diff options
Diffstat (limited to 'drivers/mtd/nand/raw/lpc32xx_slc.c')
-rw-r--r-- | drivers/mtd/nand/raw/lpc32xx_slc.c | 1038 |
1 files changed, 1038 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/lpc32xx_slc.c b/drivers/mtd/nand/raw/lpc32xx_slc.c new file mode 100644 index 000000000..dc7785e30 --- /dev/null +++ b/drivers/mtd/nand/raw/lpc32xx_slc.c @@ -0,0 +1,1038 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * NXP LPC32XX NAND SLC driver + * + * Authors: + * Kevin Wells <kevin.wells@nxp.com> + * Roland Stigge <stigge@antcom.de> + * + * Copyright © 2011 NXP Semiconductors + * Copyright © 2012 Roland Stigge + */ + +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/delay.h> +#include <linux/io.h> +#include <linux/mm.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/gpio.h> +#include <linux/of.h> +#include <linux/of_gpio.h> +#include <linux/mtd/lpc32xx_slc.h> + +#define LPC32XX_MODNAME "lpc32xx-nand" + +/********************************************************************** +* SLC NAND controller register offsets +**********************************************************************/ + +#define SLC_DATA(x) (x + 0x000) +#define SLC_ADDR(x) (x + 0x004) +#define SLC_CMD(x) (x + 0x008) +#define SLC_STOP(x) (x + 0x00C) +#define SLC_CTRL(x) (x + 0x010) +#define SLC_CFG(x) (x + 0x014) +#define SLC_STAT(x) (x + 0x018) +#define SLC_INT_STAT(x) (x + 0x01C) +#define SLC_IEN(x) (x + 0x020) +#define SLC_ISR(x) (x + 0x024) +#define SLC_ICR(x) (x + 0x028) +#define SLC_TAC(x) (x + 0x02C) +#define SLC_TC(x) (x + 0x030) +#define SLC_ECC(x) (x + 0x034) +#define SLC_DMA_DATA(x) (x + 0x038) + +/********************************************************************** +* slc_ctrl register definitions +**********************************************************************/ +#define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */ +#define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */ +#define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */ + +/********************************************************************** +* slc_cfg register definitions +**********************************************************************/ +#define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */ +#define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */ +#define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */ +#define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */ +#define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */ +#define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */ + +/********************************************************************** +* slc_stat register definitions +**********************************************************************/ +#define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */ +#define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */ +#define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */ + +/********************************************************************** +* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions +**********************************************************************/ +#define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */ +#define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */ + +/********************************************************************** +* slc_tac register definitions +**********************************************************************/ +/* Computation of clock cycles on basis of controller and device clock rates */ +#define SLCTAC_CLOCKS(c, n, s) (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s) + +/* Clock setting for RDY write sample wait time in 2*n clocks */ +#define SLCTAC_WDR(n) (((n) & 0xF) << 28) +/* Write pulse width in clock cycles, 1 to 16 clocks */ +#define SLCTAC_WWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 24)) +/* Write hold time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_WHOLD(c, n) (SLCTAC_CLOCKS(c, n, 20)) +/* Write setup time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_WSETUP(c, n) (SLCTAC_CLOCKS(c, n, 16)) +/* Clock setting for RDY read sample wait time in 2*n clocks */ +#define SLCTAC_RDR(n) (((n) & 0xF) << 12) +/* Read pulse width in clock cycles, 1 to 16 clocks */ +#define SLCTAC_RWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 8)) +/* Read hold time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_RHOLD(c, n) (SLCTAC_CLOCKS(c, n, 4)) +/* Read setup time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_RSETUP(c, n) (SLCTAC_CLOCKS(c, n, 0)) + +/********************************************************************** +* slc_ecc register definitions +**********************************************************************/ +/* ECC line party fetch macro */ +#define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF) +#define SLCECC_TO_COLPAR(n) ((n) & 0x3F) + +/* + * DMA requires storage space for the DMA local buffer and the hardware ECC + * storage area. The DMA local buffer is only used if DMA mapping fails + * during runtime. + */ +#define LPC32XX_DMA_DATA_SIZE 4096 +#define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4) + +/* Number of bytes used for ECC stored in NAND per 256 bytes */ +#define LPC32XX_SLC_DEV_ECC_BYTES 3 + +/* + * If the NAND base clock frequency can't be fetched, this frequency will be + * used instead as the base. This rate is used to setup the timing registers + * used for NAND accesses. + */ +#define LPC32XX_DEF_BUS_RATE 133250000 + +/* Milliseconds for DMA FIFO timeout (unlikely anyway) */ +#define LPC32XX_DMA_TIMEOUT 100 + +/* + * NAND ECC Layout for small page NAND devices + * Note: For large and huge page devices, the default layouts are used + */ +static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->length = 6; + oobregion->offset = 10; + + return 0; +} + +static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 1) + return -ERANGE; + + if (!section) { + oobregion->offset = 0; + oobregion->length = 4; + } else { + oobregion->offset = 6; + oobregion->length = 4; + } + + return 0; +} + +static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = { + .ecc = lpc32xx_ooblayout_ecc, + .free = lpc32xx_ooblayout_free, +}; + +static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; + +/* + * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6 + * Note: Large page devices used the default layout + */ +static struct nand_bbt_descr bbt_smallpage_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_smallpage_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = mirror_pattern +}; + +/* + * NAND platform configuration structure + */ +struct lpc32xx_nand_cfg_slc { + uint32_t wdr_clks; + uint32_t wwidth; + uint32_t whold; + uint32_t wsetup; + uint32_t rdr_clks; + uint32_t rwidth; + uint32_t rhold; + uint32_t rsetup; + int wp_gpio; + struct mtd_partition *parts; + unsigned num_parts; +}; + +struct lpc32xx_nand_host { + struct nand_chip nand_chip; + struct lpc32xx_slc_platform_data *pdata; + struct clk *clk; + void __iomem *io_base; + struct lpc32xx_nand_cfg_slc *ncfg; + + struct completion comp; + struct dma_chan *dma_chan; + uint32_t dma_buf_len; + struct dma_slave_config dma_slave_config; + struct scatterlist sgl; + + /* + * DMA and CPU addresses of ECC work area and data buffer + */ + uint32_t *ecc_buf; + uint8_t *data_buf; + dma_addr_t io_base_dma; +}; + +static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) +{ + uint32_t clkrate, tmp; + + /* Reset SLC controller */ + writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base)); + udelay(1000); + + /* Basic setup */ + writel(0, SLC_CFG(host->io_base)); + writel(0, SLC_IEN(host->io_base)); + writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN), + SLC_ICR(host->io_base)); + + /* Get base clock for SLC block */ + clkrate = clk_get_rate(host->clk); + if (clkrate == 0) + clkrate = LPC32XX_DEF_BUS_RATE; + + /* Compute clock setup values */ + tmp = SLCTAC_WDR(host->ncfg->wdr_clks) | + SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) | + SLCTAC_WHOLD(clkrate, host->ncfg->whold) | + SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) | + SLCTAC_RDR(host->ncfg->rdr_clks) | + SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) | + SLCTAC_RHOLD(clkrate, host->ncfg->rhold) | + SLCTAC_RSETUP(clkrate, host->ncfg->rsetup); + writel(tmp, SLC_TAC(host->io_base)); +} + +/* + * Hardware specific access to control lines + */ +static void lpc32xx_nand_cmd_ctrl(struct nand_chip *chip, int cmd, + unsigned int ctrl) +{ + uint32_t tmp; + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + /* Does CE state need to be changed? */ + tmp = readl(SLC_CFG(host->io_base)); + if (ctrl & NAND_NCE) + tmp |= SLCCFG_CE_LOW; + else + tmp &= ~SLCCFG_CE_LOW; + writel(tmp, SLC_CFG(host->io_base)); + + if (cmd != NAND_CMD_NONE) { + if (ctrl & NAND_CLE) + writel(cmd, SLC_CMD(host->io_base)); + else + writel(cmd, SLC_ADDR(host->io_base)); + } +} + +/* + * Read the Device Ready pin + */ +static int lpc32xx_nand_device_ready(struct nand_chip *chip) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + int rdy = 0; + + if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0) + rdy = 1; + + return rdy; +} + +/* + * Enable NAND write protect + */ +static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) +{ + if (gpio_is_valid(host->ncfg->wp_gpio)) + gpio_set_value(host->ncfg->wp_gpio, 