diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /net/tls/tls_sw.c | |
parent | Initial commit. (diff) | |
download | linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip |
Adding upstream version 5.10.209.upstream/5.10.209
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'net/tls/tls_sw.c')
-rw-r--r-- | net/tls/tls_sw.c | 2535 |
1 files changed, 2535 insertions, 0 deletions
diff --git a/net/tls/tls_sw.c b/net/tls/tls_sw.c new file mode 100644 index 000000000..dd980438f --- /dev/null +++ b/net/tls/tls_sw.c @@ -0,0 +1,2535 @@ +/* + * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. + * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. + * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. + * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. + * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. + * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io + * + * This software is available to you under a choice of one of two + * licenses. You may choose to be licensed under the terms of the GNU + * General Public License (GPL) Version 2, available from the file + * COPYING in the main directory of this source tree, or the + * OpenIB.org BSD license below: + * + * Redistribution and use in source and binary forms, with or + * without modification, are permitted provided that the following + * conditions are met: + * + * - Redistributions of source code must retain the above + * copyright notice, this list of conditions and the following + * disclaimer. + * + * - Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include <linux/bug.h> +#include <linux/sched/signal.h> +#include <linux/module.h> +#include <linux/splice.h> +#include <crypto/aead.h> + +#include <net/strparser.h> +#include <net/tls.h> + +noinline void tls_err_abort(struct sock *sk, int err) +{ + WARN_ON_ONCE(err >= 0); + /* sk->sk_err should contain a positive error code. */ + sk->sk_err = -err; + sk->sk_error_report(sk); +} + +static int __skb_nsg(struct sk_buff *skb, int offset, int len, + unsigned int recursion_level) +{ + int start = skb_headlen(skb); + int i, chunk = start - offset; + struct sk_buff *frag_iter; + int elt = 0; + + if (unlikely(recursion_level >= 24)) + return -EMSGSIZE; + + if (chunk > 0) { + if (chunk > len) + chunk = len; + elt++; + len -= chunk; + if (len == 0) + return elt; + offset += chunk; + } + + for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { + int end; + + WARN_ON(start > offset + len); + + end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); + chunk = end - offset; + if (chunk > 0) { + if (chunk > len) + chunk = len; + elt++; + len -= chunk; + if (len == 0) + return elt; + offset += chunk; + } + start = end; + } + + if (unlikely(skb_has_frag_list(skb))) { + skb_walk_frags(skb, frag_iter) { + int end, ret; + + WARN_ON(start > offset + len); + + end = start + frag_iter->len; + chunk = end - offset; + if (chunk > 0) { + if (chunk > len) + chunk = len; + ret = __skb_nsg(frag_iter, offset - start, chunk, + recursion_level + 1); + if (unlikely(ret < 0)) + return ret; + elt += ret; + len -= chunk; + if (len == 0) + return elt; + offset += chunk; + } + start = end; + } + } + BUG_ON(len); + return elt; +} + +/* Return the number of scatterlist elements required to completely map the + * skb, or -EMSGSIZE if the recursion depth is exceeded. + */ +static int skb_nsg(struct sk_buff *skb, int offset, int len) +{ + return __skb_nsg(skb, offset, len, 0); +} + +static int padding_length(struct tls_sw_context_rx *ctx, + struct tls_prot_info *prot, struct sk_buff *skb) +{ + struct strp_msg *rxm = strp_msg(skb); + int sub = 0; + + /* Determine zero-padding length */ + if (prot->version == TLS_1_3_VERSION) { + char content_type = 0; + int err; + int back = 17; + + while (content_type == 0) { + if (back > rxm->full_len - prot->prepend_size) + return -EBADMSG; + err = skb_copy_bits(skb, + rxm->offset + rxm->full_len - back, + &content_type, 1); + if (err) + return err; + if (content_type) + break; + sub++; + back++; + } + ctx->control = content_type; + } + return sub; +} + +static void tls_decrypt_done(struct crypto_async_request *req, int err) +{ + struct aead_request *aead_req = (struct aead_request *)req; + struct scatterlist *sgout = aead_req->dst; + struct scatterlist *sgin = aead_req->src; + struct tls_sw_context_rx *ctx; + struct tls_context *tls_ctx; + struct tls_prot_info *prot; + struct scatterlist *sg; + struct sk_buff *skb; + unsigned int pages; + int pending; + + skb = (struct sk_buff *)req->data; + tls_ctx = tls_get_ctx(skb->sk); + ctx = tls_sw_ctx_rx(tls_ctx); + prot = &tls_ctx->prot_info; + + /* Propagate if there was an err */ + if (err) { + if (err == -EBADMSG) + TLS_INC_STATS(sock_net(skb->sk), + LINUX_MIB_TLSDECRYPTERROR); + ctx->async_wait.err = err; + tls_err_abort(skb->sk, err); + } else { + struct strp_msg *rxm = strp_msg(skb); + int pad; + + pad = padding_length(ctx, prot, skb); + if (pad < 0) { + ctx->async_wait.err = pad; + tls_err_abort(skb->sk, pad); + } else { + rxm->full_len -= pad; + rxm->offset += prot->prepend_size; + rxm->full_len -= prot->overhead_size; + } + } + + /* After using skb->sk to propagate sk through crypto async callback + * we need to NULL it again. + */ + skb->sk = NULL; + + + /* Free the destination pages if skb was not decrypted inplace */ + if (sgout != sgin) { + /* Skip the first S/G entry as it points to AAD */ + for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { + if (!sg) + break; + put_page(sg_page(sg)); + } + } + + kfree(aead_req); + + spin_lock_bh(&ctx->decrypt_compl_lock); + pending = atomic_dec_return(&ctx->decrypt_pending); + + if (!pending && ctx->async_notify) + complete(&ctx->async_wait.completion); + spin_unlock_bh(&ctx->decrypt_compl_lock); +} + +static int tls_do_decryption(struct sock *sk, + struct sk_buff *skb, + struct scatterlist *sgin, + struct scatterlist *sgout, + char *iv_recv, + size_t data_len, + struct aead_request *aead_req, + bool async) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + int ret; + + aead_request_set_tfm(aead_req, ctx->aead_recv); + aead_request_set_ad(aead_req, prot->aad_size); + aead_request_set_crypt(aead_req, sgin, sgout, + data_len + prot->tag_size, + (u8 *)iv_recv); + + if (async) { + /* Using skb->sk to push sk through to crypto async callback + * handler. This allows propagating errors up to the socket + * if needed. It _must_ be cleared in the async handler + * before consume_skb is called. We _know_ skb->sk is NULL + * because it is a clone from strparser. + */ + skb->sk = sk; + aead_request_set_callback(aead_req, + CRYPTO_TFM_REQ_MAY_BACKLOG, + tls_decrypt_done, skb); + atomic_inc(&ctx->decrypt_pending); + } else { + aead_request_set_callback(aead_req, + CRYPTO_TFM_REQ_MAY_BACKLOG, + crypto_req_done, &ctx->async_wait); + } + + ret = crypto_aead_decrypt(aead_req); + if (ret == -EINPROGRESS) { + if (async) + return ret; + + ret = crypto_wait_req(ret, &ctx->async_wait); + } + + if (async) + atomic_dec(&ctx->decrypt_pending); + + return ret; +} + +static void tls_trim_both_msgs(struct sock *sk, int target_size) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_rec *rec = ctx->open_rec; + + sk_msg_trim(sk, &rec->msg_plaintext, target_size); + if (target_size > 0) + target_size += prot->overhead_size; + sk_msg_trim(sk, &rec->msg_encrypted, target_size); +} + +static int tls_alloc_encrypted_msg(struct sock *sk, int len) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_rec *rec = ctx->open_rec; + struct sk_msg *msg_en = &rec->msg_encrypted; + + return sk_msg_alloc(sk, msg_en, len, 0); +} + +static int tls_clone_plaintext_msg(struct sock *sk, int required) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_rec *rec = ctx->open_rec; + struct sk_msg *msg_pl = &rec->msg_plaintext; + struct sk_msg *msg_en = &rec->msg_encrypted; + int skip, len; + + /* We add page references worth len bytes from encrypted sg + * at the end of plaintext sg. It is guaranteed that msg_en + * has enough required room (ensured by caller). + */ + len = required - msg_pl->sg.size; + + /* Skip initial bytes in msg_en's data to be able to use + * same offset of both plain and encrypted data. + */ + skip = prot->prepend_size + msg_pl->sg.size; + + return sk_msg_clone(sk, msg_pl, msg_en, skip, len); +} + +static struct tls_rec *tls_get_rec(struct sock *sk) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct sk_msg *msg_pl, *msg_en; + struct tls_rec *rec; + int mem_size; + + mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); + + rec = kzalloc(mem_size, sk->sk_allocation); + if (!rec) + return NULL; + + msg_pl = &rec->msg_plaintext; + msg_en = &rec->msg_encrypted; + + sk_msg_init(msg_pl); + sk_msg_init(msg_en); + + sg_init_table(rec->sg_aead_in, 2); + sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); + sg_unmark_end(&rec->sg_aead_in[1]); + + sg_init_table(rec->sg_aead_out, 2); + sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); + sg_unmark_end(&rec->sg_aead_out[1]); + + return rec; +} + +static void tls_free_rec(struct sock *sk, struct tls_rec *rec) +{ + sk_msg_free(sk, &rec->msg_encrypted); + sk_msg_free(sk, &rec->msg_plaintext); + kfree(rec); +} + +static void tls_free_open_rec(struct sock *sk) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_rec *rec = ctx->open_rec; + + if (rec) { + tls_free_rec(sk, rec); + ctx->open_rec = NULL; + } +} + +int tls_tx_records(struct sock *sk, int flags) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_rec *rec, *tmp; + struct sk_msg *msg_en; + int tx_flags, rc = 0; + + if (tls_is_partially_sent_record(tls_ctx)) { + rec = list_first_entry(&ctx->tx_list, + struct tls_rec, list); + + if (flags == -1) + tx_flags = rec->tx_flags; + else + tx_flags = flags; + + rc = tls_push_partial_record(sk, tls_ctx, tx_flags); + if (rc) + goto tx_err; + + /* Full record has been transmitted. + * Remove the head of tx_list + */ + list_del(&rec->list); + sk_msg_free(sk, &rec->msg_plaintext); + kfree(rec); + } + + /* Tx all ready records */ + list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { + if (READ_ONCE(rec->tx_ready)) { + if (flags == -1) + tx_flags = rec->tx_flags; + else + tx_flags = flags; + + msg_en = &rec->msg_encrypted; + rc = tls_push_sg(sk, tls_ctx, + &msg_en->sg.data[msg_en->sg.curr], + 0, tx_flags); + if (rc) + goto tx_err; + + list_del(&rec->list); + sk_msg_free(sk, &rec->msg_plaintext); + kfree(rec); + } else { + break; + } + } + +tx_err: + if (rc < 0 && rc != -EAGAIN) + tls_err_abort(sk, -EBADMSG); + + return rc; +} + +static void tls_encrypt_done(struct crypto_async_request *req, int err) +{ + struct aead_request *aead_req = (struct aead_request *)req; + struct sock *sk = req->data; + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct scatterlist *sge; + struct sk_msg *msg_en; + struct tls_rec *rec; + bool ready = false; + int pending; + + rec = container_of(aead_req, struct tls_rec, aead_req); + msg_en = &rec->msg_encrypted; + + sge = sk_msg_elem(msg_en, msg_en->sg.curr); + sge->offset -= prot->prepend_size; + sge->length += prot->prepend_size; + + /* Check if error is previously set on socket */ + if (err || sk->sk_err) { + rec = NULL; + + /* If err is already set on socket, return the same code */ + if (sk->sk_err) { + ctx->async_wait.err = -sk->sk_err; + } else { + ctx->async_wait.err = err; + tls_err_abort(sk, err); + } + } + + if (rec) { + struct tls_rec *first_rec; + + /* Mark the record as ready for transmission */ + smp_store_mb(rec->tx_ready, true); + + /* If received record is at head of tx_list, schedule tx */ + first_rec = list_first_entry(&ctx->tx_list, + struct tls_rec, list); + if (rec == first_rec) + ready = true; + } + + spin_lock_bh(&ctx->encrypt_compl_lock); + pending = atomic_dec_return(&ctx->encrypt_pending); + + if (!pending && ctx->async_notify) + complete(&ctx->async_wait.completion); + spin_unlock_bh(&ctx->encrypt_compl_lock); + + if (!ready) + return; + + /* Schedule the transmission */ + if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) + schedule_delayed_work(&ctx->tx_work.work, 1); +} + +static int tls_do_encryption(struct sock *sk, + struct tls_context *tls_ctx, + struct tls_sw_context_tx *ctx, + struct aead_request *aead_req, + size_t data_len, u32 start) +{ + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_rec *rec = ctx->open_rec; + struct sk_msg *msg_en = &rec->msg_encrypted; + struct scatterlist *sge = sk_msg_elem(msg_en, start); + int rc, iv_offset = 0; + + /* For CCM based ciphers, first byte of IV is a constant */ + if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { + rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; + iv_offset = 1; + } + + memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, + prot->iv_size + prot->salt_size); + + xor_iv_with_seq(prot->version, rec->iv_data + iv_offset, tls_ctx->tx.rec_seq); + + sge->offset += prot->prepend_size; + sge->length -= prot->prepend_size; + + msg_en->sg.curr = start; + + aead_request_set_tfm(aead_req, ctx->aead_send); + aead_request_set_ad(aead_req, prot->aad_size); + aead_request_set_crypt(aead_req, rec->sg_aead_in, + rec->sg_aead_out, + data_len, rec->iv_data); + + aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, + tls_encrypt_done, sk); + + /* Add the record in tx_list */ + list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); + atomic_inc(&ctx->encrypt_pending); + + rc = crypto_aead_encrypt(aead_req); + if (!rc || rc != -EINPROGRESS) { + atomic_dec(&ctx->encrypt_pending); + sge->offset -= prot->prepend_size; + sge->length += prot->prepend_size; + } + + if (!rc) { + WRITE_ONCE(rec->tx_ready, true); + } else if (rc != -EINPROGRESS) { + list_del(&rec->list); + return rc; + } + + /* Unhook the record from context if encryption is not failure */ + ctx->open_rec = NULL; + tls_advance_record_sn(sk, prot, &tls_ctx->tx); + return rc; +} + +static int tls_split_open_record(struct sock *sk, struct tls_rec *from, + struct tls_rec **to, struct sk_msg *msg_opl, + struct sk_msg *msg_oen, u32 split_point, + u32 tx_overhead_size, u32 *orig_end) +{ + u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; + struct scatterlist *sge, *osge, *nsge; + u32 orig_size = msg_opl->sg.size; + struct scatterlist tmp = { }; + struct sk_msg *msg_npl; + struct tls_rec *new; + int ret; + + new = tls_get_rec(sk); + if (!new) + return -ENOMEM; + ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + + tx_overhead_size, 0); + if (ret < 0) { + tls_free_rec(sk, new); + return ret; + } + + *orig_end = msg_opl->sg.end; + i = msg_opl->sg.start; + sge = sk_msg_elem(msg_opl, i); + while (apply && sge->length) { + if (sge->length > apply) { + u32 len = sge->length - apply; + + get_page(sg_page(sge)); + sg_set_page(&tmp, sg_page(sge), len, + sge->offset + apply); + sge->length = apply; + bytes += apply; + apply = 0; + } else { + apply -= sge->length; + bytes += sge->length; + } + + sk_msg_iter_var_next(i); + if (i == msg_opl->sg.end) + break; + sge = sk_msg_elem(msg_opl, i); + } + + msg_opl->sg.end = i; + msg_opl->sg.curr = i; + msg_opl->sg.copybreak = 0; + msg_opl->apply_bytes = 0; + msg_opl->sg.size = bytes; + + msg_npl = &new->msg_plaintext; + msg_npl->apply_bytes = apply; + msg_npl->sg.size = orig_size - bytes; + + j = msg_npl->sg.start; + nsge = sk_msg_elem(msg_npl, j); + if (tmp.length) { + memcpy(nsge, &tmp, sizeof(*nsge)); + sk_msg_iter_var_next(j); + nsge = sk_msg_elem(msg_npl, j); + } + + osge = sk_msg_elem(msg_opl, i); + while (osge->length) { + memcpy(nsge, osge, sizeof(*nsge)); + sg_unmark_end(nsge); + sk_msg_iter_var_next(i); + sk_msg_iter_var_next(j); + if (i == *orig_end) + break; + osge = sk_msg_elem(msg_opl, i); + nsge = sk_msg_elem(msg_npl, j); + } + + msg_npl->sg.end = j; + msg_npl->sg.curr = j; + msg_npl->sg.copybreak = 0; + + *to = new; + return 0; +} + +static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, + struct tls_rec *from, u32 orig_end) +{ + struct sk_msg *msg_npl = &from->msg_plaintext; + struct sk_msg *msg_opl = &to->msg_plaintext; + struct scatterlist *osge, *nsge; + u32 i, j; + + i = msg_opl->sg.end; + sk_msg_iter_var_prev(i); + j = msg_npl->sg.start; + + osge = sk_msg_elem(msg_opl, i); + nsge = sk_msg_elem(msg_npl, j); + + if (sg_page(osge) == sg_page(nsge) && + osge->offset + osge->length == nsge->offset) { + osge->length += nsge->length; + put_page(sg_page(nsge)); + } + + msg_opl->sg.end = orig_end; + msg_opl->sg.curr = orig_end; + msg_opl->sg.copybreak = 0; + msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; + msg_opl->sg.size += msg_npl->sg.size; + + sk_msg_free(sk, &to->msg_encrypted); + sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); + + kfree(from); +} + +static int tls_push_record(struct sock *sk, int flags, + unsigned char record_type) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_rec *rec = ctx->open_rec, *tmp = NULL; + u32 i, split_point, orig_end; + struct sk_msg *msg_pl, *msg_en; + struct aead_request *req; + bool split; + int rc; + + if (!rec) + return 0; + + msg_pl = &rec->msg_plaintext; + msg_en = &rec->msg_encrypted; + + split_point = msg_pl->apply_bytes; + split = split_point && split_point < msg_pl->sg.size; + if (unlikely((!split && + msg_pl->sg.size + + prot->overhead_size > msg_en->sg.size) || + (split && + split_point + + prot->overhead_size > msg_en->sg.size))) { + split = true; + split_point = msg_en->sg.size; + } + if (split) { + rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, + split_point, prot->overhead_size, + &orig_end); + if (rc < 0) + return rc; + /* This can happen if above tls_split_open_record allocates + * a single large encryption buffer instead of two smaller + * ones. In this case adjust pointers and continue without + * split. + */ + if (!msg_pl->sg.size) { + tls_merge_open_record(sk, rec, tmp, orig_end); + msg_pl = &rec->msg_plaintext; + msg_en = &rec->msg_encrypted; + split = false; + } + sk_msg_trim(sk, msg_en, msg_pl->sg.size + + prot->overhead_size); + } + + rec->tx_flags = flags; + req = &rec->aead_req; + + i = msg_pl->sg.end; + sk_msg_iter_var_prev(i); + + rec->content_type = record_type; + if (prot->version == TLS_1_3_VERSION) { + /* Add content type to end of message. No padding added */ + sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); + sg_mark_end(&rec->sg_content_type); + sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, + &rec->sg_content_type); + } else { + sg_mark_end(sk_msg_elem(msg_pl, i)); + } + + if (msg_pl->sg.end < msg_pl->sg.start) { + sg_chain(&msg_pl->sg.data[msg_pl->sg.start], + MAX_SKB_FRAGS - msg_pl->sg.start + 1, + msg_pl->sg.data); + } + + i = msg_pl->sg.start; + sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); + + i = msg_en->sg.end; + sk_msg_iter_var_prev(i); + sg_mark_end(sk_msg_elem(msg_en, i)); + + i = msg_en->sg.start; + sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); + + tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, + tls_ctx->tx.rec_seq, prot->rec_seq_size, + record_type, prot->version); + + tls_fill_prepend(tls_ctx, + page_address(sg_page(&msg_en->sg.data[i])) + + msg_en->sg.data[i].offset, + msg_pl->sg.size + prot->tail_size, + record_type, prot->version); + + tls_ctx->pending_open_record_frags = false; + + rc = tls_do_encryption(sk, tls_ctx, ctx, req, + msg_pl->sg.size + prot->tail_size, i); + if (rc < 0) { + if (rc != -EINPROGRESS) { + tls_err_abort(sk, -EBADMSG); + if (split) { + tls_ctx->pending_open_record_frags = true; + tls_merge_open_record(sk, rec, tmp, orig_end); + } + } + ctx->async_capable = 1; + return rc; + } else if (split) { + msg_pl = &tmp->msg_plaintext; + msg_en = &tmp->msg_encrypted; + sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); + tls_ctx->pending_open_record_frags = true; + ctx->open_rec = tmp; + } + + return tls_tx_records(sk, flags); +} + +static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, + bool full_record, u8 record_type, + ssize_t *copied, int flags) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct sk_msg msg_redir = { }; + struct sk_psock *psock; + struct sock *sk_redir; + struct tls_rec *rec; + bool enospc, policy; + int err = 0, send; + u32 delta = 0; + + policy = !(flags & MSG_SENDPAGE_NOPOLICY); + psock = sk_psock_get(sk); + if (!psock || !policy) { + err = tls_push_record(sk, flags, record_type); + if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { + *copied -= sk_msg_free(sk, msg); + tls_free_open_rec(sk); + err = -sk->sk_err; + } + if (psock) + sk_psock_put(sk, psock); + return err; + } +more_data: + enospc = sk_msg_full(msg); + if (psock->eval == __SK_NONE) { + delta = msg->sg.size; + psock->eval = sk_psock_msg_verdict(sk, psock, msg); + delta -= msg->sg.size; + } + if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && + !enospc && !full_record) { + err = -ENOSPC; + goto out_err; + } + msg->cork_bytes = 0; + send = msg->sg.size; + if (msg->apply_bytes && msg->apply_bytes < send) + send = msg->apply_bytes; + + switch (psock->eval) { + case __SK_PASS: + err = tls_push_record(sk, flags, record_type); + if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { + *copied -= sk_msg_free(sk, msg); + tls_free_open_rec(sk); + err = -sk->sk_err; + goto out_err; + } + break; + case __SK_REDIRECT: + sk_redir = psock->sk_redir; + memcpy(&msg_redir, msg, sizeof(*msg)); + if (msg->apply_bytes < send) + msg->apply_bytes = 0; + else + msg->apply_bytes -= send; + sk_msg_return_zero(sk, msg, send); + msg->sg.size -= send; + release_sock(sk); + err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); + lock_sock(sk); + if (err < 0) { + *copied -= sk_msg_free_nocharge(sk, &msg_redir); + msg->sg.size = 0; + } + if (msg->sg.size == 0) + tls_free_open_rec(sk); + break; + case __SK_DROP: + default: + sk_msg_free_partial(sk, msg, send); + if (msg->apply_bytes < send) + msg->apply_bytes = 0; + else + msg->apply_bytes -= send; + if (msg->sg.size == 0) + tls_free_open_rec(sk); + *copied -= (send + delta); + err = -EACCES; + } + + if (likely(!err)) { + bool reset_eval = !ctx->open_rec; + + rec = ctx->open_rec; + if (rec) { + msg = &rec->msg_plaintext; + if (!msg->apply_bytes) + reset_eval = true; + } + if (reset_eval) { + psock->eval = __SK_NONE; + if (psock->sk_redir) { + sock_put(psock->sk_redir); + psock->sk_redir = NULL; + } + } + if (rec) + goto more_data; + } + out_err: + sk_psock_put(sk, psock); + return err; +} + +static int tls_sw_push_pending_record(struct sock *sk, int flags) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_rec *rec = ctx->open_rec; + struct sk_msg *msg_pl; + size_t copied; + + if (!rec) + return 0; + + msg_pl = &rec->msg_plaintext; + copied = msg_pl->sg.size; + if (!copied) + return 0; + + return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, + &copied, flags); +} + +int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) +{ + long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + bool async_capable = ctx->async_capable; + unsigned char record_type = TLS_RECORD_TYPE_DATA; + bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); + bool eor = !