diff options
Diffstat (limited to 'arch/powerpc/kvm/book3s_64_mmu_hv.c')
-rw-r--r-- | arch/powerpc/kvm/book3s_64_mmu_hv.c | 2153 |
1 files changed, 2153 insertions, 0 deletions
diff --git a/arch/powerpc/kvm/book3s_64_mmu_hv.c b/arch/powerpc/kvm/book3s_64_mmu_hv.c new file mode 100644 index 000000000..38ea396a2 --- /dev/null +++ b/arch/powerpc/kvm/book3s_64_mmu_hv.c @@ -0,0 +1,2153 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * + * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> + */ + +#include <linux/types.h> +#include <linux/string.h> +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <linux/highmem.h> +#include <linux/gfp.h> +#include <linux/slab.h> +#include <linux/hugetlb.h> +#include <linux/vmalloc.h> +#include <linux/srcu.h> +#include <linux/anon_inodes.h> +#include <linux/file.h> +#include <linux/debugfs.h> + +#include <asm/kvm_ppc.h> +#include <asm/kvm_book3s.h> +#include <asm/book3s/64/mmu-hash.h> +#include <asm/hvcall.h> +#include <asm/synch.h> +#include <asm/ppc-opcode.h> +#include <asm/cputable.h> +#include <asm/pte-walk.h> + +#include "trace_hv.h" + +//#define DEBUG_RESIZE_HPT 1 + +#ifdef DEBUG_RESIZE_HPT +#define resize_hpt_debug(resize, ...) \ + do { \ + printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \ + printk(__VA_ARGS__); \ + } while (0) +#else +#define resize_hpt_debug(resize, ...) \ + do { } while (0) +#endif + +static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, + long pte_index, unsigned long pteh, + unsigned long ptel, unsigned long *pte_idx_ret); + +struct kvm_resize_hpt { + /* These fields read-only after init */ + struct kvm *kvm; + struct work_struct work; + u32 order; + + /* These fields protected by kvm->arch.mmu_setup_lock */ + + /* Possible values and their usage: + * <0 an error occurred during allocation, + * -EBUSY allocation is in the progress, + * 0 allocation made successfuly. + */ + int error; + + /* Private to the work thread, until error != -EBUSY, + * then protected by kvm->arch.mmu_setup_lock. + */ + struct kvm_hpt_info hpt; +}; + +int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order) +{ + unsigned long hpt = 0; + int cma = 0; + struct page *page = NULL; + struct revmap_entry *rev; + unsigned long npte; + + if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER)) + return -EINVAL; + + page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT)); + if (page) { + hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page)); + memset((void *)hpt, 0, (1ul << order)); + cma = 1; + } + + if (!hpt) + hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL + |__GFP_NOWARN, order - PAGE_SHIFT); + + if (!hpt) + return -ENOMEM; + + /* HPTEs are 2**4 bytes long */ + npte = 1ul << (order - 4); + + /* Allocate reverse map array */ + rev = vmalloc(array_size(npte, sizeof(struct revmap_entry))); + if (!rev) { + if (cma) + kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT)); + else + free_pages(hpt, order - PAGE_SHIFT); + return -ENOMEM; + } + + info->order = order; + info->virt = hpt; + info->cma = cma; + info->rev = rev; + + return 0; +} + +void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info) +{ + atomic64_set(&kvm->arch.mmio_update, 0); + kvm->arch.hpt = *info; + kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18); + + pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n", + info->virt, (long)info->order, kvm->arch.lpid); +} + +long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order) +{ + long err = -EBUSY; + struct kvm_hpt_info info; + + mutex_lock(&kvm->arch.mmu_setup_lock); + if (kvm->arch.mmu_ready) { + kvm->arch.mmu_ready = 0; + /* order mmu_ready vs. vcpus_running */ + smp_mb(); + if (atomic_read(&kvm->arch.vcpus_running)) { + kvm->arch.mmu_ready = 1; + goto out; + } + } + if (kvm_is_radix(kvm)) { + err = kvmppc_switch_mmu_to_hpt(kvm); + if (err) + goto out; + } + + if (kvm->arch.hpt.order == order) { + /* We already have a suitable HPT */ + + /* Set the entire HPT to 0, i.e. invalid HPTEs */ + memset((void *)kvm->arch.hpt.virt, 0, 1ul << order); + /* + * Reset all the reverse-mapping chains for all memslots + */ + kvmppc_rmap_reset(kvm); + err = 0; + goto out; + } + + if (kvm->arch.hpt.virt) { + kvmppc_free_hpt(&kvm->arch.hpt); + kvmppc_rmap_reset(kvm); + } + + err = kvmppc_allocate_hpt(&info, order); + if (err < 0) + goto out; + kvmppc_set_hpt(kvm, &info); + +out: + if (err == 0) + /* Ensure that each vcpu will flush its TLB on next entry. */ + cpumask_setall(&kvm->arch.need_tlb_flush); + + mutex_unlock(&kvm->arch.mmu_setup_lock); + return err; +} + +void kvmppc_free_hpt(struct kvm_hpt_info *info) +{ + vfree(info->rev); + info->rev = NULL; + if (info->cma) + kvm_free_hpt_cma(virt_to_page(info->virt), + 1 << (info->order - PAGE_SHIFT)); + else if (info->virt) + free_pages(info->virt, info->order - PAGE_SHIFT); + info->virt = 0; + info->order = 0; +} + +/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */ +static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize) +{ + return (pgsize > 0x1000) ? HPTE_V_LARGE : 0; +} + +/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */ +static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize) +{ + return (pgsize == 0x10000) ? 0x1000 : 0; +} + +void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, + unsigned long porder) +{ + unsigned long i; + unsigned long npages; + unsigned long hp_v, hp_r; + unsigned long addr, hash; + unsigned long psize; + unsigned long hp0, hp1; + unsigned long idx_ret; + long ret; + struct kvm *kvm = vcpu->kvm; + + psize = 1ul << porder; + npages = memslot->npages >> (porder - PAGE_SHIFT); + + /* VRMA can't be > 1TB */ + if (npages > 1ul << (40 - porder)) + npages = 1ul << (40 - porder); + /* Can't use more than 1 HPTE per HPTEG */ + if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1) + npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1; + + hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) | + HPTE_V_BOLTED | hpte0_pgsize_encoding(psize); + hp1 = hpte1_pgsize_encoding(psize) | + HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX; + + for (i = 0; i < npages; ++i) { + addr = i << porder; + /* can't use hpt_hash since va > 64 bits */ + hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) + & kvmppc_hpt_mask(&kvm->arch.hpt); + /* + * We assume that the hash table is empty and no + * vcpus are using it at this stage. Since we create + * at most one HPTE per HPTEG, we just assume entry 7 + * is available and use it. + */ + hash = (hash << 3) + 7; + hp_v = hp0 | ((addr >> 16) & ~0x7fUL); + hp_r = hp1 | addr; + ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r, + &idx_ret); + if (ret != H_SUCCESS) { + pr_err("KVM: map_vrma at %lx failed, ret=%ld\n", + addr, ret); + break; + } + } +} + +int kvmppc_mmu_hv_init(void) +{ + unsigned long host_lpid, rsvd_lpid; + + if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE)) + return -EINVAL; + + host_lpid = 0; + if (cpu_has_feature(CPU_FTR_HVMODE)) + host_lpid = mfspr(SPRN_LPID); + + /* POWER8 and above have 12-bit LPIDs (10-bit in POWER7) */ + if (cpu_has_feature(CPU_FTR_ARCH_207S)) + rsvd_lpid = LPID_RSVD; + else + rsvd_lpid = LPID_RSVD_POWER7; + + kvmppc_init_lpid(rsvd_lpid + 1); + + kvmppc_claim_lpid(host_lpid); + /* rsvd_lpid is reserved for use in partition switching */ + kvmppc_claim_lpid(rsvd_lpid); + + return 0; +} + +static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, + long pte_index, unsigned long pteh, + unsigned long ptel, unsigned long *pte_idx_ret) +{ + long ret; + + preempt_disable(); + ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel, + kvm->mm->pgd, false, pte_idx_ret); + preempt_enable(); + if (ret == H_TOO_HARD) { + /* this can't happen */ + pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n"); + ret = H_RESOURCE; /* or something */ + } + return ret; + +} + +static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu, + gva_t eaddr) +{ + u64 mask; + int i; + + for (i = 0; i < vcpu->arch.slb_nr; i++) { + if (!