event_wqh.lock + * + * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, + * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's + * also taken in IRQ context. + */ +struct userfaultfd_ctx { + /* waitqueue head for the pending (i.e. not read) userfaults */ + wait_queue_head_t fault_pending_wqh; + /* waitqueue head for the userfaults */ + wait_queue_head_t fault_wqh; + /* waitqueue head for the pseudo fd to wakeup poll/read */ + wait_queue_head_t fd_wqh; + /* waitqueue head for events */ + wait_queue_head_t event_wqh; + /* a refile sequence protected by fault_pending_wqh lock */ + seqcount_spinlock_t refile_seq; + /* pseudo fd refcounting */ + refcount_t refcount; + /* userfaultfd syscall flags */ + unsigned int flags; + /* features requested from the userspace */ + unsigned int features; + /* released */ + bool released; + /* memory mappings are changing because of non-cooperative event */ + bool mmap_changing; + /* mm with one ore more vmas attached to this userfaultfd_ctx */ + struct mm_struct *mm; +}; + +struct userfaultfd_fork_ctx { + struct userfaultfd_ctx *orig; + struct userfaultfd_ctx *new; + struct list_head list; +}; + +struct userfaultfd_unmap_ctx { + struct userfaultfd_ctx *ctx; + unsigned long start; + unsigned long end; + struct list_head list; +}; + +struct userfaultfd_wait_queue { + struct uffd_msg msg; + wait_queue_entry_t wq; + struct userfaultfd_ctx *ctx; + bool waken; +}; + +struct userfaultfd_wake_range { + unsigned long start; + unsigned long len; +}; + +/* internal indication that UFFD_API ioctl was successfully executed */ +#define UFFD_FEATURE_INITIALIZED (1u << 31) + +static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) +{ + return ctx->features & UFFD_FEATURE_INITIALIZED; +} + +static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, + int wake_flags, void *key) +{ + struct userfaultfd_wake_range *range = key; + int ret; + struct userfaultfd_wait_queue *uwq; + unsigned long start, len; + + uwq = container_of(wq, struct userfaultfd_wait_queue, wq); + ret = 0; + /* len == 0 means wake all */ + start = range->start; + len = range->len; + if (len && (start > uwq->msg.arg.pagefault.address || + start + len <= uwq->msg.arg.pagefault.address)) + goto out; + WRITE_ONCE(uwq->waken, true); + /* + * The Program-Order guarantees provided by the scheduler + * ensure uwq->waken is visible before the task is woken. + */ + ret = wake_up_state(wq->private, mode); + if (ret) { + /* + * Wake only once, autoremove behavior. + * + * After the effect of list_del_init is visible to the other + * CPUs, the waitqueue may disappear from under us, see the + * !list_empty_careful() in handle_userfault(). + * + * try_to_wake_up() has an implicit smp_mb(), and the + * wq->private is read before calling the extern function + * "wake_up_state" (which in turns calls try_to_wake_up). + */ + list_del_init(&wq->entry); + } +out: + return ret; +} + +/** + * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd + * context. + * @ctx: [in] Pointer to the userfaultfd context. + */ +static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) +{ + refcount_inc(&ctx->refcount); +} + +/** + * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd + * context. + * @ctx: [in] Pointer to userfaultfd context. + * + * The userfaultfd context reference must have been previously acquired either + * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). + */ +static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) +{ + if (refcount_dec_and_test(&ctx->refcount)) { + VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); + VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); + VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); + VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); + VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); + VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); + VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); + VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); + mmdrop(ctx->mm); + kmem_cache_free(userfaultfd_ctx_cachep, ctx); + } +} + +static inline void msg_init(struct uffd_msg *msg) +{ + BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); + /* + * Must use memset to zero out the paddings or kernel data is + * leaked to userland. + */ + memset(msg, 0, sizeof(struct uffd_msg)); +} + +static inline struct uffd_msg userfault_msg(unsigned long address, + unsigned int flags, + unsigned long reason, + unsigned int features) +{ + struct uffd_msg msg; + msg_init(&msg); + msg.event = UFFD_EVENT_PAGEFAULT; + msg.arg.pagefault.address = address; + if (flags & FAULT_FLAG_WRITE) + /* + * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the + * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE + * was not set in a UFFD_EVENT_PAGEFAULT, it means it + * was a read fault, otherwise if set it means it's + * a write fault. + */ + msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; + if (reason & VM_UFFD_WP) + /* + * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the + * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was + * not set in a UFFD_EVENT_PAGEFAULT, it means it was + * a missing fault, otherwise if set it means it's a + * write protect fault. + */ + msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; + if (features & UFFD_FEATURE_THREAD_ID) + msg.arg.pagefault.feat.ptid = task_pid_vnr(current); + return msg; +} + +#ifdef CONFIG_HUGETLB_PAGE +/* + * Same functionality as userfaultfd_must_wait below with modifications for + * hugepmd ranges. + */ +static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, + struct vm_area_struct *vma, + unsigned long address, + unsigned long flags, + unsigned long reason) +{ + struct mm_struct *mm = ctx->mm; + pte_t *ptep, pte; + bool ret = true; + + mmap_assert_locked(mm); + + ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); + + if (!ptep) + goto out; + + ret = false; + pte = huge_ptep_get(ptep); + + /* + * Lockless access: we're in a wait_event so it's ok if it + * changes under us. + */ + if (huge_pte_none(pte)) + ret = true; + if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) + ret = true; +out: + return ret; +} +#else +static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, + struct vm_area_struct *vma, + unsigned long address, + unsigned long flags, + unsigned long reason) +{ + return false; /* should never get here */ +} +#endif /* CONFIG_HUGETLB_PAGE */ + +/* + * Verify the pagetables are still not ok