(msg->msg_flags & MSG_MORE); + size_t try_to_copy; + ssize_t copied = 0; + struct sk_msg *msg_pl, *msg_en; + struct tls_rec *rec; + int required_size; + int num_async = 0; + bool full_record; + int record_room; + int num_zc = 0; + int orig_size; + int ret = 0; + int pending; + + if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | + MSG_CMSG_COMPAT)) + return -EOPNOTSUPP; + + ret = mutex_lock_interruptible(&tls_ctx->tx_lock); + if (ret) + return ret; + lock_sock(sk); + + if (unlikely(msg->msg_controllen)) { + ret = tls_proccess_cmsg(sk, msg, &record_type); + if (ret) { + if (ret == -EINPROGRESS) + num_async++; + else if (ret != -EAGAIN) + goto send_end; + } + } + + while (msg_data_left(msg)) { + if (sk->sk_err) { + ret = -sk->sk_err; + goto send_end; + } + + if (ctx->open_rec) + rec = ctx->open_rec; + else + rec = ctx->open_rec = tls_get_rec(sk); + if (!rec) { + ret = -ENOMEM; + goto send_end; + } + + msg_pl = &rec->msg_plaintext; + msg_en = &rec->msg_encrypted; + + orig_size = msg_pl->sg.size; + full_record = false; + try_to_copy = msg_data_left(msg); + record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; + if (try_to_copy >= record_room) { + try_to_copy = record_room; + full_record = true; + } + + required_size = msg_pl->sg.size + try_to_copy + + prot->overhead_size; + + if (!sk_stream_memory_free(sk)) + goto wait_for_sndbuf; + +alloc_encrypted: + ret = tls_alloc_encrypted_msg(sk, required_size); + if (ret) { + if (ret != -ENOSPC) + goto wait_for_memory; + + /* Adjust try_to_copy according to the amount that was + * actually allocated. The difference is due + * to max sg elements limit + */ + try_to_copy -= required_size - msg_en->sg.size; + full_record = true; + } + + if (!is_kvec && (full_record || eor) && !async_capable) { + u32 first = msg_pl->sg.end; + + ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, + msg_pl, try_to_copy); + if (ret) + goto fallback_to_reg_send; + + num_zc++; + copied += try_to_copy; + + sk_msg_sg_copy_set(msg_pl, first); + ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, + record_type, &copied, + msg->msg_flags); + if (ret) { + if (ret == -EINPROGRESS) + num_async++; + else if (ret == -ENOMEM) + goto wait_for_memory; + else if (ctx->open_rec && ret == -ENOSPC) + goto rollback_iter; + else if (ret != -EAGAIN) + goto send_end; + } + continue; +rollback_iter: + copied -= try_to_copy; + sk_msg_sg_copy_clear(msg_pl, first); + iov_iter_revert(&msg->msg_iter, + msg_pl->sg.size - orig_size); +fallback_to_reg_send: + sk_msg_trim(sk, msg_pl, orig_size); + } + + required_size = msg_pl->sg.size + try_to_copy; + + ret = tls_clone_plaintext_msg(sk, required_size); + if (ret) { + if (ret != -ENOSPC) + goto send_end; + + /* Adjust try_to_copy according to the amount that was + * actually allocated. The difference is due + * to max sg elements limit + */ + try_to_copy -= required_size - msg_pl->sg.size; + full_record = true; + sk_msg_trim(sk, msg_en, + msg_pl->sg.size + prot->overhead_size); + } + + if (try_to_copy) { + ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, + msg_pl, try_to_copy); + if (ret < 0) + goto trim_sgl; + } + + /* Open records defined only if successfully copied, otherwise + * we would trim the sg but not reset the open record frags. + */ + tls_ctx->pending_open_record_frags = true; + copied += try_to_copy; + if (full_record || eor) { + ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, + record_type, &copied, + msg->msg_flags); + if (ret) { + if (ret == -EINPROGRESS) + num_async++; + else if (ret == -ENOMEM) + goto wait_for_memory; + else if (ret != -EAGAIN) { + if (ret == -ENOSPC) + ret = 0; + goto send_end; + } + } + } + + continue; + +wait_for_sndbuf: + set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); +wait_for_memory: + ret = sk_stream_wait_memory(sk, &timeo); + if (ret) { +trim_sgl: + if (ctx->open_rec) + tls_trim_both_msgs(sk, orig_size); + goto send_end; + } + + if (ctx->open_rec && msg_en->sg.size < required_size) + goto alloc_encrypted; + } + + if (!num_async) { + goto send_end; + } else if (num_zc) { + /* Wait for pending encryptions to get completed */ + spin_lock_bh(&ctx->encrypt_compl_lock); + ctx->async_notify = true; + + pending = atomic_read(&ctx->encrypt_pending); + spin_unlock_bh(&ctx->encrypt_compl_lock); + if (pending) + crypto_wait_req(-EINPROGRESS, &ctx->async_wait); + else + reinit_completion(&ctx->async_wait.completion); + + /* There can be no concurrent accesses, since we have no + * pending encrypt operations + */ + WRITE_ONCE(ctx->async_notify, false); + + if (ctx->async_wait.err) { + ret = ctx->async_wait.err; + copied = 0; + } + } + + /* Transmit if any encryptions have completed */ + if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { + cancel_delayed_work(&ctx->tx_work.work); + tls_tx_records(sk, msg->msg_flags); + } + +send_end: + ret = sk_stream_error(sk, msg->msg_flags, ret); + + release_sock(sk); + mutex_unlock(&tls_ctx->tx_lock); + return copied > 0 ? copied : ret; +} + +static int tls_sw_do_sendpage(struct sock *sk, struct page *page, + int offset, size_t size, int flags) +{ + long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_prot_info *prot = &tls_ctx->prot_info; + unsigned char record_type = TLS_RECORD_TYPE_DATA; + struct sk_msg *msg_pl; + struct tls_rec *rec; + int num_async = 0; + ssize_t copied = 0; + bool full_record; + int record_room; + int ret = 0; + bool eor; + + eor = !(flags & MSG_SENDPAGE_NOTLAST); + sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); + + /* Call the sk_stream functions to manage the sndbuf mem. */ + while (size > 0) { + size_t copy, required_size; + + if (sk->sk_err) { + ret = -sk->sk_err; + goto sendpage_end; + } + + if (ctx->open_rec) + rec = ctx->open_rec; + else + rec = ctx->open_rec = tls_get_rec(sk); + if (!rec) { + ret = -ENOMEM; + goto sendpage_end; + } + + msg_pl = &rec->msg_plaintext; + + full_record = false; + record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; + copy = size; + if (copy >= record_room) { + copy = record_room; + full_record = true; + } + + required_size = msg_pl->sg.size + copy + prot->overhead_size; + + if (!sk_stream_memory_free(sk)) + goto wait_for_sndbuf; +alloc_payload: + ret = tls_alloc_encrypted_msg(sk, required_size); + if (ret) { + if (ret != -ENOSPC) + goto wait_for_memory; + + /* Adjust copy according to the amount that was + * actually allocated. The difference is due + * to max sg elements limit + */ + copy -= required_size - msg_pl->sg.size; + full_record = true; + } + + sk_msg_page_add(msg_pl, page, copy, offset); + msg_pl->sg.copybreak = 0; + msg_pl->sg.curr = msg_pl->sg.end; + sk_mem_charge(sk, copy); + + offset += copy; + size -= copy; + copied += copy; + + tls_ctx->pending_open_record_frags = true; + if (full_record || eor || sk_msg_full(msg_pl)) { + ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, + record_type, &copied, flags); + if (ret) { + if (ret == -EINPROGRESS) + num_async++; + else if (ret == -ENOMEM) + goto wait_for_memory; + else if (ret != -EAGAIN) { + if (ret == -ENOSPC) + ret = 0; + goto sendpage_end; + } + } + } + continue; +wait_for_sndbuf: + set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); +wait_for_memory: + ret = sk_stream_wait_memory(sk, &timeo); + if (ret) { + if (ctx->open_rec) + tls_trim_both_msgs(sk, msg_pl->sg.size); + goto sendpage_end; + } + + if (ctx->open_rec) + goto alloc_payload; + } + + if (num_async) { + /* Transmit if any encryptions have completed */ + if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { + cancel_delayed_work(&ctx->tx_work.work); + tls_tx_records(sk, flags); + } + } +sendpage_end: + ret = sk_stream_error(sk, flags, ret); + return copied > 0 ? copied : ret; +} + +int tls_sw_sendpage_locked(struct sock *sk, struct page *page, + int offset, size_t size, int flags) +{ + if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | + MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | + MSG_NO_SHARED_FRAGS)) + return -EOPNOTSUPP; + + return tls_sw_do_sendpage(sk, page, offset, size, flags); +} + +int tls_sw_sendpage(struct sock *sk, struct page *page, + int offset, size_t size, int flags) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + int ret; + + if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | + MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) + return -EOPNOTSUPP; + + ret = mutex_lock_interruptible(&tls_ctx->tx_lock); + if (ret) + return ret; + lock_sock(sk); + ret = tls_sw_do_sendpage(sk, page, offset, size, flags); + release_sock(sk); + mutex_unlock(&tls_ctx->tx_lock); + return ret; +} + +static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, + bool nonblock, long timeo, int *err) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + struct sk_buff *skb; + DEFINE_WAIT_FUNC(wait, woken_wake_function); + + while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { + if (sk->sk_err) { + *err = sock_error(sk); + return NULL; + } + + if (!skb_queue_empty(&sk->sk_receive_queue)) { + __strp_unpause(&ctx->strp); + if (ctx->recv_pkt) + return ctx->recv_pkt; + } + + if (sk->sk_shutdown & RCV_SHUTDOWN) + return NULL; + + if (sock_flag(sk, SOCK_DONE)) + return NULL; + + if (nonblock || !timeo) { + *err = -EAGAIN; + return NULL; + } + + add_wait_queue(sk_sleep(sk), &wait); + sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); + sk_wait_event(sk, &timeo, + ctx->recv_pkt != skb || + !sk_psock_queue_empty(psock), + &wait); + sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); + remove_wait_queue(sk_sleep(sk), &wait); + + /* Handle signals */ + if (signal_pending(current)) { + *err = sock_intr_errno(timeo); + return NULL; + } + } + + return skb; +} + +static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, + int length, int *pages_used, + unsigned int *size_used, + struct scatterlist *to, + int to_max_pages) +{ + int rc = 0, i = 0, num_elem = *pages_used, maxpages; + struct page *pages[MAX_SKB_FRAGS]; + unsigned int size = *size_used; + ssize_t copied, use; + size_t offset; + + while (length > 0) { + i = 0; + maxpages = to_max_pages - num_elem; + if (maxpages == 0) { + rc = -EFAULT; + goto out; + } + copied = iov_iter_get_pages(from, pages, + length, + maxpages, &offset); + if (copied <= 0) { + rc = -EFAULT; + goto out; + } + + iov_iter_advance(from, copied); + + length -= copied; + size += copied; + while (copied) { + use = min_t(int, copied, PAGE_SIZE - offset); + + sg_set_page(&to[num_elem], + pages[i], use, offset); + sg_unmark_end(&to[num_elem]); + /* We do not uncharge memory from this API */ + + offset = 0; + copied -= use; + + i++; + num_elem++; + } + } + /* Mark the end in the last sg entry if newly added */ + if (num_elem > *pages_used) + sg_mark_end(&to[num_elem - 1]); +out: + if (rc) + iov_iter_revert(from, size - *size_used); + *size_used = size; + *pages_used = num_elem; + + return rc; +} + +/* This function decrypts the input skb into either out_iov or in out_sg + * or in skb buffers itself. The input parameter 'zc' indicates if + * zero-copy mode needs to be tried or not. With zero-copy mode, either + * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are + * NULL, then the decryption happens inside skb buffers itself, i.e. + * zero-copy gets disabled and 'zc' is updated. + */ + +static int decrypt_internal(struct sock *sk, struct sk_buff *skb, + struct iov_iter *out_iov, + struct scatterlist *out_sg, + int *chunk, bool *zc, bool async) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct strp_msg *rxm = strp_msg(skb); + int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; + struct aead_request *aead_req; + struct sk_buff *unused; + u8 *aad, *iv, *mem = NULL; + struct scatterlist *sgin = NULL; + struct scatterlist *sgout = NULL; + const int data_len = rxm->full_len - prot->overhead_size + + prot->tail_size; + int iv_offset = 0; + + if (*zc && (out_iov || out_sg)) { + if (out_iov) + n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; + else + n_sgout = sg_nents(out_sg); + n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, + rxm->full_len - prot->prepend_size); + } else { + n_sgout = 0; + *zc = false; + n_sgin = skb_cow_data(skb, 0, &unused); + } + + if (n_sgin < 1) + return -EBADMSG; + + /* Increment to accommodate AAD */ + n_sgin = n_sgin + 1; + + nsg = n_sgin + n_sgout; + + aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); + mem_size = aead_size + (nsg * sizeof(struct scatterlist)); + mem_size = mem_size + prot->aad_size; + mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); + + /* Allocate a single block of memory which contains + * aead_req || sgin[] || sgout[] || aad || iv. + * This order achieves correct alignment for aead_req, sgin, sgout. + */ + mem = kmalloc(mem_size, sk->sk_allocation); + if (!mem) + return -ENOMEM; + + /* Segment the allocated memory */ + aead_req = (struct aead_request *)mem; + sgin = (struct scatterlist *)(mem + aead_size); + sgout = sgin + n_sgin; + aad = (u8 *)(sgout + n_sgout); + iv = aad + prot->aad_size; + + /* For CCM based ciphers, first byte of nonce+iv is always '2' */ + if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { + iv[0] = 2; + iv_offset = 1; + } + + /* Prepare IV */ + err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, + iv + iv_offset + prot->salt_size, + prot->iv_size); + if (err < 0) { + kfree(mem); + return err; + } + if (prot->version == TLS_1_3_VERSION) + memcpy(iv + iv_offset, tls_ctx->rx.iv, + prot->iv_size + prot->salt_size); + else + memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size); + + xor_iv_with_seq(prot->version, iv + iv_offset, tls_ctx->rx.rec_seq); + + /* Prepare AAD */ + tls_make_aad(aad, rxm->full_len - prot->overhead_size + + prot->tail_size, + tls_ctx->rx.rec_seq, prot->rec_seq_size, + ctx->control, prot->version); + + /* Prepare sgin */ + sg_init_table(sgin, n_sgin); + sg_set_buf(&sgin[0], aad, prot->aad_size); + err = skb_to_sgvec(skb, &sgin[1], + rxm->offset + prot->prepend_size, + rxm->full_len - prot->prepend_size); + if (err < 0) { + kfree(mem); + return err; + } + + if (n_sgout) { + if (out_iov) { + sg_init_table(sgout, n_sgout); + sg_set_buf(&sgout[0], aad, prot->aad_size); + + *chunk = 0; + err = tls_setup_from_iter(sk, out_iov, data_len, + &pages, chunk, &sgout[1], + (n_sgout - 1)); + if (err < 0) + goto fallback_to_reg_recv; + } else if (out_sg) { + memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); + } else { + goto fallback_to_reg_recv; + } + } else { +fallback_to_reg_recv: + sgout = sgin; + pages = 0; + *chunk = data_len; + *zc = false; + } + + /* Prepare and submit AEAD request */ + err = tls_do_decryption(sk, skb, sgin, sgout, iv, + data_len, aead_req, async); + if (err == -EINPROGRESS) + return err; + + /* Release the pages in case iov was mapped to pages */ + for (; pages > 0; pages--) + put_page(sg_page(&sgout[pages])); + + kfree(mem); + return err; +} + +static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, + struct iov_iter *dest, int *chunk, bool *zc, + bool async) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct strp_msg *rxm = strp_msg(skb); + int pad, err = 0; + + if (!ctx->decrypted) { + if (tls_ctx->rx_conf == TLS_HW) { + err = tls_device_decrypted(sk, tls_ctx, skb, rxm); + if (err < 0) + return err; + } + + /* Still not decrypted after tls_device */ + if (!ctx->decrypted) { + err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, + async); + if (err < 0) { + if (err == -EINPROGRESS) + tls_advance_record_sn(sk, prot, + &tls_ctx->rx); + else if (err == -EBADMSG) + TLS_INC_STATS(sock_net(sk), + LINUX_MIB_TLSDECRYPTERROR); + return err; + } + } else { + *zc = false; + } + + pad = padding_length(ctx, prot, skb); + if (pad < 0) + return pad; + + rxm->full_len -= pad; + rxm->offset += prot->prepend_size; + rxm->full_len -= prot->overhead_size; + tls_advance_record_sn(sk, prot, &tls_ctx->rx); + ctx->decrypted = 1; + ctx->saved_data_ready(sk); + } else { + *zc = false; + } + + return err; +} + +int decrypt_skb(struct sock *sk, struct sk_buff *skb, + struct scatterlist *sgout) +{ + bool zc = true; + int chunk; + + return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); +} + +static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, + unsigned int len) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + + if (skb) { + struct strp_msg *rxm = strp_msg(skb); + + if (len < rxm->full_len) { + rxm->offset += len; + rxm->full_len -= len; + return false; + } + consume_skb(skb); + } + + /* Finished with message */ + ctx->recv_pkt = NULL; + __strp_unpause(&ctx->strp); + + return true; +} + +/* This function traverses the rx_list in tls receive context to copies the + * decrypted records into the buffer provided by caller zero copy is not + * true. Further, the records are removed from the rx_list if it is not a peek + * case and the record has been consumed completely. + */ +static int process_rx_list(struct tls_sw_context_rx *ctx, + struct msghdr *msg, + u8 *control, + bool *cmsg, + size_t skip, + size_t len, + bool zc, + bool is_peek) +{ + struct sk_buff *skb = skb_peek(&ctx->rx_list); + u8 ctrl = *control; + u8 msgc = *cmsg; + struct tls_msg *tlm; + ssize_t copied = 0; + + /* Set the record type in 'control' if caller didn't pass it */ + if (!ctrl && skb) { + tlm = tls_msg(skb); + ctrl = tlm->control; + } + + while (skip && skb) { + struct strp_msg *rxm = strp_msg(skb); + tlm = tls_msg(skb); + + /* Cannot process a record of different type */ + if (ctrl != tlm->control) + return 0; + + if (skip < rxm->full_len) + break; + + skip = skip - rxm->full_len; + skb = skb_peek_next(skb, &ctx->rx_list); + } + + while (len && skb) { + struct sk_buff *next_skb; + struct strp_msg *rxm = strp_msg(skb); + int chunk = min_t(unsigned int, rxm->full_len - skip, len); + + tlm = tls_msg(skb); + + /* Cannot process a record of different type */ + if (ctrl != tlm->control) + return 0; + + /* Set record type if not already done. For a non-data record, + * do not proceed if record type could not be copied. + */ + if (!msgc) { + int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, + sizeof(ctrl), &ctrl); + msgc = true; + if (ctrl != TLS_RECORD_TYPE_DATA) { + if (cerr || msg->msg_flags & MSG_CTRUNC) + return -EIO; + + *cmsg = msgc; + } + } + + if (!zc || (rxm->full_len - skip) > len) { + int err = skb_copy_datagram_msg(skb, rxm->offset + skip, + msg, chunk); + if (err < 0) + return err; + } + + len = len - chunk; + copied = copied + chunk; + + /* Consume the data from record if it is non-peek case*/ + if (!is_peek) { + rxm->offset = rxm->offset + chunk; + rxm->full_len = rxm->full_len - chunk; + + /* Return if there is unconsumed data in the record */ + if (rxm->full_len - skip) + break; + } + + /* The remaining skip-bytes must lie in 1st record in rx_list. + * So from the 2nd record, 'skip' should be 0. + */ + skip = 0; + + if (msg) + msg->msg_flags |= MSG_EOR; + + next_skb = skb_peek_next(skb, &ctx->rx_list); + + if (!is_peek) { + skb_unlink(skb, &ctx->rx_list); + consume_skb(skb); + } + + skb = next_skb; + } + + *control = ctrl; + return copied; +} + +int tls_sw_recvmsg(struct sock *sk, + struct msghdr *msg, + size_t len, + int nonblock, + int flags, + int *addr_len) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct sk_psock *psock; + unsigned char control = 0; + ssize_t decrypted = 0; + struct strp_msg *rxm; + struct tls_msg *tlm; + struct sk_buff *skb; + ssize_t copied = 0; + bool cmsg = false; + int target, err = 0; + long timeo; + bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); + bool is_peek = flags & MSG_PEEK; + bool bpf_strp_enabled; + int num_async = 0; + int pending; + + flags |= nonblock; + + if (unlikely(flags & MSG_ERRQUEUE)) + return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); + + psock = sk_psock_get(sk); + lock_sock(sk); + bpf_strp_enabled = sk_psock_strp_enabled(psock); + + /* Process pending decrypted records. It must be non-zero-copy */ + err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, + is_peek); + if (err < 0) { + tls_err_abort(sk, err); + goto end; + } else { + copied = err; + } + + if (len <= copied) + goto recv_end; + + target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); + len = len - copied; + timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); + + while (len && (decrypted + copied < target || ctx->recv_pkt)) { + bool retain_skb = false; + bool zc = false; + int to_decrypt; + int chunk = 0; + bool async_capable; + bool async = false; + + skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err); + if (!skb) { + if (psock) { + int ret = __tcp_bpf_recvmsg(sk, psock, + msg, len, flags); + + if (ret > 0) { + decrypted += ret; + len -= ret; + continue; + } + } + goto recv_end; + } else { + tlm = tls_msg(skb); + if (prot->version == TLS_1_3_VERSION) + tlm->control = 0; + else + tlm->control = ctx->control; + } + + rxm = strp_msg(skb); + + to_decrypt = rxm->full_len - prot->overhead_size; + + if (to_decrypt <= len && !is_kvec && !is_peek && + ctx->control == TLS_RECORD_TYPE_DATA && + prot->version != TLS_1_3_VERSION && + !bpf_strp_enabled) + zc = true; + + /* Do not use async mode if record is non-data */ + if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) + async_capable = ctx->async_capable; + else + async_capable = false; + + err = decrypt_skb_update(sk, skb, &msg->msg_iter, + &chunk, &zc, async_capable); + if (err < 0 && err != -EINPROGRESS) { + tls_err_abort(sk, -EBADMSG); + goto recv_end; + } + + if (err == -EINPROGRESS) { + async = true; + num_async++; + } else if (prot->version == TLS_1_3_VERSION) { + tlm->control = ctx->control; + } + + /* If the type of records being processed is not known yet, + * set it to record type just dequeued. If it is already known, + * but does not match the record type just dequeued, go to end. + * We always get record type here since for tls1.2, record type + * is known just after record is dequeued from stream parser. + * For tls1.3, we disable async. + */ + + if (!control) + control = tlm->control; + else if (control != tlm->control) + goto recv_end; + + if (!cmsg) { + int cerr; + + cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, + sizeof(control), &control); + cmsg = true; + if (control != TLS_RECORD_TYPE_DATA) { + if (cerr || msg->msg_flags & MSG_CTRUNC) { + err = -EIO; + goto recv_end; + } + } + } + + if (async) + goto pick_next_record; + + if (!zc) { + if (bpf_strp_enabled) { + err = sk_psock_tls_strp_read(psock, skb); + if (err != __SK_PASS) { + rxm->offset = rxm->offset + rxm->full_len; + rxm->full_len = 0; + if (err == __SK_DROP) + consume_skb(skb); + ctx->recv_pkt = NULL; + __strp_unpause(&ctx->strp); + continue; + } + } + + if (rxm->full_len > len) { + retain_skb = true; + chunk = len; + } else { + chunk = rxm->full_len; + } + + err = skb_copy_datagram_msg(skb, rxm->offset, + msg, chunk); + if (err < 0) + goto recv_end; + + if (!is_peek) { + rxm->offset = rxm->offset + chunk; + rxm->full_len = rxm->full_len - chunk; + } + } + +pick_next_record: + if (chunk > len) + chunk = len; + + decrypted += chunk; + len -= chunk; + + /* For async or peek case, queue the current skb */ + if (async || is_peek || retain_skb) { + skb_queue_tail(&ctx->rx_list, skb); + skb = NULL; + } + + if (tls_sw_advance_skb(sk, skb, chunk)) { + /* Return full control message to + * userspace before trying to parse + * another message type + */ + msg->msg_flags |= MSG_EOR; + if (control != TLS_RECORD_TYPE_DATA) + goto recv_end; + } else { + break; + } + } + +recv_end: + if (num_async) { + /* Wait for all previously submitted records to be decrypted */ + spin_lock_bh(&ctx->decrypt_compl_lock); + ctx->async_notify = true; + pending = atomic_read(&ctx->decrypt_pending); + spin_unlock_bh(&ctx->decrypt_compl_lock); + if (pending) { + err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); + if (err) { + /* one of async decrypt failed */ + tls_err_abort(sk, err); + copied = 0; + decrypted = 0; + goto end; + } + } else { + reinit_completion(&ctx->async_wait.completion); + } + + /* There can be no concurrent accesses, since we have no + * pending decrypt operations + */ + WRITE_ONCE(ctx->async_notify, false); + + /* Drain records from the rx_list & copy if required */ + if (is_peek || is_kvec) + err = process_rx_list(ctx, msg, &control, &cmsg, copied, + decrypted, false, is_peek); + else + err = process_rx_list(ctx, msg, &control, &cmsg, 0, + decrypted, true, is_peek); + if (err < 0) { + tls_err_abort(sk, err); + copied = 0; + goto end; + } + } + + copied += decrypted; + +end: + release_sock(sk); + if (psock) + sk_psock_put(sk, psock); + return copied ? : err; +} + +ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, + struct pipe_inode_info *pipe, + size_t len, unsigned int flags) +{ + struct tls_context *tls_ctx = tls_get_ctx(sock->sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + struct strp_msg *rxm = NULL; + struct sock *sk = sock->sk; + struct sk_buff *skb; + ssize_t copied = 0; + int err = 0; + long timeo; + int chunk; + bool zc = false; + + lock_sock(sk); + + timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK); + + skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err); + if (!skb) + goto splice_read_end; + + err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); + if (err < 0) { + tls_err_abort(sk, -EBADMSG); + goto splice_read_end; + } + + /* splice does not support reading control messages */ + if (ctx->control != TLS_RECORD_TYPE_DATA) { + err = -EINVAL; + goto splice_read_end; + } + + rxm = strp_msg(skb); + + chunk = min_t(unsigned int, rxm->full_len, len); + copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); + if (copied < 0) + goto splice_read_end; + + if (likely(!(flags & MSG_PEEK))) + tls_sw_advance_skb(sk, skb, copied); + +splice_read_end: + release_sock(sk); + return copied ? : err; +} + +bool tls_sw_stream_read(const struct sock *sk) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + bool ingress_empty = true; + struct sk_psock *psock; + + rcu_read_lock(); + psock = sk_psock(sk); + if (psock) + ingress_empty = list_empty(&psock->ingress_msg); + rcu_read_unlock(); + + return !ingress_empty || ctx->recv_pkt || + !skb_queue_empty(&ctx->rx_list); +} + +static int tls_read_size(struct strparser *strp, struct sk_buff *skb) +{ + struct tls_context *tls_ctx = tls_get_ctx(strp->sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + struct tls_prot_info *prot = &tls_ctx->prot_info; + char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; + struct strp_msg *rxm = strp_msg(skb); + size_t cipher_overhead; + size_t data_len = 0; + int ret; + + /* Verify that we have a full TLS header, or wait for more data */ + if (rxm->offset + prot->prepend_size > skb->len) + return 0; + + /* Sanity-check size of on-stack buffer. */ + if (WARN_ON(prot->prepend_size > sizeof(header))) { + ret = -EINVAL; + goto read_failure; + } + + /* Linearize header to local buffer */ + ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); + + if (ret < 0) + goto read_failure; + + ctx->control = header[0]; + + data_len = ((header[4] & 0xFF) | (header[3] << 8)); + + cipher_overhead = prot->tag_size; + if (prot->version != TLS_1_3_VERSION) + cipher_overhead += prot->iv_size; + + if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + + prot->tail_size) { + ret = -EMSGSIZE; + goto read_failure; + } + if (data_len < cipher_overhead) { + ret = -EBADMSG; + goto read_failure; + } + + /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ + if (header[1] != TLS_1_2_VERSION_MINOR || + header[2] != TLS_1_2_VERSION_MAJOR) { + ret = -EINVAL; + goto read_failure; + } + + tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, + TCP_SKB_CB(skb)->seq + rxm->offset); + return data_len + TLS_HEADER_SIZE; + +read_failure: + tls_err_abort(strp->sk, ret); + + return ret; +} + +static void tls_queue(struct strparser *strp, struct sk_buff *skb) +{ + struct tls_context *tls_ctx = tls_get_ctx(strp->sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + + ctx->decrypted = 0; + + ctx->recv_pkt = skb; + strp_pause(strp); + + ctx->saved_data_ready(strp->sk); +} + +static void tls_data_ready(struct sock *sk) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + struct sk_psock *psock; + + strp_data_ready(&ctx->strp); + + psock = sk_psock_get(sk); + if (psock) { + if (!list_empty(&psock->ingress_msg)) + ctx->saved_data_ready(sk); + sk_psock_put(sk, psock); + } +} + +void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) +{ + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + + set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); + set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); + cancel_delayed_work_sync(&ctx->tx_work.work); +} + +void tls_sw_release_resources_tx(struct sock *sk) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_rec *rec, *tmp; + int pending; + + /* Wait for any pending async encryptions to complete */ + spin_lock_bh(&ctx->encrypt_compl_lock); + ctx->async_notify = true; + pending = atomic_read(&ctx->encrypt_pending); + spin_unlock_bh(&ctx->encrypt_compl_lock); + + if (pending) + crypto_wait_req(-EINPROGRESS, &ctx->async_wait); + + tls_tx_records(sk, -1); + + /* Free up un-sent records in tx_list. First, free + * the partially sent record if any at head of tx_list. + */ + if (tls_ctx->partially_sent_record) { + tls_free_partial_record(sk, tls_ctx); + rec = list_first_entry(&ctx->tx_list, + struct tls_rec, list); + list_del(&rec->list); + sk_msg_free(sk, &rec->msg_plaintext); + kfree(rec); + } + + list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { + list_del(&rec->list); + sk_msg_free(sk, &rec->msg_encrypted); + sk_msg_free(sk, &rec->msg_plaintext); + kfree(rec); + } + + crypto_free_aead(ctx->aead_send); + tls_free_open_rec(sk); +} + +void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) +{ + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + + kfree(ctx); +} + +void tls_sw_release_resources_rx(struct sock *sk) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + + kfree(tls_ctx->rx.rec_seq); + kfree(tls_ctx->rx.iv); + + if (ctx->aead_recv) { + kfree_skb(ctx->recv_pkt); + ctx->recv_pkt = NULL; + skb_queue_purge(&ctx->rx_list); + crypto_free_aead(ctx->aead_recv); + strp_stop(&ctx->strp); + /* If tls_sw_strparser_arm() was not called (cleanup paths) + * we still want to strp_stop(), but sk->sk_data_ready was + * never swapped. + */ + if (ctx->saved_data_ready) { + write_lock_bh(&sk->sk_callback_lock); + sk->sk_data_ready = ctx->saved_data_ready; + write_unlock_bh(&sk->sk_callback_lock); + } + } +} + +void tls_sw_strparser_done(struct tls_context *tls_ctx) +{ + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + + strp_done(&ctx->strp); +} + +void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) +{ + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + + kfree(ctx); +} + +void tls_sw_free_resources_rx(struct sock *sk) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + + tls_sw_release_resources_rx(sk); + tls_sw_free_ctx_rx(tls_ctx); +} + +/* The work handler to transmitt the encrypted records in tx_list */ +static void tx_work_handler(struct work_struct *work) +{ + struct delayed_work *delayed_work = to_delayed_work(work); + struct tx_work *tx_work = container_of(delayed_work, + struct tx_work, work); + struct sock *sk = tx_work->sk; + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_tx *ctx; + + if (unlikely(!tls_ctx)) + return; + + ctx = tls_sw_ctx_tx(tls_ctx); + if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) + return; + + if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) + return; + + if (mutex_trylock(&tls_ctx->tx_lock)) { + lock_sock(sk); + tls_tx_records(sk, -1); + release_sock(sk); + mutex_unlock(&tls_ctx->tx_lock); + } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { + /* Someone is holding the tx_lock, they will likely run Tx + * and cancel the work on their way out of the lock section. + * Schedule a long delay just in case. + */ + schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10)); + } +} + +void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) +{ + struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); + + /* Schedule the transmission if tx list is ready */ + if (is_tx_ready(tx_ctx) && + !