0); +} + +/* + * Disable NAND write protect + */ +static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) +{ + if (gpio_is_valid(host->ncfg->wp_gpio)) + gpio_set_value(host->ncfg->wp_gpio, 1); +} + +/* + * Prepares SLC for transfers with H/W ECC enabled + */ +static void lpc32xx_nand_ecc_enable(struct nand_chip *chip, int mode) +{ + /* Hardware ECC is enabled automatically in hardware as needed */ +} + +/* + * Calculates the ECC for the data + */ +static int lpc32xx_nand_ecc_calculate(struct nand_chip *chip, + const unsigned char *buf, + unsigned char *code) +{ + /* + * ECC is calculated automatically in hardware during syndrome read + * and write operations, so it doesn't need to be calculated here. + */ + return 0; +} + +/* + * Read a single byte from NAND device + */ +static uint8_t lpc32xx_nand_read_byte(struct nand_chip *chip) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + return (uint8_t)readl(SLC_DATA(host->io_base)); +} + +/* + * Simple device read without ECC + */ +static void lpc32xx_nand_read_buf(struct nand_chip *chip, u_char *buf, int len) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + /* Direct device read with no ECC */ + while (len-- > 0) + *buf++ = (uint8_t)readl(SLC_DATA(host->io_base)); +} + +/* + * Simple device write without ECC + */ +static void lpc32xx_nand_write_buf(struct nand_chip *chip, const uint8_t *buf, + int len) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + /* Direct device write with no ECC */ + while (len-- > 0) + writel((uint32_t)*buf++, SLC_DATA(host->io_base)); +} + +/* + * Read the OOB data from the device without ECC using FIFO method + */ +static int lpc32xx_nand_read_oob_syndrome(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); +} + +/* + * Write the OOB data to the device without ECC using FIFO method + */ +static int lpc32xx_nand_write_oob_syndrome(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, + mtd->oobsize); +} + +/* + * Fills in the ECC fields in the OOB buffer with the hardware generated ECC + */ +static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count) +{ + int i; + + for (i = 0; i < (count * 3); i += 3) { + uint32_t ce = ecc[i / 3]; + ce = ~(ce << 2) & 0xFFFFFF; + spare[i + 2] = (uint8_t)(ce & 0xFF); + ce >>= 8; + spare[i + 1] = (uint8_t)(ce & 0xFF); + ce >>= 8; + spare[i] = (uint8_t)(ce & 0xFF); + } +} + +static void lpc32xx_dma_complete_func(void *completion) +{ + complete(completion); +} + +static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma, + void *mem, int len, enum dma_transfer_direction dir) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + struct dma_async_tx_descriptor *desc; + int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + int res; + + host->dma_slave_config.direction = dir; + host->dma_slave_config.src_addr = dma; + host->dma_slave_config.dst_addr = dma; + host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.src_maxburst = 4; + host->dma_slave_config.dst_maxburst = 4; + /* DMA controller does flow control: */ + host->dma_slave_config.device_fc = false; + if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { + dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); + return -ENXIO; + } + + sg_init_one(&host->sgl, mem, len); + + res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + if (res != 1) { + dev_err(mtd->dev.parent, "Failed to map sg list\n"); + return -ENXIO; + } + desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, + flags); + if (!desc) { + dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); + goto out1; + } + + init_completion(&host->comp); + desc->callback = lpc32xx_dma_complete_func; + desc->callback_param = &host->comp; + + dmaengine_submit(desc); + dma_async_issue_pending(host->dma_chan); + + wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000)); + + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + + return 0; +out1: + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + return -ENXIO; +} + +/* + * DMA read/write transfers with ECC support + */ +static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages, + int read) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + int i, status = 0; + unsigned long timeout; + int res; + enum dma_transfer_direction dir = + read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; + uint8_t *dma_buf; + bool dma_mapped; + + if ((void *)buf <= high_memory) { + dma_buf = buf; + dma_mapped = true; + } else { + dma_buf = host->data_buf; + dma_mapped = false; + if (!read) + memcpy(host->data_buf, buf, mtd->writesize); + } + + if (read) { + writel(readl(SLC_CFG(host->io_base)) | + SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | + SLCCFG_DMA_BURST, SLC_CFG(host->io_base)); + } else { + writel((readl(SLC_CFG(host->io_base)) | + SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) & + ~SLCCFG_DMA_DIR, + SLC_CFG(host->io_base)); + } + + /* Clear initial ECC */ + writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base)); + + /* Transfer size is data area only */ + writel(mtd->writesize, SLC_TC(host->io_base)); + + /* Start transfer in the NAND controller */ + writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START, + SLC_CTRL(host->io_base)); + + for (i = 0; i < chip->ecc.steps; i++) { + /* Data */ + res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma), + dma_buf + i * chip->ecc.size, + mtd->writesize / chip->ecc.steps, dir); + if (res) + return res; + + /* Always _read_ ECC */ + if (i == chip->ecc.steps - 1) + break; + if (!read) /* ECC availability delayed on write */ + udelay(10); + res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma), + &host->ecc_buf[i], 4, DMA_DEV_TO_MEM); + if (res) + return res; + } + + /* + * According to NXP, the DMA can be finished here, but the NAND + * controller may still have buffered data. After porting to using the + * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty) + * appears to be always true, according to tests. Keeping the check for + * safety reasons for now. + */ + if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) { + dev_warn(mtd->dev.parent, "FIFO not empty!\n"); + timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT); + while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) && + time_before(jiffies, timeout)) + cpu_relax(); + if (!time_before(jiffies, timeout)) { + dev_err(mtd->dev.parent, "FIFO held data too long\n"); + status = -EIO; + } + } + + /* Read last calculated ECC value */ + if (!read) + udelay(10); + host->ecc_buf[chip->ecc.steps - 1] = + readl(SLC_ECC(host->io_base)); + + /* Flush DMA */ + dmaengine_terminate_all(host->dma_chan); + + if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO || + readl(SLC_TC(host->io_base))) { + /* Something is left in the FIFO, something is wrong */ + dev_err(mtd->dev.parent, "DMA FIFO failure\n"); + status = -EIO; + } + + /* Stop DMA & HW ECC */ + writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START, + SLC_CTRL(host->io_base)); + writel(readl(SLC_CFG(host->io_base)) & + ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | + SLCCFG_DMA_BURST), SLC_CFG(host->io_base)); + + if (!dma_mapped && read) + memcpy(buf, host->data_buf, mtd->writesize); + + return status; +} + +/* + * Read the data and OOB data from the device, use ECC correction with the + * data, disable ECC for the OOB data + */ +static int lpc32xx_nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + struct mtd_oob_region oobregion = { }; + int stat, i, status, error; + uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE]; + + /* Issue read command */ + nand_read_page_op(chip, page, 0, NULL, 0); + + /* Read data and oob, calculate ECC */ + status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1); + + /* Get OOB data */ + chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize); + + /* Convert to stored ECC format */ + lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps); + + /* Pointer to ECC data retrieved from NAND spare area */ + error = mtd_ooblayout_ecc(mtd, 0, &oobregion); + if (error) + return error; + + oobecc = chip->oob_poi + oobregion.offset; + + for (i = 0; i < chip->ecc.steps; i++) { + stat = chip->ecc.correct(chip, buf, oobecc, + &tmpecc[i * chip->ecc.bytes]); + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + + buf += chip->ecc.size; + oobecc += chip->ecc.bytes; + } + + return status; +} + +/* + * Read the data and OOB data from the device, no ECC correction with the + * data or OOB data + */ +static int lpc32xx_nand_read_page_raw_syndrome(struct nand_chip *chip, + uint8_t *buf, int oob_required, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + /* Issue read command */ + nand_read_page_op(chip, page, 0, NULL, 0); + + /* Raw reads can just use the FIFO interface */ + chip->legacy.read_buf(chip, buf, chip->ecc.size * chip->ecc.steps); + chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize); + + return 0; +} + +/* + * Write the data and OOB data to the device, use ECC with the data, + * disable ECC for the OOB data + */ +static int lpc32xx_nand_write_page_syndrome(struct nand_chip *chip, + const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + struct mtd_oob_region oobregion = { }; + uint8_t *pb; + int error; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + /* Write data, calculate ECC on outbound data */ + error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0); + if (error) + return error; + + /* + * The calculated ECC needs some manual work done to it before + * committing it to NAND. Process the calculated ECC and place + * the resultant values directly into the OOB buffer. */ + error = mtd_ooblayout_ecc(mtd, 0, &oobregion); + if (error) + return error; + + pb = chip->oob_poi + oobregion.offset; + lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps); + + /* Write ECC data to device */ + chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); +} + +/* + * Write the data and OOB data to the device, no ECC correction with the + * data or OOB data + */ +static int lpc32xx_nand_write_page_raw_syndrome(struct nand_chip *chip, + const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + /* Raw writes can just use the FIFO interface */ + nand_prog_page_begin_op(chip, page, 0, buf, + chip->ecc.size * chip->ecc.steps); + chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); +} + +static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host) +{ + struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); + dma_cap_mask_t mask; + + if (!host->pdata || !host->pdata->dma_filter) { + dev_err(mtd->dev.parent, "no DMA platform data\n"); + return -ENOENT; + } + + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, + "nand-slc"); + if (!host->dma_chan) { + dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); + return -EBUSY; + } + + return 0; +} + +static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev) +{ + struct lpc32xx_nand_cfg_slc *ncfg; + struct device_node *np = dev->of_node; + + ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); + if (!ncfg) + return NULL; + + of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks); + of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth); + of_property_read_u32(np, "nxp,whold", &ncfg->whold); + of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup); + of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks); + of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth); + of_property_read_u32(np, "nxp,rhold", &ncfg->rhold); + of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup); + + if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold || + !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth || + !ncfg->rhold || !ncfg->rsetup) { + dev_err(dev, "chip parameters not specified correctly\n"); + return NULL; + } + + ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0); + + return ncfg; +} + +static int lpc32xx_nand_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) + return 0; + + /* OOB and ECC CPU and DMA work areas */ + host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE); + + /* + * Small page FLASH has a unique OOB layout, but large and huge + * page FLASH use the standard layout. Small page FLASH uses a + * custom BBT marker layout. + */ + if (mtd->writesize <= 512) + mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops); + + chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED; + /* These sizes remain the same regardless of page size */ + chip->ecc.size = 256; + chip->ecc.strength = 1; + chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES; + chip->ecc.prepad = 0; + chip->ecc.postpad = 0; + chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome; + chip->ecc.read_page = lpc32xx_nand_read_page_syndrome; + chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome; + chip->ecc.write_page = lpc32xx_nand_write_page_syndrome; + chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome; + chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome; + chip->ecc.calculate = lpc32xx_nand_ecc_calculate; + chip->ecc.correct = nand_correct_data; + chip->ecc.hwctl = lpc32xx_nand_ecc_enable; + + /* + * Use a custom BBT marker setup for small page FLASH that + * won't interfere with the ECC layout. Large and huge page + * FLASH use the standard layout. + */ + if ((chip->bbt_options & NAND_BBT_USE_FLASH) && + mtd->writesize <= 512) { + chip->bbt_td = &bbt_smallpage_main_descr; + chip->bbt_md = &bbt_smallpage_mirror_descr; + } + + return 0; +} + +static const struct nand_controller_ops lpc32xx_nand_controller_ops = { + .attach_chip = lpc32xx_nand_attach_chip, +}; + +/* + * Probe for NAND controller + */ +static int lpc32xx_nand_probe(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host; + struct mtd_info *mtd; + struct nand_chip *chip; + struct resource *rc; + int res; + + /* Allocate memory for the device structure (and zero it) */ + host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + + rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); + host->io_base = devm_ioremap_resource(&pdev->dev, rc); + if (IS_ERR(host->io_base)) + return PTR_ERR(host->io_base); + + host->io_base_dma = rc->start; + if (pdev->dev.of_node) + host->ncfg = lpc32xx_parse_dt(&pdev->dev); + if (!host->ncfg) { + dev_err(&pdev->dev, + "Missing or bad NAND config from device tree\n"); + return -ENOENT; + } + if (host->ncfg->wp_gpio == -EPROBE_DEFER) + return -EPROBE_DEFER; + if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev, + host->ncfg->wp_gpio, "NAND WP")) { + dev_err(&pdev->dev, "GPIO not available\n"); + return -EBUSY; + } + lpc32xx_wp_disable(host); + + host->pdata = dev_get_platdata(&pdev->dev); + + chip = &host->nand_chip; + mtd = nand_to_mtd(chip); + nand_set_controller_data(chip, host); + nand_set_flash_node(chip, pdev->dev.of_node); + mtd->owner = THIS_MODULE; + mtd->dev.parent = &pdev->dev; + + /* Get NAND clock */ + host->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(host->clk)) { + dev_err(&pdev->dev, "Clock failure\n"); + res = -ENOENT; + goto enable_wp; + } + res = clk_prepare_enable(host->clk); + if (res) + goto enable_wp; + + /* Set NAND IO addresses and command/ready functions */ + chip->legacy.IO_ADDR_R = SLC_DATA(host->io_base); + chip->legacy.IO_ADDR_W = SLC_DATA(host->io_base); + chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl; + chip->legacy.dev_ready = lpc32xx_nand_device_ready; + chip->legacy.chip_delay = 20; /* 20us command delay time */ + + /* Init NAND controller */ + lpc32xx_nand_setup(host); + + platform_set_drvdata(pdev, host); + + /* NAND callbacks for LPC32xx SLC hardware */ + chip->legacy.read_byte = lpc32xx_nand_read_byte; + chip->legacy.read_buf = lpc32xx_nand_read_buf; + chip->legacy.write_buf = lpc32xx_nand_write_buf; + + /* + * Allocate a large enough buffer for a single huge page plus + * extra space for the spare area and ECC storage area + */ + host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE; + host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len, + GFP_KERNEL); + if (host->data_buf == NULL) { + res = -ENOMEM; + goto unprepare_clk; + } + + res = lpc32xx_nand_dma_setup(host); + if (res) { + res = -EIO; + goto unprepare_clk; + } + + /* Find NAND device */ + chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops; + res = nand_scan(chip, 1); + if (res) + goto release_dma; + + mtd->name = "nxp_lpc3220_slc"; + res = mtd_device_register(mtd, host->ncfg->parts, + host->ncfg->num_parts); + if (res) + goto cleanup_nand; + + return 0; + +cleanup_nand: + nand_cleanup(chip); +release_dma: + dma_release_channel(host->dma_chan); +unprepare_clk: + clk_disable_unprepare(host->clk); +enable_wp: + lpc32xx_wp_enable(host); + + return res; +} + +/* + * Remove NAND device. + */ +static int lpc32xx_nand_remove(struct platform_device *pdev) +{ + uint32_t tmp; + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + struct nand_chip *chip = &host->nand_chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + dma_release_channel(host->dma_chan); + + /* Force CE high */ + tmp = readl(SLC_CTRL(host->io_base)); + tmp &= ~SLCCFG_CE_LOW; + writel(tmp, SLC_CTRL(host->io_base)); + + clk_disable_unprepare(host->clk); + lpc32xx_wp_enable(host); + + return 0; +} + +#ifdef CONFIG_PM +static int lpc32xx_nand_resume(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + int ret; + + /* Re-enable NAND clock */ + ret = clk_prepare_enable(host->clk); + if (ret) + return ret; + + /* Fresh init of NAND controller */ + lpc32xx_nand_setup(host); + + /* Disable write protect */ + lpc32xx_wp_disable(host); + + return 0; +} + +static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) +{ + uint32_t tmp; + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + + /* Force CE high */ + tmp = readl(SLC_CTRL(host->io_base)); + tmp &= ~SLCCFG_CE_LOW; + writel(tmp, SLC_CTRL(host->io_base)); + + /* Enable write protect for safety */ + lpc32xx_wp_enable(host); + + /* Disable clock */ + clk_disable_unprepare(host->clk); + + return 0; +} + +#else +#define lpc32xx_nand_resume NULL +#define lpc32xx_nand_suspend NULL +#endif + +static const struct of_device_id lpc32xx_nand_match[] = { + { .compatible = "nxp,lpc3220-slc" }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); + +static struct platform_driver lpc32xx_nand_driver = { + .probe = lpc32xx_nand_probe, + .remove = lpc32xx_nand_remove, + .resume = lpc32xx_nand_resume, + .suspend = lpc32xx_nand_suspend, + .driver = { + .name = LPC32XX_MODNAME, + .of_match_table = lpc32xx_nand_match, + }, +}; + +module_platform_driver(lpc32xx_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>"); +MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); +MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller"); |