(vcpu->arch.slb[i].orige & SLB_ESID_V)) + continue; + + if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T) + mask = ESID_MASK_1T; + else + mask = ESID_MASK; + + if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0) + return &vcpu->arch.slb[i]; + } + return NULL; +} + +static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r, + unsigned long ea) +{ + unsigned long ra_mask; + + ra_mask = kvmppc_actual_pgsz(v, r) - 1; + return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask); +} + +static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, + struct kvmppc_pte *gpte, bool data, bool iswrite) +{ + struct kvm *kvm = vcpu->kvm; + struct kvmppc_slb *slbe; + unsigned long slb_v; + unsigned long pp, key; + unsigned long v, orig_v, gr; + __be64 *hptep; + long int index; + int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR); + + if (kvm_is_radix(vcpu->kvm)) + return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite); + + /* Get SLB entry */ + if (virtmode) { + slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr); + if (!slbe) + return -EINVAL; + slb_v = slbe->origv; + } else { + /* real mode access */ + slb_v = vcpu->kvm->arch.vrma_slb_v; + } + + preempt_disable(); + /* Find the HPTE in the hash table */ + index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v, + HPTE_V_VALID | HPTE_V_ABSENT); + if (index < 0) { + preempt_enable(); + return -ENOENT; + } + hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); + v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; + if (cpu_has_feature(CPU_FTR_ARCH_300)) + v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1])); + gr = kvm->arch.hpt.rev[index].guest_rpte; + + unlock_hpte(hptep, orig_v); + preempt_enable(); + + gpte->eaddr = eaddr; + gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff); + + /* Get PP bits and key for permission check */ + pp = gr & (HPTE_R_PP0 | HPTE_R_PP); + key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; + key &= slb_v; + + /* Calculate permissions */ + gpte->may_read = hpte_read_permission(pp, key); + gpte->may_write = hpte_write_permission(pp, key); + gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G)); + + /* Storage key permission check for POWER7 */ + if (data && virtmode) { + int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr); + if (amrfield & 1) + gpte->may_read = 0; + if (amrfield & 2) + gpte->may_write = 0; + } + + /* Get the guest physical address */ + gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr); + return 0; +} + +/* + * Quick test for whether an instruction is a load or a store. + * If the instruction is a load or a store, then this will indicate + * which it is, at least on server processors. (Embedded processors + * have some external PID instructions that don't follow the rule + * embodied here.) If the instruction isn't a load or store, then + * this doesn't return anything useful. + */ +static int instruction_is_store(unsigned int instr) +{ + unsigned int mask; + + mask = 0x10000000; + if ((instr & 0xfc000000) == 0x7c000000) + mask = 0x100; /* major opcode 31 */ + return (instr & mask) != 0; +} + +int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu, + unsigned long gpa, gva_t ea, int is_store) +{ + u32 last_inst; + + /* + * Fast path - check if the guest physical address corresponds to a + * device on the FAST_MMIO_BUS, if so we can avoid loading the + * instruction all together, then we can just handle it and return. + */ + if (is_store) { + int idx, ret; + + idx = srcu_read_lock(&vcpu->kvm->srcu); + ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0, + NULL); + srcu_read_unlock(&vcpu->kvm->srcu, idx); + if (!ret) { + kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); + return RESUME_GUEST; + } + } + + /* + * If we fail, we just return to the guest and try executing it again. + */ + if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != + EMULATE_DONE) + return RESUME_GUEST; + + /* + * WARNING: We do not know for sure whether the instruction we just + * read from memory is the same that caused the fault in the first + * place. If the instruction we read is neither an load or a store, + * then it can't access memory, so we don't need to worry about + * enforcing access permissions. So, assuming it is a load or + * store, we just check that its direction (load or store) is + * consistent with the original fault, since that's what we + * checked the access permissions against. If there is a mismatch + * we just return and retry the instruction. + */ + + if (instruction_is_store(last_inst) != !!is_store) + return RESUME_GUEST; + + /* + * Emulated accesses are emulated by looking at the hash for + * translation once, then performing the access later. The + * translation could be invalidated in the meantime in which + * point performing the subsequent memory access on the old + * physical address could possibly be a security hole for the + * guest (but not the host). + * + * This is less of an issue for MMIO stores since they aren't + * globally visible. It could be an issue for MMIO loads to + * a certain extent but we'll ignore it for now. + */ + + vcpu->arch.paddr_accessed = gpa; + vcpu->arch.vaddr_accessed = ea; + return kvmppc_emulate_mmio(vcpu); +} + +int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu, + unsigned long ea, unsigned long dsisr) +{ + struct kvm *kvm = vcpu->kvm; + unsigned long hpte[3], r; + unsigned long hnow_v, hnow_r; + __be64 *hptep; + unsigned long mmu_seq, psize, pte_size; + unsigned long gpa_base, gfn_base; + unsigned long gpa, gfn, hva, pfn, hpa; + struct kvm_memory_slot *memslot; + unsigned long *rmap; + struct revmap_entry *rev; + struct page *page; + long index, ret; + bool is_ci; + bool writing, write_ok; + unsigned int shift; + unsigned long rcbits; + long mmio_update; + pte_t pte, *ptep; + + if (kvm_is_radix(kvm)) + return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr); + + /* + * Real-mode