after having reigstered into + * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any + * userfault that has already been resolved, if userfaultfd_read and + * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different + * threads. + */ +static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, + unsigned long address, + unsigned long flags, + unsigned long reason) +{ + struct mm_struct *mm = ctx->mm; + pgd_t *pgd; + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd, _pmd; + pte_t *pte; + bool ret = true; + + mmap_assert_locked(mm); + + pgd = pgd_offset(mm, address); + if (!pgd_present(*pgd)) + goto out; + p4d = p4d_offset(pgd, address); + if (!p4d_present(*p4d)) + goto out; + pud = pud_offset(p4d, address); + if (!pud_present(*pud)) + goto out; + pmd = pmd_offset(pud, address); + /* + * READ_ONCE must function as a barrier with narrower scope + * and it must be equivalent to: + * _pmd = *pmd; barrier(); + * + * This is to deal with the instability (as in + * pmd_trans_unstable) of the pmd. + */ + _pmd = READ_ONCE(*pmd); + if (pmd_none(_pmd)) + goto out; + + ret = false; + if (!pmd_present(_pmd)) + goto out; + + if (pmd_trans_huge(_pmd)) { + if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) + ret = true; + goto out; + } + + /* + * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it + * and use the standard pte_offset_map() instead of parsing _pmd. + */ + pte = pte_offset_map(pmd, address); + /* + * Lockless access: we're in a wait_event so it's ok if it + * changes under us. + */ + if (pte_none(*pte)) + ret = true; + if (!pte_write(*pte) && (reason & VM_UFFD_WP)) + ret = true; + pte_unmap(pte); + +out: + return ret; +} + +static inline long userfaultfd_get_blocking_state(unsigned int flags) +{ + if (flags & FAULT_FLAG_INTERRUPTIBLE) + return TASK_INTERRUPTIBLE; + + if (flags & FAULT_FLAG_KILLABLE) + return TASK_KILLABLE; + + return TASK_UNINTERRUPTIBLE; +} + +/* + * The locking rules involved in returning VM_FAULT_RETRY depending on + * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and + * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" + * recommendation in __lock_page_or_retry is not an understatement. + * + * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released + * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is + * not set. + * + * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not + * set, VM_FAULT_RETRY can still be returned if and only if there are + * fatal_signal_pending()s, and the mmap_lock must be released before + * returning it. + */ +vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) +{ + struct mm_struct *mm = vmf->vma->vm_mm; + struct userfaultfd_ctx *ctx; + struct userfaultfd_wait_queue uwq; + vm_fault_t ret = VM_FAULT_SIGBUS; + bool must_wait; + long blocking_state; + + /* + * We don't do userfault handling for the final child pid update. + * + * We also don't do userfault handling during + * coredumping. hugetlbfs has the special + * follow_hugetlb_page() to skip missing pages in the + * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with + * the no_page_table() helper in follow_page_mask(), but the + * shmem_vm_ops->fault method is invoked even during + * coredumping without mmap_lock and it ends up here. + */ + if (current->flags & (PF_EXITING|PF_DUMPCORE)) + goto out; + + /* + * Coredumping runs without mmap_lock so we can only check that + * the mmap_lock is held, if PF_DUMPCORE was not set. + */ + mmap_assert_locked(mm); + + ctx = vmf->vma->vm_userfaultfd_ctx.ctx; + if (!ctx) + goto out; + + BUG_ON(ctx->mm != mm); + + VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); + VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); + + if (ctx->features & UFFD_FEATURE_SIGBUS) + goto out; + + /* + * If it's already released don't get it. This avoids to loop + * in __get_user_pages if userfaultfd_release waits on the + * caller of handle_userfault to release the mmap_lock. + */ + if (unlikely(READ_ONCE(ctx->released))) { + /* + * Don't return VM_FAULT_SIGBUS in this case, so a non + * cooperative manager can close the uffd after the + * last UFFDIO_COPY, without risking to trigger an + * involuntary SIGBUS if the process was starting the + * userfaultfd while the userfaultfd was still armed + * (but after the last UFFDIO_COPY). If the uffd + * wasn't already closed when the userfault reached + * this point, that would normally be solved by + * userfaultfd_must_wait returning 'false'. + * + * If we were to return VM_FAULT_SIGBUS here, the non + * cooperative manager would be instead forced to + * always call UFFDIO_UNREGISTER before it can safely + * close the uffd. + */ + ret = VM_FAULT_NOPAGE; + goto out; + } + + /* + * Check that we can return VM_FAULT_RETRY. + * + * NOTE: it should become possible to return VM_FAULT_RETRY + * even if FAULT_FLAG_TRIED is set without leading to gup() + * -EBUSY failures, if the userfaultfd is to be extended for + * VM_UFFD_WP tracking and we intend to arm the userfault + * without first stopping userland access to the memory. For + * VM_UFFD_MISSING userfaults this is enough for now. + */ + if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { + /* + * Validate the invariant that nowait must allow retry + * to be sure not to return SIGBUS erroneously on + * nowait invocations. + */ + BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); +#ifdef CONFIG_DEBUG_VM + if (printk_ratelimit()) { + printk(KERN_WARNING + "FAULT_FLAG_ALLOW_RETRY missing %x\n", + vmf->flags); + dump_stack(); + } +#endif + goto out; + } + + /* + * Handle nowait, not much to do other than tell it to retry + * and wait. + */ + ret = VM_FAULT_RETRY; + if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) + goto out; + + /* take the reference before dropping the mmap_lock */ + userfaultfd_ctx_get(ctx); + + init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); + uwq.wq.private = current; + uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, + ctx->features); + uwq.ctx = ctx; + uwq.waken = false; + + blocking_state = userfaultfd_get_blocking_state(vmf->flags); + + spin_lock_irq(&ctx->fault_pending_wqh.lock); + /* + * After the __add_wait_queue the uwq is visible to userland + * through poll/read(). + */ + __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); + /* + * The smp_mb() after __set_current_state prevents the reads + * following the spin_unlock to happen before the list_add in + * __add_wait_queue. + */ + set_current_state(blocking_state); + spin_unlock_irq(&ctx->fault_pending_wqh.lock); + + if (!is_vm_hugetlb_page(vmf->vma)) + must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, + reason); + else + must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, + vmf->address, + vmf->flags, reason); + mmap_read_unlock(mm); + + if (likely(must_wait && !READ_ONCE(ctx->released))) { + wake_up_poll(&ctx->fd_wqh, EPOLLIN); + schedule(); + } + + __set_current_state(TASK_RUNNING); + + /* + * Here we race with the list_del; list_add in + * userfaultfd_ctx_read(), however because we don't ever run + * list_del_init() to refile across the two lists, the prev + * and next pointers will never point to self. list_add also + * would never let any of the two pointers to point to + * self. So list_empty_careful won't risk to see both pointers + * pointing to self at any time during the list refile. The + * only case where list_del_init() is called is the full + * removal in the wake function and there we don't re-list_add + * and it's fine not to block on the spinlock. The uwq on this + * kernel stack can be released after the list_del_init. + */ + if (!list_empty_careful(&uwq.wq.entry)) { + spin_lock_irq(&ctx->fault_pending_wqh.lock); + /* + * No need of list_del_init(), the uwq on the stack + * will be freed shortly anyway. + */ + list_del(&uwq.wq.entry); + spin_unlock_irq(&ctx->fault_pending_wqh.lock); + } + + /* + * ctx may go away after this if the userfault pseudo fd is + * already released. + */ + userfaultfd_ctx_put(ctx); + +out: + return ret; +} + +static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, + struct userfaultfd_wait_queue *ewq) +{ + struct userfaultfd_ctx *release_new_ctx; + + if (WARN_ON_ONCE(current->flags & PF_EXITING)) + goto out; + + ewq->ctx = ctx; + init_waitqueue_entry(&ewq->wq, current); + release_new_ctx = NULL; + + spin_lock_irq(&ctx->event_wqh.lock); + /* + * After the __add_wait_queue the uwq is visible to userland + * through poll/read(). + */ + __add_wait_queue(&ctx->event_wqh, &ewq->wq); + for (;;) { + set_current_state(TASK_KILLABLE); + if (ewq->msg.event == 0) + break; + if (READ_ONCE(ctx->released) || + fatal_signal_pending(current)) { + /* + * &ewq->wq may be queued in fork_event, but + * __remove_wait_queue ignores the head + * parameter. It would be a problem if it + * didn't. + */ + __remove_wait_queue(&ctx->event_wqh, &ewq->wq); + if (ewq->msg.event == UFFD_EVENT_FORK) { + struct userfaultfd_ctx *new; + + new = (struct userfaultfd_ctx *) + (unsigned long) + ewq->msg.arg.reserved.reserved1; + release_new_ctx = new; + } + break; + } + + spin_unlock_irq(&ctx->event_wqh.lock); + + wake_up_poll(&ctx->fd_wqh, EPOLLIN); + schedule(); + + spin_lock_irq(&ctx->event_wqh.lock); + } + __set_current_state(TASK_RUNNING); + spin_unlock_irq(&ctx->event_wqh.lock); + + if (release_new_ctx) { + struct vm_area_struct *vma; + struct mm_struct *mm = release_new_ctx->mm; + + /* the various vma->vm_userfaultfd_ctx still points to it */ + mmap_write_lock(mm); + for (vma = mm->mmap; vma; vma = vma->vm_next) + if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { + vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; + vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); + } + mmap_write_unlock(mm); + + userfaultfd_ctx_put(release_new_ctx); + } + + /* + * ctx may go away after this if the userfault pseudo fd is + * already released. + */ +out: + WRITE_ONCE(ctx->mmap_changing, false); + userfaultfd_ctx_put(ctx); +} + +static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, + struct userfaultfd_wait_queue *ewq) +{ + ewq->msg.event = 0; + wake_up_locked(&ctx->event_wqh); + __remove_wait_queue(&ctx->event_wqh, &ewq->wq); +} + +int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) +{ + struct userfaultfd_ctx *ctx = NULL, *octx; + struct userfaultfd_fork_ctx *fctx; + + octx = vma->vm_userfaultfd_ctx.ctx; + if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { + vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; + vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); + return 0; + } + + list_for_each_entry(fctx, fcs, list) + if (fctx->orig == octx) { + ctx = fctx->new; + break; + } + + if (!ctx) { + fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); + if (!fctx) + return -ENOMEM; + + ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); + if (!ctx) { + kfree(fctx); + return -ENOMEM; + } + + refcount_set(&ctx->refcount, 1); + ctx->flags = octx->flags; + ctx->features = octx->features; + ctx->released = false; + ctx->mmap_changing = false; + ctx->mm = vma->vm_mm; + mmgrab(ctx->mm); + + userfaultfd_ctx_get(octx); + WRITE_ONCE(octx->mmap_changing, true); + fctx->orig = octx; + fctx->new = ctx; + list_add_tail(&fctx->list, fcs); + } + + vma->vm_userfaultfd_ctx.ctx = ctx; + return 0; +} + +static void dup_fctx(struct userfaultfd_fork_ctx *fctx) +{ + struct userfaultfd_ctx *ctx = fctx->orig; + struct userfaultfd_wait_queue ewq; + + msg_init(&ewq.msg); + + ewq.msg.event = UFFD_EVENT_FORK; + ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; + + userfaultfd_event_wait_completion(ctx, &ewq); +} + +void dup_userfaultfd_complete(struct list_head *fcs) +{ + struct userfaultfd_fork_ctx *fctx, *n; + + list_for_each_entry_safe(fctx, n, fcs, list) { + dup_fctx(fctx); + list_del(&fctx->list); + kfree(fctx); + } +} + +void mremap_userfaultfd_prep(struct vm_area_struct *vma, + struct vm_userfaultfd_ctx *vm_ctx) +{ + struct userfaultfd_ctx *ctx; + + ctx = vma->vm_userfaultfd_ctx.ctx; + + if (!ctx) + return; + + if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { + vm_ctx->ctx = ctx; + userfaultfd_ctx_get(ctx); + WRITE_ONCE(ctx->mmap_changing, true); + } else { + /* Drop uffd context if remap feature not enabled */ + vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; + vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); + } +} + +void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, + unsigned long from, unsigned long to, + unsigned long len) +{ + struct userfaultfd_ctx *ctx = vm_ctx->ctx; + struct userfaultfd_wait_queue ewq; + + if (!ctx) + return; + + if (to & ~PAGE_MASK) { + userfaultfd_ctx_put(ctx); + return; + } + + msg_init(&ewq.msg); + + ewq.msg.event = UFFD_EVENT_REMAP; + ewq.msg.arg.remap.from = from; + ewq.msg.arg.remap.to = to; + ewq.msg.arg.remap.len = len; + + userfaultfd_event_wait_completion(ctx, &ewq); +} + +bool userfaultfd_remove(struct vm_area_struct *vma, + unsigned long start, unsigned long end) +{ + struct mm_struct *mm = vma->vm_mm; + struct userfaultfd_ctx *ctx; + struct userfaultfd_wait_queue ewq; + + ctx = vma->vm_userfaultfd_ctx.ctx; + if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) + return true; + + userfaultfd_ctx_get(ctx); + WRITE_ONCE(ctx->mmap_changing, true); + mmap_read_unlock(mm); + + msg_init(&ewq.msg); + + ewq.msg.event = UFFD_EVENT_REMOVE; + ewq.msg.arg.remove.start = start; + ewq.msg.arg.remove.end = end; + + userfaultfd_event_wait_completion(ctx, &ewq); + + return false; +} + +static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, + unsigned long start, unsigned long end) +{ + struct userfaultfd_unmap_ctx *unmap_ctx; + + list_for_each_entry(unmap_ctx, unmaps, list) + if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && + unmap_ctx->end == end) + return true; + + return false; +} + +int userfaultfd_unmap_prep(struct vm_area_struct *vma, + unsigned long start, unsigned long end, + struct list_head *unmaps) +{ + for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { + struct userfaultfd_unmap_ctx *unmap_ctx; + struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; + + if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || + has_unmap_ctx(ctx, unmaps, start, end)) + continue; + + unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); + if (!unmap_ctx) + return -ENOMEM; + + userfaultfd_ctx_get(ctx); + WRITE_ONCE(ctx->mmap_changing, true); + unmap_ctx->ctx = ctx; + unmap_ctx->start = start; + unmap_ctx->end = end; + list_add_tail(&unmap_ctx->list, unmaps); + } + + return 0; +} + +void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) +{ + struct userfaultfd_unmap_ctx *ctx, *n; + struct userfaultfd_wait_queue ewq; + + list_for_each_entry_safe(ctx, n, uf, list) { + msg_init(&ewq.msg); + + ewq.msg.event = UFFD_EVENT_UNMAP; + ewq.msg.arg.remove.start = ctx->start; + ewq.msg.arg.remove.end = ctx->end; + + userfaultfd_event_wait_completion(ctx->ctx, &ewq); + + list_del(&ctx->list); + kfree(ctx); + } +} + +static int userfaultfd_release(struct inode *inode, struct file *file) +{ + struct userfaultfd_ctx *ctx = file->private_data; + struct mm_struct *mm = ctx->mm; + struct vm_area_struct *vma, *prev; + /* len == 0 means wake all */ + struct userfaultfd_wake_range range = { .len = 0, }; + unsigned long new_flags; + + WRITE_ONCE(ctx->released, true); + + if (!mmget_not_zero(mm)) + goto wakeup; + + /* + * Flush page faults out of all CPUs. NOTE: all page faults + * must be retried without returning VM_FAULT_SIGBUS if + * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx + * changes while handle_userfault released the mmap_lock. So + * it's critical that released is set to true (above), before + * taking the mmap_lock for writing. + */ + mmap_write_lock(mm); + prev = NULL; + for (vma = mm->mmap; vma; vma = vma->vm_next) { + cond_resched(); + BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ + !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); + if (vma->vm_userfaultfd_ctx.ctx != ctx) { + prev = vma; + continue; + } + new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); + prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, + new_flags, vma->anon_vma, + vma->vm_file, vma->vm_pgoff, + vma_policy(vma), + NULL_VM_UFFD_CTX); + if (prev) + vma = prev; + else + prev = vma; + vma->vm_flags = new_flags; + vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; + } + mmap_write_unlock(mm); + mmput(mm); +wakeup: + /* + * After no new page faults can wait on this fault_*wqh, flush + * the last page faults that may have been already waiting on + * the fault_*wqh. + */ + spin_lock_irq(&ctx->fault_pending_wqh.lock); + __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); + __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); + spin_unlock_irq(&ctx->fault_pending_wqh.lock); + + /* Flush pending events that may still wait on event_wqh */ + wake_up_all(&ctx->event_wqh); + + wake_up_poll(&ctx->fd_wqh, EPOLLHUP); + userfaultfd_ctx_put(ctx); + return 0; +} + +/* fault_pending_wqh.lock must be hold by the caller */ +static inline struct userfaultfd_wait_queue *find_userfault_in( + wait_queue_head_t *wqh) +{ + wait_queue_entry_t *wq; + struct userfaultfd_wait_queue *uwq; + + lockdep_assert_held(&wqh->lock); + + uwq = NULL; + if (!waitqueue_active(wqh)) + goto out; + /* walk in reverse to provide FIFO behavior to read userfaults */ + wq = list_last_entry(&wqh->head, typeof(*wq), entry); + uwq = container_of(wq, struct userfaultfd_wait_queue, wq); +out: + return uwq; +} + +static inline struct userfaultfd_wait_queue *find_userfault( + struct userfaultfd_ctx *ctx) +{ + return find_userfault_in(&ctx->fault_pending_wqh); +} + +static inline struct userfaultfd_wait_queue *find_userfault_evt( + struct userfaultfd_ctx *ctx) +{ + return find_userfault_in(&ctx->event_wqh); +} + +static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) +{ + struct userfaultfd_ctx *ctx = file->private_data; + __poll_t ret; + + poll_wait(file, &ctx->fd_wqh, wait); + + if (!userfaultfd_is_initialized(ctx)) + return EPOLLERR; + + /* + * poll() never guarantees that read won't block. + * userfaults can be waken before they're read(). + */ + if (unlikely(!(file->f_flags & O_NONBLOCK))) + return EPOLLERR; + /* + * lockless access to see if there are pending faults + * __pollwait last action is the add_wait_queue but + * the spin_unlock would allow the waitqueue_active to + * pass above the actual list_add inside + * add_wait_queue critical section. So use a full + * memory barrier to serialize the list_add write of + * add_wait_queue() with the waitqueue_active read + * below. + */ + ret = 0; + smp_mb(); + if (waitqueue_active(&ctx->fault_pending_wqh)) + ret = EPOLLIN; + else if (waitqueue_active(&ctx->event_wqh)) + ret = EPOLLIN; + + return ret; +} + +static const struct file_operations userfaultfd_fops; + +static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, + struct userfaultfd_ctx *new, + struct uffd_msg *msg) +{ + int fd; + + fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, + O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); + if (fd < 0) + return fd; + + msg->arg.reserved.reserved1 = 0; + msg->arg.fork.ufd = fd; + return 0; +} + +static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, + struct uffd_msg *msg) +{ + ssize_t ret; + DECLARE_WAITQUEUE(wait, current); + struct userfaultfd_wait_queue *uwq; + /* + * Handling fork event requires sleeping operations, so + * we drop the event_wqh lock, then do these ops, then + * lock it back and wake up the waiter. While the lock is + * dropped the ewq may go away so we keep track of it + * carefully. + */ + LIST_HEAD(fork_event); + struct userfaultfd_ctx *fork_nctx = NULL; + + /* always take the fd_wqh lock before the fault_pending_wqh lock */ + spin_lock_irq(&ctx->fd_wqh.lock); + __add_wait_queue(&ctx->fd_wqh, &wait); + for (;;) { + set_current_state(TASK_INTERRUPTIBLE); + spin_lock(&ctx->fault_pending_wqh.lock); + uwq = find_userfault(ctx); + if (uwq) { + /* + * Use a seqcount to repeat the lockless check + * in wake_userfault() to avoid missing + * wakeups because during the refile both + * waitqueue could become empty if this is the + * only userfault. + */ + write_seqcount_begin(&ctx->refile_seq); + + /* + * The fault_pending_wqh.lock prevents the uwq + * to disappear from under us. + * + * Refile this userfault from + * fault_pending_wqh to fault_wqh, it's not + * pending anymore after we read it. + * + * Use list_del() by hand (as + * userfaultfd_wake_function also uses + * list_del_init() by hand) to be sure nobody + * changes __remove_wait_queue() to use + * list_del_init() in turn breaking the + * !list_empty_careful() check in + * handle_userfault(). The uwq->wq.head list + * must never be empty at any time during the + * refile, or the waitqueue could disappear + * from under us. The "wait_queue_head_t" + * parameter of __remove_wait_queue() is unused + * anyway. + */ + list_del(&uwq->wq.entry); + add_wait_queue(&ctx->fault_wqh, &uwq->wq); + + write_seqcount_end(&ctx->refile_seq); + + /* careful to always initialize msg if ret == 0 */ + *msg = uwq->msg; + spin_unlock(&ctx->fault_pending_wqh.lock); + ret = 0; + break; + } + spin_unlock(&ctx->fault_pending_wqh.lock); + + spin_lock(&ctx->event_wqh.lock); + uwq = find_userfault_evt(ctx); + if (uwq) { + *msg = uwq->msg; + + if (uwq->msg.event == UFFD_EVENT_FORK) { + fork_nctx = (struct userfaultfd_ctx *) + (unsigned long) + uwq->msg.arg.reserved.reserved1; + list_move(&uwq->wq.entry, &fork_event); + /* + * fork_nctx can be freed as soon as + * we drop the lock, unless we take a + * reference on it. + */ + userfaultfd_ctx_get(fork_nctx); + spin_unlock(&ctx->event_wqh.lock); + ret = 0; + break; + } + + userfaultfd_event_complete(ctx, uwq); + spin_unlock(&ctx->event_wqh.lock); + ret = 0; + break; + } + spin_unlock(&ctx->event_wqh.lock); + + if (signal_pending(current)) { + ret = -ERESTARTSYS; + break; + } + if (no_wait) { + ret = -EAGAIN; + break; + } + spin_unlock_irq(&ctx->fd_wqh.lock); + schedule(); + spin_lock_irq(&ctx->fd_wqh.lock); + } + __remove_wait_queue(&ctx->fd_wqh, &wait); + __set_current_state(TASK_RUNNING); + spin_unlock_irq(&ctx->fd_wqh.lock); + + if (!ret && msg->event == UFFD_EVENT_FORK) { + ret = resolve_userfault_fork(ctx, fork_nctx, msg); + spin_lock_irq(&ctx->event_wqh.lock); + if (!list_empty(&fork_event)) { + /* + * The fork thread didn't abort, so we can + * drop the temporary refcount. + */ + userfaultfd_ctx_put(fork_nctx); + + uwq = list_first_entry(&fork_event, + typeof(*uwq), + wq.entry); + /* + * If fork_event list wasn't empty and in turn + * the event wasn't already released by fork + * (the event is allocated on fork kernel + * stack), put the event back to its place in + * the event_wq. fork_event head will be freed + * as soon as we return so the event cannot + * stay queued there no matter the current + * "ret" value. + */ + list_del(&uwq->wq.entry); + __add_wait_queue(&ctx->event_wqh, &uwq->wq); + + /* + * Leave the event in the waitqueue and report + * error to userland if we failed to resolve + * the userfault fork. + */ + if (likely(!ret)) + userfaultfd_event_complete(ctx, uwq); + } else { + /* + * Here the fork thread aborted and the + * refcount from the fork thread on fork_nctx + * has already been released. We still hold + * the reference we took before releasing the + * lock above. If resolve_userfault_fork + * failed we've to drop it because the + * fork_nctx has to be freed in such case. If + * it succeeded we'll hold it because the new + * uffd references it. + */ + if (ret) + userfaultfd_ctx_put(fork_nctx); + } + spin_unlock_irq(&ctx->event_wqh.lock); + } + + return ret; +} + +static ssize_t userfaultfd_read(struct file *file, char __user *buf, + size_t count, loff_t *ppos) +{ + struct userfaultfd_ctx *ctx = file->private_data; + ssize_t _ret, ret = 0; + struct uffd_msg msg; + int no_wait = file->f_flags & O_NONBLOCK; + + if (!userfaultfd_is_initialized(ctx)) + return -EINVAL; + + for (;;) { + if (count < sizeof(msg)) + return ret ? ret : -EINVAL; + _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); + if (_ret < 0) + return ret ? ret : _ret; + if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) + return ret ? ret : -EFAULT; + ret += sizeof(msg); + buf += sizeof(msg); + count -= sizeof(msg); + /* + * Allow to read more than one fault at time but only + * block if waiting for the very first one. + */ + no_wait = O_NONBLOCK; + } +} + +static void __wake_userfault(struct userfaultfd_ctx *ctx, + struct userfaultfd_wake_range *range) +{ + spin_lock_irq(&ctx->fault_pending_wqh.lock); + /* wake all in the range and autoremove */ + if (waitqueue_active(&ctx->fault_pending_wqh)) + __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, + range); + if (waitqueue_active(&ctx->fault_wqh)) + __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); + spin_unlock_irq(&ctx->fault_pending_wqh.lock); +} + +static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, + struct userfaultfd_wake_range *range) +{ + unsigned seq; + bool need_wakeup; + + /* + * To be sure waitqueue_active() is not reordered by the CPU + * before the pagetable update, use an explicit SMP memory + * barrier here. PT lock release or mmap_read_unlock(mm) still + * have release semantics that can allow the + * waitqueue_active() to be reordered before the pte update. + */ + smp_mb(); + + /* + * Use waitqueue_active because it's very frequent to + * change the address space atomically even if there are no + * userfaults yet. So we take the spinlock only when we're + * sure we've userfaults to wake. + */ + do { + seq = read_seqcount_begin(&ctx->refile_seq); + need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || + waitqueue_active(&ctx->fault_wqh); + cond_resched(); + } while (read_seqcount_retry(&ctx->refile_seq, seq)); + if (need_wakeup) + __wake_userfault(ctx, range); +} + +static __always_inline int validate_range(struct mm_struct *mm, + __u64 start, __u64 len) +{ + __u64 task_size = mm->task_size; + + if (start & ~PAGE_MASK) + return -EINVAL; + if (len & ~PAGE_MASK) + return -EINVAL; + if (!len) + return -EINVAL; + if (start < mmap_min_addr) + return -EINVAL; + if (start >= task_size) + return -EINVAL; + if (len > task_size - start) + return -EINVAL; + return 0; +} + +static inline bool vma_can_userfault(struct vm_area_struct *vma, + unsigned long vm_flags) +{ + /* FIXME: add WP support to hugetlbfs and shmem */ + return vma_is_anonymous(vma) || + ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) && + !