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) + schedule_delayed_work(&tx_ctx->tx_work.work, 0); +} + +void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) +{ + struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); + + write_lock_bh(&sk->sk_callback_lock); + rx_ctx->saved_data_ready = sk->sk_data_ready; + sk->sk_data_ready = tls_data_ready; + write_unlock_bh(&sk->sk_callback_lock); + + strp_check_rcv(&rx_ctx->strp); +} + +int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_crypto_info *crypto_info; + struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; + struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; + struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; + struct tls_sw_context_tx *sw_ctx_tx = NULL; + struct tls_sw_context_rx *sw_ctx_rx = NULL; + struct cipher_context *cctx; + struct crypto_aead **aead; + struct strp_callbacks cb; + u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; + struct crypto_tfm *tfm; + char *iv, *rec_seq, *key, *salt, *cipher_name; + size_t keysize; + int rc = 0; + + if (!ctx) { + rc = -EINVAL; + goto out; + } + + if (tx) { + if (!ctx->priv_ctx_tx) { + sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); + if (!sw_ctx_tx) { + rc = -ENOMEM; + goto out; + } + ctx->priv_ctx_tx = sw_ctx_tx; + } else { + sw_ctx_tx = + (struct tls_sw_context_tx *)ctx->priv_ctx_tx; + } + } else { + if (!ctx->priv_ctx_rx) { + sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); + if (!sw_ctx_rx) { + rc = -ENOMEM; + goto out; + } + ctx->priv_ctx_rx = sw_ctx_rx; + } else { + sw_ctx_rx = + (struct tls_sw_context_rx *)ctx->priv_ctx_rx; + } + } + + if (tx) { + crypto_init_wait(&sw_ctx_tx->async_wait); + spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); + crypto_info = &ctx->crypto_send.info; + cctx = &ctx->tx; + aead = &sw_ctx_tx->aead_send; + INIT_LIST_HEAD(&sw_ctx_tx->tx_list); + INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); + sw_ctx_tx->tx_work.sk = sk; + } else { + crypto_init_wait(&sw_ctx_rx->async_wait); + spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); + crypto_info = &ctx->crypto_recv.info; + cctx = &ctx->rx; + skb_queue_head_init(&sw_ctx_rx->rx_list); + aead = &sw_ctx_rx->aead_recv; + } + + switch (crypto_info->cipher_type) { + case TLS_CIPHER_AES_GCM_128: { + nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; + tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; + iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; + iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; + rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; + rec_seq = + ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; + gcm_128_info = + (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; + keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; + key = gcm_128_info->key; + salt = gcm_128_info->salt; + salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; + cipher_name = "gcm(aes)"; + break; + } + case TLS_CIPHER_AES_GCM_256: { + nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; + tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; + iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; + iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; + rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; + rec_seq = + ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; + gcm_256_info = + (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; + keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; + key = gcm_256_info->key; + salt = gcm_256_info->salt; + salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; + cipher_name = "gcm(aes)"; + break; + } + case TLS_CIPHER_AES_CCM_128: { + nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; + tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; + iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; + iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv; + rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; + rec_seq = + ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq; + ccm_128_info = + (struct tls12_crypto_info_aes_ccm_128 *)crypto_info; + keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; + key = ccm_128_info->key; + salt = ccm_128_info->salt; + salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; + cipher_name = "ccm(aes)"; + break; + } + default: + rc = -EINVAL; + goto free_priv; + } + + /* Sanity-check the sizes for stack allocations. */ + if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || + rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { + rc = -EINVAL; + goto free_priv; + } + + if (crypto_info->version == TLS_1_3_VERSION) { + nonce_size = 0; + prot->aad_size = TLS_HEADER_SIZE; + prot->tail_size = 1; + } else { + prot->aad_size = TLS_AAD_SPACE_SIZE; + prot->tail_size = 0; + } + + prot->version = crypto_info->version; + prot->cipher_type = crypto_info->cipher_type; + prot->prepend_size = TLS_HEADER_SIZE + nonce_size; + prot->tag_size = tag_size; + prot->overhead_size = prot->prepend_size + + prot->tag_size + prot->tail_size; + prot->iv_size = iv_size; + prot->salt_size = salt_size; + cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); + if (!cctx->iv) { + rc = -ENOMEM; + goto free_priv; + } + /* Note: 128 & 256 bit salt are the same size */ + prot->rec_seq_size = rec_seq_size; + memcpy(cctx->iv, salt, salt_size); + memcpy(cctx->iv + salt_size, iv, iv_size); + cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); + if (!cctx->rec_seq) { + rc = -ENOMEM; + goto free_iv; + } + + if (!*aead) { + *aead = crypto_alloc_aead(cipher_name, 0, 0); + if (IS_ERR(*aead)) { + rc = PTR_ERR(*aead); + *aead = NULL; + goto free_rec_seq; + } + } + + ctx->push_pending_record = tls_sw_push_pending_record; + + rc = crypto_aead_setkey(*aead, key, keysize); + + if (rc) + goto free_aead; + + rc = crypto_aead_setauthsize(*aead, prot->tag_size); + if (rc) + goto free_aead; + + if (sw_ctx_rx) { + tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); + + if (crypto_info->version == TLS_1_3_VERSION) + sw_ctx_rx->async_capable = 0; + else + sw_ctx_rx->async_capable = + !!(tfm->__crt_alg->cra_flags & + CRYPTO_ALG_ASYNC); + + /* Set up strparser */ + memset(&cb, 0, sizeof(cb)); + cb.rcv_msg = tls_queue; + cb.parse_msg = tls_read_size; + + strp_init(&sw_ctx_rx->strp, sk, &cb); + } + + goto out; + +free_aead: + crypto_free_aead(*aead); + *aead = NULL; +free_rec_seq: + kfree(cctx->rec_seq); + cctx->rec_seq = NULL; +free_iv: + kfree(cctx->iv); + cctx->iv = NULL; +free_priv: + if (tx) { + kfree(ctx->priv_ctx_tx); + ctx->priv_ctx_tx = NULL; + } else { + kfree(ctx->priv_ctx_rx); + ctx->priv_ctx_rx = NULL; + } +out: + return rc; +} |