code has already searched the HPT and found the + * entry we're interested in. Lock the entry and check that + * it hasn't changed. If it has, just return and re-execute the + * instruction. + */ + if (ea != vcpu->arch.pgfault_addr) + return RESUME_GUEST; + + if (vcpu->arch.pgfault_cache) { + mmio_update = atomic64_read(&kvm->arch.mmio_update); + if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) { + r = vcpu->arch.pgfault_cache->rpte; + psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0], + r); + gpa_base = r & HPTE_R_RPN & ~(psize - 1); + gfn_base = gpa_base >> PAGE_SHIFT; + gpa = gpa_base | (ea & (psize - 1)); + return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, + dsisr & DSISR_ISSTORE); + } + } + index = vcpu->arch.pgfault_index; + hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); + rev = &kvm->arch.hpt.rev[index]; + preempt_disable(); + while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) + cpu_relax(); + hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; + hpte[1] = be64_to_cpu(hptep[1]); + hpte[2] = r = rev->guest_rpte; + unlock_hpte(hptep, hpte[0]); + preempt_enable(); + + if (cpu_has_feature(CPU_FTR_ARCH_300)) { + hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]); + hpte[1] = hpte_new_to_old_r(hpte[1]); + } + if (hpte[0] != vcpu->arch.pgfault_hpte[0] || + hpte[1] != vcpu->arch.pgfault_hpte[1]) + return RESUME_GUEST; + + /* Translate the logical address and get the page */ + psize = kvmppc_actual_pgsz(hpte[0], r); + gpa_base = r & HPTE_R_RPN & ~(psize - 1); + gfn_base = gpa_base >> PAGE_SHIFT; + gpa = gpa_base | (ea & (psize - 1)); + gfn = gpa >> PAGE_SHIFT; + memslot = gfn_to_memslot(kvm, gfn); + + trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr); + + /* No memslot means it's an emulated MMIO region */ + if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) + return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, + dsisr & DSISR_ISSTORE); + + /* + * This should never happen, because of the slot_is_aligned() + * check in kvmppc_do_h_enter(). + */ + if (gfn_base < memslot->base_gfn) + return -EFAULT; + + /* used to check for invalidations in progress */ + mmu_seq = kvm->mmu_notifier_seq; + smp_rmb(); + + ret = -EFAULT; + page = NULL; + writing = (dsisr & DSISR_ISSTORE) != 0; + /* If writing != 0, then the HPTE must allow writing, if we get here */ + write_ok = writing; + hva = gfn_to_hva_memslot(memslot, gfn); + + /* + * Do a fast check first, since __gfn_to_pfn_memslot doesn't + * do it with !atomic && !async, which is how we call it. + * We always ask for write permission since the common case + * is that the page is writable. + */ + if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) { + write_ok = true; + } else { + /* Call KVM generic code to do the slow-path check */ + pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, + writing, &write_ok); + if (is_error_noslot_pfn(pfn)) + return -EFAULT; + page = NULL; + if (pfn_valid(pfn)) { + page = pfn_to_page(pfn); + if (PageReserved(page)) + page = NULL; + } + } + + /* + * Read the PTE from the process' radix tree and use that + * so we get the shift and attribute bits. + */ + spin_lock(&kvm->mmu_lock); + ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift); + pte = __pte(0); + if (ptep) + pte = READ_ONCE(*ptep); + spin_unlock(&kvm->mmu_lock); + /* + * If the PTE disappeared temporarily due to a THP + * collapse, just return and let the guest try again. + */ + if (!pte_present(pte)) { + if (page) + put_page(page); + return RESUME_GUEST; + } + hpa = pte_pfn(pte) << PAGE_SHIFT; + pte_size = PAGE_SIZE; + if (shift) + pte_size = 1ul << shift; + is_ci = pte_ci(pte); + + if (psize > pte_size) + goto out_put; + if (pte_size > psize) + hpa |= hva & (pte_size - psize); + + /* Check WIMG vs. the actual page we're accessing */ + if (!hpte_cache_flags_ok(r, is_ci)) { + if (is_ci) + goto out_put; + /* + * Allow guest to map emulated device memory as + * uncacheable, but actually make it cacheable. + */ + r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M; + } + + /* + * Set the HPTE to point to hpa. + * Since the hpa is at PAGE_SIZE granularity, make sure we + * don't mask out lower-order bits if psize < PAGE_SIZE. + */ + if (psize < PAGE_SIZE) + psize = PAGE_SIZE; + r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa; + if (hpte_is_writable(r) && !write_ok) + r = hpte_make_readonly(r); + ret = RESUME_GUEST; + preempt_disable(); + while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) + cpu_relax(); + hnow_v = be64_to_cpu(hptep[0]); + hnow_r = be64_to_cpu(hptep[1]); + if (cpu_has_feature(CPU_FTR_ARCH_300)) { + hnow_v = hpte_new_to_old_v(hnow_v, hnow_r); + hnow_r = hpte_new_to_old_r(hnow_r); + } + + /* + * If the HPT is being resized, don't update the HPTE, + * instead let the guest retry after the resize operation is complete. + * The synchronization for mmu_ready test vs. set is provided + * by the HPTE lock. + */ + if (!kvm->arch.mmu_ready) + goto out_unlock; + + if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] || + rev->guest_rpte != hpte[2]) + /* HPTE has been changed under us; let the guest retry */ + goto out_unlock; + hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID; + + /* Always put the HPTE in the rmap chain for the page base address */ + rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn]; + lock_rmap(rmap); + + /* Check if we might have been invalidated; let the guest retry if so */ + ret = RESUME_GUEST; + if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) { + unlock_rmap(rmap); + goto out_unlock; + } + + /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */ + rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; + r &= rcbits | ~(HPTE_R_R | HPTE_R_C); + + if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) { + /* HPTE was previously valid, so we need to invalidate it */ + unlock_rmap(rmap); + hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); + kvmppc_invalidate_hpte(kvm, hptep, index); + /* don't lose previous R and C bits */ + r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); + } else { + kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0); + } + + if (cpu_has_feature(CPU_FTR_ARCH_300)) { + r = hpte_old_to_new_r(hpte[0], r); + hpte[0] = hpte_old_to_new_v(hpte[0]); + } + hptep[1] = cpu_to_be64(r); + eieio(); + __unlock_hpte(hptep, hpte[0]); + asm volatile("ptesync" : : : "memory"); + preempt_enable(); + if (page && hpte_is_writable(r)) + set_page_dirty_lock(page); + + out_put: + trace_kvm_page_fault_exit(vcpu, hpte, ret); + + if (page) + put_page(page); + return ret; + + out_unlock: + __unlock_hpte(hptep, be64_to_cpu(hptep[0])); + preempt_enable(); + goto out_put; +} + +void kvmppc_rmap_reset(struct kvm *kvm) +{ + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + int srcu_idx; + + srcu_idx = srcu_read_lock(&kvm->srcu); + slots = kvm_memslots(kvm); + kvm_for_each_memslot(memslot, slots) { + /* Mutual exclusion