(vm_flags & VM_UFFD_WP)); +} + +static int userfaultfd_register(struct userfaultfd_ctx *ctx, + unsigned long arg) +{ + struct mm_struct *mm = ctx->mm; + struct vm_area_struct *vma, *prev, *cur; + int ret; + struct uffdio_register uffdio_register; + struct uffdio_register __user *user_uffdio_register; + unsigned long vm_flags, new_flags; + bool found; + bool basic_ioctls; + unsigned long start, end, vma_end; + + user_uffdio_register = (struct uffdio_register __user *) arg; + + ret = -EFAULT; + if (copy_from_user(&uffdio_register, user_uffdio_register, + sizeof(uffdio_register)-sizeof(__u64))) + goto out; + + ret = -EINVAL; + if (!uffdio_register.mode) + goto out; + if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| + UFFDIO_REGISTER_MODE_WP)) + goto out; + vm_flags = 0; + if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) + vm_flags |= VM_UFFD_MISSING; + if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) + vm_flags |= VM_UFFD_WP; + + ret = validate_range(mm, uffdio_register.range.start, + uffdio_register.range.len); + if (ret) + goto out; + + start = uffdio_register.range.start; + end = start + uffdio_register.range.len; + + ret = -ENOMEM; + if (!mmget_not_zero(mm)) + goto out; + + mmap_write_lock(mm); + vma = find_vma_prev(mm, start, &prev); + if (!vma) + goto out_unlock; + + /* check that there's at least one vma in the range */ + ret = -EINVAL; + if (vma->vm_start >= end) + goto out_unlock; + + /* + * If the first vma contains huge pages, make sure start address + * is aligned to huge page size. + */ + if (is_vm_hugetlb_page(vma)) { + unsigned long vma_hpagesize = vma_kernel_pagesize(vma); + + if (start & (vma_hpagesize - 1)) + goto out_unlock; + } + + /* + * Search for not compatible vmas. + */ + found = false; + basic_ioctls = false; + for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { + cond_resched(); + + BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ + !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); + + /* check not compatible vmas */ + ret = -EINVAL; + if (!vma_can_userfault(cur, vm_flags)) + goto out_unlock; + + /* + * UFFDIO_COPY will fill file holes even without + * PROT_WRITE. This check enforces that if this is a + * MAP_SHARED, the process has write permission to the backing + * file. If VM_MAYWRITE is set it also enforces that on a + * MAP_SHARED vma: there is no F_WRITE_SEAL and no further + * F_WRITE_SEAL can be taken until the vma is destroyed. + */ + ret = -EPERM; + if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) + goto out_unlock; + + /* + * If this vma contains ending address, and huge pages + * check alignment. + */ + if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && + end > cur->vm_start) { + unsigned long vma_hpagesize = vma_kernel_pagesize(cur); + + ret = -EINVAL; + + if (end & (vma_hpagesize - 1)) + goto out_unlock; + } + if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) + goto out_unlock; + + /* + * Check that this vma isn't already owned by a + * different userfaultfd. We can't allow more than one + * userfaultfd to own a single vma simultaneously or we + * wouldn't know which one to deliver the userfaults to. + */ + ret = -EBUSY; + if (cur->vm_userfaultfd_ctx.ctx && + cur->vm_userfaultfd_ctx.ctx != ctx) + goto out_unlock; + + /* + * Note vmas containing huge pages + */ + if (is_vm_hugetlb_page(cur)) + basic_ioctls = true; + + found = true; + } + BUG_ON(!found); + + if (vma->vm_start < start) + prev = vma; + + ret = 0; + do { + cond_resched(); + + BUG_ON(!vma_can_userfault(vma, vm_flags)); + BUG_ON(vma->vm_userfaultfd_ctx.ctx && + vma->vm_userfaultfd_ctx.ctx != ctx); + WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); + + /* + * Nothing to do: this vma is already registered into this + * userfaultfd and with the right tracking mode too. + */ + if (vma->vm_userfaultfd_ctx.ctx == ctx && + (vma->vm_flags & vm_flags) == vm_flags) + goto skip; + + if (vma->vm_start > start) + start = vma->vm_start; + vma_end = min(end, vma->vm_end); + + new_flags = (vma->vm_flags & + ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags; + prev = vma_merge(mm, prev, start, vma_end, new_flags, + vma->anon_vma, vma->vm_file, vma->vm_pgoff, + vma_policy(vma), + ((struct vm_userfaultfd_ctx){ ctx })); + if (prev) { + vma = prev; + goto next; + } + if (vma->vm_start < start) { + ret = split_vma(mm, vma, start, 1); + if (ret) + break; + } + if (vma->vm_end > end) { + ret = split_vma(mm, vma, end, 0); + if (ret) + break; + } + next: + /* + * In the vma_merge() successful mprotect-like case 8: + * the next vma was merged into the current one and + * the current one has not been updated yet. + */ + vma->vm_flags = new_flags; + vma->vm_userfaultfd_ctx.ctx = ctx; + + skip: + prev = vma; + start = vma->vm_end; + vma = vma->vm_next; + } while (vma && vma->vm_start < end); +out_unlock: + mmap_write_unlock(mm); + mmput(mm); + if (!ret) { + __u64 ioctls_out; + + ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : + UFFD_API_RANGE_IOCTLS; + + /* + * Declare the WP ioctl only if the WP mode is + * specified and all checks passed with the range + */ + if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) + ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); + + /* + * Now that we scanned all vmas we can already tell + * userland which ioctls methods are guaranteed to + * succeed on this range. + */ + if (put_user(ioctls_out, &user_uffdio_register->ioctls)) + ret = -EFAULT; + } +out: + return ret; +} + +static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, + unsigned long arg) +{ + struct mm_struct *mm = ctx->mm; + struct vm_area_struct *vma, *prev, *cur; + int ret; + struct uffdio_range uffdio_unregister; + unsigned long new_flags; + bool found; + unsigned long start, end, vma_end; + const void __user *buf = (void __user *)arg; + + ret = -EFAULT; + if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) + goto out; + + ret = validate_range(mm, uffdio_unregister.start, + uffdio_unregister.len); + if (ret) + goto out; + + start = uffdio_unregister.start; + end = start + uffdio_unregister.len; + + ret = -ENOMEM; + if (!mmget_not_zero(mm)) + goto out; + + mmap_write_lock(mm); + vma = find_vma_prev(mm, start, &prev); + if (!vma) + goto out_unlock; + + /* check that there's at least one vma in the range */ + ret = -EINVAL; + if (vma->vm_start >= end) + goto out_unlock; + + /* + * If the first vma contains huge pages, make sure start address + * is aligned to huge page size. + */ + if (is_vm_hugetlb_page(vma)) { + unsigned long vma_hpagesize = vma_kernel_pagesize(vma); + + if (start & (vma_hpagesize - 1)) + goto out_unlock; + } + + /* + * Search for not compatible vmas. + */ + found = false; + ret = -EINVAL; + for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { + cond_resched(); + + BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ + !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); + + /* + * Check not compatible vmas, not strictly required + * here as not compatible vmas cannot have an + * userfaultfd_ctx registered on them, but this + * provides for more strict behavior to notice + * unregistration errors. + */ + if (!vma_can_userfault(cur, cur->vm_flags)) + goto out_unlock; + + found = true; + } + BUG_ON(!found); + + if (vma->vm_start < start) + prev = vma; + + ret = 0; + do { + cond_resched(); + + BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); + + /* + * Nothing to do: this vma is already registered into this + * userfaultfd and with the right tracking mode too. + */ + if (!vma->vm_userfaultfd_ctx.ctx) + goto skip; + + WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); + + if (vma->vm_start > start) + start = vma->vm_start; + vma_end = min(end, vma->vm_end); + + if (userfaultfd_missing(vma)) { + /* + * Wake any concurrent pending userfault while + * we unregister, so they will not hang + * permanently and it avoids userland to call + * UFFDIO_WAKE explicitly. + */ + struct userfaultfd_wake_range range; + range.start = start; + range.len = vma_end - start; + wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); + } + + new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); + prev = vma_merge(mm, prev, start, vma_end, new_flags, + vma->anon_vma, vma->vm_file, vma->vm_pgoff, + vma_policy(vma), + NULL_VM_UFFD_CTX); + if (prev) { + vma = prev; + goto next; + } + if (vma->vm_start < start) { + ret = split_vma(mm, vma, start, 1); + if (ret) + break; + } + if (vma->vm_end > end) { + ret = split_vma(mm, vma, end, 0); + if (ret) + break; + } + next: + /* + * In the vma_merge() successful mprotect-like case 8: + * the next vma was merged into the current one and + * the current one has not been updated yet. + */ + vma->vm_flags = new_flags; + vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; + + skip: + prev = vma; + start = vma->vm_end; + vma = vma->vm_next; + } while (vma && vma->vm_start < end); +out_unlock: + mmap_write_unlock(mm); + mmput(mm); +out: + return ret; +} + +/* + * userfaultfd_wake may be used in combination with the + * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. + */ +static int userfaultfd_wake(struct userfaultfd_ctx *ctx, + unsigned long arg) +{ + int ret; + struct uffdio_range uffdio_wake; + struct userfaultfd_wake_range range; + const void __user *buf = (void __user *)arg; + + ret = -EFAULT; + if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) + goto out; + + ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); + if (ret) + goto out; + + range.start = uffdio_wake.start; + range.len = uffdio_wake.len; + + /* + * len == 0 means wake all and we don't want to wake all here, + * so check it again to be sure. + */ + VM_BUG_ON(!range.len); + + wake_userfault(ctx, &range); + ret = 0; + +out: + return ret; +} + +static int userfaultfd_copy(struct userfaultfd_ctx *ctx, + unsigned long arg) +{ + __s64 ret; + struct uffdio_copy uffdio_copy; + struct uffdio_copy __user *user_uffdio_copy; + struct userfaultfd_wake_range range; + + user_uffdio_copy = (struct uffdio_copy __user *) arg; + + ret = -EAGAIN; + if (READ_ONCE(ctx->mmap_changing)) + goto out; + + ret = -EFAULT; + if (copy_from_user(&uffdio_copy, user_uffdio_copy, + /* don't copy "copy" last field */ + sizeof(uffdio_copy)-sizeof(__s64))) + goto out; + + ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); + if (ret) + goto out; + /* + * double check for wraparound just in case. copy_from_user() + * will later check uffdio_copy.src + uffdio_copy.len to fit + * in the userland range. + */ + ret = -EINVAL; + if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) + goto out; + if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) + goto out; + if (mmget_not_zero(ctx->mm)) { + ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, + uffdio_copy.len, &ctx->mmap_changing, + uffdio_copy.mode); + mmput(ctx->mm); + } else { + return -ESRCH; + } + if (unlikely(put_user(ret, &user_uffdio_copy->copy))) + return -EFAULT; + if (ret < 0) + goto out; + BUG_ON(!ret); + /* len == 0 would wake all */ + range.len = ret; + if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { + range.start = uffdio_copy.dst; + wake_userfault(ctx, &range); + } + ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; +out: + return ret; +} + +static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, + unsigned long arg) +{ + __s64 ret; + struct uffdio_zeropage uffdio_zeropage; + struct uffdio_zeropage __user *user_uffdio_zeropage; + struct userfaultfd_wake_range range; + + user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; + + ret = -EAGAIN; + if (READ_ONCE(ctx->mmap_changing)) + goto out; + + ret = -EFAULT; + if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, + /* don't copy "zeropage" last field */ + sizeof(uffdio_zeropage)-sizeof(__s64))) + goto out; + + ret = validate_range(ctx->mm, uffdio_zeropage.range.start, + uffdio_zeropage.range.len); + if (ret) + goto out; + ret = -EINVAL; + if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) + goto out; + + if (mmget_not_zero(ctx->mm)) { + ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, + uffdio_zeropage.range.len, + &ctx->mmap_changing); + mmput(ctx->mm); + } else { + return -ESRCH; + } + if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) + return -EFAULT; + if (ret < 0) + goto out; + /* len == 0 would wake all */ + BUG_ON(!ret); + range.len = ret; + if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { + range.start = uffdio_zeropage.range.start; + wake_userfault(ctx, &range); + } + ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; +out: + return ret; +} + +static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, + unsigned long arg) +{ + int ret; + struct uffdio_writeprotect uffdio_wp; + struct uffdio_writeprotect __user *user_uffdio_wp; + struct userfaultfd_wake_range range; + bool mode_wp, mode_dontwake; + + if (READ_ONCE(ctx->mmap_changing)) + return -EAGAIN; + + user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; + + if (copy_from_user(&uffdio_wp, user_uffdio_wp, + sizeof(struct uffdio_writeprotect))) + return -EFAULT; + + ret = validate_range(ctx->mm, uffdio_wp.range.start, + uffdio_wp.range.len); + if (ret) + return ret; + + if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | + UFFDIO_WRITEPROTECT_MODE_WP)) + return -EINVAL; + + mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; + mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; + + if (mode_wp && mode_dontwake) + return -EINVAL; + + if (mmget_not_zero(ctx->mm)) { + ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, + uffdio_wp.range.len, mode_wp, + &ctx->mmap_changing); + mmput(ctx->mm); + } else { + return -ESRCH; + } + + if (ret) + return ret; + + if (!mode_wp && !mode_dontwake) { + range.start = uffdio_wp.range.start; + range.len = uffdio_wp.range.len; + wake_userfault(ctx, &range); + } + return ret; +} + +static inline unsigned int uffd_ctx_features(__u64 user_features) +{ + /* + * For the current set of features the bits just coincide. Set + * UFFD_FEATURE_INITIALIZED to mark the features as enabled. + */ + return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; +} + +/* + * userland asks for a certain API version and we return which bits + * and ioctl commands are implemented in this kernel for such API + * version or -EINVAL if unknown. + */ +static int userfaultfd_api(struct userfaultfd_ctx *ctx, + unsigned long arg) +{ + struct uffdio_api uffdio_api; + void __user *buf = (void __user *)arg; + unsigned int ctx_features; + int ret; + __u64 features; + + ret = -EFAULT; + if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) + goto out; + features = uffdio_api.features; + ret = -EINVAL; + if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) + goto err_out; + ret = -EPERM; + if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) + goto err_out; + /* report all available features and ioctls to userland */ + uffdio_api.features = UFFD_API_FEATURES; + uffdio_api.ioctls = UFFD_API_IOCTLS; + ret = -EFAULT; + if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) + goto out; + + /* only enable the requested features for this uffd context */ + ctx_features = uffd_ctx_features(features); + ret = -EINVAL; + if (cmpxchg(&ctx->features, 0, ctx_features) != 0) + goto err_out; + + ret = 0; +out: + return ret; +err_out: + memset(&uffdio_api, 0, sizeof(uffdio_api)); + if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) + ret = -EFAULT; + goto out; +} + +static long userfaultfd_ioctl(struct file *file, unsigned cmd, + unsigned long arg) +{ + int ret = -EINVAL; + struct userfaultfd_ctx *ctx = file->private_data; + + if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) + return -EINVAL; + + switch(cmd) { + case UFFDIO_API: + ret = userfaultfd_api(ctx, arg); + break; + case UFFDIO_REGISTER: + ret = userfaultfd_register(ctx, arg); + break; + case UFFDIO_UNREGISTER: + ret = userfaultfd_unregister(ctx, arg); + break; + case UFFDIO_WAKE: + ret = userfaultfd_wake(ctx, arg); + break; + case UFFDIO_COPY: + ret = userfaultfd_copy(ctx, arg); + break; + case UFFDIO_ZEROPAGE: + ret = userfaultfd_zeropage(ctx, arg); + break; + case UFFDIO_WRITEPROTECT: + ret = userfaultfd_writeprotect(ctx, arg); + break; + } + return ret; +} + +#ifdef CONFIG_PROC_FS +static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) +{ + struct userfaultfd_ctx *ctx = f->private_data; + wait_queue_entry_t *wq; + unsigned long pending = 0, total = 0; + + spin_lock_irq(&ctx->fault_pending_wqh.lock); + list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { + pending++; + total++; + } + list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { + total++; + } + spin_unlock_irq(&ctx->fault_pending_wqh.lock); + + /* + * If more protocols will be added, there will be all shown + * separated by a space. Like this: + * protocols: aa:... bb:... + */ + seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", + pending, total, UFFD_API, ctx->features, + UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); +} +#endif + +static const struct file_operations userfaultfd_fops = { +#ifdef CONFIG_PROC_FS + .show_fdinfo = userfaultfd_show_fdinfo, +#endif + .release = userfaultfd_release, + .poll = userfaultfd_poll, + .read = userfaultfd_read, + .unlocked_ioctl = userfaultfd_ioctl, + .compat_ioctl = compat_ptr_ioctl, + .llseek = noop_llseek, +}; + +static void init_once_userfaultfd_ctx(void *mem) +{ + struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; + + init_waitqueue_head(&ctx->fault_pending_wqh); + init_waitqueue_head(&ctx->fault_wqh); + init_waitqueue_head(&ctx->event_wqh); + init_waitqueue_head(&ctx->fd_wqh); + seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); +} + +SYSCALL_DEFINE1(userfaultfd, int, flags) +{ + struct userfaultfd_ctx *ctx; + int fd; + + if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE)) + return -EPERM; + + BUG_ON(!current->mm); + + /* Check the UFFD_* constants for consistency. */ + BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); + BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); + + if (flags & ~UFFD_SHARED_FCNTL_FLAGS) + return -EINVAL; + + ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); + if (!ctx) + return -ENOMEM; + + refcount_set(&ctx->refcount, 1); + ctx->flags = flags; + ctx->features = 0; + ctx->released = false; + ctx->mmap_changing = false; + ctx->mm = current->mm; + /* prevent the mm struct to be freed */ + mmgrab(ctx->mm); + + fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, + O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS)); + if (fd < 0) { + mmdrop(ctx->mm); + kmem_cache_free(userfaultfd_ctx_cachep, ctx); + } + return fd; +} + +static int __init userfaultfd_init(void) +{ + userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", + sizeof(struct userfaultfd_ctx), + 0, + SLAB_HWCACHE_ALIGN|SLAB_PANIC, + init_once_userfaultfd_ctx); + return 0; +} +__initcall(userfaultfd_init); |