with kvm_unmap_hva_range etc. */ + spin_lock(&kvm->mmu_lock); + /* + * This assumes it is acceptable to lose reference and + * change bits across a reset. + */ + memset(memslot->arch.rmap, 0, + memslot->npages * sizeof(*memslot->arch.rmap)); + spin_unlock(&kvm->mmu_lock); + } + srcu_read_unlock(&kvm->srcu, srcu_idx); +} + +typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot, + unsigned long gfn); + +static int kvm_handle_hva_range(struct kvm *kvm, + unsigned long start, + unsigned long end, + hva_handler_fn handler) +{ + int ret; + int retval = 0; + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + + slots = kvm_memslots(kvm); + kvm_for_each_memslot(memslot, slots) { + unsigned long hva_start, hva_end; + gfn_t gfn, gfn_end; + + hva_start = max(start, memslot->userspace_addr); + hva_end = min(end, memslot->userspace_addr + + (memslot->npages << PAGE_SHIFT)); + if (hva_start >= hva_end) + continue; + /* + * {gfn(page) | page intersects with [hva_start, hva_end)} = + * {gfn, gfn+1, ..., gfn_end-1}. + */ + gfn = hva_to_gfn_memslot(hva_start, memslot); + gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); + + for (; gfn < gfn_end; ++gfn) { + ret = handler(kvm, memslot, gfn); + retval |= ret; + } + } + + return retval; +} + +static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, + hva_handler_fn handler) +{ + return kvm_handle_hva_range(kvm, hva, hva + 1, handler); +} + +/* Must be called with both HPTE and rmap locked */ +static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i, + struct kvm_memory_slot *memslot, + unsigned long *rmapp, unsigned long gfn) +{ + __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); + struct revmap_entry *rev = kvm->arch.hpt.rev; + unsigned long j, h; + unsigned long ptel, psize, rcbits; + + j = rev[i].forw; + if (j == i) { + /* chain is now empty */ + *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); + } else { + /* remove i from chain */ + h = rev[i].back; + rev[h].forw = j; + rev[j].back = h; + rev[i].forw = rev[i].back = i; + *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j; + } + + /* Now check and modify the HPTE */ + ptel = rev[i].guest_rpte; + psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel); + if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && + hpte_rpn(ptel, psize) == gfn) { + hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); + kvmppc_invalidate_hpte(kvm, hptep, i); + hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO); + /* Harvest R and C */ + rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); + *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT; + if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap) + kvmppc_update_dirty_map(memslot, gfn, psize); + if (rcbits & ~rev[i].guest_rpte) { + rev[i].guest_rpte = ptel | rcbits; + note_hpte_modification(kvm, &rev[i]); + } + } +} + +static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, + unsigned long gfn) +{ + unsigned long i; + __be64 *hptep; + unsigned long *rmapp; + + rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; + for (;;) { + lock_rmap(rmapp); + if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { + unlock_rmap(rmapp); + break; + } + + /* + * To avoid an ABBA deadlock with the HPTE lock bit, + * we can't spin on the HPTE lock while holding the + * rmap chain lock. + */ + i = *rmapp & KVMPPC_RMAP_INDEX; + hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); + if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { + /* unlock rmap before spinning on the HPTE lock */ + unlock_rmap(rmapp); + while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) + cpu_relax(); + continue; + } + + kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn); + unlock_rmap(rmapp); + __unlock_hpte(hptep, be64_to_cpu(hptep[0])); + } + return 0; +} + +int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end) +{ + hva_handler_fn handler; + + handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; + kvm_handle_hva_range(kvm, start, end, handler); + return 0; +} + +void kvmppc_core_flush_memslot_hv(struct kvm *kvm, + struct kvm_memory_slot *memslot) +{ + unsigned long gfn; + unsigned long n; + unsigned long *rmapp; + + gfn = memslot->base_gfn; + rmapp = memslot->arch.rmap; + if (kvm_is_radix(kvm)) { + kvmppc_radix_flush_memslot(kvm, memslot); + return; + } + + for (n = memslot->npages; n; --n, ++gfn) { + /* + * Testing the present bit without locking is OK because + * the memslot has been marked invalid already, and hence + * no new HPTEs referencing this page can be created, + * thus the present bit can't go from 0 to 1. + */ + if (*rmapp & KVMPPC_RMAP_PRESENT) + kvm_unmap_rmapp(kvm, memslot, gfn); + ++rmapp; + } +} + +static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, + unsigned long gfn) +{ + struct revmap_entry *rev = kvm->arch.hpt.rev; + unsigned long head, i, j; + __be64 *hptep; + int ret = 0; + unsigned long *rmapp; + + rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; + retry: + lock_rmap(rmapp); + if (*rmapp & KVMPPC_RMAP_REFERENCED) { + *rmapp &= ~KVMPPC_RMAP_REFERENCED; + ret = 1; + } + if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { + unlock_rmap(rmapp); + return ret; + } + + i = head = *rmapp & KVMPPC_RMAP_INDEX; + do { + hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); + j = rev[i].forw; + + /* If this HPTE isn't referenced, ignore it */ + if (!(be64_to_cpu(hptep[1]) & HPTE_R_R)) + continue; + + if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { + /* unlock rmap before spinning on the HPTE lock */ + unlock_rmap(rmapp); + while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) + cpu_relax(); + goto retry; + } + + /* Now check and modify the HPTE */ + if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && + (be64_to_cpu(hptep[1]) & HPTE_R_R)) { + kvmppc_clear_ref_hpte(kvm, hptep, i); + if (!(rev[i].guest_rpte & HPTE_R_R)) { + rev[i].guest_rpte |= HPTE_R_R; + note_hpte_modification(kvm, &rev[i]); + } + ret = 1; + } + __unlock_hpte(hptep, be64_to_cpu(hptep[0])); + } while ((i = j) != head); + + unlock_rmap(rmapp); + return ret; +} + +int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end) +{ + hva_handler_fn handler; + + handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp; + return kvm_handle_hva_range(kvm, start, end, handler); +} + +static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, + unsigned long gfn) +{ + struct revmap_entry *rev = kvm->arch.hpt.rev; + unsigned long head, i, j; + unsigned long *hp; + int ret = 1; + unsigned long *rmapp; + + rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; + if (*rmapp & KVMPPC_RMAP_REFERENCED) + return 1; + + lock_rmap(rmapp); + if (*rmapp & KVMPPC_RMAP_REFERENCED) + goto out; + + if (*rmapp & KVMPPC_RMAP_PRESENT) { + i = head = *rmapp & KVMPPC_RMAP_INDEX; + do { + hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4)); + j = rev[i].forw; + if (be64_to_cpu(hp[1]) & HPTE_R_R) + goto out; + } while ((i = j) != head); + } + ret = 0; + + out: + unlock_rmap(rmapp); + return ret; +} + +int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva) +{ + hva_handler_fn handler; + + handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp; + return kvm_handle_hva(kvm, hva, handler); +} + +void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte) +{ + hva_handler_fn handler; + + handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp; + kvm_handle_hva(kvm, hva, handler); +} + +static int vcpus_running(struct kvm *kvm) +{ + return atomic_read(&kvm->arch.vcpus_running) != 0; +} + +/* + * Returns the number of system pages that are dirty. + * This can be more than 1 if we find a huge-page HPTE. + */ +static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp) +{ + struct revmap_entry *rev = kvm->arch.hpt.rev; + unsigned long head, i, j; + unsigned long n; + unsigned long v, r; + __be64 *hptep; + int npages_dirty = 0; + + retry: + lock_rmap(rmapp); + if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { + unlock_rmap(rmapp); + return npages_dirty; + } + + i = head = *rmapp & KVMPPC_RMAP_INDEX; + do { + unsigned long hptep1; + hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); + j = rev[i].forw; + + /* + * Checking the C (changed) bit here is racy since there + * is no guarantee about when the hardware writes it back. + * If the HPTE is not writable then it is stable since the + * page can't be written to, and we would have done a tlbie + * (which forces the hardware to complete any writeback) + * when making the HPTE read-only. + * If vcpus are running then this call is racy anyway + * since the page could get dirtied subsequently, so we + * expect there to be a further call which would pick up + * any delayed C bit writeback. + * Otherwise we need to do the tlbie even if C==0 in + * order to pick up any delayed writeback of C. + */ + hptep1 = be64_to_cpu(hptep[1]); + if (!(hptep1 & HPTE_R_C) && + (!hpte_is_writable(hptep1) || vcpus_running(kvm))) + continue; + + if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { + /* unlock rmap before spinning on the HPTE lock */ + unlock_rmap(rmapp); + while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK)) + cpu_relax(); + goto retry; + } + + /* Now check and modify the HPTE */ + if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) { + __unlock_hpte(hptep, be64_to_cpu(hptep[0])); + continue; + } + + /* need to make it temporarily absent so C is stable */ + hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); + kvmppc_invalidate_hpte(kvm, hptep, i); + v = be64_to_cpu(hptep[0]); + r = be64_to_cpu(hptep[1]); + if (r & HPTE_R_C) { + hptep[1] = cpu_to_be64(r & ~HPTE_R_C); + if (!(rev[i].guest_rpte & HPTE_R_C)) { + rev[i].guest_rpte |= HPTE_R_C; + note_hpte_modification(kvm, &rev[i]); + } + n = kvmppc_actual_pgsz(v, r); + n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT; + if (n > npages_dirty) + npages_dirty = n; + eieio(); + } + v &= ~HPTE_V_ABSENT; + v |= HPTE_V_VALID; + __unlock_hpte(hptep, v); + } while ((i = j) != head); + + unlock_rmap(rmapp); + return npages_dirty; +} + +void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa, + struct kvm_memory_slot *memslot, + unsigned long *map) +{ + unsigned long gfn; + + if (!vpa->dirty || !vpa->pinned_addr) + return; + gfn = vpa->gpa >> PAGE_SHIFT; + if (gfn < memslot->base_gfn || + gfn >= memslot->base_gfn + memslot->npages) + return; + + vpa->dirty = false; + if (map) + __set_bit_le(gfn - memslot->base_gfn, map); +} + +long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm, + struct kvm_memory_slot *memslot, unsigned long *map) +{ + unsigned long i; + unsigned long *rmapp; + + preempt_disable(); + rmapp = memslot->arch.rmap; + for (i = 0; i < memslot->npages; ++i) { + int npages = kvm_test_clear_dirty_npages(kvm, rmapp); + /* + * Note that if npages > 0 then i must be a multiple of npages, + * since we always put huge-page HPTEs in the rmap chain + * corresponding to their page base address. + */ + if (npages) + set_dirty_bits(map, i, npages); + ++rmapp; + } + preempt_enable(); + return 0; +} + +void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa, + unsigned long *nb_ret) +{ + struct kvm_memory_slot *memslot; + unsigned long gfn = gpa >> PAGE_SHIFT; + struct page *page, *pages[1]; + int npages; + unsigned long hva, offset; + int srcu_idx; + + srcu_idx = srcu_read_lock(&kvm->srcu); + memslot = gfn_to_memslot(kvm, gfn); + if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) + goto err; + hva = gfn_to_hva_memslot(memslot, gfn); + npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages); + if (npages < 1) + goto err; + page = pages[0]; + srcu_read_unlock(&kvm->srcu, srcu_idx); + + offset = gpa & (PAGE_SIZE - 1); + if (nb_ret) + *nb_ret = PAGE_SIZE - offset; + return page_address(page) + offset; + + err: + srcu_read_unlock(&kvm->srcu, srcu_idx); + return NULL; +} + +void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa, + bool dirty) +{ + struct page *page = virt_to_page(va); + struct kvm_memory_slot *memslot; + unsigned long gfn; + int srcu_idx; + + put_page(page); + + if (!dirty) + return; + + /* We need to mark this page dirty in the memslot dirty_bitmap, if any */ + gfn = gpa >> PAGE_SHIFT; + srcu_idx = srcu_read_lock(&kvm->srcu); + memslot = gfn_to_memslot(kvm, gfn); + if (memslot && memslot->dirty_bitmap) + set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap); + srcu_read_unlock(&kvm->srcu, srcu_idx); +} + +/* + * HPT resizing + */ +static int resize_hpt_allocate(struct kvm_resize_hpt *resize) +{ + int rc; + + rc = kvmppc_allocate_hpt(&resize->hpt, resize->order); + if (rc < 0) + return rc; + + resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n", + resize->hpt.virt); + + return 0; +} + +static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize, + unsigned long idx) +{ + struct kvm *kvm = resize->kvm; + struct kvm_hpt_info *old = &kvm->arch.hpt; + struct kvm_hpt_info *new = &resize->hpt; + unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1; + unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1; + __be64 *hptep, *new_hptep; + unsigned long vpte, rpte, guest_rpte; + int ret; + struct revmap_entry *rev; + unsigned long apsize, avpn, pteg, hash; + unsigned long new_idx, new_pteg, replace_vpte; + int pshift; + + hptep = (__be64 *)(old->virt + (idx << 4)); + + /* Guest is stopped, so new HPTEs can't be added or faulted + * in, only unmapped or altered by host actions. So, it's + * safe to check this before we take the HPTE lock */ + vpte = be64_to_cpu(hptep[0]); + if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) + return 0; /* nothing to do */ + + while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) + cpu_relax(); + + vpte = be64_to_cpu(hptep[0]); + + ret = 0; + if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) + /* Nothing to do */ + goto out; + + if (cpu_has_feature(CPU_FTR_ARCH_300)) { + rpte = be64_to_cpu(hptep[1]); + vpte = hpte_new_to_old_v(vpte, rpte); + } + + /* Unmap */ + rev = &old->rev[idx]; + guest_rpte = rev->guest_rpte; + + ret = -EIO; + apsize = kvmppc_actual_pgsz(vpte, guest_rpte); + if (!apsize) + goto out; + + if (vpte & HPTE_V_VALID) { + unsigned long gfn = hpte_rpn(guest_rpte, apsize); + int srcu_idx = srcu_read_lock(&kvm->srcu); + struct kvm_memory_slot *memslot = + __gfn_to_memslot(kvm_memslots(kvm), gfn); + + if (memslot) { + unsigned long *rmapp; + rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; + + lock_rmap(rmapp); + kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn); + unlock_rmap(rmapp); + } + + srcu_read_unlock(&kvm->srcu, srcu_idx); + } + + /* Reload PTE after unmap */ + vpte = be64_to_cpu(hptep[0]); + BUG_ON(vpte & HPTE_V_VALID); + BUG_ON(!(vpte & HPTE_V_ABSENT)); + + ret = 0; + if (!(vpte & HPTE_V_BOLTED)) + goto out; + + rpte = be64_to_cpu(hptep[1]); + + if (cpu_has_feature(CPU_FTR_ARCH_300)) { + vpte = hpte_new_to_old_v(vpte, rpte); + rpte = hpte_new_to_old_r(rpte); + } + + pshift = kvmppc_hpte_base_page_shift(vpte, rpte); + avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23); + pteg = idx / HPTES_PER_GROUP; + if (vpte & HPTE_V_SECONDARY) + pteg = ~pteg; + + if (!(vpte & HPTE_V_1TB_SEG)) { + unsigned long offset, vsid; + + /* We only have 28 - 23 bits of offset in avpn */ + offset = (avpn & 0x1f) << 23; + vsid = avpn >> 5; + /* We can find more bits from the pteg value */ + if (pshift < 23) + offset |= ((vsid ^ pteg) & old_hash_mask) << pshift; + + hash = vsid ^ (offset >> pshift); + } else { + unsigned long offset, vsid; + + /* We only have 40 - 23 bits of seg_off in avpn */ + offset = (avpn & 0x1ffff) << 23; + vsid = avpn >> 17; + if (pshift < 23) + offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift; + + hash = vsid ^ (vsid << 25) ^ (offset >> pshift); + } + + new_pteg = hash & new_hash_mask; + if (vpte & HPTE_V_SECONDARY) + new_pteg = ~hash & new_hash_mask; + + new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP); + new_hptep = (__be64 *)(new->virt + (new_idx << 4)); + + replace_vpte = be64_to_cpu(new_hptep[0]); + if (cpu_has_feature(CPU_FTR_ARCH_300)) { + unsigned long replace_rpte = be64_to_cpu(new_hptep[1]); + replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte); + } + + if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) { + BUG_ON(new->order >= old->order); + + if (replace_vpte & HPTE_V_BOLTED) { + if (vpte & HPTE_V_BOLTED) + /* Bolted collision, nothing we can do */ + ret = -ENOSPC; + /* Discard the new HPTE */ + goto out; + } + + /* Discard the previous HPTE */ + } + + if (cpu_has_feature(CPU_FTR_ARCH_300)) { + rpte = hpte_old_to_new_r(vpte, rpte); + vpte = hpte_old_to_new_v(vpte); + } + + new_hptep[1] = cpu_to_be64(rpte); + new->rev[new_idx].guest_rpte = guest_rpte; + /* No need for a barrier, since new HPT isn't active */ + new_hptep[0] = cpu_to_be64(vpte); + unlock_hpte(new_hptep, vpte); + +out: + unlock_hpte(hptep, vpte); + return ret; +} + +static int resize_hpt_rehash(struct kvm_resize_hpt *resize) +{ + struct kvm *kvm = resize->kvm; + unsigned long i; + int rc; + + for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) { + rc = resize_hpt_rehash_hpte(resize, i); + if (rc != 0) + return rc; + } + + return 0; +} + +static void resize_hpt_pivot(struct kvm_resize_hpt *resize) +{ + struct kvm *kvm = resize->kvm; + struct kvm_hpt_info hpt_tmp; + + /* Exchange the pending tables in the resize structure with + * the active tables */ + + resize_hpt_debug(resize, "resize_hpt_pivot()\n"); + + spin_lock(&kvm->mmu_lock); + asm volatile("ptesync" : : : "memory"); + + hpt_tmp = kvm->arch.hpt; + kvmppc_set_hpt(kvm, &resize->hpt); + resize->hpt = hpt_tmp; + + spin_unlock(&kvm->mmu_lock); + + synchronize_srcu_expedited(&kvm->srcu); + + if (cpu_has_feature(CPU_FTR_ARCH_300)) + kvmppc_setup_partition_table(kvm); + + resize_hpt_debug(resize, "resize_hpt_pivot() done\n"); +} + +static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize) +{ + if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock))) + return; + + if (!resize) + return; + + if (resize->error != -EBUSY) { + if (resize->hpt.virt) + kvmppc_free_hpt(&resize->hpt); + kfree(resize); + } + + if (kvm->arch.resize_hpt == resize) + kvm->arch.resize_hpt = NULL; +} + +static void resize_hpt_prepare_work(struct work_struct *work) +{ + struct kvm_resize_hpt *resize = container_of(work, + struct kvm_resize_hpt, + work); + struct kvm *kvm = resize->kvm; + int err = 0; + + if (WARN_ON(resize->error != -EBUSY)) + return; + + mutex_lock(&kvm->arch.mmu_setup_lock); + + /* Request is still current? */ + if (kvm->arch.resize_hpt == resize) { + /* We may request large allocations here: + * do not sleep with kvm->arch.mmu_setup_lock held for a while. + */ + mutex_unlock(&kvm->arch.mmu_setup_lock); + + resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n", + resize->order); + + err = resize_hpt_allocate(resize); + + /* We have strict assumption about -EBUSY + * when preparing for HPT resize. + */ + if (WARN_ON(err == -EBUSY)) + err = -EINPROGRESS; + + mutex_lock(&kvm->arch.mmu_setup_lock); + /* It is possible that kvm->arch.resize_hpt != resize + * after we grab kvm->arch.mmu_setup_lock again. + */ + } + + resize->error = err; + + if (kvm->arch.resize_hpt != resize) + resize_hpt_release(kvm, resize); + + mutex_unlock(&kvm->arch.mmu_setup_lock); +} + +long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm, + struct kvm_ppc_resize_hpt *rhpt) +{ + unsigned long flags = rhpt->flags; + unsigned long shift = rhpt->shift; + struct kvm_resize_hpt *resize; + int ret; + + if (flags != 0 || kvm_is_radix(kvm)) + return -EINVAL; + + if (shift && ((shift < 18) || (shift > 46))) + return -EINVAL; + + mutex_lock(&kvm->arch.mmu_setup_lock); + + resize = kvm->arch.resize_hpt; + + if (resize) { + if (resize->order == shift) { + /* Suitable resize in progress? */ + ret = resize->error; + if (ret == -EBUSY) + ret = 100; /* estimated time in ms */ + else if (ret) + resize_hpt_release(kvm, resize); + + goto out; + } + + /* not suitable, cancel it */ + resize_hpt_release(kvm, resize); + } + + ret = 0; + if (!shift) + goto out; /* nothing to do */ + + /* start new resize */ + + resize = kzalloc(sizeof(*resize), GFP_KERNEL); + if (!resize) { + ret = -ENOMEM; + goto out; + } + + resize->error = -EBUSY; + resize->order = shift; + resize->kvm = kvm; + INIT_WORK(&resize->work, resize_hpt_prepare_work); + kvm->arch.resize_hpt = resize; + + schedule_work(&resize->work); + + ret = 100; /* estimated time in ms */ + +out: + mutex_unlock(&kvm->arch.mmu_setup_lock); + return ret; +} + +static void resize_hpt_boot_vcpu(void *opaque) +{ + /* Nothing to do, just force a KVM exit */ +} + +long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm, + struct kvm_ppc_resize_hpt *rhpt) +{ + unsigned long flags = rhpt->flags; + unsigned long shift = rhpt->shift; + struct kvm_resize_hpt *resize; + long ret; + + if (flags != 0 || kvm_is_radix(kvm)) + return -EINVAL; + + if (shift && ((shift < 18) || (shift > 46))) + return -EINVAL; + + mutex_lock(&kvm->arch.mmu_setup_lock); + + resize = kvm->arch.resize_hpt; + + /* This shouldn't be possible */ + ret = -EIO; + if (WARN_ON(!kvm->arch.mmu_ready)) + goto out_no_hpt; + + /* Stop VCPUs from running while we mess with the HPT */ + kvm->arch.mmu_ready = 0; + smp_mb(); + + /* Boot all CPUs out of the guest so they re-read + * mmu_ready */ + on_each_cpu(resize_hpt_boot_vcpu, NULL, 1); + + ret = -ENXIO; + if (!resize || (resize->order != shift)) + goto out; + + ret = resize->error; + if (ret) + goto out; + + ret = resize_hpt_rehash(resize); + if (ret) + goto out; + + resize_hpt_pivot(resize); + +out: + /* Let VCPUs run again */ + kvm->arch.mmu_ready = 1; + smp_mb(); +out_no_hpt: + resize_hpt_release(kvm, resize); + mutex_unlock(&kvm->arch.mmu_setup_lock); + return ret; +} + +/* + * Functions for reading and writing the hash table via reads and + * writes on a file descriptor. + * + * Reads return the guest view of the hash table, which has to be + * pieced together from the real hash table and the guest_rpte + * values in the revmap array. + * + * On writes, each HPTE written is considered in turn, and if it + * is valid, it is written to the HPT as if an H_ENTER with the + * exact flag set was done. When the invalid count is non-zero + * in the header written to the stream, the kernel will make + * sure that that many HPTEs are invalid, and invalidate them + * if not. + */ + +struct kvm_htab_ctx { + unsigned long index; + unsigned long flags; + struct kvm *kvm; + int first_pass; +}; + +#define HPTE_SIZE (2 * sizeof(unsigned long)) + +/* + * Returns 1 if this HPT entry has been modified or has pending + * R/C bit changes. + */ +static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp) +{ + unsigned long rcbits_unset; + + if (revp->guest_rpte & HPTE_GR_MODIFIED) + return 1; + + /* Also need to consider changes in reference and changed bits */ + rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); + if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) && + (be64_to_cpu(hptp[1]) & rcbits_unset)) + return 1; + + return 0; +} + +static long record_hpte(unsigned long flags, __be64 *hptp, + unsigned long *hpte, struct revmap_entry *revp, + int want_valid, int first_pass) +{ + unsigned long v, r, hr; + unsigned long rcbits_unset; + int ok = 1; + int valid, dirty; + + /* Unmodified entries are uninteresting except on the first pass */ + dirty = hpte_dirty(revp, hptp); + if (!first_pass && !dirty) + return 0; + + valid = 0; + if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) { + valid = 1; + if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && + !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED)) + valid = 0; + } + if (valid != want_valid) + return 0; + + v = r = 0; + if (valid || dirty) { + /* lock the HPTE so it's stable and read it */ + preempt_disable(); + while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) + cpu_relax(); + v = be64_to_cpu(hptp[0]); + hr = be64_to_cpu(hptp[1]); + if (cpu_has_feature(CPU_FTR_ARCH_300)) { + v = hpte_new_to_old_v(v, hr); + hr = hpte_new_to_old_r(hr); + } + + /* re-evaluate valid and dirty from synchronized HPTE value */ + valid = !!(v & HPTE_V_VALID); + dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED); + + /* Harvest R and C into guest view if necessary */ + rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); + if (valid && (rcbits_unset & hr)) { + revp->guest_rpte |= (hr & + (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED; + dirty = 1; + } + + if (v & HPTE_V_ABSENT) { + v &= ~HPTE_V_ABSENT; + v |= HPTE_V_VALID; + valid = 1; + } + if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED)) + valid = 0; + + r = revp->guest_rpte; + /* only clear modified if this is the right sort of entry */ + if (valid == want_valid && dirty) { + r &= ~HPTE_GR_MODIFIED; + revp->guest_rpte = r; + } + unlock_hpte(hptp, be64_to_cpu(hptp[0])); + preempt_enable(); + if (!(valid == want_valid && (first_pass || dirty))) + ok = 0; + } + hpte[0] = cpu_to_be64(v); + hpte[1] = cpu_to_be64(r); + return ok; +} + +static ssize_t kvm_htab_read(struct file *file, char __user *buf, + size_t count, loff_t *ppos) +{ + struct kvm_htab_ctx *ctx = file->private_data; + struct kvm *kvm = ctx->kvm; + struct kvm_get_htab_header hdr; + __be64 *hptp; + struct revmap_entry *revp; + unsigned long i, nb, nw; + unsigned long __user *lbuf; + struct kvm_get_htab_header __user *hptr; + unsigned long flags; + int first_pass; + unsigned long hpte[2]; + + if (!access_ok(buf, count)) + return -EFAULT; + if (kvm_is_radix(kvm)) + return 0; + + first_pass = ctx->first_pass; + flags = ctx->flags; + + i = ctx->index; + hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); + revp = kvm->arch.hpt.rev + i; + lbuf = (unsigned long __user *)buf; + + nb = 0; + while (nb + sizeof(hdr) + HPTE_SIZE < count) { + /* Initialize header */ + hptr = (struct kvm_get_htab_header __user *)buf; + hdr.n_valid = 0; + hdr.n_invalid = 0; + nw = nb; + nb += sizeof(hdr); + lbuf = (unsigned long __user *)(buf + sizeof(hdr)); + + /* Skip uninteresting entries, i.e. clean on not-first pass */ + if (!first_pass) { + while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && + !hpte_dirty(revp, hptp)) { + ++i; + hptp += 2; + ++revp; + } + } + hdr.index = i; + + /* Grab a series of valid entries */ + while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && + hdr.n_valid < 0xffff && + nb + HPTE_SIZE < count && + record_hpte(flags, hptp, hpte, revp, 1, first_pass)) { + /* valid entry, write it out */ + ++hdr.n_valid; + if (__put_user(hpte[0], lbuf) || + __put_user(hpte[1], lbuf + 1)) + return -EFAULT; + nb += HPTE_SIZE; + lbuf += 2; + ++i; + hptp += 2; + ++revp; + } + /* Now skip invalid entries while we can */ + while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && + hdr.n_invalid < 0xffff && + record_hpte(flags, hptp, hpte, revp, 0, first_pass)) { + /* found an invalid entry */ + ++hdr.n_invalid; + ++i; + hptp += 2; + ++revp; + } + + if (hdr.n_valid || hdr.n_invalid) { + /* write back the header */ + if (__copy_to_user(hptr, &hdr, sizeof(hdr))) + return -EFAULT; + nw = nb; + buf = (char __user *)lbuf; + } else { + nb = nw; + } + + /* Check if we've wrapped around the hash table */ + if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) { + i = 0; + ctx->first_pass = 0; + break; + } + } + + ctx->index = i; + + return nb; +} + +static ssize_t kvm_htab_write(struct file *file, const char __user *buf, + size_t count, loff_t *ppos) +{ + struct kvm_htab_ctx *ctx = file->private_data; + struct kvm *kvm = ctx->kvm; + struct kvm_get_htab_header hdr; + unsigned long i, j; + unsigned long v, r; + unsigned long __user *lbuf; + __be64 *hptp; + unsigned long tmp[2]; + ssize_t nb; + long int err, ret; + int mmu_ready; + int pshift; + + if (!access_ok(buf, count)) + return -EFAULT; + if (kvm_is_radix(kvm)) + return -EINVAL; + + /* lock out vcpus from running while we're doing this */ + mutex_lock(&kvm->arch.mmu_setup_lock); + mmu_ready = kvm->arch.mmu_ready; + if (mmu_ready) { + kvm->arch.mmu_ready = 0; /* temporarily */ + /* order mmu_ready vs. vcpus_running */ + smp_mb(); + if (atomic_read(&kvm->arch.vcpus_running)) { + kvm->arch.mmu_ready = 1; + mutex_unlock(&kvm->arch.mmu_setup_lock); + return -EBUSY; + } + } + + err = 0; + for (nb = 0; nb + sizeof(hdr) <= count; ) { + err = -EFAULT; + if (__copy_from_user(&hdr, buf, sizeof(hdr))) + break; + + err = 0; + if (nb + hdr.n_valid * HPTE_SIZE > count) + break; + + nb += sizeof(hdr); + buf += sizeof(hdr); + + err = -EINVAL; + i = hdr.index; + if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) || + i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt)) + break; + + hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); + lbuf = (unsigned long __user *)buf; + for (j = 0; j < hdr.n_valid; ++j) { + __be64 hpte_v; + __be64 hpte_r; + + err = -EFAULT; + if (__get_user(hpte_v, lbuf) || + __get_user(hpte_r, lbuf + 1)) + goto out; + v = be64_to_cpu(hpte_v); + r = be64_to_cpu(hpte_r); + err = -EINVAL; + if (!(v & HPTE_V_VALID)) + goto out; + pshift = kvmppc_hpte_base_page_shift(v, r); + if (pshift <= 0) + goto out; + lbuf += 2; + nb += HPTE_SIZE; + + if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) + kvmppc_do_h_remove(kvm, 0, i, 0, tmp); + err = -EIO; + ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r, + tmp); + if (ret != H_SUCCESS) { + pr_err("kvm_htab_write ret %ld i=%ld v=%lx " + "r=%lx\n", ret, i, v, r); + goto out; + } + if (!mmu_ready && is_vrma_hpte(v)) { + unsigned long senc, lpcr; + + senc = slb_pgsize_encoding(1ul << pshift); + kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | + (VRMA_VSID << SLB_VSID_SHIFT_1T); + if (!cpu_has_feature(CPU_FTR_ARCH_300)) { + lpcr = senc << (LPCR_VRMASD_SH - 4); + kvmppc_update_lpcr(kvm, lpcr, + LPCR_VRMASD); + } else { + kvmppc_setup_partition_table(kvm); + } + mmu_ready = 1; + } + ++i; + hptp += 2; + } + + for (j = 0; j < hdr.n_invalid; ++j) { + if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) + kvmppc_do_h_remove(kvm, 0, i, 0, tmp); + ++i; + hptp += 2; + } + err = 0; + } + + out: + /* Order HPTE updates vs. mmu_ready */ + smp_wmb(); + kvm->arch.mmu_ready = mmu_ready; + mutex_unlock(&kvm->arch.mmu_setup_lock); + + if (err) + return err; + return nb; +} + +static int kvm_htab_release(struct inode *inode, struct file *filp) +{ + struct kvm_htab_ctx *ctx = filp->private_data; + + filp->private_data = NULL; + if (!(ctx->flags & KVM_GET_HTAB_WRITE)) + atomic_dec(&ctx->kvm->arch.hpte_mod_interest); + kvm_put_kvm(ctx->kvm); + kfree(ctx); + return 0; +} + +static const struct file_operations kvm_htab_fops = { + .read = kvm_htab_read, + .write = kvm_htab_write, + .llseek = default_llseek, + .release = kvm_htab_release, +}; + +int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf) +{ + int ret; + struct kvm_htab_ctx *ctx; + int rwflag; + + /* reject flags we don't recognize */ + if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE)) + return -EINVAL; + ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); + if (!ctx) + return -ENOMEM; + kvm_get_kvm(kvm); + ctx->kvm = kvm; + ctx->index = ghf->start_index; + ctx->flags = ghf->flags; + ctx->first_pass = 1; + + rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY; + ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC); + if (ret < 0) { + kfree(ctx); + kvm_put_kvm_no_destroy(kvm); + return ret; + } + + if (rwflag == O_RDONLY) { + mutex_lock(&kvm->slots_lock); + atomic_inc(&kvm->arch.hpte_mod_interest); + /* make sure kvmppc_do_h_enter etc. see the increment */ + synchronize_srcu_expedited(&kvm->srcu); + mutex_unlock(&kvm->slots_lock); + } + + return ret; +} + +struct debugfs_htab_state { + struct kvm *kvm; + struct mutex mutex; + unsigned long hpt_index; + int chars_left; + int buf_index; + char buf[64]; +}; + +static int debugfs_htab_open(struct inode *inode, struct file *file) +{ + struct kvm *kvm = inode->i_private; + struct debugfs_htab_state *p; + + p = kzalloc(sizeof(*p), GFP_KERNEL); + if (!p) + return -ENOMEM; + + kvm_get_kvm(kvm); + p->kvm = kvm; + mutex_init(&p->mutex); + file->private_data = p; + + return nonseekable_open(inode, file); +} + +static int debugfs_htab_release(struct inode *inode, struct file *file) +{ + struct debugfs_htab_state *p = file->private_data; + + kvm_put_kvm(p->kvm); + kfree(p); + return 0; +} + +static ssize_t debugfs_htab_read(struct file *file, char __user *buf, + size_t len, loff_t *ppos) +{ + struct debugfs_htab_state *p = file->private_data; + ssize_t ret, r; + unsigned long i, n; + unsigned long v, hr, gr; + struct kvm *kvm; + __be64 *hptp; + + kvm = p->kvm; + if (kvm_is_radix(kvm)) + return 0; + + ret = mutex_lock_interruptible(&p->mutex); + if (ret) + return ret; + + if (p->chars_left) { + n = p->chars_left; + if (n > len) + n = len; + r = copy_to_user(buf, p->buf + p->buf_index, n); + n -= r; + p->chars_left -= n; + p->buf_index += n; + buf += n; + len -= n; + ret = n; + if (r) { + if (!n) + ret = -EFAULT; + goto out; + } + } + + i = p->hpt_index; + hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); + for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt); + ++i, hptp += 2) { + if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))) + continue; + + /* lock the HPTE so it's stable and read it */ + preempt_disable(); + while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) + cpu_relax(); + v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK; + hr = be64_to_cpu(hptp[1]); + gr = kvm->arch.hpt.rev[i].guest_rpte; + unlock_hpte(hptp, v); + preempt_enable(); + + if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) + continue; + + n = scnprintf(p->buf, sizeof(p->buf), + "%6lx %.16lx %.16lx %.16lx\n", + i, v, hr, gr); + p->chars_left = n; + if (n > len) + n = len; + r = copy_to_user(buf, p->buf, n); + n -= r; + p->chars_left -= n; + p->buf_index = n; + buf += n; + len -= n; + ret += n; + if (r) { + if (!ret) + ret = -EFAULT; + goto out; + } + } + p->hpt_index = i; + + out: + mutex_unlock(&p->mutex); + return ret; +} + +static ssize_t debugfs_htab_write(struct file *file, const char __user *buf, + size_t len, loff_t *ppos) +{ + return -EACCES; +} + +static const struct file_operations debugfs_htab_fops = { + .owner = THIS_MODULE, + .open = debugfs_htab_open, + .release = debugfs_htab_release, + .read = debugfs_htab_read, + .write = debugfs_htab_write, + .llseek = generic_file_llseek, +}; + +void kvmppc_mmu_debugfs_init(struct kvm *kvm) +{ + debugfs_create_file("htab", 0400, kvm->arch.debugfs_dir, kvm, + &debugfs_htab_fops); +} + +void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu) +{ + struct kvmppc_mmu *mmu = &vcpu->arch.mmu; + + vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */ + + mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate; + + vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; +} |